KR20210062256A - Method, program and system to judge abnormal behavior based on behavior sequence - Google Patents
Method, program and system to judge abnormal behavior based on behavior sequence Download PDFInfo
- Publication number
- KR20210062256A KR20210062256A KR1020190150252A KR20190150252A KR20210062256A KR 20210062256 A KR20210062256 A KR 20210062256A KR 1020190150252 A KR1020190150252 A KR 1020190150252A KR 20190150252 A KR20190150252 A KR 20190150252A KR 20210062256 A KR20210062256 A KR 20210062256A
- Authority
- KR
- South Korea
- Prior art keywords
- unit
- behavior
- actions
- sequence
- abnormal behavior
- Prior art date
Links
- 206010000117 Abnormal behaviour Diseases 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000006399 behavior Effects 0.000 claims abstract description 125
- 238000012163 sequencing technique Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 19
- 230000033001 locomotion Effects 0.000 claims description 13
- 230000002159 abnormal effect Effects 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000003542 behavioural effect Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 11
- 238000010801 machine learning Methods 0.000 description 9
- 238000013145 classification model Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000002123 temporal effect Effects 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19602—Image analysis to detect motion of the intruder, e.g. by frame subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G06K9/6201—
-
- G06K9/627—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
본 발명은 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법, 프로그램 및 시스템에 관한 것으로, 보다 상세하게는 객체의 행동을 인식하여 행동 시퀀스 기반으로 분석하여 이상행동에 해당하는지 여부를 판단하는 방법, 프로그램 및 시스템에 관한 것이다.The present invention relates to a method, program, and system for determining abnormal behavior based on an action sequence, and more particularly, a method and program for determining whether an abnormal behavior corresponds to an abnormal behavior by recognizing an object's behavior and analyzing it based on an action sequence. And a system.
오늘날 다양한 분야의 가게, 점포, 가맹점 등에서 절도, 갈취, 폭행 등의 사건들과 화재, 안전 등의 사고들이 빈번하게 발생하고 있다. 이와 같은 사건 또는 사고가 발생하는 것을 예방하거나, 발생시 신속한 대처를 할 수 있도록 현장의 영상을 촬영하고 촬영된 영상을 이용하는 관제 시스템의 역할이 중요해지고 있다.Today, incidents such as theft, extortion, and assault and accidents such as fire and safety occur frequently in stores, stores, and affiliated stores in various fields. In order to prevent such an event or an accident from occurring, or to quickly respond when it occurs, the role of a control system that takes an image of the field and uses the captured image is becoming important.
CCTV(Closed-circuit Television)는 특정 목적을 위해 특정 수신자를 대상으로 화상을 전송하는 시스템으로서, 폐쇄 회로 텔레비전으로 불리운다. CCTV는 목적에 따라 일반 대중은 임의로 수신할 수 없도록 유선 또는 특수 무선 전송로를 이용하여 특정 수신자에게만 화상을 전송하는 시스템이다. CCTV는 산업용, 교육용, 의료용, 교통관제용 감시, 방재용 및 사내의 화상정보 전달용 등 다양한 용도로 사용되고 있다.CCTV (closed-circuit television) is a system that transmits an image to a specific recipient for a specific purpose, and is called a closed circuit television. CCTV is a system that transmits images only to specific recipients using wired or special wireless transmission paths so that the general public cannot receive them arbitrarily depending on the purpose. CCTV is used for various purposes such as industrial, educational, medical, traffic control surveillance, disaster prevention, and image information transmission within the company.
CCTV는 카메라와 카메라가 촬영하는 영상을 녹화하는 역할을 수행하는 DVR(Digital video recorder)로 구성된다. 최근 CCTV는 단순히 영상을 촬영하고 전송하는 역할을 넘어서 시스템 연계를 통해 객체를 인식하고 트래킹(Tracking)하는 기술이 접목되어 활용되기도 한다.CCTV is composed of a camera and a digital video recorder (DVR) that plays a role of recording the video captured by the camera. In recent years, CCTVs have been utilized by grafting technology to recognize and track objects through system linkage, beyond the role of simply capturing and transmitting images.
인공지능(Artificial intelligence) 기술은 인간의 학습능력과 추론능력, 지각능력, 자연언어의 이해능력 등을 컴퓨터 프로그램으로 실현한 기술로서, 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 기술 분야이다.Artificial intelligence technology is a technology that realizes human learning ability, reasoning ability, perceptual ability, and understanding of natural language through computer programs, and it is a field of technology that enables computers to imitate human intelligent behavior. .
머신 러닝(Machine learning) 또는 기계 학습은 인공지능의 한 분야로서 패턴인식과 컴퓨터 학습 이론의 연구로부터 진화한 분야이다. 머신 러닝은 경험적 데이터를 기반으로 학습을 하고 예측을 수행하고 스스로의 성능을 향상시키는 시스템과 이를 위한 알고리즘을 연구하고 구축하는 기술이다. 한편, 딥 러닝(Deep learning)은 기계학습의 한 분야이다. 딥 러닝은 일반적인 머신 러닝과 인간의 가르침 과정을 생략하더라도 스스로 학습하고 미래 상황을 예측할 수 있다는 점에서 차이가 있다.Machine learning, or machine learning, is a field of artificial intelligence that has evolved from the study of pattern recognition and computer learning theory. Machine learning is a technology that studies and builds a system that learns, performs prediction, and improves its own performance based on empirical data and algorithms for it. Meanwhile, deep learning is a field of machine learning. Deep learning differs from general machine learning in that it can learn by itself and predict future situations even if it omits the human teaching process.
본 발명이 해결하고자 하는 과제는 복수의 객체가 존재하는 경우에 각각의 객체를 트래킹하면서 행동을 인식할 수 있는 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법, 프로그램 및 시스템을 제공하는 것이다.The problem to be solved by the present invention is to provide a method, a program, and a system for determining abnormal behavior based on an action sequence capable of recognizing an action while tracking each object when a plurality of objects exist.
또한, 본 발명이 해결하고자 하는 과제는 인식률 및 정확도 개선을 위해 이미지뿐만 아니라 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법, 프로그램 및 시스템을 제공하는 것이다. In addition, a problem to be solved by the present invention is to provide a method, program, and system for determining abnormal behavior based on not only an image but also an action sequence in order to improve recognition rate and accuracy.
또한, 본 발명이 해결하고자 하는 과제는 인식된 객체의 행동을 분석하여 객체의 의도를 이해할 수 있는 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법, 프로그램 및 시스템을 제공하는 것이다.In addition, a problem to be solved by the present invention is to provide a method, program, and system for determining whether an abnormal behavior is based on an action sequence capable of understanding the intention of the object by analyzing the behavior of the recognized object.
