KR20210061793A - Method for manufacturing high crystalline cokes - Google Patents

Method for manufacturing high crystalline cokes Download PDF

Info

Publication number
KR20210061793A
KR20210061793A KR1020190149758A KR20190149758A KR20210061793A KR 20210061793 A KR20210061793 A KR 20210061793A KR 1020190149758 A KR1020190149758 A KR 1020190149758A KR 20190149758 A KR20190149758 A KR 20190149758A KR 20210061793 A KR20210061793 A KR 20210061793A
Authority
KR
South Korea
Prior art keywords
coke
plating
transition metal
nickel
plated
Prior art date
Application number
KR1020190149758A
Other languages
Korean (ko)
Other versions
KR102279412B1 (en
Inventor
이상원
안정래
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020190149758A priority Critical patent/KR102279412B1/en
Publication of KR20210061793A publication Critical patent/KR20210061793A/en
Application granted granted Critical
Publication of KR102279412B1 publication Critical patent/KR102279412B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/005After-treatment of coke, e.g. calcination desulfurization
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Abstract

The present invention is to provide a method for manufacturing highly crystalline coke of a new concept. According to the present invention, the method for manufacturing highly crystalline coke comprises: a first step of pre-treating the coke; a second step of plating a transition metal on the surface of the pre-treated coke; and a third step of heating the transition metal-plated coke to a set temperature, and aligning the carbon component on the surface of the coke while repeating the penetration and separation of the carbon component into the transition metal to form graphite crystals on the surface of the coke.

Description

고결정성 코크스 제조방법{Method for manufacturing high crystalline cokes}Method for manufacturing high crystalline cokes {Method for manufacturing high crystalline cokes}

본 발명은 고결정성 코크스 제조방법에 관한 것이다.The present invention relates to a method for producing highly crystalline coke.

일반적으로, 반도체용 히티 및 도가니, 야금용 주조 다이스, 흑연전극봉, 방열시트 및 플레이트, 방전가공전극(EDM) 등(이하, “고열전도성제품”이라 칭함)을 만들어내기 위해, 코크스에 바인더피치를 혼합하여 혼합물을 만들고, 혼합물을 가압 및 가열하여 성형체 블록 형태로 만들고, 성형체 블럭을 탄화하여 탄화체로 만들고, 탄화체를 흑연화하는 과정을 거쳤다.In general, in order to produce heat and crucibles for semiconductors, casting dies for metallurgy, graphite electrodes, heat dissipation sheets and plates, electric discharge processing electrodes (EDM), etc. (hereinafter referred to as "high thermal conductivity products"), a binder pitch is applied to coke. The mixture was mixed to make a mixture, and the mixture was pressed and heated to form a molded body block, the molded body block was carbonized to form a carbonized body, and the carbonized body was graphitized.

이때, 처음부터 코크스가 고결정성을 가져야, 고열전도성제품의 열전도도가 높아진다. 즉, 전체 함량의 80% 정도를 차지하는 코크스의 물성이 충분히 확보되어야, 고열전도성제품의 열전도성도 좋아지는 것이다.At this time, the coke must have high crystallinity from the beginning, so that the thermal conductivity of the high thermal conductivity product increases. That is, when the physical properties of coke, which occupy about 80% of the total content, must be sufficiently secured, the thermal conductivity of the high thermal conductivity product is also improved.

이를 위해, 종래에는 코크스를 바인더피치와 혼합하기 전에, 코크스를 2600~2800℃로 가열하여, 코크스 전체를 흑연화시켰다. 이렇게 코크스가 흑연화 되면 결정성이 매우 좋아지기 때문이다.To this end, in the prior art, before mixing the coke with the binder pitch, the coke was heated to 2600 to 2800°C to graphitize the entire coke. This is because the crystallinity is very good when coke is graphitized.

그러나, 이렇게 고열을 주어 코크스 전체를 흑연화시켜야 하기 때문에, 많은 시간과 비용이 소모되었다.However, since the entire coke must be graphitized by applying such high heat, a lot of time and cost were consumed.

한국공개특허(특2000-0019095)Korean Patent Publication (Patent 2000-0019095)

본 발명의 목적은, 상술한 문제점을 해결할 수 있는 새로운 개념의 고결정성 코크스 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a new concept of a high crystalline coke manufacturing method capable of solving the above-described problems.

상기 목적을 달성하기 위한, 고결정성 코크스 제조방법은,In order to achieve the above object, the method for producing highly crystalline coke,

코크스를 전 처리하는 제1단계;A first step of pre-treating coke;

전 처리된 코크스의 표면에 전이금속을 도금하는 제2단계; 및A second step of plating a transition metal on the surface of the pre-treated coke; And

전이금속이 도금된 코크스를 설정된 온도로 가열하여, 코크스 표면의 탄소성분이 전이금속으로 침투 및 이탈하는 것을 반복하면서 정렬되어, 코크스의 표면에 흑연결정을 만드는 제3단계를 포함하는 것을 특징으로 한다.It characterized in that it comprises a third step of heating the coke plated with the transition metal to a set temperature, aligning the carbon component on the surface of the coke while repeating penetration and separation of the transition metal, and making graphite crystals on the surface of the coke. .

