KR20210065584A - One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery - Google Patents

One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery Download PDF

Info

Publication number
KR20210065584A
KR20210065584A KR1020190154501A KR20190154501A KR20210065584A KR 20210065584 A KR20210065584 A KR 20210065584A KR 1020190154501 A KR1020190154501 A KR 1020190154501A KR 20190154501 A KR20190154501 A KR 20190154501A KR 20210065584 A KR20210065584 A KR 20210065584A
Authority
KR
South Korea
Prior art keywords
solid
lithium sulfide
powder
state battery
composite electrode
Prior art date
Application number
KR1020190154501A
Other languages
Korean (ko)
Inventor
임형태
장기환
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020190154501A priority Critical patent/KR20210065584A/en
Publication of KR20210065584A publication Critical patent/KR20210065584A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for manufacturing a lithium sulfide composite electrode for an all-solid-state battery. The present invention can contribute to the improvement of the performance of the all-solid-state battery. The present invention includes the steps of: forming a solid electrolyte layer; forming a positive electrode layer; and forming a negative electrode layer.

Description

단일공정을 이용한 전고체전지 황화리튬 복합 전극의 제조방법{ONE-STEP MANUFACTURING METHOD OF LITHIUM-SULFIDE COMPOSITE ELECTRODE FOR ALL-SOLID-STATE SECONDARY BATTERY}Manufacturing method of lithium sulfide composite electrode for all-solid-state battery using a single process

본 발명은 전고체전지용 양극 제조방법에 대한 것으로서, 보다 상세하게는, 황화리튬(Li2S)을 양극 활물질로 포함하는 전고체전지용 양극의 제조방법에 대한 것이다.The present invention relates to a method for manufacturing a positive electrode for an all-solid-state battery, and more particularly, to a method for manufacturing a positive electrode for an all-solid-state battery including lithium sulfide (Li 2 S) as a positive electrode active material.

최근 전기자동차(EV)와 고성능의 휴대기기, 에너지 저장 시스템(ESS)의 기술발전 및 보편화로 인해 고에너지/고용량 전지의 수요가 증가함에 따라 차세대 전지에 관한 다양한 연구가 전 세계적으로 활발하게 진행되고 있다. Recently, as the demand for high-energy/high-capacity batteries increases due to the technological development and generalization of electric vehicles (EVs), high-performance portable devices, and energy storage systems (ESS), various researches on next-generation batteries are being actively conducted around the world. have.

그러나, 최근 리튬 이차전지의 폭발 및 발화의 위험성으로 인해 안정성에 관한 이슈가 대두되고 있는데, 이는 현재 상용화되어 있는 리튬 이차전지에 증발, 누액, 발화, 폭발에 취약한 유기 전해액을 사용하고 있기 때문이다. However, recently, due to the risk of explosion and ignition of lithium secondary batteries, an issue regarding stability has been raised, which is because an organic electrolyte, which is vulnerable to evaporation, leakage, ignition, and explosion, is used in currently commercialized lithium secondary batteries.

이러한 문제점을 해결하기 위한 연구 중에서 액체전해질 대신 고체전해질을 적용한 전고체(All-solid-state) 리튬 이차전지가 많은 관심을 받고 있다. Among studies to solve this problem, an all-solid-state lithium secondary battery in which a solid electrolyte is applied instead of a liquid electrolyte is receiving a lot of attention.

전고체전지는 전극 구성 요소에 고체 상태의 이온전도상, 전자전도상, 활물질이 요구되며, 일반적인 전해액 기반의 리튬 이차전지와 달리 고체와 고체 사이에서 이온 및 전자 이동을 통해 전지의 충·방전이 진행되기 때문에 이들의 접촉 면적(contact area)가 전지의 성능에 민감한 영향을 준다. All-solid-state batteries require solid-state ion-conducting phases, electron-conducting phases, and active materials for electrode components, and unlike general electrolyte-based lithium secondary batteries, because charging and discharging of the battery proceeds through the movement of ions and electrons between the solid and the solid. Their contact area has a sensitive effect on the performance of the battery.

양극재로서 황(S)을 예로 들면 이론적으로 에너지 밀도가 매우 높은(~1640 mAh/g) 소재이나, 상온에서 전자전도성이 매우 낮은 절연성 물질이므로 전극으로 사용하기 위해서는 추가적인 도전재를 첨가하여 전자 전도 통로를 충분히 제공해야 한다. 이러한 특성 때문에 전극 제조공정이 복잡하고 단계적이다. Taking sulfur (S) as an example as a cathode material, it is theoretically a material with a very high energy density (~1640 mAh/g), but since it is an insulating material with very low electron conductivity at room temperature, an additional conductive material is added to conduct electrons for use as an electrode. Enough passages must be provided. Due to these characteristics, the electrode manufacturing process is complex and step-by-step.

