KR20210055555A - 무선 통신 시스템에서 빔 설정 방법 및 장치 - Google Patents

무선 통신 시스템에서 빔 설정 방법 및 장치 Download PDF

Info

Publication number
KR20210055555A
KR20210055555A KR1020190149830A KR20190149830A KR20210055555A KR 20210055555 A KR20210055555 A KR 20210055555A KR 1020190149830 A KR1020190149830 A KR 1020190149830A KR 20190149830 A KR20190149830 A KR 20190149830A KR 20210055555 A KR20210055555 A KR 20210055555A
Authority
KR
South Korea
Prior art keywords
terminal
base station
pdcch
search space
pdsch
Prior art date
Application number
KR1020190149830A
Other languages
English (en)
Inventor
박진현
노훈동
장영록
지형주
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20210055555A publication Critical patent/KR20210055555A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • H04W72/1284
    • H04W72/1289
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 MIMO 레이어 갯수를 설정하는 방법 및 장치를 제공한다.

Description

무선 통신 시스템에서 빔 설정 방법 및 장치 {APPRATUS AND METHOD FOR BEAM CONFIGURATION IN WIRELESS COMMUNICATION SYSTEM}
본 개시(disclosure)는 무선 통신 시스템에 대한 것으로서, 보다 구체적으로는 단말의 원활한 제어 정보 및 데이터 수신을 위한 기지국 및 단말의 빔 설정 방법 및 장치에 대한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
본 개시(disclosure)는 무선 통신 시스템에서 단말의 원활한 제어 정보 및 데이터 수신을 위해 제어 정보 및 데이터 빔을 설정하기 위한 방법을 제공한다.
상기와 같은 문제점을 해결하기 위한 본 발명은 무선 통신 시스템에서 제1 단말의 제어 신호 처리 방법에 있어서, 제2 단말으로부터 전송되는 제1 제어 신호를 수신하는 단계; 상기 수신된 제1 제어 신호를 처리하는 단계; 및 상기 처리에 기반하여 생성된 제2 제어 신호를 상기 제2 단말으로 전송하는 단계를 포함하는 것을 특징으로 한다.
본 개시에 따르면, 무선통신 시스템에서 단말의 제어 정보 및 데이터 수신 신뢰도를 향상시킬 수 있다.
도 1은 본 개시의 일 실시예에 따른 이동통신 시스템의 시간-주파수영역의 기본 구조를 도시한 도면이다.
도 2는 본 개시의 일 실시예에 따른 이동통신 시스템의 프레임, 서브프레임 및 슬롯 구조를 설명하기 위한 도면이다.
도 3은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성 예시를 도시한다.
도 4는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.
도 5는 본 개시의 일 실시 예에 따른 이동통신 시스템의 하향링크 제어채널의 구조를 설명하기 위한 도면이다.
도 6은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예제를 도시한 도면이다.
도 7은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.
도 8은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예시를 도시한 도면이다.
도 9는 일부 실시예에 따른 single cell, carrier aggregation, dual connectivity 수행 시의 기지국 및 단말 protocol stack을 도시한 도면이다.
도 10는 본 개시의 일 실시 예에 따른 CFRA procedure의 예시를 도시한 도면이다.
도 11은 본 개시의 일 실시 예에 따른 CBRA procedure의 예시를 도시한 도면이다.
도 12는 본 개시의 일 실시 예에 따른 단말의 동작을 도시한 도면이다.
도 13은 본 개시의 일 실시 예에 따른 기지국의 동작을 도시한 도면이다.
도 14는 본 개시의 다른 일 실시 예에 따른 단말의 동작을 도시한 도면이다.
도 15는 본 개시의 다른 일 실시 예에 따른 기지국의 동작을 도시한 도면이다.
도 16은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말 구조를 도시한다.
도 17은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국 구조를 도시한다.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. 이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB (Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation: URLLC) 등이 있다.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 발명의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시 예가 적용될 수 있다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 개시는 무선 통신 시스템에서 단말의 전력 절약 효율을 높이기 위한 채널상태정보 보고 방법 및 장치에 관한 것이다.
본 개시에 따르면, 무선통신 시스템에서 단말이 전력 절약 모드로 동작하는 경우 채널상태정보 보고 방법을 그에 맞추어 최적화 함으로써 전력 절약 효과가 더욱 향상될 수 있다.
이하 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.
도 1은 본 개시의 일 실시예에 따른 이동통신 시스템의 시간-주파수영역의 기본 구조를 도시한 도면이다.
도 1을 참조하면, 도 1에 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(Resource Element, RE, 1-01)로서 시간 축으로 1 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(1-02) 및 주파수 축으로 1 부반송파(Subcarrier)(1-03)로 정의될 수 있다. 주파수 영역에서 N_sc^RB(일례로 12)개의 연속된 RE들은 하나의 자원 블록(Resource Block, RB, 1-04)을 구성할 수 있다. 일 실시예에서, 복수 개의 OFDM 심볼들은 하나의 서브프레임(One subframe, 1-10)을 구성할 수 있다.
도 2는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 프레임, 서브프레임 및 슬롯 구조를 설명하기 위한 도면이다.
도 2를 참조하면, 하나의 프레임(Frame, 2-00)은 하나 이상의 서브프레임(Subframe, 2-01)으로 구성되고, 하나의 서브프레임은 하나 이상의 슬롯(Slot, 2-02)으로 구성될 수 있다. 일례로, 1 프레임(2-00)은 10ms로 정의될 수 있다. 1 서브프레임(2-01)은 1ms로 정의될 수 있으며, 이 경우 1 프레임(2-00)은 총 10개의 서브프레임(2-01)으로 구성될 수 있다. 1 슬롯(2-02, 2-03)은 14개의 OFDM 심볼로 정의될 수 있다 (즉 1 슬롯 당 심볼 수(
Figure pat00001
)=14). 1 서브프레임(2-01)은 하나 또는 다수 개의 슬롯(2-02, 2-03)으로 구성될 수 있으며, 1 서브프레임(2-01)당 슬롯(2-02, 2-03)의 개수는 부반송파 간격에 대한 설정 값 μ(2-04, 2-05)에 따라 다를 수 있다. 도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(2-04)인 경우와 μ=1(2-05)인 경우가 도시되어 있다. μ=0(2-04)일 경우, 1 서브프레임(2-01)은 1개의 슬롯(2-02)으로 구성될 수 있고, μ=1(2-05)일 경우, 1 서브프레임(2-01)은 2개의 슬롯(2-03)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure pat00002
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure pat00003
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure pat00004
Figure pat00005
는 하기의 [표 1]과 같이 정의될 수 있다.
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
5 14 320 32
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성되는 것이 가능하다. 따라서 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part, BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원하는 것이 가능하다. NR에서 기지국은 CORESET #0 (혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그날링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할 지 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은 'default BWP'로 회귀하여 DCI 수신을 시도한다.
도 3은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성 예시를 도시한다.
도 3을 참조하면, 도 3은 단말 대역폭(3-00)이 두 개의 대역폭 부분, 즉 대역폭 부분 #1(3-05)과 대역폭 부분 #2(3-10)로 설정된 일 예를 도시한다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 [표 2]와 같은 정보들을 설정해 줄 수 있다.
Figure pat00010
물론 상술된 예시에 제한되는 것은 아니며, 상술된 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상술한 정보들은 상위 계층 시그널링, 예컨대 RRC 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(Activation)될 수 있다. 설정된 대역폭 부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적(semi-static)으로 전달되거나, MAC CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.
일 실시예에 따르면, RRC(Radio Resource Control) 연결 전의 단말은 초기 접속을 위한 초기 대역폭 파트(Initial BWP)을 MIB(Master Information Block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로, 단말은 초기 접속 단계에서 MIB를 통해 초기 접속에 필요한 시스템 정보(Remaining System Information; RMSI 또는 System Information Block 1; SIB1에 해당할 수 있음)를 수신하기 위하여, PDCCH가 전송될 수 있는 제어영역(Control Resource Set, CORESET)과 탐색 공간(Search Space)에 대한 설정 정보를 수신할 수 있다. MIB로 설정되는 제어영역과 탐색공간은 각각 식별자(Identity, ID) 0으로 간주될 수 있다.
기지국은 단말에게 MIB를 통해 제어영역#0에 대한 주파수 할당 정보, 시간 할당 정보, 뉴머롤로지(Numerology) 등의 설정 정보를 통지할 수 있다. 또한, 기지국은 단말에게 MIB를 통해 제어영역#0에 대한 모니터링 주기 및 occasion에 대한 설정정보, 즉 탐색공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어영역#0으로 설정된 주파수 영역을 초기 접속을 위한 초기 대역폭 파트로 간주할 수 있다. 이 때, 초기 대역폭 파트의 식별자(ID)는 0으로 간주될 수 있다.
상술된 차세대 이동통신 시스템(5G 또는 NR 시스템)에서 지원하는 대역폭 파트에 대한 설정은 다양한 목적으로 사용될 수 있다.
일 예로 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에, 대역폭 부분에 대한 설정을 통해, 단말이 지원하는 대역폭이 지원될 수 있다. 예컨대 <표 2>에서 대역폭 부분의 주파수 위치(설정정보 2)가 단말에게 설정됨으로써, 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.
또 다른 일 예로 서로 다른 뉴머롤로지를 지원하기 위한 목적으로, 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 임의의 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분이 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정될 수 있다. 서로 다른 대역폭 부분은 FDM(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화 될 수 있다.