본 발명은, 코크스의 표면에 전이금속을 코팅하여 코크스의 표면만을 흑연화시킨다. 이로 인해, 코크스 전체를 흑연화하는 데 필요한 열처리 온도(2600~2800℃)를, 촉매흑연화 온도(1600~1800℃)로 대폭 낮출 수 있다. 따라서, 코크스를 열처리하는 시간 및 비용을 대폭 줄일 수 있다.In the present invention, only the surface of coke is graphitized by coating a transition metal on the surface of coke. For this reason, the heat treatment temperature (2600-2800°C) required to graphitize the entire coke can be significantly lowered to the catalytic graphitization temperature (1600-1800°C). Therefore, it is possible to significantly reduce the time and cost for heat treatment of coke.

도 1은 본 발명의 일 실시예에 따른 고결정성 코크스 제조방법을 나타낸 순서도이다.
도 2는 핫플레이트(hot-plate)를 사용하여 도금액을 가열하되 초음파를 주지 않는 방식에서, 도금 온도에 따른 니켈 도금량을 나타낸 그래프이다.
도 3은 핫플레이트(hot-plate) 사용하여 도금액을 가열하되 초음파를 주지 않는 방식으로 니켈이 도금된 코크스의 표면을, EDS 맵핑한 결과를 나타낸 사진이다.
도 4는 울트라배스(Ultra bath) 사용하여 도금액을 가열하고 초음파 처리하는 방식에서, 도금 시간에 따른 니켈 도금량을 나타낸 그래프이다.
도 5는 울트라배스(Ultra bath) 사용하여 도금액을 가열하고 초음파 처리하는 방식으로 니켈이 도금된 코크스의 표면을, EDS 맵핑한 결과를 나타낸 사진이다.
도 6은 핫플레이트(hot-plate) 사용하여 도금액을 가열하고 혼소닉(horn-sonic)으로 초음파 처리하는 방식과, 이를 하지 않는 방식에서, 니켈 도금량 차이를 비교하여 나타낸 그래프이다.
도 7은 핫플레이트(hot-plate) 사용하여 도금액을 가열하고 혼소닉(horn-sonic)으로 초음파 처리하는 방식으로 니켈이 도금된 코크스의 표면을, EDS 맵핑한 결과를 나타낸 사진이다.
도 8은 도 1의 제3단계를 설명하기 위한 모식도이다.
도 9는 도 1의 제3단계 후에 코크스의 표면에 형성된 흑연결정의 층간 구조를 나타낸 개략도이다.
도 10은 코크스의 표면에 니켈 도금한 후 열처리해서 만든 흑연결정의 평균높이, 층간거리 등을 정리한 표이다.
도 11은 코크스의 표면에 니켈 도금한 후 열처리해서 만든 흑연결정의 라만스펙트럼을 나타낸 그래프이다.
도 12는 코크스의 표면에 니켈-코발트 도금한 후 열처리해서 만든 흑연결정의 평균높이, 층간거리 등을 정리한 표이다.
도 13은 코크스의 표면에 니켈-코발트 도금한 후 열처리해서 만든 흑연결정의 라만스펙트럼을 나타낸 그래프이다.
1 is a flow chart showing a method of manufacturing highly crystalline coke according to an embodiment of the present invention.
2 is a graph showing the amount of nickel plating according to the plating temperature in a manner in which the plating solution is heated using a hot plate but no ultrasonic waves are applied.
3 is a photograph showing the result of EDS mapping on the surface of nickel-plated coke in a manner that heats a plating solution using a hot-plate but does not apply ultrasonic waves.
4 is a graph showing the amount of nickel plating according to the plating time in a method of heating and ultrasonic treatment of a plating solution using an ultra bath.
5 is a photograph showing the result of EDS mapping on the surface of nickel-plated coke by heating a plating solution using an ultra bath and performing ultrasonic treatment.
FIG. 6 is a graph showing differences in nickel plating amounts in a method of heating a plating solution using a hot-plate and ultrasonic treatment using a horn-sonic method, and a method of not performing the ultrasonic treatment.
7 is a photograph showing the result of EDS mapping on the surface of nickel-plated coke by heating a plating solution using a hot-plate and ultrasonicating with a horn-sonic method.
8 is a schematic diagram for explaining a third step of FIG. 1.
9 is a schematic diagram showing the interlayer structure of graphite crystals formed on the surface of coke after the third step of FIG. 1.
10 is a table summarizing the average height, interlayer distance, etc. of graphite crystals made by heat treatment after nickel plating on the surface of coke.
11 is a graph showing the Raman spectrum of graphite crystals made by heat treatment after nickel plating on the surface of coke.
12 is a table showing the average height, interlayer distance, etc. of graphite crystals made by heat treatment after nickel-cobalt plating on the surface of coke.
13 is a graph showing the Raman spectrum of graphite crystals made by heat treatment after nickel-cobalt plating on the surface of coke.