또한, 황을 양극재로 사용한다면 기본적으로 리튬이 포함된 음극재가 요구된다. 고용량 특성을 달성하기 위해 음극도 마찬가지로 고용량이어야 한다. 리튬 금속을 음극재료 적용할 경우 리튬 금속은 포일(foil) 형태이기 때문에 고체전해질을 박막 형태로 코팅해야 하며 이러한 제조과정은 비용적인 측면에서도 고가이고 금속에 세라믹을 코팅해야 하므로 기술적으로 매우 어렵다.In addition, if sulfur is used as a cathode material, an anode material containing lithium is basically required. In order to achieve high capacity characteristics, the negative electrode must likewise have a high capacity. When lithium metal is applied as an anode material, since lithium metal is in the form of a foil, a solid electrolyte must be coated in a thin film form, and this manufacturing process is expensive in terms of cost and is technically very difficult because the metal must be coated with a ceramic.

한국 공개특허공보 제10-2017-0125568호 (공개일: 2017.11.15)Korean Patent Publication No. 10-2017-0125568 (published on: November 15, 2017) 한국 공개특허공보 제10-2016-0078021호 (공개일: 2016.07.04)Korean Patent Publication No. 10-2016-0078021 (published on: 2016.07.04) 일본 공개특허공보 제2013-157084호 (공개일: 2013.08.15)Japanese Laid-Open Patent Publication No. 2013-157084 (published date: August 15, 2013)

본 발명이 해결하고자 하는 기술적 과제는, 황화리튬(Li2S)을 양극 활물질로 이용해 리튬이 포함되지 않은 음극(lithium-free anode)를 포함한 전고체전지를 구현할 수 있고, 종래 황(S)을 양극 활물질로 사용한 경우와 비교해 공정이 현저히 간소화되어 보다 효율적으로 전고체전지용 양극을 제조할 있는 방법을 제공하는 것이다.The technical problem to be solved by the present invention is that an all-solid-state battery including a lithium-free anode can be implemented using lithium sulfide (Li 2 S) as a positive electrode active material, and conventional sulfur (S) It is to provide a method for manufacturing a positive electrode for an all-solid-state battery more efficiently by significantly simplifying the process compared to the case of using the positive electrode active material.

상기 기술적 과제를 달성하기 위해, 본 발명은 황화리튬(Li2S), 황화인(P2S5) 및 도전재를 포함하되 Li2S와 P2S5의 몰비가 80 : 20을 초과하는 혼합물에 대해 기계적 합금화(mechanical alloying)를 실시해 Li2S, Li2S-P2S5 및 도전재를 포함하는 복합체를 제조하는 단계를 포함하는, 전고체전지 황화리튬 복합 전극 제조방법을 제안한다.In order to achieve the above technical object, the present invention includes lithium sulfide (Li 2 S), phosphorus sulfide (P 2 S 5 ) and a conductive material, but the molar ratio of Li 2 S and P 2 S 5 exceeds 80: 20. A method for manufacturing a lithium sulfide composite electrode for an all-solid-state battery is proposed, including preparing a composite including Li 2 S, Li 2 SP 2 S 5 and a conductive material by performing mechanical alloying on the mixture.

이때, 상기 기계적 합금화 공정은 유성형 볼밀링(planetary ball milling), 어트리션 밀링(attrition milling) 또는 쉐이커 밀링(shaker milling)에 의해 수행되는 것을 특징으로 한다. In this case, the mechanical alloying process is characterized in that it is performed by planetary ball milling, attrition milling, or shaker milling.

상기와 같이 고에너지 밀링을 이용한 기계적 합금화 공정에 의해 황화리튬(Li2S) 분말과 황화인(P2S5) 분말이 분쇄됨과 동시에 서로 기계적으로 결합되어 황화리튬(Li2S)과 황화인(P2S5)이 80 : 20의 몰비로 합금화된 황화리튬-황화인(Li2S-P2S5) 고체전해질이 얻어지고, 상기 고체전해질 형성에 참여하지 못한 잉여 Li2S는 양극 활물질로 남게 되므로, 단일 단계 공정으로 황화리튬(Li2S) 및 고체전해질(Li2S-P2S5)을 포함하는 복합체 전극의 제조가 가능하다. As described above, by the mechanical alloying process using high energy milling, lithium sulfide (Li 2 S) powder and phosphorus sulfide (P 2 S 5 ) powder are pulverized and mechanically combined with each other to form lithium sulfide (Li 2 S) and phosphorus sulfide A lithium sulfide-phosphorus sulfide (Li 2 SP 2 S 5 ) solid electrolyte is obtained in which (P 2 S 5 ) is alloyed in a molar ratio of 80: 20 , and the surplus Li 2 S that does not participate in the formation of the solid electrolyte is used as a positive electrode active material. Therefore, it is possible to manufacture a composite electrode including lithium sulfide (Li 2 S) and a solid electrolyte (Li 2 SP 2 S 5 ) in a single step process.

