KR20210065215A - Method for estimating bog influence by considering voyage data and marine environment data in lngc - Google Patents

Method for estimating bog influence by considering voyage data and marine environment data in lngc Download PDF

Info

Publication number
KR20210065215A
KR20210065215A KR1020190152915A KR20190152915A KR20210065215A KR 20210065215 A KR20210065215 A KR 20210065215A KR 1020190152915 A KR1020190152915 A KR 1020190152915A KR 20190152915 A KR20190152915 A KR 20190152915A KR 20210065215 A KR20210065215 A KR 20210065215A
Authority
KR
South Korea
Prior art keywords
bog
ship
data
marine environment
operation data
Prior art date
Application number
KR1020190152915A
Other languages
Korean (ko)
Inventor
이중혁
김현수
김인일
박주미
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR1020190152915A priority Critical patent/KR20210065215A/en
Publication of KR20210065215A publication Critical patent/KR20210065215A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention discloses a method of estimating the impact of BOG considering operation data of LNG carriers and marine environment data, comprising a ship operation data DB construction step (S110), a ship general information DB construction step (S120), an environment information DB construction step (S130), a target ship table creation step (S140), an environment data table creation step (S150), and a BOG influence estimation step (S160). The ship operation data is primarily combined with ship general information, and secondarily combined with environmental information to estimate the BOG impact. Accordingly, the actual environmental conditions in a section with high BOR are visualized to effectively respond to ship-owner complaints, and information for an optimal design plan can be provided when a ship is developed.

Description

LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법{METHOD FOR ESTIMATING BOG INFLUENCE BY CONSIDERING VOYAGE DATA AND MARINE ENVIRONMENT DATA IN LNGC}Method for estimating the impact of BOG considering operation data of LNG carriers and marine environment data {METHOD FOR ESTIMATING BOG INFLUENCE BY CONSIDERING VOYAGE DATA AND MARINE ENVIRONMENT DATA IN LNGC}

본 발명은, 선박 운항데이터의 위치 및 선속정보에 해상환경데이터를 결합하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정하여, 실제 운항에서의 해상상태를 고려하여 선박 개발 시 최적의 설계안을 도출할 수 있는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법에 관한 것이다.The present invention combines marine environment data with location and speed information of ship operation data to estimate the BOG effect of an LNG carrier according to sea conditions, and derives an optimal design plan for ship development in consideration of sea conditions in actual operation It is related to the method of estimating the BOG effect in consideration of the operation data of LNG carriers and marine environment data.

최근, 저탄소 및 미세먼지 감축을 고려한 친환경에너지 정책을 추진하면서 LNG 수요가 증가하고 있으며, 이에 따라 LNG 운반선(LNG Carrier; LNGC)는 물론, LNG 연료 추진선, LNG 벙커링 및 벙커링 선박 등이 이슈화되고 있다.Recently, the demand for LNG is increasing while promoting eco-friendly energy policies considering the reduction of low carbon and fine dust, and accordingly, not only LNG carriers (LNGC), but also LNG fueled ships, LNG bunkering and bunkering vessels, etc. are becoming an issue. .

LNG 운반선의 LNG 탱크인 화물창으로부터 선박의 운항상태 및 해상환경에 따라 BOG(Boil Off Gas; 자연기화가스) 발생이 불가피하게 수반되고, 발생한 BOG는 가스배출장치를 통해 외부로 배출하거나, 재액화장치를 통해 재액화하여 LNG 탱크로 회귀시키거나, 가스연소장치(GCU)에 의해 연소해서 제거하거나, 추진엔진으로 공급하여 추진연료로 활용하기도 한다.BOG (Boil Off Gas) is inevitably generated from the cargo hold, which is the LNG tank of an LNG carrier, depending on the ship's operational status and marine environment, and the generated BOG is discharged to the outside through a gas discharge device or re-liquefied It is reliquefied and returned to the LNG tank, removed by burning by a gas combustion unit (GCU), or supplied to a propulsion engine to be used as a propulsion fuel.

LNG는 -163℃의 비등점을 갖는데 액화온도보다 높아질 경우 자연기화되며, BOR(Boil Off Rate, %/day)은 LNG가 기화되는 비율을 나타낸다. 이러한 BOR은 하루 BOG 발생량 지표로서, 통상 LNG 운반선의 경우 선주 또는 선사로부터 화물창에 요구되는 보증 BOR이 있다.LNG has a boiling point of -163°C, and when it is higher than the liquefaction temperature, it is naturally vaporized, and BOR (Boil Off Rate, %/day) indicates the rate at which LNG is vaporized. This BOR is an indicator of daily BOG generation, and in the case of LNG carriers, there is a guarantee BOR required for the cargo hold by the ship owner or shipping company.

그런데 이러한 보증 BOR보다 실제 선박의 운항시의 BOR이 더 높은 경우가 발생하고 이와 관련된 선주 또는 선사로부터의 컴플레인도 발생하고 있다.However, there are cases where the BOR during actual ship operation is higher than the guaranteed BOR, and related complaints from ship owners or shipping companies are also occurring.