이하, 본 발명의 일 실시예에 따른 고결정성 코크스 제조방법을 자세히 설명한다.Hereinafter, a method for producing highly crystalline coke according to an embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고결정성 코크스 제조방법은,As shown in Figure 1, the method for producing highly crystalline coke according to an embodiment of the present invention,

코크스를 전 처리하는 제1단계(S11);A first step of pre-processing coke (S11);

전 처리된 코크스의 표면에 전이금속을 도금하는 제2단계(S12);A second step (S12) of plating a transition metal on the surface of the pre-treated coke;

전이금속이 도금된 코크스를 설정된 온도로 가열하여, 코크스 표면의 탄소성분이 전이금속으로 침투 및 이탈하는 것을 반복하면서 정렬되어, 코크스의 표면에 흑연결정을 만드는 제3단계(S13)로 구성된다.The transition metal-plated coke is heated to a set temperature, and the carbon component on the surface of the coke is aligned while repeating penetration and separation of the transition metal, and a third step (S13) of making graphite crystals on the surface of the coke is performed.

제1단계(S11)를 설명한다.The first step S11 will be described.

코크스는 이하 1~9 단계를 거쳐 전 처리된다.Coke is pretreated through steps 1 to 9 below.

1) 5M HCl 수용액 100 ml에 10g 코크스를 넣은 후 30분 동안 자기 교반 한다.1) After adding 10g coke to 100 ml of 5M HCl aqueous solution, magnetically agitate for 30 minutes.

2) 자기교반이 끝난 시료를 진공 증류를 통해 거른 후 증류수로 수차례 수세한다.2) After self-stirring sample is filtered through vacuum distillation, it is washed several times with distilled water.

3) 수세가 끝난 시료를 80℃ 오븐에서 30분간 건조 한다.3) After washing with water, dry the sample in an oven at 80℃ for 30 minutes.

4) 건조가 끝난 시료를 0.1M SnCl2 + 0.1M HCl 수용액 100ml 넣고 30분 동안 자기 교반 한다. (예민화 과정임) 4) Add 100ml of 0.1M SnCl 2 + 0.1M HCl aqueous solution to the dried sample and magnetically stir for 30 minutes. (This is a sensitization process)

5) 산 처리가 끝난 시료를 진공 증류를 통해 거른 후 증류수로 수차례 수세하여 중성화 시킨다.5) After filtering the acid-treated sample through vacuum distillation, neutralize it by washing with distilled water several times.

6) 수세가 끝난 시료를 80℃ 오븐에서 20분 건조한다.6) After washing with water, dry the sample in an oven at 80℃ for 20 minutes.

7) 건조가 끝난 시료를 0.0014 M PdCl2+0.25 M HCl 수용액에 넣고 30분 동안 자기 교반 한다. 이때, 팔라듐 촉매가 코크스이 표면에 첨착(添着)된다. 촉매의 첨착 정도는 코크스의 산 처리 시간으로 조절된다. 또한, 코크스를 산 처리한 후 촉매를 첨착하되, 촉매의 첨착 정도는 코크스의 촉매 용액에 대한 담지시간에 의해 조절된다.7) Put the dried sample into 0.0014 M PdCl 2 +0.25 M HCl aqueous solution and magnetically stir for 30 minutes. At this time, the palladium catalyst is attached to the surface of the coke. The degree of impregnation of the catalyst is controlled by the acid treatment time of coke. In addition, the catalyst is impregnated after the coke is acid-treated, and the degree of impregnation of the catalyst is controlled by the loading time of the coke in the catalyst solution.

8) 산 처리가 끝난 시료를 진공 증류를 통해 거른 후 증류수로 수차례 수세 한다.8) After filtering the acid-treated sample through vacuum distillation, wash it several times with distilled water.

9) 수세가 끝난 시료를 80℃ 오븐에서 1시간동안 건조한다.9) After washing with water, dry the sample in an oven at 80℃ for 1 hour.

1)~9) 단계를 거쳐서, 코크스가 전 처리된다.After going through steps 1) to 9), coke is pretreated.

제2단계(S12)를 설명한다.The second step (S12) will be described.

본 실시예에서 전이금속으로 니켈(Ni) 또는 니켈코발트(Ni-Co) 합금이 사용된다. 전 처리된 코크스에 전이금속이 다음과 같은 3가지 무전해 도금 방식으로 도금된다. 이하, 전이금속이 니켈인 경우를 가지고 설명한다.In this embodiment, a nickel (Ni) or nickel cobalt (Ni-Co) alloy is used as the transition metal. Transition metals are plated on the pretreated coke by the following three electroless plating methods. Hereinafter, the case where the transition metal is nickel will be described.