한편, 상기 도전재는 카본(carbon)일 수 있으나 이에 제한되지 않고 본 발명의 출원 이전에 공지된 전고체전지 전극용 도전재라면 그 종류에 상관 없이 도전재로 사용될 수 있다. Meanwhile, the conductive material may be carbon, but is not limited thereto, and any conductive material for an all-solid-state battery electrode known before the filing of the present invention may be used as a conductive material regardless of the type thereof.

그리고, 본 발명은 발명의 다른 측면에서 상기 황화리튬 복합 전극 제조방법을 포함해 이루어지는 전고체전지의 제조방법으로서, (a) Li2S-P2S5 분말을 가압하여 고체전해질층을 형성시키는 단계; (b) 황화리튬(Li2S) 분말, 황화인(P2S5) 분말 및 도전재 분말을 포함하되 Li2S와 P2S5의 몰비가 80 : 20을 초과하는 혼합 분말에 대해 기계적 합금화(mechanical alloying)를 실시해 Li2S, Li2S-P2S5 및 도전재를 포함하는 복합체 분말을 제조하고, 상기 복합체 분말을 상기 고체전해질층의 일면에 구비시킨 후 가압하여 양극층을 형성시키는 단계; 및 (c) 음극재 분말 또는 박막을 상기 고체전해질층의 타면에 구비시킨 후, 가압하여 음극층을 형성시키는 단계를 포함하는 전고체전지의 제조방법을 제안한다. In another aspect of the present invention, there is provided a method for manufacturing an all-solid-state battery comprising the method for manufacturing the lithium sulfide composite electrode, comprising the steps of: (a) forming a solid electrolyte layer by pressing Li 2 SP 2 S 5 powder; (b) a mixed powder including lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and conductive material powder, but with a molar ratio of Li 2 S and P 2 S 5 exceeding 80:20 A composite powder comprising Li 2 S, Li 2 SP 2 S 5 and a conductive material is prepared by performing mechanical alloying, and the composite powder is provided on one surface of the solid electrolyte layer and then pressurized to form an anode layer step; and (c) providing the anode material powder or thin film on the other surface of the solid electrolyte layer, and then pressurizing to form the anode layer.

본 발명에 따르면 양극 활물질로 황(S)이 아닌 황화리튬(Li2S)을 사용하기 때문에 음극재 소재에 대한 제약이 줄어들어 상기 음극층은 리튬이 포함되지 않은 음극(lithium-free anode)으로 형성될 수 있다. 일례로 음극재 박막으로 인듐 포일(indium foil)을 고체전해질층의 타면에 구비시킨 후 가압해 음극층을 형성할 수 있으며, 이와 같이 인듐을 음극재로 적용함으로써 고용량 및 우수한 안정성을 가지는 전고체전지를 제조할 수 있다. According to the present invention, since lithium sulfide (Li 2 S) rather than sulfur (S) is used as the positive electrode active material, restrictions on the material of the negative electrode material are reduced, so that the negative electrode layer is formed of a lithium-free anode can be For example, an indium foil as an anode material thin film can be provided on the other surface of the solid electrolyte layer and pressurized to form an anode layer. In this way, by applying indium as an anode material, an all-solid-state battery with high capacity and excellent stability can be manufactured.

나아가, 본 발명은 발명의 또 다른 측면에서 상기 전고체전지의 제조방법에 의해 제조되어 황화리튬 복합 전극을 양극으로 포함하는 전고체전지를 제안한다. Furthermore, in another aspect of the present invention, an all-solid-state battery manufactured by the method for manufacturing an all-solid-state battery and including a lithium sulfide composite electrode as an anode is proposed.

본 발명에 따른 전고체전지 황화리튬 복합 전극 제조방법에 의하면, 양극 활물질로 황(S)이 아닌 황화리튬(Li2S)을 사용해 복합 전극을 제조하되, 2단계 공정(고체전해질(Li2S-P2S5) 제조 단계 - 상기 고체전해질 포함 복합체 전극 제조 단계) 대신에 고체전해질 및 복합체 전극을 동시에 제조하는 단일 단계 공정(Li2S, P2S5 및 도전재를 혼합한 후 기계적 합금화 수행)으로 황화리튬 복합 전극을 제조함으로써, 고체전해질 제조와 복합 전극 제조를 순차적으로 행하는 경우와 비교해 공정 시간이 단축되면서도 전극 재료 입자의 형태(morphology)가 개선되어 결과적으로 전고체전지의 성능 향상에 기여할 수 있다. According to the method for manufacturing a lithium sulfide composite electrode for an all-solid-state battery according to the present invention, a composite electrode is manufactured using lithium sulfide (Li 2 S), not sulfur (S), as a positive electrode active material, but a two-step process (solid electrolyte (Li 2 SP) 2 S 5 ) manufacturing step - a single-step process of simultaneously manufacturing a solid electrolyte and a composite electrode instead of the solid electrolyte-containing composite electrode manufacturing step) (Mechanical alloying is performed after mixing Li 2 S, P 2 S 5 and a conductive material) By manufacturing a lithium sulfide composite electrode with a lithium sulfide composite electrode, the process time is shortened compared to the case of sequentially manufacturing the solid electrolyte and the composite electrode, and the morphology of the electrode material particles is improved, thereby contributing to the improvement of the performance of the all-solid-state battery. have.