또한, 본 발명이 해결하고자 하는 과제는 저장공간을 캐시처럼 사용하여 향상된 처리 속도의 시스템을 제공하는 것이다.In addition, the problem to be solved by the present invention is to provide a system with improved processing speed by using a storage space like a cache.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 컴퓨터에 의해 수행되는, 영상데이터를 입력받는 단계, 상기 영상데이터에서 하나 이상의 객체를 인식하는 단계, 상기 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는 단계, 상기 복수의 단위행동을 정상행동 또는 비정상행동으로 행동 카테고리를 분류하는 단계, 상기 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는 단계 및 상기 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 단계를 포함한다.A method of determining whether an abnormal behavior based on an action sequence according to an aspect of the present invention for solving the above-described problems is performed by a computer, receiving image data, and recognizing one or more objects from the image data. , Recognizing a plurality of unit actions for each of the recognized objects, classifying the plurality of unit actions into normal or abnormal actions, and sequentially sequencing the plurality of unit actions to obtain sequence data. And determining whether or not an abnormal behavior is based on a ratio of the unit behavior classified as an abnormal behavior in the sequence data.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 상기 이상행동 여부를 판단하는 단계는, 비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율의 값이 사전 설정된 값 이상이면 이상행동으로 판단하는 단계를 포함할 수 있다.In addition, the method of determining whether or not abnormal behavior based on the behavior sequence includes determining whether or not the abnormal behavior includes determining as abnormal behavior if the value of the ratio occupied by one or more unit behaviors classified as abnormal behavior is greater than or equal to a preset value. It may include steps.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 인식된 객체 각각에 대하여 배경 또는 사람으로 객체 카테고리를 분류하는 단계를 더 포함하고, 상기 복수의 단위행동을 인식하는 단계는, 상기 객체 카테고리가 사람인 객체에 대하여 복수의 단위행동을 인식하는 것일 수 있다.In addition, the method of determining whether abnormal behavior based on the behavior sequence further includes classifying an object category as a background or a person for each recognized object, and the step of recognizing the plurality of unit behaviors includes the object category May be recognizing a plurality of unit actions for an object that is a person.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 상기 복수의 단위행동을 정상행동 또는 비정상행동으로 분류하는 단계는, 상기 복수의 단위행동을 사전 저장된 데이터베이스와 비교하여 매칭하는 것일 수 있다.In addition, the method of determining whether an abnormal behavior is based on the behavior sequence may include classifying the plurality of unit behaviors as normal behaviors or abnormal behaviors by comparing and matching the plurality of unit behaviors with a pre-stored database.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 상기 객체를 인식하는 단계는, 영상프레임을 동일한 크기의 격자들로 분할하는 단계, 상기 영상프레임에 포함된 객체를 포함하는 하나 이상의 경계박스를 형성하는 단계 및 상기 경계박스의 중앙지점이 포함되는 격자를 추출하는 단계를 포함할 수 있다.In addition, the method of determining whether or not abnormal behavior based on the behavior sequence includes the steps of recognizing the object, dividing an image frame into grids of the same size, and at least one bounding box including an object included in the image frame. And extracting a grid including a center point of the bounding box.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 상기 객체를 인식하는 단계는, 제1 영상프레임에서 인식된 객체와 제2 영상프레임에서 인식된 객체의 유사도를 분석하는 단계를 포함할 수 있다.In addition, the method of determining whether an abnormal behavior is based on the behavior sequence may include recognizing the object, analyzing a similarity between the object recognized in the first image frame and the object recognized in the second image frame. have.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 상기 행동을 인식하는 단계는, 영상프레임에 포함된 이미지를 추출하는 단계, 상기 영상프레임 및 상기 영상프레임과 인접한 영상프레임에서 행동 벡터를 추출하는 단계 및 상기 이미지와 상기 행동 벡터를 기반으로 행동을 인식하는 단계를 포함할 수 있다.In addition, the method of determining whether an abnormal behavior based on the behavior sequence includes the step of recognizing the behavior, extracting an image included in an image frame, and extracting a behavior vector from the image frame and an image frame adjacent to the image frame. And recognizing a behavior based on the image and the behavior vector.
또한, 상기 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 상기 행동 벡터를 추출하는 단계는, 영상프레임에 포함된 이미지에 광학 필터를 적용하는 단계 및 광학 필터가 적용된 이미지로부터 상기 객체의 행동을 벡터화하는 단계를 포함할 수 있다.In addition, the method of determining whether or not an abnormal behavior based on the behavior sequence includes the step of extracting the behavior vector, applying an optical filter to an image included in an image frame, and vectorizing the behavior of the object from the image to which the optical filter is applied. It may include the step of.
상술한 과제를 해결하기 위한 본 발명의 다른 면에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 프로그램은 하드웨어와 결합되어 상기 언급된 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법을 실행하며, 매체에 저장된다.A program for determining abnormal behavior based on an action sequence according to another aspect of the present invention for solving the above-described problem is combined with hardware to execute a method of determining abnormal behavior based on the above-mentioned behavior sequence. Is saved.
상술한 과제를 해결하기 위한 본 발명의 또 다른 면에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템은 영상데이터를 입력받는 입력부, 상기 영상데이터에서 하나 이상의 객체를 인식하는 객체인식부, 상기 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는 행동인식부, 상기 복수의 단위행동을 정상행동 또는 비정상행동으로 행동 카테고리를 분류하는 분류부, 상기 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는 생성부 및 상기 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 판단부를 포함할 수 있다.A system for determining abnormal behavior based on an action sequence according to another aspect of the present invention for solving the above-described problem includes an input unit receiving image data, an object recognition unit recognizing one or more objects from the image data, and the recognition. A behavior recognition unit for recognizing a plurality of unit actions for each of the objects, a classification unit for classifying the plurality of unit actions into normal or abnormal behaviors, and sequence data by sequentially sequencing the plurality of unit actions. It may include a generating unit to generate and a determination unit to determine whether or not the abnormal behavior based on a ratio of the unit behavior classified as an abnormal behavior in the sequence data.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the present invention are included in the detailed description and drawings.
상기 본 발명에 의하면, 영상 내에 복수의 객체가 등장하는 경우에도 각각의 객체를 구별하여 인식 및 트래킹하고, 객체 각각에 대하여 행동을 인식하여 이상행동 여부를 판단할 수 있다.According to the present invention, even when a plurality of objects appear in an image, it is possible to distinguish and recognize and track each object, and to recognize an action for each object to determine whether or not an abnormal behavior occurs.
또한, 상기 본 발명에 의하면, 이미지뿐만 아니라 인식한 행동을 시퀀스화한 행동 시퀀스데이터를 기반으로 이상행동 여부를 판단하므로 영상 내에 복수의 객체가 등장하는 경우에도 높은 수준의 인식률 및 정확도를 유지할 수 있다.In addition, according to the present invention, it is possible to maintain a high level of recognition rate and accuracy even when a plurality of objects appear in an image because it determines whether an abnormal behavior is based not only on the image but also on the basis of the behavior sequence data that sequenced the recognized behavior. .
또한, 상기 본 발명에 의하면, 객체가 특정한 비정상행동을 하였는지 여부만으로 이상징후를 판단하는 것이 아니라, 객체의 행동을 시계열분석하여 특정한 단위행동의 의도를 문맥(Context)적으로 이해함으로써 보다 정밀하게 이상행동 여부를 판단할 수 있다.In addition, according to the present invention, an abnormal symptom is not determined only by whether or not an object has performed a specific abnormal behavior, but by analyzing the behavior of the object in a time series to understand the intention of a specific unit behavior in a context, it is more precise. You can judge whether you are acting or not.
또한, 상기 본 발명에 의하면, 저장공간을 캐시처럼 사용함으로써 영상데이터 등 필요데이터 전체를 네트워크를 통해 송수신하지 않을 수 있게되어 처리속도를 향상시킬 수 있다.In addition, according to the present invention, by using the storage space as a cache, it is possible not to transmit/receive all necessary data such as image data through a network, thereby improving the processing speed.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법을 개략적으로 나타내는 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 객체를 인식하는 단계를 세부적으로 나타내는 흐름도이다.
도 4는 본 발명의 일 실시예에 따른 복수의 객체를 인식하는 모습을 나타내는 예시도이다.
도 5는 본 발명의 일 실시예에 따른 객체를 인식하는 단계에서 객체의 유사도를 분석하는 단계가 더 포함되는 흐름도이다.
도 6은 본 발명의 일 실시예에 따른 단위행동을 인식하는 단계를 세부적으로 나타내는 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 영상프레임에서 이미지 및 행동벡터를 추출하는 모습을 나타내는 예시도이다.
도 8은 본 발명의 일 실시예에 따른 단위행동별로 행동 카테고리가 매칭되어 있는 사전 저장된 데이터베이스를 나타내는 예시도이다.
도 9는 본 발명의 일 실시예에 따른 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는 모습을 나타내는 예시도이다.
도 10은 본 발명의 일 실시예에 따른 이상행동 여부를 판단하는 과정을 개략적으로 나타내는 흐름도이다.
도 11은 본 발명의 일 실시예에 따른 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 모습을 나타내는 예시도이다.
도 12는 본 발명의 일 실시예에 따른 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 과정을 나타내는 순서도이다.
도 13은 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법에서 객체 카테고리를 분류하는 단계가 더 포함되는 흐름도이다.1 is a block diagram of a system for determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention.
2 is a flowchart schematically illustrating a method of determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention.
3 is a detailed flowchart illustrating a step of recognizing an object according to an embodiment of the present invention.
4 is an exemplary view showing a state of recognizing a plurality of objects according to an embodiment of the present invention.
5 is a flowchart further including analyzing the similarity of the object in the step of recognizing an object according to an embodiment of the present invention.
6 is a detailed flowchart illustrating a step of recognizing a unit action according to an embodiment of the present invention.
7 is an exemplary view showing an image and a motion vector extracted from an image frame according to an embodiment of the present invention.
8 is an exemplary diagram illustrating a pre-stored database in which behavior categories are matched for each unit behavior according to an embodiment of the present invention.
9 is an exemplary view showing a state in which sequence data is generated by sequentially sequencing a plurality of unit actions according to an embodiment of the present invention.
10 is a flowchart schematically illustrating a process of determining whether an abnormal behavior has occurred according to an embodiment of the present invention.
11 is an exemplary view showing a state of determining whether an abnormal behavior is based on a ratio occupied by a unit behavior classified as an abnormal behavior according to an embodiment of the present invention.