또 다른 일 예로 단말의 전력 소모 감소를 위한 목적으로, 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭 부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다.
상술된 대역폭 파트를 설정하는 방법에 있어서, RRC 연결(Connected) 전의 단말들은 초기 접속 단계에서 MIB(Master Information Block)을 통해 초기 대역폭 파트(Initial Bandwidth Part)에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로, 단말은 PBCH(Physical Broadcast Channel)의 MIB로부터, SIB(System Information Block)를 스케줄링하는 DCI(Downlink Control Information)가 전송될 수 있는 하향링크 제어채널을 위한 제어영역(Control Resource Set, CORESET)을 설정 받을 수 있다. MIB로 설정된 제어영역의 대역폭이 초기 대역폭 파트로 간주될 수 있으며, 설정된 초기 대역폭 파트를 통해 단말은 SIB가 전송되는 PDSCH를 수신할 수 있다. 초기 대역폭 파트는 SIB를 수신하는 용도 외에도, 다른 시스템 정보(Other System Information, OSI), 페이징(Paging), 랜덤 엑세스(Random Access)를 위해 활용될 수도 있다.
이하에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)의 SS(Synchronization Signal)/PBCH 블록에 대하여 설명된다.
SS/PBCH 블록은, PSS(Primary SS), SSS(Secondary SS) 및 PBCH로 구성된 물리계층 채널 블록을 의미할 수 있다. 보다 구체적으로, SS/PBCH 블록은 아래와 같이 정의될 수 있다.
- PSS: 하향링크 시간/주파수 동기의 기준이 되는 신호로 셀 ID 의 일부 정보를 제공할 수 있다.
- SSS: 하향링크 시간/주파수 동기의 기준이 되고, PSS 가 제공하지 않은 나머지 셀 ID 정보를 제공할 수 있다. 추가적으로 PBCH 의 복조를 위한 기준신호(Reference Signal) 역할을 할 수 있다.
- PBCH: 단말의 데이터채널 및 제어채널 송수신에 필요한 필수 시스템 정보를 제공할 수 있다. 필수 시스템 정보는 제어채널의 무선자원 매핑 정보를 나타내는 탐색공간 관련 제어정보, 시스템 정보를 전송하는 별도의 데이터 채널에 대한 스케줄링 제어정보 등을 포함할 수 있다.
- SS/PBCH 블록: SS/PBCH 블록은 PSS, SSS 및 PBCH의 조합으로 이루어질 수 있다. SS/PBCH 블록은 5ms 시간 내에서 하나 또는 복수 개가 전송될 수 있고, 전송되는 각각의 SS/PBCH 블록은 인덱스로 구별될 수 있다.
단말은 초기 접속 단계에서 PSS 및 SSS를 검출할 수 있고, PBCH를 디코딩할 수 있다. 단말은 PBCH로부터 MIB를 획득할 수 있고, MIB를 통해 제어영역#0을 설정 받을 수 있다. 단말은 선택한 SS/PBCH 블록과 제어영역#0에서 전송되는 DMRS(Demodulation RS(Reference Signal)가 QCL(Quasi Co Location)되어 있다고 가정하고 제어영역#0에 대한 모니터링을 수행할 수 있다. 단말은 제어영역#0에서 전송된 하향링크 제어정보로 시스템 정보를 수신할 수 있다. 단말은 수신한 시스템 정보로부터 초기 접속에 필요한 RACH(Random Access Channel) 관련 설정 정보를 획득할 수 있다. 단말은 선택한 SS/PBCH 인덱스를 고려하여 PRACH(Physical RACH)를 기지국으로 전송할 수 있고, PRACH를 수신한 기지국은 단말이 선택한 SS/PBCH 블록 인덱스에 대한 정보를 획득할 수 있다. 기지국은 단말이 각각의 SS/PBCH 블록들 중에서 어떤 블록을 선택하였고, 단말이 선택한 SS/PBCH 블록과 대응되는(또는 연관되는) 제어영역#0을 모니터링 함을 알 수 있다.
이하에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 하향링크 제어 정보(Downlink Control Information, 이하 DCI라 한다)가 구체적으로 설명된다.
차세대 이동통신 시스템(5G 또는 NR 시스템)에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(Physical Uplink Shared Channel, PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(Physical Downlink Shared Channel, PDSCH))에 대한 스케줄링 정보는, DCI를 통해 기지국으로부터 단말에게 전달될 수 있다. 단말은 PUSCH 또는 PDSCH에 대하여 폴백(Fallback)용 DCI 포맷과 논-폴백(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 폴백 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 논-폴백용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH(Physical Downlink Control Channel)을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 부착될 수 있고, CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 될 수 있다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 DCI 메시지의 페이로드에 부착되는 CRC의 스크램블링을 위해 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송될 수 있다. PDCCH 상으로 전송되는 DCI 메시지가 수신되면, 단말은 할당 받은 RNTI를 사용하여 CRC를 확인할 수 있다. CRC 확인 결과가 맞으면 단말은 해당 메시지가 단말에게 전송된 것임을 알 수 있다.
예를 들면, 시스템 정보(System Information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(Paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.
DCI 포맷 0_0은 PUSCH를 스케줄링하는 폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_0은 아래의 [표 3]과 같은 정보들을 포함할 수 있다.
Figure pat00011
DCI 포맷 0_1은 PUSCH를 스케줄링하는 논-폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_1은, 아래의 [표 4]와 같은 정보들을 포함할 수 있다.
Figure pat00012
Figure pat00013
DCI 포맷 1_0은 PDSCH를 스케줄링하는 폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은, 아래의 [표 5]와 같은 정보들을 포함할 수 있다.
Figure pat00014
또는, DCI 포맷 1_0은 RAR 메시지에 대한 PDSCH를 스케줄링하는 DCI로 사용될 수 있고, 이 때 CRC는 RA-RNTI로 스크램블링 될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은, 아래의 [표 6] 와 같은 정보들을 포함할 수 있다.
Figure pat00015
DCI 포맷 1_1은 PDSCH를 스케줄링하는 논-폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_1은, 아래의 [표 7]과 같은 정보들을 포함할 수 있다.
Figure pat00016
Figure pat00017
도 4는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 하향링크 제어채널의 제어영역 설정을 설명하기 위한 도면이다. 즉, 도 4는 본 개시의 일 실시예에 따른 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)에 대한 일 실시예를 도시한 도면이다.
도 4를 참조하면, 도 4는 주파수 축으로 단말의 대역폭 파트(UE bandwidth part)(4-10), 시간축으로 1 슬롯(4-20) 내에 2개의 제어영역(제어영역#1(4-01), 제어영역#2(4-02))이 설정되어 있는 일 실시예를 도시한다. 제어영역(4-01, 4-02)은 주파수 축으로 전체 단말 대역폭 파트(4-10) 내에서 특정 주파수 자원(4-03)에 설정될 수 있다. 제어영역(4-01, 4-02)은 시간 축으로는 하나 또는 복수 개의 OFDM 심볼로 설정될 수 있고, 이는 제어영역 길이(Control Resource Set Duration, 4-04)으로 정의될 수 있다. 도 4를 참조하면, 제어영역#1(4-01)은 2 심볼의 제어영역 길이로 설정될 수 있고, 제어영역#2(4-02)는 1 심볼의 제어영역 길이로 설정될 수 있다.
전술된 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 함으로써 설정될 수 있다. 단말에게 제어영역을 설정한다는 것은 제어영역 식별자(Identity), 제어영역의 주파수 위치, 제어영역 의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예를 들면, 제어영역의 설정은 아래의 [표 8]과 같은 정보들을 포함할 수 있다.
Figure pat00018
[표 8]에서 tci-StatesPDCCH (이하 'TCI state'라 한다) 설정 정보는, 해당 제어영역에서 전송되는 DMRS(Demodulation Reference Signal)와 QCL(Quasi Co Located) 관계에 있는 하나 또는 다수 개의 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록(Block) 인덱스 또는 CSI-RS(Channel State Information Reference Signal) 인덱스의 정보를 포함할 수 있다.
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 시그날 및 이들의 조합들로 대체되는 것도 가능하나 향후 본 개시의 설명에서는 편의를 위하여 서로 다른 안테나 포트들로 통일하여 지칭한다)은 아래 [표 9]와 같은 QCL 설정에 의하여 서로 연결(associate)될 수 있다.
Figure pat00019
구체적으로 QCL 설정은 두 개의 서로 다른 안테나 포트들을 (QCL) target 안테나 포트와 (QCL) reference 안테나 포트의 관계로 연결할 수 있으며, 단말은 상기 reference 안테나 포트에서 측정된 채널의 통계적인 특성들(예를 들어 Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (혹은 Tx) 파라미터 등 채널의 large scale 파라미터 내지 단말의 수신 공간 필터 계수 혹은 송신 공간 필터 계수) 중 전부 혹은 일부를 target 안테나 포트 수신 시 적용 (혹은 가정) 할 수 있다. 위에서 target 안테나 포트라 함은 상기 QCL 설정을 포함하는 상위레이어 설정에 의하여 설정되는 채널 혹은 신호를 송신하는 안테나 포트 내지는 상기 QCL 설정을 지시하는 TCI state가 적용되는 채널 혹은 신호를 송신하는 안테나 포트를 의미한다. 위에서 reference 안테나 포트라 함은 상기 QCL 설정 내 referenceSignal 파라미터에 의하여 지시(특정)되는 채널 혹은 신호를 송신하는 안테나 포트를 의미한다.
구체적으로, 상기 QCL 설정에 의하여 한정되는 (상기 QCL 설정 내에서 파라미터 qcl-Type에 의하여 지시되는) 채널의 통계적인 특성들은 QCL type에 따라 다음과 같이 분류될 수 있다.
o 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
o 'QCL-TypeB': {Doppler shift, Doppler spread}
o 'QCL-TypeC': {Doppler shift, average delay}
o 'QCL-TypeD': {Spatial Rx parameter}
이때 QCL type의 종류는 위 네 가지 종류에 한정되는 것은 아니나 설명의 요지를 흐리지 않기 위하여 모든 가능한 조합들을 나열하지는 않는다. 위에서 QCL-TypeA는 target 안테나 포트의 대역폭 및 전송 구간이 reference 안테나 포트 대비 모두 충분하여 (즉 주파수 축 및 시간 축 모두에서 target 안테나 포트의 샘플 수 및 전송 대역/시간이 reference 안테나 포트의 샘플 수 및 전송 대역/시간보다 많은 경우) 주파수 및 시간 축에서 측정 가능한 모든 통계적 특성들을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeB는 target 안테나 포트의 대역폭이 주파수 축에서 측정 가능한 통계적 특성들, 즉 Doppler shift, Doppler spread들을 측정하기에 충분한 경우에 사용되는 QCL type이다. QCL-TypeC는 target 안테나 포트의 대역폭 및 전송 구간이 second-order statistics, 즉 Doppler spread 및 delay spread들을 측정하기에는 불충분하여 first-order statistics, 즉 Doppler shift, average delay만을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeD는 reference 안테나 포트를 수신할 때 사용한 공간 수신 필터 값 들을 target 안테나 포트 수신 시 사용할 수 있을 때 설정되는 QCL type이다.