또한, 본 발명에 의하면 황화리튬 복합 전극을 부반응 없이 제조할 수 있을 뿐만 아니라, 양극 활물질로 황(S)이 아닌 황화리튬(Li2S)을 사용하기 때문에 음극재 소재에 대한 제약이 줄어들어 금속 인듐 등을 음극재로 이용해 용이하게 전고체전지를 제조할 수 있으며, 나아가, 황화리튬 복합 전극을 양극으로 인듐을 음극으로 적용함으로써 고용량 및 우수한 안정성을 가지는 전고체전지를 제조할 수 있다. In addition, according to the present invention, a lithium sulfide composite electrode can be manufactured without side reactions, and since lithium sulfide (Li 2 S) rather than sulfur (S) is used as the positive electrode active material, restrictions on the material of the anode material are reduced, so that indium metal An all-solid-state battery can be easily manufactured by using a cathode material such as a lithium sulfide composite electrode as an anode and an all-solid-state battery having a high capacity and excellent stability by applying indium as a cathode.

도 1은 본원 실시예 1에 따른 단일공정(One-step)을 통한 황화리튬 복합 전극 제작 공정 및 비교예 1에 따른 복수공정(Two-step)을 통한 황화리튬 복합 전극 제조 공정을 모식적으로 나타낸 도면이다.
도 2는 본원 실시예 2 및 비교예 2에 따른 전고체 황화리튬 전고체전지 제조 공정 및 해당 전고체전지의 단면 구조에 대한 모식도이다.
도 3은 본원 실시예 1에 따른 단일공정(One-step)을 이용해 제조된 황화리튬 복합 전극 및 비교예 1에 따른 복수공정(Two-step)을 통해 제조된 황화리튬 복합 전극에 대한 SEM-EDS mapping 결과이다.
도 4는 본원 실시예 2에 따른 전고체전지의 충·방전 용량 측정 결과 및 사이클 테스트 결과이다.
도 5는 비교예 2에 따른 전고체전지의 충·방전 용량 측정 결과 및 사이클 테스트 결과이다.
1 schematically shows a lithium sulfide composite electrode manufacturing process through a single process (One-step) according to Example 1 of the present application and a lithium sulfide composite electrode manufacturing process through a multiple process (Two-step) according to Comparative Example 1 It is a drawing.
2 is a schematic diagram of a manufacturing process of an all-solid-state lithium sulfide all-solid-state battery according to Example 2 and Comparative Example 2 of the present application and a cross-sectional structure of the all-solid-state battery.
3 is a SEM-EDS of a lithium sulfide composite electrode manufactured using a single process (one-step) according to Example 1 of the present application and a lithium sulfide composite electrode manufactured through a multiple process (two-step) according to Comparative Example 1; This is the mapping result.
4 is a measurement result and cycle test result of the charge/discharge capacity of the all-solid-state battery according to Example 2 of the present application.
5 is a measurement result and cycle test results of the charge/discharge capacity of the all-solid-state battery according to Comparative Example 2.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the present invention may have various changes and may have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention with respect to a specific disclosed form, and should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate that the described feature, number, step, operation, component, part, or a combination thereof exists, and includes one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.

이하, 본 발명을 실시예를 들어 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to examples.

실시예Example

유리질 황화물계 고체전해질의 출발 물질인 Li2S는 리튬이차전지의 양극 활물질로 사용될 수 있으며, 이론용량 ~1164 mAh/g으로 현재 보편적으로 사용되는 LCO, LMO, NMC 등의 용량보다 매우 높다. Li 2 S, a starting material of a glassy sulfide-based solid electrolyte, can be used as a cathode active material for a lithium secondary battery, and has a theoretical capacity of ~1164 mAh/g, which is much higher than the capacities of LCO, LMO, NMC, etc. which are commonly used today.

Li2S를 양극 활물질로 적용할 경우 리튬이 포함되지 않은 음극재의 선택이 가능하게 되므로 음극재 선정에 있어 보다 자유로울 수 있다. 또한, 본 발명 관련 배경 기술에서 언급된 바와 같이 황 전극은 구성 요소가 되는 양극 활물질과 전해질을 각각 준비해야 하기 때문에 여러 단계의 공정을 거쳐 제조하는 것이 일반적이며 생산성 뿐 아니라 최적화된 morphology를 기대하기 힘든 단점이 있다. 반면에, Li2S이 양극 활물질로 적용되는 전고체전지의 경우 Li2S는 고체전해질(Li2S-P2S5)과 양극에 모두 포함되므로 이러한 점을 잘 이용하면 제조 공정을 단순화할 수 있다. When Li 2 S is applied as a positive electrode active material, it is possible to select a negative electrode material that does not contain lithium, so that the selection of the negative electrode material may be more free. In addition, as mentioned in the background art related to the present invention, the sulfur electrode is generally manufactured through several steps because it is necessary to prepare a cathode active material and an electrolyte, which are components, and it is difficult to expect optimized morphology as well as productivity. There are disadvantages. On the other hand, in the case of the all-solid battery Li 2 S is applied to the positive electrode active material Li 2 S may simplify the manufacturing process if good use of this point because it includes both the solid electrolyte (Li 2 SP 2 S 5) and an anode .