1. 핫플레이트(hot-plate) 사용하여 도금액을 가열하되 초음파를 주지 않는 방식1. A method that heats the plating solution using a hot-plate but does not apply ultrasonic waves.

1) 상용 도금액인 ENF-M, ENF-A을 사용하여 Ni 도금액을 제조한다.1) Use commercial plating solutions ENF-M and ENF-A to prepare Ni plating solutions.

2) 증류수 84 vol.%, ENF-M 10 vol.%, ENF-A 6 vol.% 의 조성으로 100ml 도금액을 제조한다.2) Prepare a 100ml plating solution with a composition of 84 vol.% of distilled water, 10 vol.% of ENF-M, and 6 vol.% of ENF-A.

3) 핫플레이트(hot-plate)로 중탕하여 도금액을 60℃ 또는, 70℃ 또는, 80℃까지 가열한다.3) Heat the plating solution to 60°C, 70°C, or 80°C by boiling water with a hot-plate.

4) 도금액의 온도를 계속 유지 하며 전 처리한 코크스 분말을 도금액에 넣고 15분 동안 도금한다.4) Keep the temperature of the plating solution, put the pre-treated coke powder into the plating solution, and plate for 15 minutes.

1)~4) 단계를 거쳐서, 전 처리된 코크스의 표면에 니켈이 도금된다.Through steps 1) to 4), nickel is plated on the surface of the pretreated coke.

도 2에 도시된 바와 같이, 도금온도(60℃, 70℃, 80℃)가 올라갈수록, 니켈 도금량(3.3wt.%, 30.7wt.%, 50.6wt.%)이 늘어난다. 이렇게 도금온도로 도금량을 조절할 수 있다.As shown in FIG. 2, as the plating temperature (60°C, 70°C, 80°C) increases, the nickel plating amount (3.3wt.%, 30.7wt.%, 50.6wt.%) increases. In this way, the plating amount can be controlled by the plating temperature.

도 3에 도시된 바와 같이, 니켈이 도금된 코크스의 표면을 EDS 맵핑한 결과, 도금온도(60℃, 70℃, 80℃)가 올라갈수록 니켈이 골고루 분포됨을 알 수 있다. (도 3에서 붉은색은 탄소, 초록색은 니켈임) 이렇게 도금온도로 도금 분포도를 조절할 수 있다.As shown in FIG. 3, as a result of EDS mapping the surface of nickel-plated coke, it can be seen that nickel is evenly distributed as the plating temperature (60°C, 70°C, 80°C) increases. (In FIG. 3, the red color is carbon and the green color is nickel.) In this way, the plating distribution can be adjusted by the plating temperature.

2. 울트라배스(Ultra bath) 사용하여 도금액을 가열하고 초음파 처리하는 방식2. A method of heating and ultrasonicating plating solution using an ultra bath

1) 상용 도금액인 ENF-M, ENF-A을 사용하여 Ni 도금액을 제조한다.1) Use commercial plating solutions ENF-M and ENF-A to prepare Ni plating solutions.

2) 증류수 84 vol.%, ENF-M 10 vol.%, ENF-A 6 vol.% 의 조성으로 100 ml 도금액을 제조한다.2) Prepare a 100 ml plating solution with a composition of 84 vol.% of distilled water, 10 vol.% of ENF-M, and 6 vol.% of ENF-A.

3) 울트라배스(Ultra bath)를 사용하여 도금액을 60℃까지 가열한다.3) Heat the plating solution to 60℃ using an ultra bath.

4) 도금액의 온도를 계속 유지 하며 전 처리한 코크스 분말을 도금액에 넣고 초음파를 가하며 도금한다.4) Keep the temperature of the plating solution, put the pre-treated coke powder into the plating solution, and apply ultrasonic waves to plate.

1)~4) 단계를 거쳐서, 전 처리된 코크스의 표면에 니켈이 도금된다.Through steps 1) to 4), nickel is plated on the surface of the pretreated coke.

도 4에 도시된 바와 같이, 도금시간(15min, 30min)이 길어질수록, 니켈 도금량(11.3wt.%, 43.4wt.%)이 늘어난다. 이렇게 도금시간으로 도금량을 조절할 수 있다.As shown in FIG. 4, as the plating time (15min, 30min) increases, the nickel plating amount (11.3wt.%, 43.4wt.%) increases. In this way, the plating amount can be controlled by the plating time.

한편, 도 2에 도시된 바와 같이, 도금온도 60℃이고 도금시간 15min에서 초음파 없이 했을 때의 도금량 3.3wt% 에 비해, 이렇게 초음파를 주었을 때는 도금량이 11.3wt%로 늘어난 것을 알 수 있다. 이렇게 초음파를 주어 도금량을 증가시킬 수 있다.On the other hand, as shown in FIG. 2, it can be seen that the plating amount increased to 11.3 wt% when ultrasonic waves were applied compared to 3.3 wt% of the plating amount when the plating temperature was 60° C. and the plating time was 15 min without ultrasonic waves. The amount of plating can be increased by applying ultrasonic waves in this way.