12 is a flowchart illustrating a process of determining whether or not an abnormal behavior is based on a ratio occupied by a unit behavior classified as an abnormal behavior according to an embodiment of the present invention.
13 is a flowchart further including the step of classifying an object category in a method of determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in a variety of different forms. It is provided to fully inform the skilled person of the scope of the present invention, and the present invention is only defined by the scope of the claims.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.The terms used in the present specification are for describing exemplary embodiments and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase. As used herein, “comprises” and/or “comprising” do not exclude the presence or addition of one or more other elements other than the mentioned elements. Throughout the specification, the same reference numerals refer to the same elements, and "and/or" includes each and all combinations of one or more of the mentioned elements. Although "first", "second", and the like are used to describe various elements, it goes without saying that these elements are not limited by these terms. These terms are only used to distinguish one component from another component. Therefore, it goes without saying that the first component mentioned below may be the second component within the technical idea of the present invention.
본 명세서에서 "단위행동"은 객체의 움직임을 구성하는 단위가 되는 행동을 의미한다.In the present specification, "unit action" refers to an action that constitutes a movement of an object.
본 명세서에서 "정상행동(Normal behavior)"은 개인이 속해 있는 집단에서 규정하고 있는 기준에서 벗어나지 않는 일상적인 행동으로서, 일반적으로 행해지는 단위행동을 의미한다.In the present specification, "normal behavior" refers to a unit behavior that is generally performed as a daily behavior that does not deviate from the standard defined by the group to which an individual belongs.
본 명세서에서 "비정상행동(Abnormal behavior)"은 정상행동이 아닌 행동으로서, 일반적으로 행해지지 않는 단위행동을 의미한다.In the present specification, "abnormal behavior" refers to a behavior that is not a normal behavior and refers to a unit behavior that is not generally performed.
본 명세서에서 "이상행동"은 범죄 행위 등 최종적으로 감지하고자 하는 행동을 의미한다.In the present specification, "abnormal behavior" refers to an action to be finally detected, such as a criminal activity.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used with meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템의 구성도이다.1 is a block diagram of a system for determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention.
도 1을 참조하면 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템(1000)은 입력부(10), 객체인식부(20), 행동인식부(30), 분류부(40), 생성부(50) 및 판단부(60)를 포함한다.Referring to FIG. 1, a
입력부(10)는 영상데이터를 입력받는 역할을 수행한다.The
"영상데이터"는 현장에 설치된 촬영기기를 통해 촬영된 영상에 대한 데이터이다. 영상데이터는 촬영된 영상을 실시간으로 재생하는 비디오 스트리밍(video streaming) 데이터 및 저장된 영상에 대한 데이터를 포함한다. 한편, 현장에 설치된 촬영기기는 현장을 동영상 촬영할 수 있는 카메라를 포함하는 임의의 장치이다. 구체적인 예로, 촬영기기는 CCTV 형태일 수 있으며 필요에 따라 센서 또는 인공지능 기능을 수행하기 위한 구성이 추가적으로 구비될 수 있다."Image data" is data about an image captured through a photographing device installed in the field. The image data includes video streaming data for reproducing the captured image in real time and data on the stored image. On the other hand, the photographing device installed in the field is an arbitrary device including a camera capable of taking a video of the field. As a specific example, the photographing device may be in the form of a CCTV, and if necessary, a configuration for performing a sensor or an artificial intelligence function may be additionally provided.
입력부(10)는 촬영기기와 일체로 구성되거나 촬영기기가 촬영한 영상데이터를 유선 또는 무선 통신에 의하여 전송받음으로써 영상데이터를 입력받을 수 있다.The
한편, 일 실시예로, 영상데이터는 스토리지 캐시(Storage cash) 기술을 사용하여 입력 및 전송될 수 있다. "스토리지 캐시 기술"은 저장공간을 캐시처럼 사용할 수 있는 기술이다. 즉, 필요한 데이터를 송수신하는 과정에서 매번 데이터 전체를 네트워크를 통해 송수신할 필요없이 저장공간에 중간 저장된 데이터가 캐시의 역할을 수행하고, 업데이트된 데이터의 일부 또는 전부를 상기 중간 저장된 데이터에 매칭하여 송수신할 수 있도록 하는 기술이다. 스토리지 캐시 기술을 적용함으로써 고용량의 데이터(예를 들어, 비디오 스트리밍 등의 영상데이터)를 보다 빠르게 처리할 수 있게 된다. 이를 통해 실시간으로 객체 및 객체의 행동을 인식하여 이상행동에 해당 여부를 판단하는 작업을 끊김없이 원활하게 처리할 수 있다.Meanwhile, in an embodiment, image data may be input and transmitted using a storage cash technology. "Storage cache technology" is a technology that can use storage space like a cache. That is, in the process of transmitting and receiving necessary data, the data stored in the storage space serves as a cache without the need to transmit and receive the entire data through the network every time, and some or all of the updated data is transmitted and received by matching the intermediate stored data. It is a technology that allows you to do it. By applying the storage cache technology, it is possible to process high-capacity data (for example, video data such as video streaming) faster. Through this, the task of recognizing the object and its behavior in real time and determining whether it corresponds to an abnormal behavior can be seamlessly processed.
객체인식부(20)는 수신한 영상데이터에서 하나 이상의 객체를 인식하고 추적(트래킹, Tracking)하는 역할을 수행한다.The object recognition unit 20 recognizes and tracks (tracking) one or more objects from the received image data.
객체인식부(20)는 영상에 복수의 객체가 포함되어 있는 경우 각각의 객체를 구별하여 인식할 수 있다. 즉, 객체인식부(20)는 영상프레임에 따라 포함된 객체의 수가 상이하더라도 영상프레임에서 관심객체 각각을 배경과 구분하여 인식할 수 있다.When a plurality of objects are included in the image, the object recognition unit 20 may distinguish and recognize each object. That is, even if the number of objects included in the image frame is different, the object recognition unit 20 may recognize each object of interest in the image frame by distinguishing it from the background.
객체인식부(20)는 객체인식모델을 포함한다. "객체인식모델"은 컴퓨터를 이용하여 영상데이터를 해석하여 객체를 인식하는 모델(Model)로서, 객체를 효율적으로 탐색하거나, 머신 러닝(또는 딥 러닝)을 활용하기 위한 알고리즘 또는 데이터를 포함할 수 있다.The object recognition unit 20 includes an object recognition model. The "object-recognition model" is a model that recognizes an object by analyzing image data using a computer, and may include an algorithm or data for efficiently searching for an object or utilizing machine learning (or deep learning). have.
일 실시예로, 객체인식부(20)의 객체인식모델은 이단계 방식(Two-stage methods) 또는 단일단계 방식(Single-stage methods)의 알고리즘들을 포함할 수 있다.In an embodiment, the object recognition model of the object recognition unit 20 may include algorithms of two-stage methods or single-stage methods.
이단계 방식은 객체를 포함할 가능성이 높은 영역을 선택적으로 탐색하는 컴퓨터 비전 기술 또는 딥러닝 기반의 영역 제안 네트워크(RPN; Region proposal netwrok)를 적용하는 방식이다. 즉, 후보군의 윈도우 세트를 취합하고 회귀 모델과 분류 모델의 수를 공식화해 객체를 탐지한다. 객체인식모델은 이단계 방식의 알고리즘의 예로서, R-CNN(Region based CNN), Faster R-CNN, R-FCN(Region-based Fully Convolutional Networks) 등의 알고리즘을 포함할 수 있다.The two-stage method is a method of applying a region proposal netwrok (RPN) based on deep learning or computer vision technology that selectively searches for regions that are likely to contain objects. In other words, the object is detected by collecting the set of windows of the candidate group and formulating the number of regression models and classification models. The object recognition model is an example of a two-stage algorithm, and may include algorithms such as Region based CNN (R-CNN), Faster R-CNN, and Region-based Fully Convolutional Networks (R-FCN).
단일단계 방식은 사전 결정된 위치 및 크기를 기반으로 객체를 탐색하는 방식이다. 객체인식모델은 단일단계 방식의 알고리즘의 예로서, YOLO(You only look once) 알고리즘, SSD(Single Shot Mutibox Detector), RetinaNet 등의 알고리즘을 포함할 수 있다. 객체인식모델이 YOLO 알고리즘을 적용하여 객체를 인식하는 과정에 대한 상세한 설명은 후술한다.The single-step method is a method of searching for an object based on a predetermined position and size. The object recognition model is an example of a single-step algorithm, and may include an algorithm such as a You only look once (YOLO) algorithm, a Single Shot Mutibox Detector (SSD), and RetinaNet. A detailed description of a process in which the object recognition model recognizes an object by applying the YOLO algorithm will be described later.
행동인식부(30)는 객체인식부(20)에 의해 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는 역할을 수행한다.The behavior recognition unit 30 plays a role of recognizing a plurality of unit actions for each object recognized by the object recognition unit 20.
행동인식부(30)는 행동인식모델을 포함한다. "행동인식모델"은 컴퓨터를 이용하여 영상데이터를 해석하여 객체의 행동을 인식하는 모델로서, 행동인식모델은 객체인식모델을 거친 관심객체에 대하여 행동을 인식한다.The behavior recognition unit 30 includes a behavior recognition model. The "behavior recognition model" is a model that recognizes the behavior of an object by analyzing image data using a computer, and the behavior recognition model recognizes the behavior of an object of interest that has passed through the object recognition model.
일 실시예로, 행동인식모델은 인식률 및 정확도를 향상시키기 위한 알고리즘을 포함할 수 있다. 구체적인 예로, 행동인식모델은 Two-stream model 방식의 알고리즘을 포함한다. Two-stream model은 영상데이터를 Spatial stream과 Temporal stream으로 구별하고, Spatial stream과 Temporal stream 각각에서 이미지(31) 및 행동벡터(32)를 추출하고 조합하여 행동인식을 하는 모델이다. 구체적인 다른 예로, 상기 Two-stream model의 인식률을 향상시키기 위해 3D CNN 방식을 적용할 수 있다. 3D CNN은 입력값을 2D가 아닌 3D로 입력하는 방식으로서, 3D CNN을 적용하는 경우 시간축을 적용할 수 있게 되어 인식률을 향상시킬 수 있다. 행동인식모델이 Two-stream model을 통해 행동을 인식하는 과정에 대한 상세한 설명은 후술한다.In an embodiment, the behavior recognition model may include an algorithm for improving recognition rate and accuracy. As a specific example, the behavior recognition model includes an algorithm of the two-stream model method. The two-stream model is a model that distinguishes image data into spatial and temporal streams, and extracts and combines images (31) and motion vectors (32) from each of the spatial and temporal streams to recognize behavior. As another specific example, a 3D CNN method may be applied to improve the recognition rate of the two-stream model. 3D CNN is a method of inputting input values in 3D instead of 2D, and when 3D CNN is applied, a time axis can be applied, thereby improving the recognition rate. A detailed description of the process in which the behavior recognition model recognizes the behavior through the two-stream model will be described later.
분류부(40)는 객체 카테고리 또는 행동 카테고리를 분류하는 역할을 수행한다.The
"객체 카테고리"는 객체의 성질을 분류하는 카테고리이다. 예를 들어, 객체 카테고리는 사람, 동물, 배경 등을 포함할 수 있으나 이에 한정되는 것은 아니고 객체의 성질 또는 종류를 분류할 수 있는 임의의 카테고리이다. "Object category" is a category for classifying the properties of an object. For example, the object category may include people, animals, backgrounds, and the like, but is not limited thereto, and is an arbitrary category capable of classifying the properties or types of objects.
분류부(40)는 객체인식부(20)가 영상프레임에서 관심객체 각각을 배경과 구분하여 인식하면, 인식된 객체들에 대해 객체 카테고리를 결정하여 지정한다.When the object recognition unit 20 recognizes each object of interest in the image frame by distinguishing it from the background, the
일 실시예로, 객체 카테고리는 행동인식부(30)가 행동을 인식할 대상을 결정하는데 이용된다. 구체적인 예로, 행동인식부(30)는 목적에 따라 객체 카테고리가 사람으로 분류된 객체에 대해서만 행동인식 작업을 수행할 수 있다. 이를 통해 불필요한 객체에 대한 행동인식 작업을 배제함으로써 작업의 처리속도 및 성능을 향상시킬 수 있다.In one embodiment, the object category is used by the behavior recognition unit 30 to determine an object to recognize the behavior. As a specific example, the behavior recognition unit 30 may perform a behavior recognition task only on an object whose object category is classified as a person according to its purpose. Through this, it is possible to improve the processing speed and performance of the task by excluding the action recognition task for unnecessary objects.
"행동 카테고리"는 객체의 행동의 종류를 분류하는 카테고리이다. 예를 들어, 행동 카테고리는 정상행동 및 비정상행동을 포함할 수 있다. The "behavior category" is a category for classifying the types of behavior of an object. For example, the behavioral category may include normal behavior and abnormal behavior.
분류부(40)는 행동인식부(30)에 의해 인식된 복수의 단위행동을 사전 저장된 데이터베이스(도 8 참조)와 비교하여 행동 카테고리를 매칭한다.The
생성부(50)는 복수의 단위행동을 순차적으로 시퀀스(Sequence)화하여 시퀀스데이터를 생성하는 역할을 수행한다.The generation unit 50 plays a role of generating sequence data by sequentially sequencing a plurality of unit actions.
"시퀀스데이터"는 인식된 단위행동들을 순차적으로 시퀀스(Sequence)화한 데이터이다. 즉, 시퀀스데이터는 객체로부터 인식된 단위행동들을 순서에 따라서 연속적으로 배열한 데이터이다. 시퀀스데이터에는 객체로부터 인식된 단위행동들을 사전 결정된 단위행동별로 구분하여 각각의 단위행동이 감지된 횟수에 대한 데이터가 포함된다(도 11 참조). 시퀀스데이터는 이상행동 여부를 판단하는데 사용되며, 구체적인 방식은 후술한다."Sequence data" is data obtained by sequentially sequencing recognized unit actions. That is, sequence data is data in which unit actions recognized from an object are sequentially arranged in order. The sequence data includes data on the number of times each unit action is detected by dividing the unit actions recognized from the object for each predetermined unit action (see FIG. 11). The sequence data is used to determine whether an abnormal behavior has occurred, and a specific method will be described later.
판단부(60)는 생성부(50)에서 생성된 시퀀스데이터를 기반으로 인식된 객체의 행동(또는 행동흐름)이 이상행동에 해당하는지 여부를 판단하는 역할을 수행한다.The determination unit 60 serves to determine whether an action (or behavior flow) of an object recognized based on the sequence data generated by the generation unit 50 corresponds to an abnormal behavior.
판단부(60)는 시퀀스분류모델을 포함할 수 있다. "시퀀스분류모델"은 생성부(50)에서 생성된 시퀀스데이터를 분석하여 객체의 움직임이 이상행동에 해당하는지 여부를 판단하는 모델이다.The determination unit 60 may include a sequence classification model. The "sequence classification model" is a model that analyzes sequence data generated by the generation unit 50 to determine whether the motion of an object corresponds to an abnormal behavior.
일 실시예로, 시퀀스분류모델은 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동의 수가 전체 단위행동의 수에서 차지하는 비율을 기반으로 이상행동 여부를 판단한다. 이에 대한 상세한 설명은 도 11을 참조하여 후술한다.In one embodiment, the sequence classification model determines whether an abnormal behavior is based on a ratio of the number of unit behaviors in which the behavior category is classified as abnormal behavior in sequence data. A detailed description of this will be described later with reference to FIG. 11.
다른 실시예로, 시퀀스분류모델은 생성부(50)에 의해 생성된 시퀀스데이터를 사전 저장되거나 머신 러닝을 통해 학습된 시퀀스데이터와 비교하여 이상행동 여부를 판단한다. 즉, 사전 저장되거나 머신 러닝을 통해 학습된 시퀀스데이터는 각 경우의 수에 따른 행동 시퀀스에 대해 이상행동 또는 정상행동으로 분류되어 있으며, 생성부(50)에 의해 생성된 시퀀스데이터가 이상행동으로 분류된 행동 시퀀스와 일치하는 경우는 이상행동으로 판단하고, 생성부(50)에 의해 생성된 시퀀스데이터가 정상행동으로 분류된 행동 시퀀스와 일치하는 경우는 정상행동으로 판단한다.In another embodiment, the sequence classification model compares the sequence data generated by the generation unit 50 with sequence data that is pre-stored or learned through machine learning to determine whether there is an abnormal behavior. That is, the sequence data stored in advance or learned through machine learning is classified as abnormal behavior or normal behavior for the behavior sequence according to the number of cases, and the sequence data generated by the generation unit 50 is classified as abnormal behavior. If it matches the set action sequence, it is determined as an abnormal action, and when the sequence data generated by the generation unit 50 matches the action sequence classified as a normal action, it is judged as a normal action.
또 다른 실시예로, 시퀀스분류모델은 생성부(50)에 의해 생성된 시퀀스데이터를 사전 저장되거나 머신 러닝을 통해 학습된 시퀀스데이터와 비교한 결과로 1차 점수를 산출하고, 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동의 수가 전체 단위행동의 수에서 차지하는 비율을 기반으로 2차 점수를 산출하여, 1차 점수 및 2차 점수를 조합하여 이상행동 여부를 판단할 수 있다.In another embodiment, the sequence classification model calculates a first score as a result of comparing the sequence data generated by the generation unit 50 with the sequence data that is pre-stored or learned through machine learning, and calculates the behavior category from the sequence data. A secondary score may be calculated based on the ratio of the number of unit actions classified as abnormal behaviors to the total number of unit actions, and the abnormal behavior can be determined by combining the first score and the second score.
도 2는 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법을 개략적으로 나타내는 흐름도이다.2 is a flowchart schematically illustrating a method of determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법은 영상데이터를 입력받는 단계(S100), 영상데이터에서 하나 이상의 객체를 인식하는 단계(S200), 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는 단계(S300), 복수의 단위행동에 대하여 행동 카테고리를 분류하는 단계(S400), 복수의 단위행동을 기반으로 시퀀스데이터를 생성하는 단계(S500) 및 시퀀스데이터를 기반으로 이상행동 여부를 판단하는 단계(S600)를 포함한다.Referring to FIG. 2, a method of determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention includes receiving image data (S100), recognizing one or more objects from image data (S200), Recognizing a plurality of unit actions for each recognized object (S300), classifying an action category for a plurality of unit actions (S400), generating sequence data based on the plurality of unit actions (S500) And determining whether the abnormal behavior is based on the sequence data (S600).
S100 단계는 입력부(10)가 영상데이터를 입력받는 단계이다. 영상데이터는 실시간으로 스트리밍되거나, 저장된 형태로 입력받을 수 있다.Step S100 is a step in which the
S200 단계는 객체인식부(20)가 입력부(10)를 통해 입력된 영상데이터에서 하나 이상의 객체를 인식하는 단계이다.Step S200 is a step in which the object recognition unit 20 recognizes one or more objects from image data input through the
S300 단계는 행동인식부(30)가 객체인식부(20)에 의해 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는 단계이다.Step S300 is a step in which the behavior recognition unit 30 recognizes a plurality of unit actions for each object recognized by the object recognition unit 20.
S400 단계는 분류부(40)가 행동인식부(30)에 의해 인식된 복수의 단위행동에 대하여 행동 카테고리를 정상행동 또는 비정상행동으로 분류하는 단계이다.In step S400, the
S500 단계는 생성부(50)가 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는 단계이다.Step S500 is a step in which the generation unit 50 sequentially sequence a plurality of unit actions to generate sequence data.
S600 단계는 판단부(60)가 생성부(50)에 의해 생성된 시퀀스데이터를 기반으로 이상행동 여부를 판단하는 단계이다.In step S600, the determination unit 60 determines whether an abnormal behavior occurs based on the sequence data generated by the generation unit 50.
도 3은 본 발명의 일 실시예에 따른 객체를 인식하는 단계를 세부적으로 나타내는 흐름도이다.3 is a detailed flowchart illustrating a step of recognizing an object according to an embodiment of the present invention.
도 3을 참조하면 본 발명의 일 실시예에 따른 객체를 인식하는 단계(S200)는 YOLO 알고리즘이 적용될 수 있으며, 영상프레임에 포함된 객체를 포함하는 하나 이상의 경계박스를 형성하는 단계(S210), 영상프레임을 동일한 크기의 격자들로 분할하는 단계(S220) 및 경계박스의 중앙지점이 포함되는 격자를 추출하는 단계(S230)를 포함할 수 있다.Referring to FIG. 3, in the step of recognizing an object according to an embodiment of the present invention (S200), a YOLO algorithm may be applied, and the step of forming one or more bounding boxes including objects included in an image frame (S210), It may include dividing the image frame into grids having the same size (S220) and extracting a grid including a center point of the bounding box (S230).
S210 단계는 영상프레임을 동일한 크기의 복수의 격자(Grid)들로 분할하는 단계이다.Step S210 is a step of dividing the image frame into a plurality of grids having the same size.
S220 단계는 영상프레임에 포함된 객체 이미지를 둘러싸는 크기의 경계박스를 형성하는 단계이다. 영상프레임에 복수의 객체가 존재하는 경우, 경계박스는 각각의 객체에 대해 각각 형성된다.Step S220 is a step of forming a bounding box having a size surrounding the object image included in the image frame. When a plurality of objects exist in an image frame, a bounding box is formed for each object.
일 실시예로, 경계박스는 각 격자에 대해 격자 중앙을 중심으로 사전 설정된 형태를 기반으로 객체별 요구되는 경계박스의 개수(앵커 박스, Anchor boxes)를 예측하여 형성될 수 있다. 경계박스의 개수는 K-평균 알고리즘에 의한 데이터로부터 결정될 수 있다. In an embodiment, the bounding box may be formed by predicting the number of bounding boxes (anchor boxes) required for each object based on a preset shape centered on the center of the grid for each grid. The number of bounding boxes can be determined from data by the K-means algorithm.
S230 단계는 경계박스의 중앙지점이 포함되는 격자를 추출하는 단계로서, 인식된 객체를 식별하기 위한 격자를 결정하는 단계이다.Step S230 is a step of extracting a grid including a center point of the bounding box, and determining a grid for identifying the recognized object.
S230 단계를 통해 인식된 각각의 객체들은 경계박스보다 크기가 작은 하나의 격자에 매칭되어 식별될 수 있게 되므로, 복수의 객체 각각을 보다 정확하게 구별하여 인식할 수 있게 된다. 즉, 복수의 객체가 존재하는 경우, 객체 각각을 둘러싸는 경계박스가 겹치는 면적이 발생하더라도, 각각의 객체에 매칭된 중심격자는 겹치지 않으므로 인식률이 향상된다.Since each object recognized through the step S230 is matched to one grid smaller in size than the bounding box and can be identified, each of the plurality of objects can be more accurately distinguished and recognized. That is, when there are a plurality of objects, even if a boundary box surrounding each object overlaps, the center grid matched to each object does not overlap, so the recognition rate is improved.
도 4는 본 발명의 일 실시예에 따른 복수의 객체를 인식하는 모습을 나타내는 예시도이다.4 is an exemplary view showing a state of recognizing a plurality of objects according to an embodiment of the present invention.
도 4(a)는 매장에 복수의 객체(사람)들이 들어와있는 모습을 나타내는 예시도이고, 도 4(b)는 영상프레임이 동일한 크기의 복수의 격자들로 분할되고, 객체 각각에 대해 경계박스가 형성된 모습을 나타내는 예시도이고, 도 4(c)는 각 경계박스의 중앙지점에 해당하는 격자가 매칭된 모습을 나타내는 예시도이다.Fig. 4(a) is an exemplary diagram showing the appearance of a plurality of objects (people) entering a store, and Fig. 4(b) is a picture frame divided into a plurality of grids of the same size, and a bounding box for each object It is an exemplary diagram showing a state in which is formed, and FIG. 4(c) is an exemplary diagram illustrating a state in which a grid corresponding to the center point of each bounding box is matched.
도 4를 참조하면 복수의 객체들에 대해 형성된 경계박스가 겹치는 것을 확인할 수 있다. 이와 같이 경계박스가 겹친 객체들을 구별하여 인식하기 위하여 각 경계박스의 중앙지점에 대응되는 좌표값을 기반으로 객체의 위치를 인식한다. 각 객체들에 대해 형성된 경계박스의 중앙지점에 대응되는 좌표값은 각각 (x1, y1), (x2, y2), (x3, y3)이다. 각각의 좌표값에 대응되는 격자(도 4(c) 참조)를 기반으로 객체를 인식한다.Referring to FIG. 4, it can be seen that bounding boxes formed for a plurality of objects overlap. In order to distinguish and recognize objects overlapping the bounding box as described above, the position of the object is recognized based on a coordinate value corresponding to the center point of each bounding box. The coordinate values corresponding to the center point of the bounding box formed for each object are (x1, y1), (x2, y2), and (x3, y3), respectively. Objects are recognized based on a grid (refer to FIG. 4(c)) corresponding to each coordinate value.
도 5는 본 발명의 일 실시예에 따른 객체를 인식하는 단계에서 객체의 유사도를 분석하는 단계가 더 포함되는 흐름도이다.5 is a flowchart further including analyzing the similarity of the object in the step of recognizing an object according to an embodiment of the present invention.
도 5를 참조하면, 본 발명의 일 실시예에 따른 객체를 인식하는 단계(S200)는 샴(Siamese) 알고리즘이 적용될 수 있으며, 객체의 유사도를 분석하는 단계(S240)를 더 포함한다.Referring to FIG. 5, the step S200 of recognizing an object according to an embodiment of the present invention may apply a Siamese algorithm, and further includes a step S240 of analyzing the similarity of the object.
S240 단계는 제1 영상프레임에서 인식된 객체와 상기 제1 영상프레임과 인접한 제2 영상프레임에서 인식된 객체의 유사도를 분석하는 단계이다.Step S240 is a step of analyzing the similarity between the object recognized in the first image frame and the object recognized in the second image frame adjacent to the first image frame.
샴 알고리즘은 객체를 인식 및 분류하고, 프레임별 인식된 객체의 유사도를 분석하는 알고리즘이다. 즉, 프레임별 인식된 객체의 벡터값을 산출하여 상기 벡터값의 유사도를 분석함으로써 프레임별 인식된 객체를 매칭하여 동일 객체별 군집화(Clustering) 효과를 가진다. 이를 통해 보다 정확하고 효과적인 객체 추적(Tracking)이 가능하다.The Siamese algorithm is an algorithm that recognizes and classifies objects and analyzes the similarity of the recognized objects for each frame. That is, by calculating the vector value of the recognized object for each frame and analyzing the similarity of the vector value, the recognized object for each frame is matched to have a clustering effect for the same object. This enables more accurate and effective object tracking.
도 6은 본 발명의 일 실시예에 따른 단위행동을 인식하는 단계를 세부적으로 나타내는 흐름도이다.6 is a detailed flowchart illustrating a step of recognizing a unit action according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 일 실시예에 따른 단위행동을 인식하는 단계(S300)는 Two-stream model이 적용될 수 있으며, 영상프레임에 포함된 이미지를 추출하는 단계(S310), 영상프레임 및 상기 영상프레임과 인접한 영상프레임에서 행동벡터를 추출하는 단계(S320) 및 추출된 이미지와 행동벡터를 기반으로 행동을 인식하는 단계(S330)를 포함한다.Referring to FIG. 6, in the step of recognizing a unit action according to an embodiment of the present invention (S300), a two-stream model may be applied, and the step of extracting an image included in an image frame (S310), an image frame, and And extracting a motion vector from an image frame adjacent to the image frame (S320), and recognizing a behavior based on the extracted image and motion vector (S330).
S310 단계는 Spatial stream의 영상프레임에 포함된 이미지(31)를 추출하는 단계이다.Step S310 is a step of extracting the
S320 단계는 Temporal stream에서 특정한 영상프레임(이미지(31)를 추출한 영상프레임과 대응되는 영상프레임)과 해당 영상프레임의 전후로 인접한 영상프레임에서 행동벡터(32)를 추출하는 단계이다.Step S320 is a step of extracting a specific image frame (image frame corresponding to the image frame from which the
S320 단계는 영상프레임에 포함된 이미지에 광학 필터를 적용하는 단계 및 광학 필터가 적용된 이미지로부터 객체의 행동을 벡터화하는 단계를 포함한다. 즉, 영상프레임에 광학 필터를 적용하고, 광학 필터가 적용된 영상프레임으로부터 객체의 행동을 식별할 수 있는 특징이 되는 벡터값을 산출한다.Step S320 includes applying an optical filter to the image included in the image frame and vectorizing the behavior of the object from the image to which the optical filter has been applied. That is, an optical filter is applied to an image frame, and a vector value, which is a characteristic capable of identifying the behavior of an object, is calculated from the image frame to which the optical filter is applied.
S330 단계는 영상프레임으로부터 추출된 이미지(31)와 행동벡터(32)를 기반으로 객체의 행동을 인식하는 단계이다. 즉, 추출된 이미지(31)와 행동벡터(32)를 조합한 점수를 기반으로 행동을 인식한다.Step S330 is a step of recognizing the behavior of the object based on the
도 7은 본 발명의 일 실시예에 따른 영상프레임에서 이미지 및 행동벡터를 추출하는 모습을 나타내는 예시도이다.7 is an exemplary view showing an image and a motion vector extracted from an image frame according to an embodiment of the present invention.
도 7을 참조하면, 영상데이터를 Spatial stream과 Temporal stream로 분류하고, Spatial stream으로부터 이미지(31)를 추출하고, Temporal stream으로부터 행동벡터(32)를 추출한다.Referring to FIG. 7, image data is classified into a spatial stream and a temporal stream, an
도 8은 본 발명의 일 실시예에 따른 단위행동별로 행동 카테고리가 매칭되어 있는 사전 저장된 데이터베이스를 나타내는 예시도이다.8 is an exemplary diagram illustrating a pre-stored database in which behavior categories are matched for each unit behavior according to an embodiment of the present invention.
도 8을 참조하면, 사전 설정된 복수의 단위행동에 대해 식별번호를 부여하고 각각에 매칭되는 행동 카테고리를 매칭하여 저장 및 관리할 수 있다.Referring to FIG. 8, identification numbers may be assigned to a plurality of preset unit actions, and action categories matching each may be matched to be stored and managed.
복수의 단위행동은 매장에 입장(Entering the store), 걷기(Walking), 매장 탐색(Scanning the store), CCTV 응시(Watching CCTVs), 물건 집기(Picking up things), 물건을 주너미에 넣기(Putting things in a pocket), 물건을 가방에 넣기(Putting things in a bag), 물건을 쇼핑바구니에 넣기(Putting things in a shopping basket), 물건 내려놓기(Putting down things) 및 서있기(Standing)를 포함할 수 있으며, 각각의 단위행동에는 식별번호 1 내지 10이 부여될 수 있다. 또한, 각각의 단위행동들은 행동 카테고리가 정상행동 또는 비정상행동으로 사전 결정되어 매칭된다.Multiple unit actions include Entering the store, Walking, Scanning the store, Watching CCTVs, Picking up things, and Putting things. in a pocket), Putting things in a bag, Putting things in a shopping basket, Putting down things, and Standing. In addition,
도 9는 본 발명의 일 실시예에 따른 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는 모습을 나타내는 예시도이다.9 is an exemplary view showing a state in which sequence data is generated by sequentially sequencing a plurality of unit actions according to an embodiment of the present invention.
행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템(1000)의 생성부(50)는 각각의 객체에 대해 인식된 복수의 단위행동들은 순서대로 배치하여 객체 각각에 대한 행동 시퀀스데이터를 생성한다.The generation unit 50 of the
도 9를 참조하면, 각 행마다 객체별 시퀀스데이터가 생성되어 있다. 일 실시예로, 시퀀스데이터는 배열된 단위행동들의 행동 카테고리에 대한 정보를 포함할 수 있다. 즉, 배열된 단위행돌들의 행동 카테고리가 정상행동인지 비정상행동인지를 구별하여 시퀀스데이터가 생성될 수 있다. 도 8에 도시된 예시를 참조하면, 식별번호가 3, 4, 6, 7인 단위행동은 행동 카테고리 비정상 행동으로 분류되어 있다. 이에 따라 시퀀스데이터는 식변번호가 3, 4, 6, 7인 단위행동(도 9에서 음영처리로 도시된 단위행동)이 포함된 개수 또는 비율에 따라 이상행동에 해당할 확률에 대한 정보를 포함할 수 있다.Referring to FIG. 9, sequence data for each object is generated for each row. In an embodiment, the sequence data may include information on an action category of the arranged unit actions. That is, sequence data may be generated by discriminating whether the behavior category of the arranged unit blocks is a normal behavior or an abnormal behavior. Referring to the example shown in FIG. 8, the unit behaviors with
도 10은 본 발명의 일 실시예에 따른 이상행동 여부를 판단하는 과정을 개략적으로 나타내는 흐름도이다.10 is a flowchart schematically illustrating a process of determining whether an abnormal behavior has occurred according to an embodiment of the present invention.
도 10을 참조하면, 본 발명의 일 실시예에 따른 이상행동 여부를 판단하는 과정은 입력된 영상데이터가 객체인식모델(모델 1로 도시), 행동인식모델(모델 2로 도시), 시퀀스분류모델(모델 3으로 도시)을 순서대로 거쳐며 진행된다. Referring to FIG. 10, in the process of determining whether or not abnormal behavior according to an embodiment of the present invention, input image data is an object recognition model (shown as model 1), a behavior recognition model (shown as model 2), and a sequence classification model. It proceeds through (shown as model 3) in order.