Li2S-P2S5 황화물계 고체전해질에서 Li2S이 최대로 차지할 수 있는 몰 비율은 80 Li2S-20 P2S5 (80:20)으로 알려져 있다. 이를 바탕으로 Li2S를 80 mol% 보다 높은 비율로 P2S5과 반응 (기계적 합금화) 시킨다면 80 Li2S-20 P2S5 고체전해질이 제조됨과 동시에 반응에 참여하지 못한 잉여 Li2S는 양극 활물질로 남게 되므로 단 한번의 공정으로 황화리튬 및 고체전해질로 구성되는 복합체 전극의 제조가 가능하다. 또한, 고에너지 볼밀을 이용하여 전해질 제조 및 복합체 구성을 한 번의 공정으로 실시하기 때문에 전해질 및 활물질 입자 크기 및 분포를 개선할 수 있다. Li 2 SP 2 S 5 sulfide in a molar ratio in the solid electrolyte is Li 2 S can occupy a maximum is known as the 80 Li 2 S-20 P 2 S 5 (80:20). Based on this, a high rate of Li 2 S than 80 mol% P 2 S 5 and reaction (mechanical alloying) sikindamyeon 80 Li 2 S-20 P 2 S 5 surplus Li 2 S solid soon as the electrolyte is prepared did not simultaneously participating in the reaction remains as a positive electrode active material, so it is possible to manufacture a composite electrode composed of lithium sulfide and a solid electrolyte in a single process. In addition, the electrolyte and active material particle size and distribution can be improved because electrolyte preparation and composite construction are performed in one process using a high-energy ball mill.

본 실시예에서는 상기와 같이 전해질 및 복합체 제조를 한 번의 공정으로 수행하고 비교예로서 종래의 복합 전극 제조과정인 복수공정(Two-step)을 통해 전해질 제조 및 복합체 제조를 순차적으로 수행해 양자를 비교하였으며, 이하 상세히 설명한다.In this embodiment, as described above, the electrolyte and the composite were manufactured in one process, and as a comparative example, the electrolyte and the composite were sequentially manufactured through the conventional composite electrode manufacturing process (Two-step) to compare both. , which will be described in detail below.

<실시예 1> 단일공정(One-step)을 통한 황화리튬 복합 전극(lithium sulfide composite electrode) 제조<Example 1> Preparation of lithium sulfide composite electrode through one-step

80+α (Li2S) : 20 (P2S5) mol% 복합체에 carbon을 첨가한 후 고 에너지 볼밀(planetary ball milling) 공정을 실시했다. 반응 후 최종적으로 고체전해질 (80 Li2S-20 P2S5 (mol%)) : 양극 활물질 (Li2S) : 도전재 (carbon)의 무게 비율이 2 : 1 : 1이 되도록 α=88.5로 선정했다. 80+α (Li 2 S): 20 (P 2 S 5 ) mol% After carbon was added to the composite, a high energy ball milling process was performed. Finally, after the reaction, α=88.5 so that the weight ratio of the solid electrolyte (80 Li 2 S-20 P 2 S 5 (mol%)): the positive electrode active material (Li 2 S): the conductive material (carbon) is 2: 1: 1 was selected as

milling pot에 5φ의 zirconia ball을 BPR (ball to powder weight ratio) 50:1 (wt%)로 넣고 milling pot 내부 Ar 분위기를 유지하기 위하여 glove box내에서 sealing했다. Sealing된 milling pot를 370 rpm으로 30 시간 동안 planetary ball milling을 실시했다. 단 한번의 기계적 합금화 공정으로 고체천해질(80 Li2S-20 P2S5 (mol%))이 제조됨과 동시에 반응에 참여하지 않은 Li2S과 carbon이 각각 활물질과 도전재로 포함된 황화물계 복합 양극재를 제조할 수 있으며 고 에너지 볼밀 공정으로 고체전해질의 제조와 각 구성요소의 고른 분산 및 미세화가 가능하다. A zirconia ball of 5φ was placed in the milling pot at a BPR (ball to powder weight ratio) of 50:1 (wt%) and sealed in a glove box to maintain the Ar atmosphere inside the milling pot. The sealed milling pot was subjected to planetary ball milling at 370 rpm for 30 hours. A solid natural electrolyte (80 Li 2 S-20 P 2 S 5 (mol%)) is produced through a single mechanical alloying process, and at the same time, Li 2 S and carbon, which do not participate in the reaction, are included as active materials and conductive materials, respectively. It is possible to manufacture a composite cathode material, and it is possible to manufacture a solid electrolyte through a high-energy ball mill process, and to evenly disperse and refine each component.

<비교예 1> 복수공정(Two-step)을 통한 황화리튬 복합 전극 제조<Comparative Example 1> Manufacturing of lithium sulfide composite electrode through two-step

(80 Li2S-20 P2S5 (mol%)) 고체전해질의 제조를 위해 planetary ball milling pot에 Li2S와 P2S5를 80 : 20의 몰 비율로 넣고 10φ의 zirconia ball을 BPR (ball to powder weight ratio) 30:1 (wt%)로 넣은 다음, milling pot 내부 Ar 분위기를 유지하기 위하여 glove box내에서 sealing했다. Sealing된 milling pot를 370 rpm으로 30 시간 동안 planetary ball milling 하여 기계적 합금화 방법으로 고체천해질(80 Li2S-20 P2S5 (mol%))을 제조했다. 이후, 밀링을 중지한 후 Li2S와 carbon을 추가로 첨가하여 고체전해질 (80 Li2S-20 P2S5 (mol%)) : 양극 활물질 (Li2S) : 도전재 (carbon)의 무게 비율이 2 : 1 : 1이 되는 복합체를 구성했다. 370 rpm 속도로 3시간 동안 추가로 planetary ball milling을 실시해 황화물계 복합 양극재를 제조했다. (80 Li 2 S-20 P 2 S 5 (mol%)) For the production of solid electrolyte, Li 2 S and P 2 S 5 were put in a planetary ball milling pot in a molar ratio of 80:20, and a zirconia ball of 10φ was BPR (ball to powder weight ratio) was put into 30:1 (wt%), and then sealed in a glove box to maintain the Ar atmosphere inside the milling pot. The sealed milling pot was subjected to planetary ball milling at 370 rpm for 30 hours to prepare a solid earth electrolyte (80 Li 2 S-20 P 2 S 5 (mol%)) by mechanical alloying method. Thereafter, after stopping milling, Li 2 S and carbon are further added to form a solid electrolyte (80 Li 2 S-20 P 2 S 5 (mol%)): a positive electrode active material (Li 2 S): a conductive material (carbon). A composite having a weight ratio of 2 : 1 : 1 was constructed. A sulfide-based composite cathode material was prepared by additionally performing planetary ball milling at a speed of 370 rpm for 3 hours.

<실시예 2> 실시예 1에서 제조한 황화리튬 복합 전극을 포함하는 전고체 황화리튬 셀 제조(도 2 참조)<Example 2> Preparation of an all-solid lithium sulfide cell including the lithium sulfide composite electrode prepared in Example 1 (see FIG. 2)

- 제작된 테스트 몰드 안에 고체전해질(Li2S-P2S5)을 0.1g 넣고 30MPa 압력 하에 프레스하여 disc pellet 형태로 성형했다.- 0.1 g of solid electrolyte (Li 2 SP 2 S 5 ) was put into the prepared test mold and pressed under a pressure of 30 MPa to form a disc pellet.

- 실시예 1에서 제조한 황화리튬 복합 전극을 0.16g 만큼 넣고 30MPa 압력 하에 프레스하여 양극층을 disc pellet 형태로 음극층을 성형했다. - 0.16 g of the lithium sulfide composite electrode prepared in Example 1 was added and pressed under a pressure of 30 MPa to form a cathode layer in the form of a disc pellet for the anode layer.

- 몰드를 반대편으로 돌려 foil 형태의 indium metal을 넣고 30MPa 압력 하에 프레스하여 음극층을 만들었다.- Turn the mold to the opposite side, put indium metal in the form of foil, and press it under a pressure of 30 MPa to make a cathode layer.

<비교예 2> 비교예 1에서 제조한 황화리튬 복합 전극을 포함하는 전고체 황화리튬 셀 제조(도 2 참조)<Comparative Example 2> Preparation of an all-solid lithium sulfide cell including the lithium sulfide composite electrode prepared in Comparative Example 1 (see FIG. 2)

- 제작된 테스트 몰드 안에 고체전해질(Li2S-P2S5)을 0.1g 넣고 30MPa 압력 하에 프레스하여 disc pellet 형태로 성형했다.- 0.1 g of solid electrolyte (Li 2 SP 2 S 5 ) was put into the prepared test mold and pressed under a pressure of 30 MPa to form a disc pellet.

- 비교예 1에서 제조한 황화리튬 복합 전극을 0.16g 만큼 넣고 30MPa 압력 하에 프레스하여 양극층을 disc pellet 형태로 음극층을 성형했다. - 0.16 g of the lithium sulfide composite electrode prepared in Comparative Example 1 was added and pressed under a pressure of 30 MPa to form a cathode layer in the form of a disc pellet for the anode layer.

- 몰드를 반대편으로 돌려 foil 형태의 indium metal을 넣고 30MPa 압력 하에 프레스하여 음극층을 만들었다.- Turn the mold to the opposite side, put indium metal in the form of foil, and press it under a pressure of 30 MPa to make a cathode layer.

<실험예> 전고체 황화리튬 복합 전극의 morphology 분석 및 전고체 황화리튬 전지에 대한 충·방전 성능평가<Experimental Example> Morphology analysis of all-solid lithium sulfide composite electrode and evaluation of charge/discharge performance for all-solid lithium sulfide battery

실시예 1 및 비교예 1에서 제조한 황화리튬 복합 전극 각각에 대해 SEM-EDS mapping을 실시한 결과 실시예 1에서 단일공정을 적용해 제조한 복합 전극에서 황(S), 인(P), 탄소(C) 성분 분포가 비교예 1에서 복수공정을 적용해 제조한 복합 전극에서보다 균일한 것으로 관찰되었다(도 3). As a result of performing SEM-EDS mapping on each of the lithium sulfide composite electrodes prepared in Example 1 and Comparative Example 1, sulfur (S), phosphorus (P), carbon ( C) It was observed that the component distribution was more uniform than in the composite electrode prepared by applying multiple processes in Comparative Example 1 ( FIG. 3 ).

이러한 성분 분포 차이에 의한 영향을 조사하기 위해 실시예 1 및 비교예 1 각각의 황화리튬 복합 전극을 양극으로 적용한 실시예 2 및 비교예 2에 따른 전고체 황화리튬 셀에 대해 충·방전 시험을 10회 반복하여 성능평가를 실시하였다. 0.064 mA/cm2, 0.13 mA/cm2, 0.26 mA/cm2의 정전류 조건에서 테스트를 진행한 결과 단일공정을 적용해 제조한 복합 전극을 양극으로 포함한 실시예 2의 전지(도 4)가 복수공정을 적용해 제조한 복합 전극을 양극으로 포함한 비교예 2의 전지(도 5) 보다 더욱 높은 용량을 구현하고, 다양한 전류 밀도에서 보다 안정적인 것으로 관찰되었다. 특히, 10회 사이클 테스트에서는 복수공정으로 제조된 비교예 2에 따른 셀의 경우 비정상적인 충방전 곡선을 나타내었으며 그 이후 더 이상 테스트를 진행할 수 없게 되었다. 즉, 제조공정이 용량 뿐 아니라 수명에도 영향을 주는 것을 이해할 수 있다. In order to investigate the effect of such a component distribution difference, a charge/discharge test was performed on the all-solid lithium sulfide cells according to Example 2 and Comparative Example 2, in which each lithium sulfide composite electrode of Example 1 and Comparative Example 1 was applied as a positive electrode. Performance evaluation was performed repeatedly. As a result of testing under constant current conditions of 0.064 mA/cm 2 , 0.13 mA/cm 2 , and 0.26 mA/cm 2 , the battery of Example 2 ( FIG. 4 ) including a composite electrode manufactured by applying a single process as a positive electrode was a plurality It was observed that the battery of Comparative Example 2 (FIG. 5) including the composite electrode manufactured by applying the process as a positive electrode realized a higher capacity and was more stable at various current densities. In particular, in the 10-cycle test, the cell according to Comparative Example 2 manufactured by multiple processes exhibited an abnormal charge/discharge curve, and after that, the test could no longer be performed. That is, it can be understood that the manufacturing process affects not only the capacity but also the lifespan.

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but may be manufactured in various different forms, and those of ordinary skill in the art to which the present invention pertains will have other specific forms without changing the technical spirit or essential features of the present invention It will be understood that it can be implemented as Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (6)

황화리튬(Li2S), 황화인(P2S5) 및 도전재를 포함하되 Li2S와 P2S5의 몰비가 80 : 20을 초과하는 혼합물에 대해 기계적 합금화(mechanical alloying)를 실시해 Li2S, Li2S-P2S5 및 도전재를 포함하는 복합체를 제조하는 단계를 포함하는,
전고체전지 황화리튬 복합 전극 제조방법.
Mechanical alloying is performed on a mixture containing lithium sulfide (Li 2 S), phosphorus sulfide (P 2 S 5 ), and a conductive material, but the molar ratio of Li 2 S to P 2 S 5 exceeds 80:20. Li 2 S, Li 2 SP 2 S 5 And comprising the step of preparing a composite comprising a conductive material,
A method for manufacturing a lithium sulfide composite electrode for an all-solid-state battery.
제1항에 있어서,
상기 기계적 합금화는 유성형 볼밀링(planetary ball milling), 어트리션 밀링(attrition milling) 또는 쉐이커 밀링(shaker milling)에 의해 수행되는 것을 특징으로 하는 전고체전지 황화리튬 복합 전극 제조방법.
According to claim 1,
The all-solid-state battery lithium sulfide composite electrode manufacturing method, characterized in that the mechanical alloying is performed by planetary ball milling, attrition milling, or shaker milling.
제1항에 있어서,
상기 도전재는 카본(carbon)인 것을 특징으로 하는 전고체전지 황화리튬 복합 전극 제조방법.
According to claim 1,
The all-solid-state battery lithium sulfide composite electrode manufacturing method, characterized in that the conductive material is carbon (carbon).
(a) Li2S-P2S5 분말을 가압하여 고체전해질층을 형성시키는 단계;
(b) 황화리튬(Li2S) 분말, 황화인(P2S5) 분말 및 도전재 분말을 포함하되 Li2S와 P2S5의 몰비가 80 : 20을 초과하는 혼합 분말에 대해 기계적 합금화(mechanical alloying)를 실시해 Li2S, Li2S-P2S5 및 도전재를 포함하는 복합체 분말을 제조하고, 상기 복합체 분말을 상기 고체전해질층의 일면에 구비시킨 후 가압하여 양극층을 형성시키는 단계; 및
(c) 음극재 분말 또는 박막을 상기 고체전해질층의 타면에 구비시킨 후, 가압하여 음극층을 형성시키는 단계를 포함하는 전고체전지의 제조방법.
(a) forming a solid electrolyte layer by pressing Li 2 SP 2 S 5 powder;
(b) a mixed powder including lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and conductive material powder, but with a molar ratio of Li 2 S and P 2 S 5 exceeding 80:20 A composite powder comprising Li 2 S, Li 2 SP 2 S 5 and a conductive material is prepared by performing mechanical alloying, and the composite powder is provided on one surface of the solid electrolyte layer and then pressurized to form an anode layer step; and
(c) providing an anode material powder or thin film on the other surface of the solid electrolyte layer, and then pressurizing to form an anode layer.
제4항에 있어서,
상기 음극재 박막은 인듐 포일(indium foil)인 것을 특징으로 하는 전고체전지의 제조방법.
5. The method of claim 4,
The all-solid-state battery manufacturing method, characterized in that the anode material thin film is an indium foil (indium foil).
제4항 또는 제5항에 기재된 제조방법에 의해 제조된 전고체전지.An all-solid-state battery manufactured by the manufacturing method according to claim 4 or 5.
KR1020190154501A 2019-11-27 2019-11-27 One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery KR20210065584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190154501A KR20210065584A (en) 2019-11-27 2019-11-27 One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190154501A KR20210065584A (en) 2019-11-27 2019-11-27 One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery

Publications (1)

Publication Number Publication Date
KR20210065584A true KR20210065584A (en) 2021-06-04

Family

ID=76391743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190154501A KR20210065584A (en) 2019-11-27 2019-11-27 One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery

Country Status (1)

Country Link
KR (1) KR20210065584A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157084A (en) 2012-01-26 2013-08-15 Toyota Motor Corp All solid battery
KR20160078021A (en) 2014-12-24 2016-07-04 현대자동차주식회사 Composite anode mounted to the all-solid battery
KR20170125568A (en) 2016-05-04 2017-11-15 현대자동차주식회사 All-Solid Battery And Method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157084A (en) 2012-01-26 2013-08-15 Toyota Motor Corp All solid battery
KR20160078021A (en) 2014-12-24 2016-07-04 현대자동차주식회사 Composite anode mounted to the all-solid battery
KR20170125568A (en) 2016-05-04 2017-11-15 현대자동차주식회사 All-Solid Battery And Method

Similar Documents

Publication Publication Date Title
Sun et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries
US9673478B2 (en) Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
EP3442054A1 (en) Lithium solid battery
US20190305368A1 (en) All-solid-state battery
CN102656728A (en) Lithium ion battery and method for manufacturing of such battery
KR101936827B1 (en) A process of preparing cathode-electrolyte layer composite for all-solid-state battery
US11539071B2 (en) Sulfide-impregnated solid-state battery
CN110380133A (en) A kind of transition zone design method of inorganic solid electrolyte and positive interpolar
KR101592698B1 (en) All-solid state secondary battery using hybrid electrolyte
US20220352550A1 (en) Solid-state battery, battery module, battery pack, and apparatus associated therewith
Woo et al. Characterization of LiCoO2/multiwall carbon nanotubes with garnet-type electrolyte fabricated by spark plasma sintering for bulk-type all-solid-state batteries
CN112635917A (en) High-strength functional diaphragm for alkali metal-based battery, preparation method of high-strength functional diaphragm and alkali metal-based battery
KR101664629B1 (en) Method for preparing bi-polar all solid battery
KR20160086795A (en) A solid-state battery and a method for manufacturing it
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
KR101906901B1 (en) Method for preparing all-solid-state secondary battery having improved interfacial properties and all-solid-state secondary battery prepared thereby
CN111247673A (en) Composition for forming active material layer, method for producing same, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN116072960B (en) Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device
KR20190028848A (en) All solid state battery and manufacturing method thereof
US10170755B2 (en) Lithium sulfur cell and preparation method
CN116344742A (en) Fully lithiated negative electrode plate and preparation method thereof
KR20210065584A (en) One-step manufacturing method of lithium-sulfide composite electrode for all-solid-state secondary battery
KR20160008270A (en) Coin type lithium rechargeable battery
KR101655607B1 (en) A solid-state battery and a method for manufacturing it
KR102215525B1 (en) Sodium/metal-carbon secondary battery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application