도 5에 도시된 바와 같이, 니켈이 도금된 코크스의 표면을 EDS 맵핑한 결과, 도금시간(15min, 30min)이 길어질수록, 니켈 도금면이 거칠어지는 것을 알 수 있다. (도 5에서 검은색은 탄소, 청녹색은 니켈임) 이렇게 도금시간에 따라 도금면의 거칠기를 조절할 수 있다.As shown in FIG. 5, as a result of EDS mapping the surface of nickel-plated coke, it can be seen that the longer the plating time (15min, 30min), the rougher the nickel plating surface. (In FIG. 5, black is carbon and blue-green is nickel) In this way, the roughness of the plated surface can be adjusted according to the plating time.

3. 핫플레이트(hot-plate) 사용하여 도금액을 가열하고 혼소닉(horn-sonic)으로 초음파 처리3. Heating the plating solution using a hot plate and ultrasonicating it with a horn-sonic

1) 상용 도금액인 ENF-M, ENF-A을 사용하여 Ni 도금액을 제조한다.1) Use commercial plating solutions ENF-M and ENF-A to prepare Ni plating solutions.

2) 증류수 84 vol.%, ENF-M 10 vol.%, ENF-A 6 vol.% 의 조성으로 100 ml 도금액을 제조한다.2) Prepare a 100 ml plating solution with a composition of 84 vol.% of distilled water, 10 vol.% of ENF-M, and 6 vol.% of ENF-A.

3) 핫플레이트(hot-plate)를 사용하여 도금액을 80℃까지 가열한다.3) Heat the plating solution to 80℃ using a hot-plate.

4) 도금액의 온도를 계속 유지하며 전 처리한 코크스 분말을 도금액에 넣고 Horn type으로 15분간 초음파 처리하며 도금한다.4) Maintaining the temperature of the plating solution, put the pre-treated coke powder into the plating solution, and apply it by ultrasonic treatment for 15 minutes in a horn type.

1)~4) 단계를 거쳐서, 전 처리된 코크스의 표면에 니켈이 도금된다.Through steps 1) to 4), nickel is plated on the surface of the pretreated coke.

도 6에 도시된 바와 같이, 초음파를 주어졌을 때는 니켈 도금량이 73.323wt.% 이나, 초음파가 없을 때는 니켈 도금량이 50.6wt.%로 줄어든 것을 알 수 있다. 이렇게 초음파를 주어 도금량을 증가시킬 수 있다.As shown in FIG. 6, it can be seen that the nickel plating amount is 73.323 wt.% when ultrasonic waves are applied, but the nickel plating amount is reduced to 50.6 wt.% when ultrasonic waves are not present. The amount of plating can be increased by applying ultrasonic waves in this way.

한편, 도 7에 도시된 바와 같이, 니켈이 도금된 코크스의 표면을 EDS 맵핑한 결과, 니켈 도금 크기가 um 단위로 매우 거대해 진 것을 알 수 있으며, 그 이유는 horn 초음파 처리에 의해 도금이 매우 가속화되었기 때문이다.On the other hand, as shown in FIG. 7, as a result of EDS mapping the surface of nickel-plated coke, it can be seen that the nickel plating size has become very large in units of um, and the reason is that the plating is very accelerated by the horn ultrasonic treatment. Because it became.

한편, 울트라배스(Ultra bath) 사용하여 도금액을 가열하고 초음파를 주는 것에 비해, 혼(horn) 초음파가 도금액에 가하는 초음파의 힘이 더 강하기 때문에, 코크스 표면에 첨착 된 팔라듐 촉매가 반응하기도 전에 제거될 수 있다. 이 경우, 니켈 도금층이 코크스 표면과 충분하게 결합되지 못해 박리될 수 있다. 이를 막기 위해, 촉매가 활성화되기까지 약 5분간의 대기 시간을 가진 후에, 제2단계(S12)를 진행한다.On the other hand, compared to heating the plating solution using an ultra bath and giving ultrasonic waves, the power of the ultrasonic waves applied by the horn ultrasonic waves to the plating solution is stronger, so that the palladium catalyst impregnated on the coke surface can be removed before reaction. I can. In this case, the nickel plating layer may not be sufficiently bonded to the coke surface and thus may be peeled off. To prevent this, after a waiting time of about 5 minutes until the catalyst is activated, the second step (S12) is performed.

제3단계(S13)를 설명한다.The third step (S13) will be described.