한편, 기지국은 아래와 같은 TCI state설정을 통하여 최대 두 개의 QCL 설정을 하나의 target 안테나 포트에 설정 혹은 지시하는 것이 가능하다.
Figure pat00020
하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 첫 번째 QCL 설정은 QCL-TypeA, QCL-TypeB, QCL-TypeC 중 하나로 설정될 수 있다. 이때 설정 가능한 QCL type은 target 안테나 포트 및 reference 안테나 포트의 종류에 따라 특정되며 아래 상세히 설명한다. 또한 상기 하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 두 번째 QCL 설정은 QCL-TypeD로 설정될 수 있으며 경우에 따라 생략되는 것이 가능하다.
아래 표 9-1 내지 9-5에서는 target 안테나 포트 종류에 따른 유효한 TCI state 설정들을 나타내는 표 들이다.
표 9-1은 target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정을 나타낸다. 상기 TRS는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info가 true로 설정된 NZP CSI-RS를 의미한다. 표 9-1에서 3번 설정의 경우 aperiodic TRS를 위하여 사용될 수 있다.
[표 9-1] Target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정
Figure pat00021
표 9-2는 target 안테나 포트가 CSI-RS for CSI 일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for CSI는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info 또한 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 9-2] Target 안테나 포트가 CSI-RS for CSI일 경우 유효한 TCI state 설정
Figure pat00022
표 9-3은 target 안테나 포트가 CSI-RS for beam management (BM, CSI-RS for L1 RSRP reporting과 동일한 의미)일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for BM은 CSI-RS 중 repetition 파라미터가 설정되어 On 또는 Off의 값을 가지며, trs-Info가 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 9-3] Target 안테나 포트가 CSI-RS for BM (for L1 RSRP reporting)일 경우 유효한 TCI state 설정
Figure pat00023
표 9-4는 target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 9-4] Target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정
Figure pat00024
표 9-5는 target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 9-5] Target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정
Figure pat00025
상기 표 9-1 내지 9-5에 의한 대표적인 QCL 설정 방법은 각 단계 별 target 안테나 포트 및 reference 안테나 포트를 "SSB" → "TRS" → "CSI-RS for CSI, 또는 CSI-RS for BM, 또는 PDCCH DMRS, 또는 PDSCH DMRS"와 같이 설정하여 운용하는 것이다. 이를 통하여 SSB 및 TRS로부터 측정할 수 있는 통계적 특성들을 각 안테나 포트들까지 연계시켜 단말의 수신 동작을 돕는 것이 가능하다.
도 5는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 하향링크 제어채널의 구조를 설명하기 위한 도면이다. 즉, 도 5는 본 개시의 일 실시예에 따른 5G에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 예시를 도시하는 도면이다.
도 5를 참조하면, 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위는 REG(Resource Element Group, 5-03)로 정의될 수 있다. REG(5-03)는 시간 축으로 1 OFDM 심볼(5-01), 주파수 축으로 1 PRB(Physical Resource Block, 5-02), 즉, 12개 서브캐리어(Subcarrier)로 정의될 수 있다. 기지국은 REG(5-03)를 연접하여 하향링크 제어채널 할당 단위를 구성할 수 있다.
도 5에 도시된 바와 같이, 5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element, 5-04)라고 할 경우, 1 CCE(5-04)는 복수의 REG(5-03)로 구성될 수 있다. 예를 들면, 도 5에 도시된 REG(5-03)는 12개의 RE로 구성될 수 있고, 1 CCE(5-04)가 6개의 REG(5-03)로 구성된다면 1 CCE(5-04)는 72개의 RE로 구성될 수 있다. 하향링크 제어영역이 설정되면 해당 영역은 복수의 CCE(5-04)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어영역 내의 집성 레벨(Aggregation Level, AL)에 따라 하나 또는 복수의 CCE(5-04)로 매핑 되어 전송될 수 있다. 제어영역내의 CCE(5-04)들은 번호로 구분되며 이 때 CCE(5-04)들의 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.
도 5에 도시된 하향링크 제어채널의 기본 단위, 즉 REG(5-03)에는 DCI가 매핑되는 RE들과, 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(5-05)가 매핑되는 영역이 모두 포함될 수 있다. 도 5에서와 같이 1 REG(5-03) 내에 3개의 DMRS(5-05)가 전송될 수 있다. PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(Aggregation Level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예를 들어, AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다.
단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space)이 정의될 수 있다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(Candidate)들의 집합이다. 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로, 단말은 복수개의 탐색공간을 가질 수 있다. 탐색공간 세트(Set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.
탐색공간은 공통(Common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 본 개시의 일 실시예에 따르면, 일정 그룹의 단말들 또는 모든 단말들은 시스템 정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다.
예를 들어, 단말은 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보를 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신해야 하므로, 공통 탐색공간은 기 약속된 CCE의 집합으로써 정의될 수 있다. 한편, 단말은 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케쥴링 할당 정보를 PDCCH의 단말-특정 탐색공간을 조사함으로써 수신할 수 있다. 단말-특정 탐색공간은 단말의 신원(Identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다.
5G에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색공간을 모니터링 하고자 하는 제어영역 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, 상술된 설정은 아래의 [표 10]과 같은 정보들을 포함할 수 있다.
Figure pat00026
Figure pat00027
설정 정보에 기초하여 기지국은 단말에게 하나 또는 복수 개의 탐색공간 세트를 설정할 수 있다. 본 개시의 일 실시예에 따르면, 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있고, 탐색공간 세트 1에서 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정할 수 있고, 탐색공간 세트 2에서 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정할 수 있다.
설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 복수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.
공통 탐색공간은 목적에 따라 특정 타입(type)의 탐색공간 세트로 분류될 수 있다. 정해진 탐색공간 세트 타입별로 모니터링 될 RNTI가 서로 다를 수 있다. 예를 들어 공통 탐색공간 타입, 목적, 및 모니터링 될 RNTI는 다음과 같이 분류할 수 있다.
Figure pat00028
한편 공통 탐색공간에서는 아래의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
- DCI format 2_0 with CRC scrambled by SFI-RNTI
- DCI format 2_1 with CRC scrambled by INT-RNTI
- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 아래의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
명시되어 있는 RNTI들은 아래와 같은 정의 및 용도를 따를 수 있다.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케쥴링 용도
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케쥴링 용도
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케쥴링 용도
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케쥴링 용도
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케쥴링 용도
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케쥴링 용도
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도
일 실시예에서, 상술된 DCI 포맷들은 아래의 [표 11]와 같이 정의될 수 있다.
Figure pat00029
본 개시의 일 실시예에 따르면, 5G에서는 복수 개의 탐색공간 세트가 서로 다른 파라미터들(예컨대, [표 10]의 파라미터들)로 설정될 수 있다. 따라서, 매 시점에서 단말이 모니터링하는 탐색공간 세트의 집합이 달라질 수 있다. 예를 들면, 탐색공간 세트#1이 X-슬롯 주기로 설정되어 있고, 탐색공간 세트#2가 Y-슬롯 주기로 설정되어 있고 X와 Y가 다를 경우, 단말은 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2를 모두 모니터링 할 수 있고, 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2 중 하나를 모니터링 할 수 있다.
복수 개의 탐색공간 세트가 단말에게 설정되었을 경우, 단말이 모니터링해야 하는 탐색공간 세트를 결정하기 위하여, 아래와 같은 조건들이 고려될 수 있다.
[조건 1: 최대 PDCCH 후보군 수 제한]
슬롯 당 모니터링 할 수 있는 PDCCH 후보군의 수는 Mμ를 넘지 않을 수 있다. Mμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서의 슬롯 당 최대 PDCCH 후보군 수로 정의될 수 있으며, 아래의 [표 12]과 같이 정의될 수 있다.
Figure pat00030
[조건 2: 최대 CCE 수 제한]
슬롯 당 전체 탐색공간(여기서 전체 탐색공간이란 복수 개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미할 수 있다)을 구성하는 CCE의 개수는 Cμ를 넘지 않을 수 있다. Cμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서의 슬롯 당 최대 CCE의 수로 정의될 수 있으며, 아래의 [표 13]과 같이 정의될 수 있다.
Figure pat00031
설명의 편의를 위해, 특정 시점에서 상기 조건 1, 2를 모두 만족시키는 상황은 예시적으로 "조건 A"로 정의될 수 있다. 따라서, 조건 A를 만족시키지 않는 것은 상술된 조건 1, 2 중에서 적어도 하나의 조건을 만족시키지 않는 것을 의미할 수 있다.
기지국의 탐색공간 세트들의 설정에 따라 특정 시점에서 조건 A가 만족되지 않는 경우가 발생할 수 있다. 특정 시점에서 조건 A가 만족되지 않을 경우, 단말은 해당 시점에서 조건 A를 만족하도록 설정된 탐색공간 세트들 중에서 일부만을 선택하여 모니터링 할 수 있고, 기지국은 선택된 탐색공간 세트로 PDCCH를 전송할 수 있다.
본 개시의 일 실시예에 따르면, 전체 설정된 탐색공간 세트 중에서 일부 탐색공간을 선택하는 방법으로 하기의 방법을 따를 수 있다.
[방법 1]
특정 시점(슬롯)에서 PDCCH에 대한 조건 A를 만족시키지 못할 경우,
단말은(또는 기지국은) 해당 시점에 존재하는 탐색공간 세트들 중에서 탐색 공간 타입이 공통 탐색공간으로 설정되어 있는 탐색공간 세트를 단말-특정 탐색공간으로 설정된 탐색공간 세트보다 우선적으로 선택할 수 있다.
공통 탐색공간으로 설정되어 있는 탐색공간 세트들이 모두 선택되었을 경우(즉, 공통 탐색공간으로 설정되어 있는 모든 탐색공간을 선택한 후에도 조건 A를 만족할 경우), 단말은(또는 기지국은) 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트들을 선택할 수 있다. 이 때, 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트가 복수 개일 경우, 탐색공간 세트 인덱스(Index)가 낮은 탐색공간 세트가 더 높은 우선 순위를 가질 수 있다. 우선 순위를 고려하여, 단말 혹은 기지국은 단말-특정 탐색공간 세트들을 조건 A가 만족되는 범위 내에서 선택할 수 있다.
아래에서는 NR에서 데이터 전송을 위한 시간 및 주파수 자원 할당 방법들이 설명된다.
NR에서는 BWP 지시(indication)를 통한 주파수 축 자원 후보 할당에 더하여 다음과 같은 세부적인 주파수 축 자원 할당 방법(frequency domain resource allocation, FD-RA)들이 제공될 수 있다.
도 6은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예제를 도시한 도면이다.
도 6은 NR에서 상위 레이어를 통하여 설정 가능한 type 0 (6-00), type 1 (6-05), 그리고 동적 변경(dynamic switch) (6-10)의 세 가지 주파수 축 자원 할당 방법들을 도시하는 도면이다.
도 6을 참조하면, 만약 상위 레이어 시그널링을 통하여 단말이 resource type 0 만을 사용하도록 설정된 경우(6-00), 해당 단말에게 PDSCH를 할당하는 일부 하향링크 제어 정보(downlink control information, DCI)는 NRBG개의 비트로 구성되는 비트맵을 가진다. 이를 위한 조건은 차후 다시 설명한다. 이때 NRBG는 BWP 지시자(indicator)가 할당하는 BWP 크기(size) 및 상위 레이어 파라미터 rbg-Size에 따라 아래 [표 14]와 같이 결정되는 RBG(resource block group)의 수를 의미하며, 비트맵에 의하여 1로 표시되는 RBG에 데이터가 전송되게 된다.
Figure pat00032
만약 상위 레이어 시그널링을 통하여 단말이 resource type 1 만을 사용하도록 설정된 경우(6-05), 해당 단말에게 PDSCH를 할당하는 일부 DCI는
Figure pat00033
개의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 기지국은 이를 통하여 starting VRB(6-20)와 이로부터 연속적으로 할당되는 주파수 축 자원의 길이(6-25)를 설정할 수 있다.
만약 상위 레이어 시그널링을 통하여 단말이 resource type 0과 resource type 1를 모두 사용하도록 설정된 경우(6-10), 해당 단말에게 PDSCH를 할당하는 일부 DCI는 resource type 0을 설정하기 위한 payload(6-15)와 resource type 1을 설정하기 위한 payload(6-20, 6-25)중 큰 값(6-35)의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 이때, DCI 내 주파수 축 자원 할당 정보의 제일 앞 부분(MSB)에 한 비트가 추가될 수 있고, 해당 비트가 0일 경우 resource type 0이 사용됨을 지시되고, 1일 경우 resource type 1이 사용됨을 지시될 수 있다.
아래에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 데이터 채널에 대한 시간 도메인 자원할당 방법이 설명된다.
기지국은 단말에게 하향링크 데이터채널(Physical Downlink Shared Channel, PDSCH) 및 상향링크 데이터채널(Physical Uplink Shared Channel, PUSCH)에 대한 시간 도메인 자원할당 정보에 대한 테이블(Table)을, 상위 계층 시그널링 (예를 들어 RRC 시그널링)으로 설정할 수 있다. PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있다. 일 실시예에서, 시간 도메인 자원할당 정보에는 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함), PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케쥴링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케쥴링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다. 예를 들면, 아래의 [표 15] 또는 [표 16]와 같은 정보들이 기지국으로부터 단말로 통지될 수 있다.
Figure pat00034
Figure pat00035
기지국은 상술된 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 하나를, L1 시그널링(예를 들어 DCI)를 통해 단말에게 통지할 수 있다 (예를 들어 DCI 내의 '시간 도메인 자원할당' 필드로 지시될 수 있음). 단말은 기지국으로부터 수신한 DCI에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.
도 7은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.
도 7을 참조하면, 기지국은 상위 레이어를 이용하여 설정되는 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격(subcarrier spacing, SCS)(
Figure pat00036
,
Figure pat00037
), 스케줄링 오프셋(scheduling offset)(K0) 값, 그리고 DCI를 통하여 동적으로 지시되는 한 slot 내 OFDM symbol 시작 위치(7-00)와 길이(7-05)에 따라 PDSCH 자원의 시간 축 위치를 지시할 수 있다.
도 8은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예제를 도시하는 도면이다.
도 8을 참조하면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 같은 경우 (8-00,
Figure pat00038
), 데이터와 제어를 위한 슬롯 번호(slot number)가 같으므로, 기지국 및 단말은 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어, 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다. 반면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 다른 경우 (8-05,
Figure pat00039
), 데이터와 제어를 위한 슬롯 번호(slot number)가 다르므로, 기지국 및 단말은 PDCCH의 서브캐리어 간격을 기준으로 하여, 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다.
LTE 및 NR에서 단말은 서빙 기지국에 연결한 상태에서 해당 기지국에게 단말이 지원하는 capability를 보고하는 절차를 가진다. 아래 설명에서 이를 UE capability (보고)로 지칭한다. 기지국은 연결 상태의 단말에게 capability 보고를 요청하는 UE capability enquiry 메시지를 전달할 수 있다. 상기 메시지에는 기지국이 RAT type 별 단말 capability 요청을 포함할 수 있다. 상기 RAT type 별 요청에는 요청하는 주파수 밴드 정보가 포함될 수 있다. 또한, 상기 UE capability enquiry 메시지는 하나의 RRC 메시지 container에서 복수의 RAT type을 요청할 수 있으며, 혹은 각 RAT type 별 요청을 포함한 UE capability enquiry 메시지를 복수번 포함해서 단말에게 전달할 수 있다. 즉, UE capability enquiry가 복수회 반복 되고 단말은 이에 해당하는 UE capability information 메시지를 구성하여 복수회 보고할 수 있다. 차세대 이동 통신 시스템에서는 NR, LTE, EN-DC를 비롯한 MR-DC에 대한 단말 capability 요청을 할 수 있다. 참고로 상기 UE capability enquiry 메시지는 일반적으로 단말이 연결을 하고 난 이후, 초기에 보내는 것이 일반적이지만, 기지국이 필요할 때 어떤 조건에서도 요청할 수 있다.
상기 단계에서 기지국으로부터 UE capability 보고 요청을 받은 단말은 기지국으로부터 요청받은 RAT type 및 밴드 정보에 따라 단말 capability를 구성한다. 아래에 NR 시스템에서 단말이 UE capability를 구성하는 방법을 정리하였다.
1. 만약 단말이 기지국으로부터 UE capability 요청으로 LTE 그리고/혹은 NR 밴드에 대한 리스트를 제공받으면, 단말은 EN-DC 와 NR stand alone (SA)에 대한 band combination (BC)를 구성한다. 즉, 기지국에 FreqBandList로 요청한 밴드들을 바탕으로 EN-DC 와 NR SA에 대한 BC의 후보 리스트를 구성한다. 또한, 밴드의 우선순위는 FreqBandList에 기재된 순서대로 우선순위를 가진다.
2. 만약 기지국이 “eutra-nr-only”flag 혹은 “eutra”flag를 세팅하여 UE capability 보고를 요청한 경우, 단말은 상기의 구성된 BC의 후보 리스트 중에서 NR SA BC들에 대한 것은 완전히 제거한다. 이러한 동작은 LTE 기지국(eNB)이 “eutra”capability를 요청하는 경우에만 일어날 수 있다.
3. 이후 단말은 상기 단계에서 구성된 BC의 후보 리스트에서 fallback BC들을 제거한다. 여기서 fallback BC는 어떤 super set BC에서 최소 하나의 SCell에 해당하는 밴드를 제거한 경우에 해당하며, super set BC가 이미 fallback BC를 커버할 수 있기 때문에 생략이 가능하다. 이 단계는 MR-DC에서도 적용되며, 즉 LTE 밴드들도 적용된다. 이 단계 이후에 남아있는 BC는 최종 “후보 BC 리스트”이다.
4. 단말은 상기의 최종 “후보 BC 리스트”에서 요청받은 RAT type에 맞는 BC들을 선택하여 보고할 BC들을 선택한다. 본 단계에서는 정해진 순서대로 단말이 supportedBandCombinationList를 구성한다. 즉, 단말은 미리 설정된 rat-Type의 순서에 맞춰서 보고할 BC 및 UE capability를 구성하게 된다. (nr -> eutra-nr -> eutra). 또한 구성된 supportedBandCombinationList에 대한 featureSetCombination을 구성하고, fallback BC (같거나 낮은 단계의 capability를 포함하고 있는)에 대한 리스트가 제거된 후보 BC 리스트에서 “후보 feature set combination”의 리스트를 구성한다. 상기의 “후보 feature set combination”은 NR 및 EUTRA-NR BC에 대한 feature set combination을 모두 포함하며, UE-NR-Capabilities와 UE-MRDC-Capabilities 컨테이너의 feature set combination으로부터 얻을 수 있다.
5. 또한, 만약 요청된 rat Type이 eutra-nr이고 영향을 준다면, featureSetCombinations은 UE-MRDC-Capabilities 와 UE-NR-Capabilities 의 두 개의 컨테이너에 전부 포함된다. 하지만 NR의 feature set은 UE-NR-Capabilities만 포함된다.
단말 capability가 구성되고 난 이후, 단말은 UE capability가 포함된 UE capability information 메시지를 기지국에 전달한다. 기지국은 단말로부터 수신한 UE capability를 기반으로 이후 해당 단말에게 적당한 스케쥴링 및 송수신 관리를 수행한다.
상기한 UE capability 중, PDCCH 및 PDSCH 수신을 위한 TCI states 설정 관련 capability에는 아래가 포함될 수 있다.
Figure pat00040
상기 capability 중 timeDurationForQCL은 PDSCH를 스케줄하는 PDCCH에 TCI state 정보가 포함된 경우, 상기 TCI state를 스케줄 된 PDSCH 수신에 적용하는 데 걸리는 심볼 단위 시간을 의미한다. 상기 시간에는 PDCCH 디코딩 및 단말 수신 빔 변경 등에 소요되는 시간이 포함될 수 있다. maxNumberActiveTCI-PerBWP은 한 BWP 내에서 PDCCH 및 PDSCH를 위해 activate 될 수 있는 최대 TCI state 수를 의미한다. maxNumberConfiguredTCIstatesPerCC는 한 CC 또는 서빙 셀 내에서 PDSCH 수신을 위해 설정받을 수 있는 최대 TCI state 수를 의미한다. additionalActiveTCI-StatePDCCH는 상기 maxNumberActiveTCI-PerBWP = 1인 경우, PDCCH 수신을 위해 PDSCH를 위한 active TCI state와 다른, 하나의 TCI state를 추가로 activate 시킬 수 있음을 의미한다. maxNumberActiveTCI-PerBWP = 1로 보고한 단말은 additionalActiveTCI-StatePDCCH 를 'supported'로 보고할 의무가 있다.
아래에서는 PDSCH 수신을 위한 TCI state 설정 방법이 설명된다.
기지국은 단말에게 상위 레이어 설정을 통해 서빙 셀 및 BWP 별 PDSCH 수신을 위한 TCI state 목록을 다음과 같이 지시할 수 있다.
Figure pat00041
Figure pat00042
기지국은 상기 설정된 TCI state 목록 중 일부의 TCI state를 activate 할 하도록 MAC-CE를 통해 제어 정보를 단말로 지시할 수 있다. 일부 실시예에 따른 상기 MAC-CE의 구조는 아래와 같을 수 있다.
Figure pat00043
상기 MAC CE 내 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.
Figure pat00044
상기 MAC-CE를 통해 activate되는 TCI state의 수는 최대 8개일 수 있다. 기술의 편의를 위해, activate된 TCI state 각각을 TCI #0', TCI #1', TCI #2', TCI #3', TCI #4', TCI #5', TCI #6', TCI #7'로 표기할 수 있다. 기지국은 상기 activate 된 TCI state 중, 특정 PDSCH 수신을 위해 단말에 적용할 하나의 TCI state를 L1 시그널링으로 지시할 수 있다. 상기 L1 시그널은 PDSCH 를 스케줄하는 DCI format 1_1 에 포함된 TCI 필드일 수 있으며, TCI 필드는 0 내지 7의 값으로 선택될 수 있다. 예를 들어, DCI 내 TCI 필드가 000으로 지시되면 단말은 TCI #0', TCI #1', TCI #2', TCI #3', TCI #4', TCI #5', TCI #6', TCI #7'중에서 TCI #0'이 지시된 것으로 판단할 수 있다.
Rel-15 기반의 기지국은 CORESET 내 PDCCH의 수신을 완료한 시점부터 상기 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점까지의 scheduling time offset(t_so)을 고려하여 데이터를 할당할 수 있다. 상기 scheduling time offset(t_so)은 상기 PDSCH를 할당하는 상기 PDCCH의 마지막 심볼(또는 그 다음 심볼)부터 도 8에서 설명한 k0가 지시하는 해당 슬롯에서 데이터를 전송하는 PDSCH가 시작되는 이전 심볼까지의 시간(duration)을 의미한다. 상기 scheduling time offset(t_so)은 상위 레이어에서 설정된 PDSCH-TimeDomainResourceAllocation의 startSymbolAndLength (0 내지 127)에서 설정된 SLIV(Start and Length Indicator) 인덱스를 기반으로 PDSCH의 시작 심볼을 판단할 수 있다. 상기 빔포밍의 적용은 단말의 능력에 따라 단말마다 다를 수 있고, 상기 능력은 단말 능력 보고를 통해 기지국에게 timeDurationForQCL 값으로 전달된다. 본 발명에서 상기 timeDurationForQCL은 단말이 QCL을 적용하기 위한 시간 구간 또는 QCL 적용 시간 구간으로 칭할 수 있다.
기본적으로 단말은 상기 scheduling time offset(t_so)과 상위 레이어에서 설정될 단말의 능력에 기반한 timeDurationForQCL의 값에 따라 아래와 같이 동작을 수행할 수 있다.
상위 레이어 설정에서 tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, 단말은 DCI format에 관계 없이 PDCCH와 PDSCH 간 scheduling offset/scheduling timining offset이 단말 능력 보고(UE capability report)로 보고된 timeDurationForQCL보다 크거나 같은 지에 대한 여부를 확인할 수 있다.
상위 레이어 설정에서 tci-PresentinDCI가 'enabled'로 설정되고 단말이 기지국으로부터 DCI format 1_1를 수신한 경우, 단말은 해당 DCI에 TCI field가 존재하는 것으로 가정하고 PDCCH와 PDSCH 간 scheduling time offset이 단말 능력 보고로 보고된 timeDurationForQCL보다 크거나 같은 지에 대한 여부를 확인할 수 있다.
상기 PDCCH와 PDSCH 간 scheduling offset/scheduling timing offset이 timeDurationForQCL 보다 작은 경우, 단말은 수신된 PDSCH의 DMRS port를 가장 최근 slot에서 가장 낮은 CORESET ID를 가지는 monitored search space와 연계된 CORESET에 사용된 QCL parameter에 기반하여 결정할 수 있다.
또한, 일례로 상기 PDCCH와 PDSCH 간 scheduling offset/scheduling timing offset이 timeDurationForQCL 보다 크거나 같은 경우, 단말은 상기 PDCCH를 전송하는데 사용된 CORESET과 같은 QCL assumption을 해당 PDSCH DMRS port에 적용한다.
다른 예로, PDCCH와 PDSCH 간 scheduling offset/scheduling timing offset이 timeDurationForQCL 보다 크거나 같은 경우, 단말은 해당 PDCCH(DCI) 내 TCI field가 지시하는 QCL assumption을 해당 PDSCH DMRS port에 적용한다. 한편, 단말이 "모든 BWP에 대하여" 설정 받은 TCI state들 중 어떤 TCI state도 QCL-TypeD를 포함하지 않는 경우, 단말은 DCI와 그 DCI가 할당하는 PDSCH 간 간격에 관계 없이 항상 지시되는 TCI state에 따라 QCL assumption을 획득할 수 있다.
도 9는 본 발명의 일부 실시예에 따른 single cell, carrier aggregation, dual connectivity 수행 시의 기지국 및 단말 무선 프로토콜 구조를 도시한 도면이다.
도 9를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(Service Data Adaptation Protocol S25, S70), NR PDCP(Packet Data Convergence Protocol S30, S65), NR RLC(Radio Link Control S35, S60), NR MAC(Medium Access Control S40, S55)으로 이루어진다.
NR SDAP(S25, S70)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID의 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP (10-30, 10-65)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(S35, S60)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로 (일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(S40, S55)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(S45, S50)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
상기 무선 프로토콜 구조는 캐리어 (혹은 셀) 운영 방식에 따라 세부 구조가 다양하게 변경될 수 있다. 일례로 기지국이 단일 캐리어(혹은 셀)을 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S00과 같이 각 계층 별 단일 구조를 가지는 프로토콜 구조를 사용하게 된다. 반면 기지국이 단일 TRP에서 다중 캐리어를 사용하는 CA(carrier aggregation)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S10과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다. 또 다른 예시로 기지국이 다중 TRP에서 다중 캐리어를 사용하는 DC(dual connectivity)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S20과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다.
현재 Rel-15 NR에서 단말은 RRC_CONNECTED 상태인 경우에도 handover, beam failure recovery, radio link failure 등의 상황에서 PRACH를 전송하고 이에 따른 random access procedure가 시작될 수 있다. 이 경우는 기연결된 기지국과 단말 간 통신이 원활하지 않은 경우이므로, PDCCH 및 PDSCH 수신 시 상위 레이어로 설정된 TCI state 를 그대로 따르는 것은 수신 신뢰도 측면에서 나쁠 수 있다. 따라서 RRC_CONNECTED 상태에서의 random access 과정 중, 최소한 특정 PDCCH 및 PDSCH 수신을 위해서는 상위 레이어로 설정된 TCI state를 따르지 않는 대신 default TCI state, 이를테면 PRACH에 association 된 하향링크 RS에 대응하는 TCI state, 이 필요할 수 있다. 이 때, 상기 UE capability 중 maxNumberActiveTCI-PerBWP 에 따라 단말이 track 할 수 있는 active TCI state 수가 달라지므로, 상기 default TCI state 가정 시 단말의 maxNumberActiveTCI-PerBWP capability를 고려할 필요가 있다.
본 발명에서는 RRC_CONNECTED 상태에서의 random access 과정에서, 단말의 maxNumberActiveTCI-PerBWP capability를 고려한 default TCI state 설정 방법을 제공함으로써 PDCCH 및 PDSCH 수신 신뢰도를 향상시킨다.
이하 본 개시의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, gNB, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 또한, 이하에서 NR 혹은 LTE/LTE-A 시스템을 일례로서 본 개시의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시 예가 적용될 수 있다. 또한, 본 개시의 실시 예는 숙련된 기술적 지식을 가진자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 개시에서의 내용은 FDD 및 TDD 시스템에서 적용이 가능한 것이다.
이하 본 개시에서 상위시그널링은 기지국에서 물리계층의 하향링크 데이터 채널을 이용하여 단말로, 혹은 단말에서 물리계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법이며, RRC 시그널링, 혹은 PDCP 시그널링, 혹은 MAC(medium access control) 제어요소(MAC control element; MAC CE)라고 언급될 수도 있다.
이하 본 개시에서 단말은 협력 통신 적용 여부를 판단함에 있어 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 특정 포맷을 가지거나, 또는 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 협력 통신 적용 여부를 알려주는 특정 지시자를 포함하거나, 또는 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 특정 RNTI로 스크램블링 되거나, 또는 상위레이어로 지시되는 특정 구간에서 협력 통신 적용을 가정하거나 하는 등 다양한 방법들을 사용하는 것이 가능하다. 이후 설명의 편의를 위하여 단말이 상기와 유사한 조건들을 기반으로 협력 통신이 적용된 PDSCH를 수신하는 것을 NC-JT case로 지칭하도록 하겠다.
이하 본 개시에서 A 와 B 간 우선순위를 결정한다 함은 미리 정해진 우선순위 규칙(priority rule)에 따라 더 높은 우선순위를 가지는 것을 선택하여 그에 해당하는 동작을 수행하거나 또는 더 낮은 우선순위를 가지는 것에 대한 동작을 생략(omit or drop)하는 등 다양하게 언급될 수 있다.
이하 본 개시에서는 다수의 실시예를 통하여 상기 예제들을 설명하나 이는 독립적인 것들이 아니며 하나 이상의 실시 예가 동시에 또는 복합적으로 적용되는 것이 가능하다.
<제 1실시예: RRC_CONNECTED random access 과정을 위한 TCI state 설정>
RRC_CONNECTED 상태에서의 random access procedure는, 상위 레이어에서 handover, beam failure recovery 등의 절차 및 radio link failure 등의 복구를 위해 initiate될 수 있다. Random access를 위해 단말이 전송하는 PRACH에 대하여 기지국이 상기 PRACH에 대한 preamble을 사전에 지시 또는 할당한 경우, 이에 따른 random access procedure는 contention-free random access (CFRA) procedure로 명명할 수 있다.
도 10은 CFRA procedure의 예시를 도시한다.
본 CFRA procedure가 PDCCH order를 통해 initiate 되지 않은 경우, 도 10의 PDCCH order 절차는 생략될 수 있다. 도 10의 PRACH preamble로서, radio link monitoring (RLM) 등의 목적으로 설정된 RS, 예컨대 SSB 또는 CSI-RS 마다 association 되는 PRACH preamble 이 포함될 수 있다. 일례로 기지국은 단말의 beam failure recovery를 위한 각 candidate beam RS마다 PRACH preamble을 설정한 후 단말에게 상기 정보를 알려줄 수 있으며, 단말은 beam failure recovery 과정에서 상위 레이어에 의해 선택된 하나의 new candidate beam RS에 대응하는 PRACH preamble에 따라 PRACH를 전송할 수 있다.
한편 상기 PRACH에 대한 preamble이 사전에 지시 또는 할당되지 않은 경우, 이에 따른 random access procedure는 contention-based random access (CBRA) procedure로 명명할 수 있다.
도 11은 CBRA procedure의 예시를 도시한다. 본 CFRA procedure가 PDCCH order를 통해 initiate 되지 않은 경우, 도 11의 PDCCH order 절차는 생략될 수 있다. 도 11의 Msg3및 Msg4 전송은 여러 단말이 동일한 PRACH preamble를 전송하여 contention 이 발생한 경우를 해결하기 위한 절차를 포함한다. 상기의 경우에서 단말이 전송하는 PRACH의 preamble과 이에 association 되는 SSB index간의 관계는 사전에 설정되어 있으며, 기지국은 PRACH 수신을 통해 association 된 SSB index를 알 수 있다.
상기 서술한 CFRA 혹은 CBRA procedure는 out of sync 등의 발생 시 기지국이 단말로 제어 신호를 전송함으로써, 즉 DCI format 1_0 으로 지시되는 PDCCH order 를 전송함으로써, initiate 될 수 있다. 도 10 및 도 11은 PDCCH order를 통해 initiate 되는 CFRA 및 CBRA procedure의 예시를 도시한다. PDCCH order를 통해 initiate 되는 procedure가 CFRA 인지 혹은 CBRA 인지는 PDCCH 내 DCI field로 구분될 수 있다. 예컨대, DCI format 1_0 내 random access preamble index 필드 값이 all-zero 값으로 설정된다면 단말은 해당 PDCCH가 CBRA procedure를 initiate 하는 것으로 판단할 수 있으며, 상기 random access preamble index 필드 값이 non all-zero 값이며, SS/PBCH index, PRACH mask index 필드에 값이 지시된다면 단말은 PDCCH가 CFRA procedure를 initiate하는 것으로 판단할 수 있다.
아래는 상술한 CFRA 및 CBRA procedure에서 PDCCH 수신 신뢰도를 높이기 위한 단말의 TCI state 또는 QCL assumption 적용 방법을 기술한다.
상기의 경우들에서, 단말은 CFRA 및 CBRA procedure 도중 수신할 Msg2, Msg4를 스케줄 받기 위해, 또는 Msg3의 재전송이 필요한 경우 Msg3 재전송 스케줄 정보를 수신 받기 위해 DCI 모니터링을 수행하며, 상기 모니터링 될 DCI는 PDCCH Type1-CSS에서 전송될 수 있다. 만일 상기 PDCCH Type1-CSS가 설정된 CORESET에 TCI state가 activate 된 경우, random access procedure 도중 상기 DCI 모니터링을 위해서는 activate 된 TCI state를 적용하는 것이 적절하지 않을 수 있다. 예컨대, radio link failure에 따른 CFRA procedure 도중에는 CFRA procedure 이전에 activate 된 TCI state를 따를 경우 수신 신뢰도가 낮을 수 있다. 따라서, CFRA 및 CBRA procedure 도중, 최소한 PDCCH Type1-CSS에서 전송되는 DCI 모니터링을 위해서는 다른 TCI state 혹은 QCL assumption을 적용할 수 있다. 이 TCI state 혹은 QCL assumption은 PRACH에 association 된 RS를 따를 수 있다. 예컨대, 상기 PDCCH Type1-CSS 가 속한 CORESET에 activate 된 TCI state가 QCL-TypeA 및 QCL-TypeD를 포함하는 경우, 상기 QCL-TypeA 및 QCL-TypeD의 reference RS가 상술한 RRC 설정을 따르는 것이 아닌, PRACH에 association된 RS로 대치될 수 있다. 상기 예시는 다른 QCL-type에도 유사하게 적용 가능하다. 한편, random access procedure 도중 상기 DCI 모니터링이 수행되는 시간은 상위 레이어를 통해 제어되는 특정 시간 구간(window)으로 한정될 수 있으며, 상기 window 는 RAR (random access response) 수신을 위한 window, 및 CBRA의 경우 Msg3 재전송/Msg4 수신을 위한 window를 포함할 수 있다. 상기 RAR 수신을 위한 window는 PRACH 전송에 상응하는 PRACH occasion의 마지막 심볼 이후, PDCCH Type1-CSS 에서 PDCCH를 수신하기 위해 설정된 가장 이른 CORESET의 첫 번째 심볼부터 시작하는, ra-ResponseWindow로 지시된 길이만큼의 슬롯 길이 혹은 ra-ResponseWindow가 동작 중인 시간 구간을 포함할 수 있다. 또한 상기 Msg3 재전송/Msg4 수신을 위한 window는 Msg3 송신 이후 첫 번째 심볼부터 ra-ContentionResolutionTimer 가 멈추거나 expire 되기 전까지의 시간 구간을 포함할 수 있다.
한편, RLF 혹은 Handover등으로 인해 CFRA 혹은 CBRA procedure가 발생하는 경우, 기존 셀의 빔/TCI state를 따라 PDCCH/PDSCH를 수신하는 경우의 블록 오율 성능이 특정 임계값 이하일 수 있으며, 이 때 CFRA 혹은 CBRA procedure를 통해 새로운 셀/TRP에 대응하는 빔을 PRACH로 찾을 수 있다. 따라서 상기 상황이 종료된 이후에 CORESET에 기존 셀/TRP에서 RRC 및 MAC-CE로 적용된 active TCI state를 계속 적용한다면 PDCCH 수신 성능이 극히 나쁠 수 있다. 따라서 이 대신, RLF 혹은 Handover 등으로 인해 발생된 CFRA 혹은 CBRA procedure 이후에는 새로운 TCI state/빔을 RRC 및 MAC-CE로 적용시키기 전까지는 PRACH에 대응하는 reference RS에 대응하는 TCI state를 계속 사용할 수 있다.
좀 더 구체적으로, 상기 CFRA 혹은 CBRA procedure 이후 시점은 상위 레이어를 통해 제어되는 특정 시간 구간(window)이 종료된 직후로부터 빔 또는 TCI state가 MAC-CE로 activation 되는 시간까지로 한정될 수 있으며, 상기 window는 상술한 RAR 수신을 위한 window, 및 CBRA의 경우 상술한 Msg3 재전송/Msg4 수신을 위한 window를 포함할 수 있다.
또는 CFRA 혹은 CBRA procedure가 발생한 이후에도 기존 RRC 및 MAC-CE로 적용된 active TCI state를 계속 적용하는 것도 가능하다.
상기 서술에서 "PDCCH Type1-CSS에서 전송되는 DCI 모니터링"은 이와 유사한 의미를 가지는 다른 표현, 예컨대 "UE detects the DCI format 1_0 with CRC scrambled by the corresponding RA-RNTI", 또는 "UE monitors the DCI format 1_0 with CRC scrambled by the corresponding RA-RNTI" 와 같은 표현으로 대체될 수 있다. 또한, 상기 PDCCH Type1-CSS에서 전송된 DCI로 스케줄 된 PDSCH에 적용되는 TCI state 또는 QCL assumption은 상기 PDCCH Type1-CSS 모니터링 시 적용한 TCI state 또는 QCL assumption 과 동일할 수 있다.
한편, 특정 CORESET에 상기 PDCCH Type1-CSS 및 다른 search space set이 모두 속한 경우, PDCCH Type1-CSS 모니터링 시 적용할 TCI state 또는 QCL assumption과, 다른 search space set 모니터링 시 적용할 TCI state 또는 QCL assumption은 다를 수 있다. 예컨대, 상술한 다른 search space set 모니터링 시 적용할 TCI state는 CFRA 또는 CBRA procedure 이전에 activate 된 TCI state일 수 있다.
한편, beam failure recovery를 위해서는, PRACH에 association된 RS를 reference RS로 삼고 TCI state 또는 QCL assumption을 적용할 search space set을 명시적으로 지정할 수 있으며, 이를 지정하는 방법은 다음과 같은 상위 레이어 파라미터 recoverySearchSpaceId에 상기 search space set의 ID를 지정하는 방법을 포함할 수 있다.
Figure pat00045
또한, beam failure recovery 과정에서, 상기 recoverySearchSpaceId 로 지시된 search space set에서 C-RNTI 혹은 MCS-C-RNTI로 스크램블 된 PDCCH를 최초로 수신하는 마지막 심볼로부터 28 심볼 이후부터, CORESET 0의 PDCCH 모니터링을 위한 TCI state 또는 QCL assumption 적용을 위해, 상기 PRACH 와 association된 RS를 reference RS로 삼을 수 있다.
한편, 상기 나열되지 않은 search space set 및/또는 CORESET에는 CFRA 또는 CBRA procedure 이전에 해당 CORESET에 activate 된 TCI state가 적용될 수 있다.
상술한 단말 동작을 지원하기 위해, 기지국에서는 search space set 또는 CORESET 별로 단말이 적용하는 TCI state 또는 QCL assumption에 따라 PDCCH를 전송할 수 있다. 예컨대, 단말이 특정 search space set 또는 CORESET 모니터링을 위해 가정하는 QCL-TypeD에 따른 단말의 수신 spatial filter에 맞추어 PDCCH를 전송할 수 있으며, 상술한 PDCCH 전송에는 송신 빔 적용, 프리코더 적용 등의 과정이 포함될 수 있다. 기타 QCL type이 적용되는 경우, 그에 따르는 기지국의 전송 과정이 포함될 수 있다.
한편, 상술한 동작에 따라 단말이 PRACH에 association된 RS를 따르는 TCI state 혹은 QCL assumption과, 이와 다른 TCI state 또는 QCL assumption을 PDCCH 모니터링을 위해 모두 적용하는 경우, 기지국은 단말의 PDCCH 모니터링 및 PDSCH 수신을 위한 active TCI state 수의 총 합이 상술한 UE capability maxNumberActiveTCI-PerBWP 값 이내가 되도록 제약할 수 있다.
<제 2실시예: maxNumberActiveTCI-PerBWP 를 고려한 TCI state 설정 및 적용 방법>
상기 제1실시예에서 기술한 방법에 따라 단말 및 기지국이 동작하는 경우, 단말이 한 BWP 내에서 PDCCH 모니터링 및 PDSCH 수신을 위해 적용하는 TCI state 혹은 QCL assumption 수의 총 합이 UE capability maxNumberActiveTCI-PerBWP 보다 클 수 있다. 예컨대, 상기 maxNumberActiveTCI-PerBWP = 1 로 설정된 경우, CORESET 에 RRC 및 MAC-CE로 적용된 active TCI state의 reference RS와, CFRA 또는 CBRA procedure 도중 전송되는 PRACH에 association된 RS가 다른 경우, CFRA 또는 CBRA procedure 과정에서의 active TCI state 수는 2 이상일 수 있으며 이는 단말의 역량을 넘어서는 것일 수 있다. 이 때 단말은 자신의 역량에 해당하는 active TCI state 수만 track할 수 있으므로, 역량을 넘어서는 active TCI state 에 대응되는 PDCCH 또는 PDSCH는 정상 수신이 불가능할 수 있다. 하지만, 상기한 '역량을 넘어서는 active TCI state'가 무엇인지 정의되지 않았으므로, 단말의 구현 방법에 따라 정상 수신이 불가능한 PDCCH 또는 PDSCH가 달라질 수 있다. 즉, 기지국에서 단말의 예상 동작을 파악할 수 없는 문제가 발생한다.
상술한 문제를 해결하기 위해 적어도 다음 중 하나의 방법을 고려할 수 있다.
방법 1: Active TCI 수가 UE capability maxNumberActiveTCI-PerBWP 를 넘어서는 경우, 상기 active TCI state 간의 우선순위를 설정.
도 12 및 13은 방법 1을 따르는 경우 단말 및 기지국의 동작을 도시한 도면이다.
상기 방법 1의 우선순위 설정 방법으로서,
방법 1-i. PRACH에 association된 RS에 대응하는 active TCI는 나머지 active TCI보다 우선순위가 높을 수 있다.
방법 1-ii. 나머지 active TCI 간의 우선순위는 TCI state ID에 따라 매겨질 수 있다. 예컨대, TCI state ID가 낮을수록 우선순위가 높을 수 있다. 혹은 그 반대의 경우도 가능하다.
상기 방법 1-i. 및 방법 1-ii. 는 독립적으로 적용될 수 있다. 즉, 방법 1-i. 없이 방법 1-ii. 만 적용되는 것도 가능하다.
상기와 같이 우선순위가 설정된 경우, 단말은 active TCI state를 우선순위 순서로 정렬한 뒤, 우선순위가 UE capability maxNumberActiveTCI-PerBWP 이내인 active TCI state에 대한 PDCCH 모니터링 및 PDSCH 수신을 수행하되, 우선순위가 UE capability maxNumberActiveTCI-PerBWP 를 벗어나는 active TCI state에 대해서는 PDCCH 모니터링 및 PDSCH 수신을 수행하지 않을 수 있다. 혹은 상기한 바와 같이, 우선순위가 UE capability maxNumberActiveTCI-PerBWP 를 벗어나는 active TCI state에 대해서는 사전 설정된 default TCI state에 따라 PDCCH 모니터링 및 PDSCH 수신을 수행할 수 있다. 이 때 default TCI state는 다음 중 적어도 하나를 포함할 수 있다:
1. PRACH에 association된 RS를 따르는 TCI state
2. beam failure recovery 를 위해 recoverySearchSpaceId 에 설정된 TCI state
3. Active TCI state 중 TCI state index가 가장 낮은 TCI state
상기한 우선순위 설정 및 우선순위에 따른 모니터링/수신 과정은 제 1실시예에 따른 경우에 한정할 수 있다. 즉, CFRA 또는 CBRA procedure 수행 도중으로 한정할 수 있다. 물론 상기의 경우 뿐 아니라 active TCI state 수가 UE capability maxNumberActiveTCI-PerBWP 를 벗어나는 다른 경우, 예컨대 default TCI state 적용 등에 따라 maxNumberActiveTCI-PerBWP 를 벗어나는 경우 등에도 유사하게 적용 가능하다.
방법 2: Active TCI 수가 UE capability maxNumberActiveTCI-PerBWP 를 넘어서지 않도록 묵시적 혹은 명시적 설정.
도 14 및 15는 방법 2를 따르는 경우 단말 및 기지국의 동작을 도시한 도면이다.
방법 2는 적어도 다음 중 하나의 방법을 포함할 수 있다.
방법 2-1: 제 1실시예를 따랐을 때 UE capability maxNumberActiveTCI-PerBWP 을 넘어서는 단말에 대하여는, PDCCH Type1-CSS가 설정된 CORESET 에 속한 모든 search space set 에 대하여 PDCCH Type1-CSS 모니터링을 위한 TCI-state 혹은 QCL assumption을 적용. 상기 방법은 제 1실시예에서 기술한, PDCCH-Type1 CSS 및 기타 search space set이 속한 CORESET에 두 개의 active TCI state 혹은 QCL assumption이 적용됨에 따라 UE capability maxNumberActiveTCI-PerBWP 가 넘어서는 상황을 방지할 수 있다. 한편, 제1실시예를 따랐을 때 active TCI state 수가 UE capability maxNumberActiveTCI-PerBWP 를 넘어서지 않는 단말에 대하여는 제1실시예가 그대로 적용될 수 있다.
방법 2-2: 제 1실시예를 따랐을 때 UE capability maxNumberActiveTCI-PerBWP 을 넘어서는 상황에서는, 단말에 설정된 모든 CORESET에 대하여 PDCCH Type1-CSS 모니터링을 위한 TCI-state 혹은 QCL assumption을 적용. 한편, 제1실시예를 따랐을 때 active TCI state 수가 UE capability maxNumberActiveTCI-PerBWP 를 넘어서지 않는 단말에 대하여는 제1실시예가 그대로 적용될 수 있다.
방법 2-3: CFRA 혹은 CBRA procedure 도중에는 UE capability maxNumberActiveTCI-PerBWP 와 무관하게, PDCCH Type1-CSS가 설정된 CORESET 에 속한 모든 search space set 에 대하여 PDCCH Type1-CSS 모니터링을 위한 TCI-state 혹은 QCL assumption을 적용.
방법 2-4: CFRA 혹은 CBRA procedure 도중에는 UE capability maxNumberActiveTCI-PerBWP 와 무관하게, 단말에 설정된 모든 CORESET에 대하여 PDCCH Type1-CSS 모니터링을 위한 TCI-state 혹은 QCL assumption을 적용.
한편, 상기 방법 1 내지 방법 2를 적용하는 시점은 CFRA 혹은 CBRA procedure 도중 RAR 수신을 위한 PDCCH 모니터링 및 RAR PDSCH 수신 시점일 수 있다. 좀 더 구체적으로, 상기 시점은 상위 레이어를 통해 제어되는 특정 시간 구간(window)으로 한정될 수 있으며, 상기 window 는 RAR 수신을 위한 window, 및 CBRA의 경우 Msg3 재전송/Msg4 수신을 위한 window를 포함할 수 있다. 상기 RAR 수신을 위한 window는 PRACH 전송에 상응하는 PRACH occasion의 마지막 심볼 이후, PDCCH Type1-CSS 에서 PDCCH를 수신하기 위해 설정된 가장 이른 CORESET의 첫 번째 심볼부터 시작하는, ra-ResponseWindow로 지시된 길이만큼의 슬롯 길이 혹은 ra-ResponseWindow가 동작 중인 시간 구간을 포함할 수 있다. 또한 상기 Msg3 재전송/Msg4 수신을 위한 window는 Msg3 송신 이후 첫 번째 심볼부터 ra-ContentionResolutionTimer 가 멈추거나 expire 되기 전까지의 시간 구간을 포함할 수 있다.
한편, 상기 방법 1 내지 방법 2를 적용하는 시점은 CFRA 혹은 CBRA procedure 도중 RAR 수신을 위한 PDCCH 모니터링 및 RAR PDSCH 수신 시점, 및 그 이후일 수 있다. 그 이유로, RLF 혹은 Handover등으로 인해 발생된 CFRA 혹은 CBRA procedure 이후에는 새로운 셀/TRP에 대응하는 빔을 PRACH로 찾은 이후의 상황일 수 있으며, 상기 상황에서도 CORESET에 기존 셀/TRP에서 RRC 및 MAC-CE로 적용된 active TCI state를 계속 적용한다면 PDCCH 수신 성능이 극히 나쁠 수 있다. 따라서 이 대신, RLF 혹은 Handover등으로 인해 발생된 CFRA 혹은 CBRA procedure 이후에는 새로운 TCI state/빔을 RRC 및 MAC-CE로 적용시키기 전까지는 PRACH에 대응하는 reference RS에 대응하는 TCI state를 계속 사용할 수 있다.
좀 더 구체적으로, 상기 시점은 상위 레이어를 통해 제어되는 특정 시간 구간(window)을 포함하고, 상기 시간 구간(window)이 종료된 직후로부터 빔 또는 TCI state가 MAC-CE로 activation 되는 시간까지로 한정될 수 있으며, 상기 window 는 상술한 RAR 수신을 위한 window, 및 CBRA의 경우 상술한 Msg3 재전송/Msg4 수신을 위한 window를 포함할 수 있다.
또는 CFRA 혹은 CBRA procedure가 발생한 이후에도 기존 RRC 및 MAC-CE로 적용된 active TCI state를 계속 적용하는 것도 가능하다.
한편, 상기 UE capability maxNumberActiveTCI-PerBWP 를 넘어서는 상황은 beam failure recovery 과정에서 특정하여 발생할 수 있다. 예컨대, CORESET별로 MAC-CE를 통해 activate되는 TCI state에 더해, beam failure recovery 과정에서 recoverySearchSpaceId 로 지시된 search space set을 모니터링하기 위한 active TCI state가 사용되는 경우 상기와 유사하게 총 active TCI state 수가 UE capability maxNumberActiveTCI-PerBWP 를 넘어설 수 있다. 이를 해결하기 위한 방법으로 상기 방법 1 내지 방법 2가 적용될 수 있으며, 이 때 방법 1 내지 방법 2의 'PDCCH Type1-CSS'는 'recoverySearchSpaceId 가 지시하는 search space set'또는 'PDCCH Type1-CSS 및 recoverySearchSpaceId 가 지시하는 search space set'으로 대치될 수 있다.
도 16은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말 구조를 도시한 도면이다.
도 16을 참조하면, 단말은 송수신부(16-00), 메모리(16-05) 및 프로세서(16-10)를 포함할 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 송수신부(16-00), 프로세서(16-10) 가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라, 송수신부(16-00), 메모리(16-05), 및 프로세서(16-10)가 하나의 칩(chip) 형태로 구현될 수도 있다.
송수신부(16-00)는 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부(16-00)는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(16-00)의 일 실시 예일뿐이며, 송수신부(16-00)의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부(16-00)는 무선 채널을 통해 신호를 수신하여 프로세서(16-10) 로 출력하고, 프로세서(16-10) 로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다.
메모리(16-05)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(16-05)는 단말이 송수신하는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(16-05)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 메모리(16-05)는 복수 개일 수 있다.
또한 프로세서(16-10)는 전술한 실시 예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 프로세서(16-10)는 두 가지 계층으로 구성되는 DCI를 수신하여 동시에 다수의 PDSCH를 수신하도록 단말의 구성 요소를 제어할 수 있다. 프로세서(16-10)는 복수 개일 수 있으며, 프로세서(16-10)는 메모리(16-05)에 저장된 프로그램을 실행함으로써 단말의 구성 요소 제어 동작을 수행할 수 있다.
도 17은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국 구조를 도시한 도면이다.
도 17을 참조하면, 기지국은 송수신부(17-00), 메모리(17-05) 및 프로세서(17-10)를 포함할 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 송수신부(17-00), 프로세서(17-10) 가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(17-00), 메모리(17-05), 및 프로세서(17-10)가 하나의 칩(chip) 형태로 구현될 수도 있다.
송수신부(17-00)는 단말과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부(17-00)는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(17-00)의 일 실시예일뿐이며, 송수신부(17-00)의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부(17-00)는 무선 채널을 통해 신호를 수신하여 프로세서(17-10)로 출력하고, 프로세서(17-10)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
메모리(17-05)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(17-05)는 기지국이 송수신하는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(17-05)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 메모리(17-05)는 복수 개일 수 있다.
프로세서(17-10)는 전술한 본 개시의 실시 예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 프로세서(17-10)는 다수의 PDSCH에 대한 할당 정보를 포함하는 두 가지 계층의 DCI들을 구성하고 이를 전송하기 위해 기지국의 각 구성 요소를 제어할 수 있다. 프로세서(17-10)는 복수 개일 수 있으며, 프로세서(17-10)는 메모리(17-05)에 저장된 프로그램을 실행함으로써 기지국의 구성 요소 제어 동작을 수행할 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 일 실시 예와 다른 일 실시 예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 예를 들면, 본 개시의 제1 실시 예와 제2 실시 예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한 상기 실시 예들은 FDD LTE 시스템을 기준으로 제시되었지만, TDD LTE 시스템, 5G 혹은 NR 시스템 등 다른 시스템에도 상기 실시 예의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능할 것이다.

Claims (1)

  1. 무선 통신 시스템에서 제어 신호 처리 방법에 있어서,
    기지국으로부터 전송되는 제1 제어 신호를 수신하는 단계;
    상기 수신된 제1 제어 신호를 처리하는 단계; 및
    상기 처리에 기반하여 생성된 제2 제어 신호를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
KR1020190149830A 2019-11-07 2019-11-20 무선 통신 시스템에서 빔 설정 방법 및 장치 KR20210055555A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190141797 2019-11-07
KR20190141797 2019-11-07

Publications (1)

Publication Number Publication Date
KR20210055555A true KR20210055555A (ko) 2021-05-17

Family

ID=76158366

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190149830A KR20210055555A (ko) 2019-11-07 2019-11-20 무선 통신 시스템에서 빔 설정 방법 및 장치

Country Status (1)

Country Link
KR (1) KR20210055555A (ko)

Similar Documents

Publication Publication Date Title
US11882569B2 (en) Method and apparatus for data transmission and reception for network coordinated communication
KR20210033370A (ko) 네트워크 협력 통신을 위한 상향링크 반복 전송 방법 및 장치
KR20210011303A (ko) 네트워크 협력통신을 위한 채널 상태 정보 측정 및 보고 방법
KR20210061203A (ko) 무선 통신 시스템에서 간섭 신호 측정 방법 및 장치
US11924842B2 (en) Method and apparatus for configuring default beam in wireless communication systems
KR20210101002A (ko) 네트워크 협력 통신을 위한 제어 정보 전송 방법 및 장치
KR20210083845A (ko) 네트워크 협력통신을 위한 상향링크 데이터 반복 전송 방법 및 장치
KR20220015839A (ko) 무선 협력 통신 시스템에서 제어 정보 송수신 방법 및 장치
KR20220126012A (ko) 무선 통신 시스템에서 빔 설정 방법 및 장치
KR20220136788A (ko) 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치
KR20210103882A (ko) 네트워크 협력통신을 위한 기본 빔 설정 방법 및 장치
KR20210132441A (ko) 무선 통신 시스템에서 사운딩 방법 및 장치
KR20210037322A (ko) 네트워크 협력통신을 위한 데이터 송수신 방법 및 장치
KR102589485B1 (ko) 무선 통신 시스템에서 상향링크 위상 추정 기준 신호 전송 방법 및 장치
KR20220053933A (ko) 무선 통신 시스템에서 하향링크 제어정보 반복 송수신 방법 및 장치
KR20220166656A (ko) 네트워크 협력 통신에서 하향링크 데이터 송수신 방법 및 장치
KR20220168917A (ko) 무선 통신 시스템에서 파워 헤드룸 보고를 수행하는 방법 및 장치
KR20210020740A (ko) 네트워크 협력통신을 위한 상향링크 제어 정보 전송 방법 및 장치
KR20210055555A (ko) 무선 통신 시스템에서 빔 설정 방법 및 장치
EP4216644A1 (en) Control information transmission method and device for network cooperative communication of wireless communication system
KR20210064008A (ko) 네트워크 협력통신을 위한 디폴트 빔 설정 방법 및 장치
KR20220144706A (ko) 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치
KR20220167157A (ko) 무선 통신 시스템에서 하향링크 제어 정보 및 데이터를 전송 및 수신하기 위한 방법 및 장치
KR20220151476A (ko) 네트워크 협력 통신에서 데이터를 전송하는 방법 및 장치
KR20220128247A (ko) 무선 통신 시스템에서 하향링크 제어정보 수신에 대한 우선 순위 결정 방법 및 장치