종래, 선박의 AIS(Auto Identification System)에 기반한 선박위치 및 선속정보와 운항항로의 해상환경데이터는 별도로 존재하거나, 1차원적으로만 결합하여 특정 시점에서만 해당 정보의 식별이 가능하였기 때문에, 실제 선박의 운항 위치 및 선속정보와 해상환경조건을 반영 및 고려하여 실제 BOR이 보증 BOR에 근접하도록 최적 설계안을 도출할 필요성이 제기된다.Conventionally, the ship location and speed information based on the AIS (Auto Identification System) of the ship and the maritime environment data of the navigation route exist separately or are combined only one-dimensionally to identify the information only at a specific point in time. It is necessary to derive the optimal design plan so that the actual BOR is close to the guaranteed BOR by reflecting and considering the operation location and speed information of the ship and the marine environmental conditions.

한국 등록특허공보 제1903758호 (LNG 선박 제어 시스템 및 그 제어 방법, 2018.10.05)Korean Patent Publication No. 1903758 (LNG ship control system and its control method, 2018.10.05) 한국 등록특허공보 제1945472호 (LNG 선박 운항 관리 시스템 및 그 관리 방법, 2019.02.08)Korean Patent Publication No. 1945472 (LNG ship operation management system and its management method, 2019.02.08)

본 발명의 사상이 이루고자 하는 기술적 과제는, 선박위치와 선속정보를 운항시점과 운항항로를 기준으로 해상환경데이터로부터 추출한 해상상태와 결합하여 LNG 운반선의 BOR 영향도를 추정할 수 있는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법을 제공하는 데 있다.The technical task to be achieved by the spirit of the present invention is to estimate the BOR effect of the LNG carrier by combining the ship position and ship speed information with the sea state extracted from the maritime environment data based on the time of operation and the route of operation. The purpose of this is to provide a method for estimating the impact of BOG in consideration of operation data and marine environment data.

전술한 목적을 달성하고자, 본 발명은, LNG 운반선의 해당 선박ID별로 시간별 운항데이터를 수집하여 선박운항데이터 DB를 구축하는 단계; LNG 운반선의 해당 선박ID별로 일반재원정보를 수집하여 선박일반정보 DB를 구축하는 단계; LNG 운반선의 해당 선박ID별로 운항항로의 시간대별 위치에 따른 해상환경데이터를 수집하여 환경정보 DB를 구축하는 단계; 동일한 선박ID를 키로 하여 결합하여 대상선박 테이블을 생성하는 단계; 상기 환경정보 DB와 상기 대상선박 테이블을 시간/위도/경도를 키로 하여 결합하여 대상선박의 운항경로에 따른 해상환경데이터를 추출하여 환경데이터 테이블을 생성하는 단계; 및 상기 환경데이터 테이블의 해상상태와 BOG 발생량 사이의 상관도를 분석하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정하는 단계;를 포함하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of: establishing a ship operation data DB by collecting hourly operation data for each corresponding ship ID of an LNG carrier; establishing a ship general information DB by collecting general financial information for each corresponding ship ID of the LNG carrier; establishing an environment information DB by collecting marine environment data according to the location of each time of the operation route for each ship ID of the LNG carrier; generating a target ship table by combining the same ship ID as a key; generating an environment data table by combining the environment information DB and the target vessel table with time/latitude/longitude as a key to extract marine environment data according to the navigation route of the target vessel; and estimating the BOG effect of the LNG carrier according to the sea condition by analyzing the correlation between the sea state and the amount of BOG generation in the environment data table; It also provides an estimation method.

여기서, 해상상태의 파도로 인한 슬로싱의 BOG에 대한 영향도를 추정하고, 선속을 독립변수로 하여 전체적인 슬로싱과 BOG와의 상관관계를 파악하도록 할 수 있다.Here, it is possible to estimate the degree of influence of the sloshing due to the waves in the sea state on the BOG, and to grasp the correlation between the overall sloshing and the BOG by using the ship speed as an independent variable.

또한, 상기 BOG 영향도에 따라, BOG의 재액화장치, 가스연소장치, 추진엔진 및 가스배출장치로의 각 공급량을 결정할 수 있다.In addition, according to the degree of influence of the BOG, it is possible to determine each supply amount of the BOG to the reliquefaction device, the gas combustion device, the propulsion engine and the gas exhaust device.

또한, LNG 탱크 내의 계측된 BOG 압력조건, 및 해상상태에 따른 선속조건을 판단하여, BOG의 재액화장치, 가스연소장치, 추진엔진 및 가스배출장치로의 각 공급량을 차등하여 선택적으로 수행하는 단계를 더 포함할 수도 있다.In addition, by judging the measured BOG pressure condition in the LNG tank and the ship speed condition according to the sea state, differentially performing each supply amount of BOG to the re-liquefaction device, gas combustion device, propulsion engine and gas discharge device is selectively performed. may further include.

또한, 상기 시간별 운항데이터가 존재하지 않는 경우에, 선박별 평균 BOG 또는 항차별 BOG를 통해 해상상태별 운항비율을 비교하여, 상기 환경데이터 테이블의 해상상태와 BOG 발생량 사이의 상관도를 분석하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정할 수 있다.In addition, in the case where the hourly operation data does not exist, by comparing the operation ratio for each sea state through the average BOG for each vessel or the BOG for each port, the correlation between the sea state and the amount of BOG generation in the environment data table is analyzed to determine the maritime It is possible to estimate the BOG effect of LNG carriers according to the condition.