도 8(a)에 도시된 전이금속(metal)이 도금된 코크스(cokes)를 도 8(b)에 도시된 바와 같이 가열한다. 가열온도는 1600~1800℃이다. 이후, 전이금속인 니켈(녹는점: 1455℃), 코발트(녹는점: 1495℃)가 용융되어 코크스 내부로 침투한다.The coke plated with a transition metal shown in FIG. 8(a) is heated as shown in FIG. 8(b). The heating temperature is 1600~1800℃. Thereafter, transition metals such as nickel (melting point: 1455°C) and cobalt (melting point: 1495°C) are melted and penetrate into the coke.

도 8(b) 및 도 8(c)에 도시된 바와 같이, 코크스 표면의 탄소성분이 전이금속으로 침투 및 이탈하는 것을 반복하면서 정렬된다. 그러면, 도 8(c)에 도시된 바와 같이, 코크스 표면에 얇은 두께를 가진 흑연결정이 만들어진다. 그리고, 전이금속은 코크스 내부로 침투한다. 도 8(b)에 도시된 검은색 화살표는 전이금속으로 침투하는 탄소성분을 나타내고, 도 8(c)에 도시된 검은색 화살표는 전이금속으로부터 이탈하는 탄소성분을 나타낸다.As shown in Figs. 8(b) and 8(c), the carbon components on the surface of coke are aligned while repeating the penetration and separation of the transition metal. Then, as shown in Fig. 8(c), graphite crystals having a thin thickness are formed on the surface of the coke. Then, the transition metal penetrates into the coke. The black arrow shown in FIG. 8(b) represents the carbon component penetrating into the transition metal, and the black arrow shown in FIG. 8(c) represents the carbon component released from the transition metal.

도 9에 도시된 바와 같이, 코크스 표면에 만들어진 흑연결정은 다수의 층으로 구성된다. Lc 는 흑연결정의 평균높이, d002는 층간거리를 나타낸다.As shown in Fig. 9, the graphite crystal made on the surface of coke is composed of a plurality of layers. Lc is the average height of the graphite crystal, and d002 is the interlayer distance.

Figure pat00001
Figure pat00001

K : Scherrer 상수 (K=0.89)K: Scherrer constant (K=0.89)

β : 반가폭(radian) β : Half width (radian)

θ : XRD 측정시 최대 피크에서의 각θ: angle at the maximum peak during XRD measurement

λ : XRD 측정시 사용파장 1.542 Å λ : 1.542 Å of wavelength used for XRD measurement

Figure pat00002
Figure pat00002

λ : XRD 측정시 사용파장 1.542 Å λ : 1.542 Å of wavelength used for XRD measurement

θ : XRD 측정시 최대 피크에서의 각θ: angle at the maximum peak during XRD measurement

Lc 값이 클수록 흑연결정이 더 많은 층으로 이루지며, d002 값이 작을수록 층간거리가 더 작아진다. 본 발명에서 만들고자 하는 고결정성 코크스가 되려면, 코크스의 표면에 형성된 흑연결정의 Lc 값이 클수록, d002 값은 작을수록 좋다.The larger the Lc value, the more layers the graphite crystal is formed, and the smaller the d002 value, the smaller the interlayer distance. In order to obtain the highly crystalline coke to be made in the present invention, the larger the Lc value of the graphite crystal formed on the surface of the coke and the smaller the d002 value, the better.

제1단계(S11) 내지 제3단계(S13)를 거쳐, 고결정성 코크스가 제조된다. 고결정성 코크스는 고열전도성제품의 원소재로 사용된다.Through the first step (S11) to the third step (S13), high crystalline coke is manufactured. Highly crystalline coke is used as a raw material for high thermal conductivity products.

실험예1(니켈 도금)Experimental Example 1 (nickel plating)

도 10에 도시된 일 예로, H18-Ni-D5-S10 (1800℃에서 열처리, 니켈 도금액, 도금액에 담그는 시간 5분, 도금시 초음파 투입시간 10분) 일 경우, 흑연결정을 이루는 층의 거리가 3.38Å, 흑연결정의 평균 높이가 341.47Å이 되는 것을 알 수 있다. 반면, 니켈 도금 없이 코크스를 1800℃로 열처리만 한 경우, 흑연결정을 이루는 층의 거리가 3.55Å, 흑연결정의 평균 높이가 17.58Å로 20배 정도 낮게 나타남을 알 수 있다. 이는, 코크스의 표면에 흑연결정이 거의 없음을 의미한다.As an example shown in FIG. 10, in the case of H18-Ni-D5-S10 (heat treatment at 1800°C, nickel plating solution, immersion time in the plating solution 5 minutes, ultrasonic input time 10 minutes during plating), the distance of the layer forming the graphite crystal is It can be seen that the average height of the graphite crystal is 3.38Å and 341.47Å. On the other hand, when the coke was heat-treated at 1800°C without nickel plating, the distance of the layer forming the graphite crystal was 3.55Å and the average height of the graphite crystal was 17.58Å, which was about 20 times lower. This means that there are almost no graphite crystals on the surface of coke.