최초의 입력(Input) 데이터는 입력부(10)를 통해 입력된 영상데이터이다. 영상데이터에는 시간의 흐름에 따른 객체의 움직임에 대한 영상이 포함된다. 객체인식모델은 입력된 영상데이터로부터 하나 이상의 객체를 인식한다. 객체인식이 완료되면 행동인식모델은 인식된 객체에 대하여 행동을 인식한다. 행동인식이 완료되면 생성부(50)는 인식된 단위행동들을 기반으로 시퀀스데이터를 생성한다. 시퀀스분류모델은 생성된 시퀀스데이터를 기반으로 인식된 객체의 움직임이 이상행동에 해당하는지 여부를 최종적으로 판단한다. 상술한 과정은 인식된 객체를 지속적으로 추적(Tracking)하며 실시간으로 반복된다.The first input data is image data input through the
도 11은 본 발명의 일 실시예에 따른 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 모습을 나타내는 예시도이다.11 is an exemplary view showing a state of determining whether an abnormal behavior is based on a ratio occupied by a unit behavior classified as an abnormal behavior according to an embodiment of the present invention.
도 11에는 행마다 각 객체별 시퀀스데이터가 도시되어 있다. 좌측에는 인식된 전체 단위행동의 수와 각 단위행동(도 11에는 단위행동 1 내지 10이 예시로 도시되어 있음)의 수가 도시되어 있다. 우측에는 인식된 전체 단위행동의 수 대비 각 단위행동수의 비율과 상기 비율을 기반으로 이상행동에 해당하는지 여부를 판단한 결과가 도시되어 있다.11 shows sequence data for each object for each row. On the left, the total number of recognized unit actions and the number of each unit action (
일 실시예로, 판단부(60)는 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단할 수 있다. 구체적인 예로, 비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율의 값이 사전 설정된 값 이상이면 이상행동으로 판단할 수 있다. 구체적인 다른 예로, 비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율의 값을 기반으로 판단하되, 단위행동별로 가중치를 부여하고 상기 가중치를 반영하여 산출된 결과를 사전 설정된 값과 비교하여 이상행동 여부를 판단할 수 있다.In an embodiment, the determination unit 60 may determine whether the behavior category is abnormal based on a ratio of the unit behavior classified as the abnormal behavior in the sequence data. As a specific example, if the value of the ratio occupied by one or more unit actions classified as abnormal behaviors is equal to or greater than a preset value, it may be determined as an abnormal behavior. As another specific example, it is determined based on the value of the ratio occupied by one or more unit actions classified as abnormal behaviors, but weights are assigned for each unit behavior, and the result calculated by reflecting the weights is compared with a preset value to determine whether or not abnormal behaviors. I can judge.
도 12는 본 발명의 일 실시예에 따른 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 과정을 나타내는 순서도이다.12 is a flowchart illustrating a process of determining whether or not an abnormal behavior is based on a ratio occupied by a unit behavior classified as an abnormal behavior according to an embodiment of the present invention.
도 12를 참조하면 도 2와 비교하여 비정상행동으로 분류된 단위행동의 비율이 사전 설정된 값 이상인지 판단하는 단계(S610), 이상행동으로 판단하는 단계(S620) 및 정상행동으로 판단하는 단계(S630)를 더 포함한다.Referring to FIG. 12, comparing with FIG. 2, determining whether the ratio of the unit behavior classified as abnormal behavior is greater than or equal to a preset value (S610), determining as abnormal behavior (S620), and determining as normal behavior (S630). ).
S610 단계는 시퀀스데이터에서 전체 단위행동 대비 비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율이 사전 설정된 값 이상인지 판단하는 단계이다.Step S610 is a step of determining whether a ratio of one or more unit actions classified as abnormal actions relative to the total unit actions in the sequence data is equal to or greater than a preset value.
S620 단계는 전체 단위행동 대비 비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율이 사전 설정된 값 이상이면 이상행동으로 판단하는 단계이다.In step S620, if the ratio of one or more unit actions classified as abnormal actions relative to the total unit actions is greater than or equal to a preset value, it is determined as an abnormal action.
S630 단계는 전체 단위행동 대비 비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율이 사전 설정된 값 미만이면 정상행동으로 판단하는 단계이다.In step S630, if the ratio of one or more unit actions classified as abnormal actions relative to the total unit actions is less than a preset value, it is determined as a normal action.
도 13은 본 발명의 일 실시예에 따른 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법에서 객체 카테고리를 분류하는 단계가 더 포함되는 흐름도이다.13 is a flowchart further including the step of classifying an object category in a method for determining whether an abnormal behavior is based on an action sequence according to an embodiment of the present invention.
도 13을 참조하면 도 2와 비교하여 인식된 객체 각각에 대하여 객체 카테고리를 분류하는 단계(S250)를 더 포함한다.Referring to FIG. 13, the step of classifying an object category for each recognized object compared with FIG. 2 (S250) is further included.
S250 단계는 분류부(40)가 인식된 객체가 속하는 객체 카테고리를 지정하는 단계이다. 구체적인 예로, 분류부(40)는 인식된 객체에 대하여 객체 카테고리를 배경, 사람 또는 동물로 분류할 수 있다. 분류된 객체 카테고리는 목적에 따라 행동인식이 필요한 관심객체에 대해서만 객체추적 및 행동인식 과정을 진행하는데 이용될 수 있다.In step S250, the
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.The steps of a method or algorithm described in connection with an embodiment of the present invention may be implemented directly in hardware, implemented as a software module executed by hardware, or a combination thereof. Software modules include Random Access Memory (RAM), Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Flash Memory, hard disk, removable disk, CD-ROM, or It may reside on any type of computer-readable recording medium well known in the art to which the present invention pertains.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.In the above, embodiments of the present invention have been described with reference to the accompanying drawings, but those skilled in the art to which the present invention pertains can be implemented in other specific forms without changing the technical spirit or essential features. You will be able to understand. Therefore, the embodiments described above are illustrative in all respects, and should be understood as non-limiting.
1000 : 행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템
10 : 입력부
20 : 객체인식부
30 : 행동인식부
31 : 이미지
32 : 행동벡터
40 : 분류부
50 : 생성부
60 : 판단부1000: A system that determines whether an abnormal behavior is based on an action sequence
10: input
20: object recognition unit
30: Behavior Recognition Department
31: image
32: action vector
40: classification unit
50: generation unit
60: judgment unit
Claims (10)
영상데이터를 입력받는 단계;
상기 영상데이터에서 하나 이상의 객체를 인식하는 단계;
상기 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는 단계;
상기 복수의 단위행동을 정상행동 또는 비정상행동으로 행동 카테고리를 분류하는 단계;
상기 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는 단계; 및
상기 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는 단계;를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.Performed by the computer,
Receiving image data;
Recognizing one or more objects from the image data;
Recognizing a plurality of unit actions for each of the recognized objects;
Classifying the plurality of unit behaviors into behavioral categories as normal behaviors or abnormal behaviors;
Generating sequence data by sequentially sequencing the plurality of unit actions; And
Including, determining whether or not an abnormal behavior is based on a ratio of the unit behavior classified as an abnormal behavior in the sequence data.
A method of determining abnormal behavior based on the sequence of actions.
상기 이상행동 여부를 판단하는 단계는,
비정상행동으로 분류된 하나 이상의 단위행동이 차지하는 비율의 값이 사전 설정된 값 이상이면 이상행동으로 판단하는 단계를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 1,
The step of determining whether the abnormal behavior or not,
Including the step of determining the abnormal behavior if the value of the ratio occupied by one or more unit behaviors classified as abnormal behaviors is equal to or greater than a preset value,
A method of determining abnormal behavior based on the sequence of actions.
인식된 객체 각각에 대하여 배경 또는 사람으로 객체 카테고리를 분류하는 단계를 더 포함하고,
상기 복수의 단위행동을 인식하는 단계는,
상기 객체 카테고리가 사람인 객체에 대하여 복수의 단위행동을 인식하는 것인,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 2,
For each recognized object, further comprising the step of classifying the object category as a background or a person,
Recognizing the plurality of unit actions,
Recognizing a plurality of unit actions for an object whose object category is a person,
A method of determining abnormal behavior based on the sequence of actions.
상기 복수의 단위행동을 정상행동 또는 비정상행동으로 분류하는 단계는,
상기 복수의 단위행동을 사전 저장된 데이터베이스와 비교하여 매칭하는 것인,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 3,
The step of classifying the plurality of unit actions into normal actions or abnormal actions,
Matching the plurality of unit actions by comparing them with a pre-stored database,
A method of determining abnormal behavior based on the sequence of actions.
상기 객체를 인식하는 단계는,
영상프레임을 동일한 크기의 격자들로 분할하는 단계;
상기 영상프레임에 포함된 객체를 포함하는 하나 이상의 경계박스를 형성하는 단계; 및
상기 경계박스의 중앙지점이 포함되는 격자를 추출하는 단계;를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 1,
Recognizing the object,
Dividing the image frame into grids of the same size;
Forming one or more bounding boxes including objects included in the image frame; And
Including; extracting a grid including the center point of the bounding box;
A method of determining abnormal behavior based on the sequence of actions.
상기 객체를 인식하는 단계는,
제1 영상프레임에서 인식된 객체와 제2 영상프레임에서 인식된 객체의 유사도를 분석하는 단계를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 5,
Recognizing the object,
Including the step of analyzing the similarity between the object recognized in the first image frame and the object recognized in the second image frame,
A method of determining abnormal behavior based on the sequence of actions.
상기 행동을 인식하는 단계는,
영상프레임에 포함된 이미지를 추출하는 단계;
상기 영상프레임 및 상기 영상프레임과 인접한 영상프레임에서 행동 벡터를 추출하는 단계; 및
상기 이미지와 상기 행동 벡터를 기반으로 행동을 인식하는 단계;를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 1,
Recognizing the behavior,
Extracting an image included in the image frame;
Extracting a motion vector from the image frame and an image frame adjacent to the image frame; And
Recognizing an action based on the image and the action vector; Including,
A method of determining abnormal behavior based on the sequence of actions.
상기 행동 벡터를 추출하는 단계는,
영상프레임에 포함된 이미지에 광학 필터를 적용하는 단계; 및
광학 필터가 적용된 이미지로부터 상기 객체의 행동을 벡터화하는 단계;를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법.The method of claim 7,
The step of extracting the behavior vector,
Applying an optical filter to an image included in the image frame; And
Including; vectorizing the behavior of the object from the image to which the optical filter has been applied,
A method of determining abnormal behavior based on the sequence of actions.
상기 영상데이터에서 하나 이상의 객체를 인식하는, 객체인식부;
상기 인식된 객체 각각에 대하여 복수의 단위행동을 인식하는, 행동인식부;
상기 복수의 단위행동을 정상행동 또는 비정상행동으로 행동 카테고리를 분류하는, 분류부;
상기 복수의 단위행동을 순차적으로 시퀀스화하여 시퀀스데이터를 생성하는, 생성부; 및
상기 시퀀스데이터에서 행동 카테고리가 비정상행동으로 분류된 단위행동이 차지하는 비율을 기반으로 이상행동 여부를 판단하는, 판단부;를 포함하는,
행동 시퀀스 기반으로 이상행동 여부를 판단하는 시스템.
An input unit for receiving image data;
An object recognition unit for recognizing one or more objects from the image data;
A behavior recognition unit for recognizing a plurality of unit actions for each of the recognized objects;
A classification unit for classifying a behavior category from the plurality of unit behaviors into normal behaviors or abnormal behaviors;
A generator configured to sequentially sequence the plurality of unit actions to generate sequence data; And
Including; a determination unit that determines whether or not an abnormal behavior based on a ratio of the unit behavior classified as an abnormal behavior in the sequence data,
A system that judges abnormal behavior based on the sequence of actions.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2019/016068 WO2021100919A1 (en) | 2019-11-21 | 2019-11-21 | Method, program, and system for determining whether abnormal behavior occurs, on basis of behavior sequence |
KR1020190150252A KR20210062256A (en) | 2019-11-21 | 2019-11-21 | Method, program and system to judge abnormal behavior based on behavior sequence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190150252A KR20210062256A (en) | 2019-11-21 | 2019-11-21 | Method, program and system to judge abnormal behavior based on behavior sequence |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210062256A true KR20210062256A (en) | 2021-05-31 |
Family
ID=75980607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190150252A KR20210062256A (en) | 2019-11-21 | 2019-11-21 | Method, program and system to judge abnormal behavior based on behavior sequence |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20210062256A (en) |
WO (1) | WO2021100919A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102484407B1 (en) * | 2022-07-26 | 2023-01-03 | 주식회사 월드씨앤에스 | Taxi dispatch system using AI |
KR102484412B1 (en) * | 2022-07-26 | 2023-01-03 | 주식회사 월드씨앤에스 | Taxi dispatch system using AI |
KR20230016394A (en) * | 2021-07-26 | 2023-02-02 | 세종대학교산학협력단 | Method and System for Generating Video Synopsis Based on Abnormal Object Detection |
WO2023022429A1 (en) * | 2021-08-19 | 2023-02-23 | 주식회사 유니유니 | Deep learning-based abnormal behavior detection system through de-identification data analysis |
KR102662251B1 (en) * | 2023-07-24 | 2024-04-30 | 주식회사 이투온 | Ai-based dementia patient tracking and management method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190051128A (en) | 2017-11-06 | 2019-05-15 | 전자부품연구원 | Method and System for Detecting Weak Walking Person Based on Behavioral Cognition using Machine Learning Technique |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2009243442B2 (en) * | 2009-11-30 | 2013-06-13 | Canon Kabushiki Kaisha | Detection of abnormal behaviour in video objects |
KR20140076815A (en) * | 2012-12-13 | 2014-06-23 | 한국전자통신연구원 | Apparatus and method for detecting an abnormal motion based on pixel of images |
KR102217253B1 (en) * | 2014-02-24 | 2021-02-17 | 주식회사 케이티 | Apparatus and method for analyzing behavior pattern |
-
2019
- 2019-11-21 KR KR1020190150252A patent/KR20210062256A/en not_active Application Discontinuation
- 2019-11-21 WO PCT/KR2019/016068 patent/WO2021100919A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190051128A (en) | 2017-11-06 | 2019-05-15 | 전자부품연구원 | Method and System for Detecting Weak Walking Person Based on Behavioral Cognition using Machine Learning Technique |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230016394A (en) * | 2021-07-26 | 2023-02-02 | 세종대학교산학협력단 | Method and System for Generating Video Synopsis Based on Abnormal Object Detection |
WO2023022429A1 (en) * | 2021-08-19 | 2023-02-23 | 주식회사 유니유니 | Deep learning-based abnormal behavior detection system through de-identification data analysis |
KR102484407B1 (en) * | 2022-07-26 | 2023-01-03 | 주식회사 월드씨앤에스 | Taxi dispatch system using AI |
KR102484412B1 (en) * | 2022-07-26 | 2023-01-03 | 주식회사 월드씨앤에스 | Taxi dispatch system using AI |
KR102662251B1 (en) * | 2023-07-24 | 2024-04-30 | 주식회사 이투온 | Ai-based dementia patient tracking and management method |
Also Published As
Publication number | Publication date |
---|---|
WO2021100919A1 (en) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108053427B (en) | Improved multi-target tracking method, system and device based on KCF and Kalman | |
CN108009473B (en) | Video structuralization processing method, system and storage device based on target behavior attribute | |
JP6018674B2 (en) | System and method for subject re-identification | |
US11580747B2 (en) | Multi-spatial scale analytics | |
KR20210062256A (en) | Method, program and system to judge abnormal behavior based on behavior sequence | |
Kaushal et al. | Soft Computing based object detection and tracking approaches: State-of-the-Art survey | |
CN108052859B (en) | Abnormal behavior detection method, system and device based on clustering optical flow characteristics | |
Owens et al. | Application of the self-organising map to trajectory classification | |
US8744125B2 (en) | Clustering-based object classification | |
KR20180135898A (en) | Systems and methods for training object classifiers by machine learning | |
KR101731461B1 (en) | Apparatus and method for behavior detection of object | |
CN110223322B (en) | Image recognition method and device, computer equipment and storage medium | |
US20100260376A1 (en) | Mapper component for multiple art networks in a video analysis system | |
Motiian et al. | Online human interaction detection and recognition with multiple cameras | |
CN109829382B (en) | Abnormal target early warning tracking system and method based on intelligent behavior characteristic analysis | |
CN110633643A (en) | Abnormal behavior detection method and system for smart community | |
Roman et al. | Violence detection and localization in surveillance video | |
JP2019117556A (en) | Information processing apparatus, information processing method and program | |
Fatima et al. | Global feature aggregation for accident anticipation | |
Kwan-Loo et al. | Detection of violent behavior using neural networks and pose estimation | |
Fang et al. | Traffic police gesture recognition by pose graph convolutional networks | |
KR102187831B1 (en) | Control method, device and program of congestion judgment system using cctv | |
Arshad et al. | Anomalous situations recognition in surveillance images using deep learning | |
Wong et al. | Multi-Camera Face Detection and Recognition in Unconstrained Environment | |
US20230386185A1 (en) | Statistical model-based false detection removal algorithm from images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E601 | Decision to refuse application |