또한, 선사별 또는 전체 LNG 공급체인 기준의 주요 운항항로의 해상상태에 따른 상기 BOG 발생량에 따른 최적 선속을 도출하고, 최적 선속을 구현하기 위한 선형 및 슬로싱을 최소화하는 설계안을 적용할 수 있다.In addition, it is possible to derive the optimal ship speed according to the amount of BOG generated according to the sea conditions of the main navigation routes based on each shipper or the entire LNG supply chain, and apply a design plan that minimizes linearity and sloshing to realize the optimal ship speed.

또한, LNG 운반선의 AIS로부터 위성통신을 통해 운항시각, 현재위치의 위도/경도, 속도, 흘수, 및/또는 진로의 시간별 운항데이터를 육상의 상기 선박운항데이터 DB로 전송하도록 할 수 있다.In addition, it is possible to transmit the hourly operation data of the operation time, latitude/longitude, speed, draft, and/or course of the operation time, the current location's latitude/longitude, speed, draft, and/or course through satellite communication from the AIS of the LNG carrier to the ship operation data DB on land.

또한, 선체의 길이, 폭, 깊이, 흘수, DWT, 및/또는 TPC의 일반재원정보를 조선소, 인터넷웹, 선급, 선주 또는 선박정보회사로부터 수집하여 상기 선박일반정보 DB로 전송하도록 할 수 있다.In addition, general financial information of hull length, width, depth, draft, DWT, and/or TPC may be collected from shipyards, internet webs, classification societies, ship owners or ship information companies and transmitted to the ship general information DB.

또한, 운항항로의 시간대별 위치에 따른 파고, 파주기, 풍향, 및/또는 풍속의 해상환경데이터를 ECMWF, NOAA, NDBC 또는 기상예측기관으로부터 수집하여 상기 환경정보 DB로 전송하도록 할 수 있다.In addition, marine environmental data of wave height, wave period, wind direction, and/or wind speed according to the location of each time of the navigation route may be collected from ECMWF, NOAA, NDBC or a weather forecasting agency and transmitted to the environmental information DB.

또한, 상기 해상환경데이터를 WMO 해상상태코드, 보퍼트 스케일, 또는 더글라스 해상 스케일의 지표를 이용하여 표준화할 수 있다.In addition, the marine environment data may be standardized using an index of the WMO maritime status code, the Beaufort scale, or the Douglas maritime scale.

본 발명에 의하면, 선박운항데이터와 선박일반정보를 1차적으로 결합하고, 환경정보와 2차적으로 결합하여 BOG 영향도를 추정하여서, BOR이 높은 구간의 실제 환경조건을 가시화하여 선주 컴플레인에 효과적으로 대응하도록 하고, 선박 개발 시 최적의 설계안을 위한 정보를 제공하도록 할 수 있는 효과가 있다.According to the present invention, by estimating the BOG effect by first combining ship operation data and ship general information and secondarily combining it with environmental information, the actual environmental conditions in the section with high BOR are visualized to effectively respond to shipowner complaints It has the effect of providing information for an optimal design plan when developing a ship.

도 1은 본 발명의 실시예에 의한 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법의 개략적인 순서도를 도시한 것이다.
도 2는 도 1의 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법의 DB구축구성을 예시한 것이다.
도 3은 도 1의 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법의 데이터를 키로 2차 결합하여 테이블을 생성하는 과정을 예시한 것이다.
도 4는 도 1의 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법의 선속과 BOG의 상관관계를 그래프로 예시한 것이다.
도 5는 도 1의 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법의 운항항로에 따른 해상환경데이터를 예시한 것이다.
1 is a schematic flowchart of a method for estimating the BOG effect in consideration of operation data and marine environment data of an LNG carrier according to an embodiment of the present invention.
FIG. 2 illustrates the DB structure of the BOG impact estimation method in consideration of the operation data and marine environment data of the LNG carrier of FIG. 1 .
3 illustrates a process of generating a table by secondarily combining data of the BOG impact estimation method in consideration of the operation data of the LNG carrier of FIG. 1 and the marine environment data with a key.
4 is a graph illustrating the correlation between ship speed and BOG in the method of estimating the impact of BOG in consideration of the operation data and marine environment data of the LNG carrier of FIG. 1 .
FIG. 5 exemplifies marine environment data according to the navigation route of the BOG impact estimation method in consideration of the operation data and marine environment data of the LNG carrier of FIG. 1 .

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.

본 발명의 실시예에 의한 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법은, 전체적으로, 선박운항데이터 DB 구축단계(S110)와, 선박일반정보 DB 구축단계(S120)와, 환경정보 DB 구축단계(S130)와, 대상선박 테이블 생성단계(S140)와, 환경데이터 테이블 생성단계(S150)와, BOG 영향도 추정단계(S160)로 구성되어, BOR이 높은 구간의 실제 환경조건을 가시화하여 선주 컴플레인에 효과적으로 대응하도록 하고, 선박 개발 시 최적의 설계안을 위한 정보를 제공하도록 하는 것을 요지로 한다.The method of estimating the BOG effect in consideration of the operation data and the marine environment data of the LNG carrier according to the embodiment of the present invention, as a whole, includes a ship operation data DB establishment step (S110), a ship general information DB establishment step (S120), and the environment It consists of the information DB construction step (S130), the target ship table creation step (S140), the environmental data table generation step (S150), and the BOG impact estimation step (S160), and the actual environmental conditions of the section with high BOR are calculated. The main point is to visualize and effectively respond to shipowner complaints, and to provide information for optimal design during ship development.

우선, 선박운항데이터 DB 구축단계(S110)에서는, LNG 운반선의 해당 선박ID별로 시간별 운항데이터를 수집하여 선박운항데이터 DB(110)를 구축한다.First, in the ship operation data DB construction step ( S110 ), the ship operation data DB 110 is constructed by collecting hourly operation data for each corresponding ship ID of the LNG carrier.

예컨대, 도 2의 (a)에 도시된 바와 같이, 선박운항정보인 선박운항데이터는 전세계 운항중인 일정크기 이상의 선박의 AIS로부터 송출되는데, LNG 운반선의 AIS로부터 위성통신을 통해 표 1과 같이 선박ID별로 운항시각과 현재위치의 위도/경도와 속도와 흘수와 진로(heading)의 시간별 운항데이터 등을 육상의 선박운항데이터 DB(110)로 전송하도록 할 수 있다.For example, as shown in (a) of FIG. 2, ship operation data, which is ship operation information, is transmitted from the AIS of ships of a certain size or larger in operation around the world, and the ship ID as shown in Table 1 through satellite communication from the AIS of the LNG carrier. For each operation time, latitude/longitude of the current location, speed, draft, and hourly operation data of heading (heading) may be transmitted to the onshore ship operation data DB 110 .

선박IDShip ID 시각Time 위도Latitude 경도Hardness 속도speed 흘수draft AAAAAAAAAA 2019-11-21 00:17:062019-11-21 00:17:06 24.3013924.30139 123.3557123.3557 15.315.3 99 AAAAAAAAAA 019-11-21 00:35:09019-11-21 00:35:09 24.2433224.24332 123.3261123.3261 15.515.5 99 AAAAAAAAAA 019-11-21 00:50:19019-11-21 00:50:19 24.1721124.17211 123.2807123.2807 15.815.8 99

후속하여, 선박일반정보 DB 구축단계(S120)에서는, LNG 운반선의 해당 선박ID별로 일반재원정보를 수집하여 선박일반정보 DB(120)를 구축한다.Subsequently, in the ship general information DB construction step (S120), general financial information is collected for each vessel ID of the LNG carrier and the vessel general information DB 120 is constructed.

예컨대, 도 2의 (b)에 도시된 바와 같이, 선박건조 해당 조선소, 인터넷웹, 선급, 선주 또는 선박정보회사로부터 표 2와 같이 선박ID별로 선박일반정보인 선체길이와 폭과 깊이와 흘수와 DWT(Dead Weight Tonnage; 재화중량)와 TPC(Tonnage Per Centimeter immersion; 배수톤) 등의 일반재원정보를 수집하여 선박일반정보 DB(120)로 전송하도록 할 수 있다.For example, as shown in (b) of FIG. 2, the hull length, width, depth and draft, which are general information of the ship by ship ID as shown in Table 2, from the shipbuilding shipyard, internet web, classification, shipowner or ship information company. General financial information such as Dead Weight Tonnage (DWT) and Tonnage Per Centimeter immersion (TPC) may be collected and transmitted to the ship general information DB 120 .

선박IDShip ID DWTDWT 설계흘수design draft TCPTCP AAAAAAAAAA 100,000100,000 1515 100100 BBBBBBBBB 120,000120,000 1717 9090

후속하여, 환경정보 DB 구축단계(S130)에서는, LNG 운반선의 해당 선박ID별로 운항항로의 시간대별 위치에 따른 해상환경데이터를 수집하여 환경정보 DB(130)를 구축한다.Subsequently, in the environmental information DB construction step ( S130 ), the environmental information DB 130 is constructed by collecting marine environmental data according to the location of the operation route for each corresponding ship ID of the LNG carrier.

예컨대, 도 2의 (c)에 도시된 바와 같이, ECMWF(유럽중기예보센터), NOAA(미국국립해양대기국), NDBC(국가부표자료센터) 또는 기상예측기관으로부터 표 3과 같이 환경정보인 운항항로의 시간대별 위치인 위도/경도에 따른 파고와 파주기와 풍향과 풍속 등의 해상환경데이터를 수집하여 환경정보 DB(130)로 전송하도록 할 수 있다.For example, as shown in (c) of FIG. 2, from ECMWF (European Medium-Term Forecasting Center), NOAA (US National Oceanic and Atmospheric Administration), NDBC (National Buoy Data Center) or weather forecasting agency as shown in Table 3 It is possible to collect marine environment data such as wave height and wave period, wind direction and wind speed according to latitude/longitude, which is a location for each time of the route, and transmit it to the environment information DB 130 .

시간time 위도Latitude 경도Hardness 파고digging 파주기digging 풍속wind speed 풍향wind direction 2019-11-211:172019-11-211:17 128.713128.713 34.8918834.89188 2.7012732.701273 12.8900112.89001 5.2141955.214195 143.31143.31 2019-11-21 1:282019-11-21 1:28 128.731128.731 34.9036534.90365 2.7012732.701273 12.8900112.89001 5.2141955.214195 143.31143.31 2019-11-21 1:312019-11-21 1:31 128.737128.737 34.9073334.90733 2.7012732.701273 12.8900112.89001 5.2141955.214195 143.31143.31

후속하여, 대상선박 테이블 생성단계(S140)에서는, 동일한 선박ID를 키로 하여 선박운항데이터 DB(110)와 선박일반정보 DB(120)를 결합하여 대상선박 테이블(140)을 생성한다.Subsequently, in the target vessel table creation step (S140), the target vessel table 140 is generated by combining the vessel operation data DB 110 and the vessel general information DB 120 using the same vessel ID as a key.

예컨대, 도 3에 도시된 바와 같이, 선박운항데이터 DB(110)와 선박일반정보 DB(120)를 분석목적에 따라 동일한 선박ID를 기준으로 데이터를 추출하여 대상선박 테이블(140)을 생성한다.For example, as shown in FIG. 3 , the target vessel table 140 is generated by extracting data from the vessel operation data DB 110 and the vessel general information DB 120 based on the same vessel ID according to the analysis purpose.

후속하여, 환경데이터 테이블 생성단계(S150)에서는, 도 3에 도시된 바와 같이, 환경정보 DB(130)와 대상선박 테이블(140)을 시간/위도/경도를 키로 하여 결합하여 대상선박의 운항경로에 따른 해상환경데이터를 추출하여 표 4와 같이 환경데이터 테이블(150)을 생성한다.Subsequently, in the environmental data table generation step (S150), as shown in FIG. 3, the environmental information DB 130 and the target ship table 140 are combined with time/latitude/longitude as the key to operate the target ship's route By extracting the marine environment data according to Table 4, the environment data table 150 is generated.

선박IDShip ID 시간time 위도Latitude 경도Hardness 속도speed 흘수draft 진로Course 파고digging 파주기digging 풍속wind speed 풍향wind direction AAAAAAAAAA 2019-11-211:172019-11-211:17 128.713128.713 34.8918834.89188 1212 11.411.4 178178 2.701272.70127 12.89012.890 5.21415.2141 143.31143.31 AAAAAAAAAA 2019-11-21 1:282019-11-21 1:28 128.731128.731 34.9036534.90365 1212 11.411.4 178178 2.701272.70127 12.89012.890 5.21415.2141 143.31143.31 AAAAAAAAAA 2019-11-21 1:312019-11-21 1:31 128.737128.737 34.9073334.90733 1212 11.411.4 178178 2.701272.70127 12.89012.890 5.21415.2141 143.31143.31

여기서, 해상환경데이터를 WMO 해상상태코드(World Meteorological Organization sea state code), 보퍼트 스케일(Beaufort scale), 또는 더글라스 해상 스케일(Douglas sea scale)의 지표를 이용하여 표준화하여 통계처리할 수 있고, 도 5에 도시된 바와 같이 운항항로별 해상상태를 도식화하여 표준화할 수 있다.Here, the marine environment data can be standardized and statistically processed using an index of the WMO maritime state code (World Meteorological Organization sea state code), the Beaufort scale, or the Douglas sea scale, and As shown in Fig. 5, it is possible to standardize the sea conditions for each route by diagramming it.

후속하여, BOG 영향도 추정단계(S160)에서는, 환경데이터 테이블(150)의 해상상태와 BOG 발생량 사이의 상관도를 분석하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정한다.Subsequently, in the BOG impact estimation step ( S160 ), the correlation between the sea state of the environmental data table 150 and the amount of BOG generation is analyzed to estimate the BOG effect of the LNG carrier according to the sea state.

한편, BOG에 영향을 주는 주요인으로는, LNG 탱크의 열전달, 슬로싱(sloshing;유체유동), 쿨링다운, 적재/하적(loading/unloading) 및 LNG 탱크 압력감소를 예로 들 수 있고, 이중 슬로싱은 파도와 선박운항으로부터 기인하는 것으로, 해상상태와 BOG의 상관관계를 분석하여 파도로 인한 슬로싱의 BOG에 대한 영향도를 추정할 수 있다.On the other hand, main factors affecting BOG include heat transfer of LNG tank, sloshing (fluid flow), cooling down, loading/unloading, and LNG tank pressure reduction. is caused by waves and vessel operation, and by analyzing the correlation between sea conditions and BOG, the influence of sloshing caused by waves on BOG can be estimated.

예컨대, 도 4에 도시된 바와 같이 운항데이터로부터 BOG 분석이 가능하고, 최종 도출된 환경데이터 테이블(150)을 이용하여, 해상상태의 파도로 인한 슬로싱의 BOG에 대한 영향도를 추정하고, 선속(즉, 추진마력)을 독립변수로 하여 전체적인 슬로싱과 BOG와의 상관관계를 파악하도록 할 수 있다.For example, as shown in FIG. 4, BOG analysis is possible from the operation data, and using the finally derived environmental data table 150, the influence of the sloshing caused by the waves in the sea is estimated on the BOG, and the ship speed (ie, propulsion horsepower) can be used as an independent variable to understand the correlation between overall sloshing and BOG.

예를 들면, 선속을 독립변수로 추가하여, BOG 영향도에 따라, BOG의 재액화장치, 가스연소장치, 추진엔진 및 가스배출장치로의 각 공급량을 결정할 수 있는데, 선속이 상대적으로 높은 A구간에서는 BOG의 추진엔진공급량이 상대적으로 많고, 선속이 상대적으로 낮은 B구간에서는 BOG의 추진엔진공급량이 상대적으로 적고 BOG의 재액화장치공급량이 상대적으로 많고, 선속이 상대적으로 중간정도 높은 C구간에서는 BOG의 가스연소장치공급량이 상대적으로 적다.For example, by adding ship speed as an independent variable, each supply amount of BOG to the reliquefaction device, gas combustion device, propulsion engine and gas exhaust device can be determined according to the degree of BOG influence. Section A, where the ship speed is relatively high In section B, where the BOG propulsion engine supply is relatively large, the BOG propulsion engine supply volume is relatively low in section B, where the ship speed is relatively low, and the BOG reliquefaction device supply amount is relatively large. of gas burner supply is relatively small.

한편, LNG 탱크 내의 계측된 BOG 압력조건, 및 해상상태에 따른 선속조건을 판단하여, BOG의 재액화장치, 가스연소장치, 추진엔진 및 가스배출장치로의 각 공급량을 차등하여 선택적으로 수행하는 단계(S170)를 더 포함할 수도 있다.Meanwhile, by judging the measured BOG pressure condition in the LNG tank and the ship speed condition according to the sea state, differentially performing each supply amount of BOG to the re-liquefaction device, gas combustion device, propulsion engine and gas discharge device is selectively performed. (S170) may be further included.

또한, BOG 영향도 추정단계(S160)에서, 시간별 운항데이터가 존재하지 않는 경우에는, 선박별 평균 BOG 또는 정박/출항/입항/정박의 항차별 BOG를 통해 해상상태별 운항비율을 비교하여, 환경데이터 테이블(150)의 해상상태와 BOG 발생량 사이의 상관도를 분석하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정할 수도 있다.In addition, in the BOG impact estimation step (S160), if there is no hourly operation data, the operation ratio by sea state is compared through the average BOG for each vessel or the BOG for each port of berthing/departure/entry/berthing, and the environment By analyzing the correlation between the sea state of the data table 150 and the amount of BOG generation, it is also possible to estimate the BOG effect of the LNG carrier according to the sea state.

최종적으로, 선사별 또는 전체 LNG 공급체인(supply chain) 기준의 주요 운항항로의 해상상태에 따른 BOG 발생량에 따른 최적 선속을 도출하고, 최적 선속을 구현하기 위한 선형 및 슬로싱을 최소화하는 화물창구조를 갖는 최적 설계안을 적용할 수 있다(S180).Finally, a cargo hold structure that minimizes linearity and sloshing to achieve the optimal ship speed is derived by deriving the optimal ship speed according to the amount of BOG generated according to the sea condition of the main operation route based on each shipper or the entire LNG supply chain. It is possible to apply the optimal design with a design (S180).

따라서, 전술한 바와 같은 LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법의 구성에 의해서, 선박운항데이터와 선박일반정보를 1차적으로 결합하고, 환경정보와 2차적으로 결합하여 BOG 영향도를 추정하여서, BOR이 높은 구간의 실제 환경조건을 가시화하여 선주 컴플레인에 효과적으로 대응하도록 하고, 선박 개발 시 최적의 설계안을 위한 정보를 제공하도록 할 수 있다.Therefore, by the configuration of the BOG impact estimation method in consideration of the operation data of the LNG carrier and the marine environment data as described above, the ship operation data and the general information of the ship are first combined, and the environmental information is secondarily combined with the BOG. By estimating the degree of influence, it is possible to visualize the actual environmental conditions in the section with high BOR to effectively respond to shipowner complaints, and to provide information for optimal design proposals during ship development.

본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiment of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be water and variations.

S110 : 선박운항데이터 DB 구축단계
S120 : 선박일반정보 DB 구축단계
S130 : 환경정보 DB 구축단계
S140 : 대상선박 테이블 생성단계
S150 : 환경데이터 테이블 생성단계
S160 : BOG 영향도 추정단계
S170 : BOG 선택적 공급단계
180 : 최적선속도출 및 최적설계안도출 단계
110 : 선박운항데이터 DB 120 : 선박일반정보 DB
130 : 환경정보 DB 140 : 대상선박 테이블
150 : 환경데이터 테이블
S110: Ship operation data DB construction stage
S120: Ship general information DB construction stage
S130: Environment information DB construction stage
S140: target vessel table creation step
S150: Environment data table creation step
S160: BOG influence estimation step
S170: BOG selective supply stage
180: Optimal linear velocity extraction and optimal design drafting phase
110: Ship operation data DB 120: Ship general information DB
130: Environmental information DB 140: Target vessel table
150: environment data table

Claims (10)

LNG 운반선의 해당 선박ID별로 시간별 운항데이터를 수집하여 선박운항데이터 DB를 구축하는 단계;
LNG 운반선의 해당 선박ID별로 일반재원정보를 수집하여 선박일반정보 DB를 구축하는 단계;
LNG 운반선의 해당 선박ID별로 운항항로의 시간대별 위치에 따른 해상환경데이터를 수집하여 환경정보 DB를 구축하는 단계;
동일한 선박ID를 키로 하여 결합하여 대상선박 테이블을 생성하는 단계;
상기 환경정보 DB와 상기 대상선박 테이블을 시간/위도/경도를 키로 하여 결합하여 대상선박의 운항경로에 따른 해상환경데이터를 추출하여 환경데이터 테이블을 생성하는 단계; 및
상기 환경데이터 테이블의 해상상태와 BOG 발생량 사이의 상관도를 분석하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정하는 단계;를 포함하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
building a ship operation data DB by collecting hourly operation data for each corresponding ship ID of the LNG carrier;
establishing a ship general information DB by collecting general financial information for each ship ID of the LNG carrier;
establishing an environment information DB by collecting marine environment data according to the location of each time zone of the operation route for each ship ID of the LNG carrier;
generating a target ship table by combining the same ship ID as a key;
generating an environment data table by combining the environment information DB and the target vessel table with time/latitude/longitude as a key to extract marine environment data according to the navigation route of the target vessel; and
estimating the BOG effect of the LNG carrier according to the sea condition by analyzing the correlation between the sea state of the environment data table and the amount of BOG generation; Estimation method.
제 1 항에 있어서,
해상상태의 파도로 인한 슬로싱의 BOG에 대한 영향도를 추정하고, 선속을 독립변수로 하여 전체적인 슬로싱과 BOG와의 상관관계를 파악하도록 하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
Operation data and marine environment data of LNG carriers, characterized in that the influence of sloshing caused by waves at sea is estimated on BOG, and the correlation between overall sloshing and BOG by using the ship speed as an independent variable BOG impact estimation method considering
제 1 항에 있어서,
상기 BOG 영향도에 따라, BOG의 재액화장치, 가스연소장치, 추진엔진 및 가스배출장치로의 각 공급량을 결정하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
BOG impact estimation considering operation data and marine environment data of an LNG carrier, characterized in that each supply amount of BOG to the reliquefaction device, gas combustion device, propulsion engine and gas discharge device is determined according to the BOG impact degree Way.
제 3 항에 있어서,
LNG 탱크 내의 계측된 BOG 압력조건, 및 해상상태에 따른 선속조건을 판단하여, BOG의 재액화장치, 가스연소장치, 추진엔진 및 가스배출장치로의 각 공급량을 차등하여 선택적으로 수행하는 단계를 더 포함하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
4. The method of claim 3,
The step of selectively performing by judging the measured BOG pressure condition in the LNG tank and the ship speed condition according to the sea condition, differentially supplying each BOG to the reliquefaction device, gas combustion device, propulsion engine, and gas discharge device BOG impact estimation method in consideration of the operation data of the LNG carrier and the marine environment data, characterized in that it includes.
제 1 항에 있어서,
상기 시간별 운항데이터가 존재하지 않는 경우에, 선박별 평균 BOG 또는 항차별 BOG를 통해 해상상태별 운항비율을 비교하여, 상기 환경데이터 테이블의 해상상태와 BOG 발생량 사이의 상관도를 분석하여 해상상태에 따른 LNG 운반선의 BOG 영향도를 추정하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
When the hourly operation data does not exist, by comparing the operation ratio for each sea state through the average BOG for each vessel or the BOG for each port, the correlation between the sea state and the BOG generation amount in the environmental data table is analyzed to determine the sea state. A method of estimating the BOG effect in consideration of the operation data of the LNG carrier and the marine environment data, characterized in that the BOG effect of the LNG carrier is estimated according to the
제 1 항에 있어서,
선사별 또는 전체 LNG 공급체인 기준의 주요 운항항로의 해상상태에 따른 상기 BOG 발생량에 따른 최적 선속을 도출하고, 최적 선속을 구현하기 위한 선형 및 슬로싱을 최소화하는 설계안을 적용하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
It is characterized by deriving the optimal ship speed according to the amount of BOG generated according to the sea condition of the main navigation route based on each shipper or the entire LNG supply chain, and applying a design plan that minimizes the linearity and sloshing to realize the optimal ship speed, A method of estimating the impact of BOG considering operation data of LNG carriers and marine environment data.
제 1 항에 있어서,
LNG 운반선의 AIS로부터 위성통신을 통해 운항시각, 현재위치의 위도/경도, 속도, 흘수 및 진로의 시간별 운항데이터 중 어느 하나 이상을 육상의 상기 선박운항데이터 DB로 전송하도록 하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
It characterized in that any one or more of the hourly operation data of operation time, latitude/longitude, speed, draft and course of operation time, current location's latitude/longitude, speed, draft and course are transmitted from the AIS of the LNG carrier to the ship operation data DB on land. A method of estimating the impact of BOG considering the operation data of the carrier and the marine environment data.
제 1 항에 있어서,
선체의 길이, 폭, 깊이, 흘수, DWT 및 TPC 중 어느 하나 이상의 일반재원정보를 조선소, 인터넷웹, 선급, 선주 또는 선박정보회사로부터 수집하여 상기 선박일반정보 DB로 전송하도록 하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
Characterized in that the general financial information of any one or more of the length, width, depth, draft, DWT and TPC of the hull is collected from the shipyard, the Internet web, the classification society, the shipowner or the ship information company and transmitted to the ship general information DB, A method of estimating the impact of BOG considering operation data of LNG carriers and marine environment data.
제 1 항에 있어서,
운항항로의 시간대별 위치에 따른 파고, 파주기, 풍향 및 풍속 중 어느 하나 이상의 해상환경데이터를 ECMWF, NOAA, NDBC 또는 기상예측기관으로부터 수집하여 상기 환경정보 DB로 전송하도록 하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
The method of claim 1,
LNG, characterized in that the marine environment data of any one or more of wave height, wave period, wind direction and wind speed according to the location of each time of the navigation route is collected from ECMWF, NOAA, NDBC or a weather forecasting agency and transmitted to the environmental information DB. A method of estimating the impact of BOG considering the operation data of the carrier and the marine environment data.
제 9 항에 있어서,
상기 해상환경데이터를 WMO 해상상태코드, 보퍼트 스케일, 또는 더글라스 해상 스케일의 지표를 이용하여 표준화하는 것을 특징으로 하는, LNG 운반선의 운항데이터와 해상환경데이터를 고려한 BOG 영향도 추정방법.
10. The method of claim 9,
A method of estimating the impact of BOG in consideration of operation data and marine environment data of an LNG carrier, characterized in that the marine environment data is standardized using an indicator of the WMO maritime state code, the Beaufort scale, or the Douglas maritime scale.
KR1020190152915A 2019-11-26 2019-11-26 Method for estimating bog influence by considering voyage data and marine environment data in lngc KR20210065215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190152915A KR20210065215A (en) 2019-11-26 2019-11-26 Method for estimating bog influence by considering voyage data and marine environment data in lngc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190152915A KR20210065215A (en) 2019-11-26 2019-11-26 Method for estimating bog influence by considering voyage data and marine environment data in lngc

Publications (1)

Publication Number Publication Date
KR20210065215A true KR20210065215A (en) 2021-06-04

Family

ID=76391856

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190152915A KR20210065215A (en) 2019-11-26 2019-11-26 Method for estimating bog influence by considering voyage data and marine environment data in lngc

Country Status (1)

Country Link
KR (1) KR20210065215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230047672A (en) * 2021-10-01 2023-04-10 대우조선해양 주식회사 Smart Speed Performance Evaluation System and Method for Ship
CN117235903A (en) * 2023-11-14 2023-12-15 中海油能源发展股份有限公司采油服务分公司 LNG ship natural evaporation BOG prediction method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903758B1 (en) 2017-03-24 2018-10-05 삼성중공업 주식회사 Liquefied natural gas ship control system and control method thereof
KR101945472B1 (en) 2017-03-27 2019-02-08 삼성중공업 주식회사 Liquefied natural gas ship sailing management system and management method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903758B1 (en) 2017-03-24 2018-10-05 삼성중공업 주식회사 Liquefied natural gas ship control system and control method thereof
KR101945472B1 (en) 2017-03-27 2019-02-08 삼성중공업 주식회사 Liquefied natural gas ship sailing management system and management method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230047672A (en) * 2021-10-01 2023-04-10 대우조선해양 주식회사 Smart Speed Performance Evaluation System and Method for Ship
CN117235903A (en) * 2023-11-14 2023-12-15 中海油能源发展股份有限公司采油服务分公司 LNG ship natural evaporation BOG prediction method and system
CN117235903B (en) * 2023-11-14 2024-01-26 中海油能源发展股份有限公司采油服务分公司 LNG ship natural evaporation BOG prediction method and system

Similar Documents

Publication Publication Date Title
Olmer et al. Greenhouse gas emissions from global shipping, 2013–2015 Detailed Methodology
Stephenson et al. Marine accessibility along Russia's Northern Sea route
Huang et al. Ship resistance when operating in floating ice floes: Derivation, validation, and application of an empirical equation
JP4690730B2 (en) Ship operation management apparatus and method, and ship operation management system
Ghosh et al. The emergence of Arctic shipping: issues, threats, costs, and risk-mitigating strategies of the Polar Code
Vettor et al. Route planning of a fishing vessel in coastal waters with fuel consumption restraint
KR20210065215A (en) Method for estimating bog influence by considering voyage data and marine environment data in lngc
Sakhuja The polar code and arctic navigation
Hebbar et al. The IMO regulatory framework for Arctic shipping: Risk perspectives and goal-based pathways
Calleya Ship design decision support for a carbon dioxide constrained future
Comer et al. Rotors and bubbles: Route-based assessment of innovative technologies to reduce ship fuel consumption and emissions
You et al. Comparative study on ammonia and liquid hydrogen transportation costs in comparison to LNG
Boulougouris et al. LNG Fueled Vessels Design Training
You et al. Prediction of the efficient speed of an LNGC with design condition from a direct cost evaluation considering the hydrodynamic characteristics and equipment operation
Dawson et al. Analysis of changing levels of ice strengthening (ice class) among vessels operating in the Canadian Arctic over the past 30 years
Li et al. Safe and fuel-efficient voyage planning for the northeast passage by combining reliable ship performance, weather and ice forecast models
Bridges Risks and damages caused in ice navigation
Erceg et al. Ship performance assessment for Arctic transport routes
Dobrodeev et al. Challenges of speedy icebreaker-assisted operation of heavy-tonnage vessels in ice
Jeong et al. A voyage optimization model of LNG carriers considering boil-off gas
Veldman et al. Economies of size of large containerships based on internal and external costs
You et al. Effect of Re-liquefaction System on Operating Expenditure of LNGC in Terms of Fuel Oil Consumption Cost and BOG Combustion Cost
Gaspar et al. Challenges for Using LNG Fueled Ships for Arctic Routes
Pashin et al. Scientific promotion of 60 MW general-purpose nuclear icebreaker designing
Salminen et al. Mackenzie Delta LNG Transport and Ice Management Study

Legal Events

Date Code Title Description
A201 Request for examination