실험예2(니켈 도금)Experimental Example 2 (nickel plating)

라만스펙트럼에서 ID/IG 값이 작을수록, 고결정성 코크스가 만들어진다. 도 11에 도시된 일 예로, H16-Ni-D5-S10 (1600℃에서 열처리, 니켈 도금액, 도금액에 담그는 시간 5분, 도금시 초음파 투입시간 10분) 일 경우, ID/IG 값이 0.13으로 나타났다. 반면, 니켈 도금 없이 코크스를 1600℃로 열처리만 한 경우, ID/IG 값이 1.37로 10배 정도 크게 증가함을 알 수 있다. 이는, 코크스의 표면에 흑연결정이 거의 없음을 의미한다.The smaller the ID/IG value in the Raman spectrum, the more highly crystalline coke is produced. As an example shown in FIG. 11, in the case of H16-Ni-D5-S10 (heat treatment at 1600°C, nickel plating solution, immersion time in plating solution 5 minutes, ultrasonic input time 10 minutes during plating), the ID/IG value was 0.13. . On the other hand, it can be seen that when the coke is heat-treated at 1600°C without nickel plating, the ID/IG value is increased by 10 times to 1.37. This means that there are almost no graphite crystals on the surface of coke.

실험예3(니켈-코발트 합금 도금)Experimental Example 3 (nickel-cobalt alloy plating)

도 12에 도시된 일 예로, H16-NiCo-D20-S20 (1600℃에서 열처리, 니켈-코발트 도금액, 니켈-코발트 도금액에 담그는 시간 20분, 도금시 초음파 투입시간 20분)일 경우, 흑연결정을 이루는 층의 거리가 3.36Å, 흑연결정의 평균 높이가 269.73Å이 되는 것을 알 수 있다.As an example shown in FIG. 12, in the case of H16-NiCo-D20-S20 (heat treatment at 1600°C, nickel-cobalt plating solution, immersion time in nickel-cobalt plating solution 20 minutes, ultrasonic input time 20 minutes during plating), graphite crystals are formed. It can be seen that the formed layer distance is 3.36Å and the average height of the graphite crystal is 269.73Å.

실험예4(니켈-코발트 합금 도금)Experimental Example 4 (nickel-cobalt alloy plating)

도 13에 도시된 일 예로, H16-NiCo-D20-S20 (1600℃에서 열처리, 니켈-코발트 도금액, 니켈-코발트 도금액에 담그는 시간 20분, 도금시 초음파 투입시간 20분) 일 경우, ID/IG 값이 0.25로 나타났다. 반면, 니켈-코발트 도금 없이 1600℃로 열처리만 한 경우, ID/IG 값이 1.09로 4배 정도 크게 나타남을 알 수 있다. 이는, 코크스의 비정질 또는 정렬되지 않은 결정립들이 재 배치되는 것을 의미한다.As an example shown in FIG. 13, in the case of H16-NiCo-D20-S20 (heat treatment at 1600°C, nickel-cobalt plating solution, immersion time in nickel-cobalt plating solution 20 minutes, ultrasonic input time 20 minutes during plating), ID/IG The value was found to be 0.25. On the other hand, in the case of only heat treatment at 1600°C without nickel-cobalt plating, it can be seen that the ID/IG value is 1.09, which is about 4 times larger. This means that amorphous or unaligned grains of coke are rearranged.

Claims (5)

코크스를 전 처리하는 제1단계;
전 처리된 코크스의 표면에 전이금속을 도금하는 제2단계; 및
전이금속이 도금된 코크스를 설정된 온도로 가열하여, 코크스 표면의 탄소성분이 전이금속으로 침투 및 이탈하는 것을 반복하면서 정렬되어, 코크스의 표면에 흑연결정을 만드는 제3단계를 포함하는 것을 특징으로 하는 고결정성 코크스 제조방법.
A first step of pre-treating coke;
A second step of plating a transition metal on the surface of the pre-treated coke; And
It characterized in that it comprises a third step of heating the coke plated with the transition metal to a set temperature, and aligning the carbon component on the surface of the coke while repeating penetration and separation of the transition metal, and making graphite crystals on the surface of the coke. High crystalline coke manufacturing method.
제1항에 있어서, 상기 제1단계에서,
코크스를 산 처리한 후 촉매를 첨착하되, 촉매의 첨착 정도는 코크스의 촉매 용액에 대한 담지시간에 의해 조절되는 것을 특징으로 하는 고결정성 코크스 제조방법.
The method of claim 1, wherein in the first step,
A method for producing highly crystalline coke, characterized in that the catalyst is impregnated after the coke is subjected to acid treatment, wherein the degree of impregnation of the catalyst is controlled by the supporting time of the coke in the catalyst solution.
제2항에 있어서, 상기 제2단계에서,
상기 전이금속은, 니켈 또는, 니켈-코발트 합금 및 전이 금속 중 몇 종인 것을 특징으로 하는 고결정성 코크스 제조방법.
The method of claim 2, wherein in the second step,
The transition metal is a method for producing highly crystalline coke, characterized in that some of nickel or a nickel-cobalt alloy and a transition metal.
제3항에 있어서, 상기 제2단계에서,
상기 전이금속은, 상기 촉매가 첨착된 코크스의 표면에 무전해 도금되는 것을 특징으로 하는 고결정성 코크스 제조방법.
The method of claim 3, wherein in the second step,
The transition metal is a high crystalline coke manufacturing method, characterized in that the electroless plating on the surface of the coke impregnated with the catalyst.
제4항에 있어서, 상기 제2단계에서,
상기 전이금속이 상기 산 처리된 코크스의 표면에 무전해 도금되는 동안, 초음파가 가해지는 것을 특징으로 하는 고결정성 코크스 제조방법.
The method of claim 4, wherein in the second step,
While the transition metal is electrolessly plated on the surface of the acid-treated coke, an ultrasonic wave is applied.
KR1020190149758A 2019-11-20 2019-11-20 Method for manufacturing high crystalline cokes KR102279412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190149758A KR102279412B1 (en) 2019-11-20 2019-11-20 Method for manufacturing high crystalline cokes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190149758A KR102279412B1 (en) 2019-11-20 2019-11-20 Method for manufacturing high crystalline cokes

Publications (2)

Publication Number Publication Date
KR20210061793A true KR20210061793A (en) 2021-05-28
KR102279412B1 KR102279412B1 (en) 2021-07-19

Family

ID=76140441

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190149758A KR102279412B1 (en) 2019-11-20 2019-11-20 Method for manufacturing high crystalline cokes

Country Status (1)

Country Link
KR (1) KR102279412B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152311A (en) * 1996-09-24 1998-06-09 Petoca:Kk Surface graphitized carbon material, its production and lithium ion secondary battery using the same
KR20000019095A (en) 1998-09-08 2000-04-06 윤대근 Preparation method of coke with high crystallization
KR20010102308A (en) * 1999-02-22 2001-11-15 추후제출 Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JP7025933B2 (en) * 2018-01-12 2022-02-25 株式会社アルファ Locker box

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152311A (en) * 1996-09-24 1998-06-09 Petoca:Kk Surface graphitized carbon material, its production and lithium ion secondary battery using the same
KR20000019095A (en) 1998-09-08 2000-04-06 윤대근 Preparation method of coke with high crystallization
KR20010102308A (en) * 1999-02-22 2001-11-15 추후제출 Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JP7025933B2 (en) * 2018-01-12 2022-02-25 株式会社アルファ Locker box

Also Published As

Publication number Publication date
KR102279412B1 (en) 2021-07-19

Similar Documents

Publication Publication Date Title
CN103409732B (en) A kind of compounding method of diamond surface metallization
JPS6150912B2 (en)
CN101876040B (en) Method for preparing carbon nanotube and aluminum borate whisker hybrid reinforced aluminum-matrix composite material
CN108046821A (en) A kind of preparation method of polycrystalline silicon ingot or purifying furnace carbon carbon lid plate
JP4266711B2 (en) Method and apparatus for producing activated carbon by microwave heating
CN102146641B (en) Process for manufacturing modified carbon fiber paper by adopting carbon nanotube implanting method
JP4791410B2 (en) Method for manufacturing electromagnetic induction heating cooker
CN110642634A (en) C/SiC-ZrB2Composite material and preparation method thereof
JPH0210115B2 (en)
KR102279412B1 (en) Method for manufacturing high crystalline cokes
CN113774720B (en) Carbon fiber paper and preparation method thereof
CN111041715B (en) Nano carbon fiber film and resin composite board for electromagnetic shielding and preparation method thereof
CN109574668A (en) The manufacturing method of carbonized film
JP3065896B2 (en) Manufacturing method of highly oriented graphite
CN101798751B (en) Preparation method of titanizing carbon fibers
CN106396681A (en) Method for manufacturing graphite materials with high thermal conductivity
CN107244877B (en) A kind of bimetallic oxide-silicon carbide fibre multi-scale reinforcing body enhancing aluminum phosphate ceramic base structural wave-absorbing material and preparation method thereof
CN109573999A (en) The manufacturing method of graphite film
CN101982409A (en) Method for catalyzing and graphitizing polyaryl acetylene resin
CN108722414B (en) Preparation method of thin-wall graphitized carbon-coated metal core-shell structure material
CN113307646A (en) High-heat-conductivity and high-purity graphite-based composite material and preparation method thereof
CN115582547B (en) Cu/C/SiC composite material and preparation method thereof
CN110862267A (en) Graphene-doped C/C composite material and preparation method thereof
CN110446413B (en) Aza-carbon/nano-metal wire composite material for electromagnetic shielding and preparation method thereof
CN115385703B (en) Preparation method of high-heat-conductivity graphene plate and graphene composite film

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant