KR20210053607A - Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof - Google Patents

Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof Download PDF

Info

Publication number
KR20210053607A
KR20210053607A KR1020190139409A KR20190139409A KR20210053607A KR 20210053607 A KR20210053607 A KR 20210053607A KR 1020190139409 A KR1020190139409 A KR 1020190139409A KR 20190139409 A KR20190139409 A KR 20190139409A KR 20210053607 A KR20210053607 A KR 20210053607A
Authority
KR
South Korea
Prior art keywords
photoelectrode
manufacturing
present
metal layer
oxide
Prior art date
Application number
KR1020190139409A
Other languages
Korean (ko)
Inventor
설승권
김정현
표재연
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020190139409A priority Critical patent/KR20210053607A/en
Publication of KR20210053607A publication Critical patent/KR20210053607A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0023Digital printing methods characterised by the inks used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/049Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

An object of the present invention is to provide a method for manufacturing a photovoltaic electrolytic electrode having a three-dimensional structure. The present invention provides a method for manufacturing a photoelectrode, including the steps of: manufacturing a three-dimensional conductive structure through lamination; forming a metal layer on the surface of the conductive structure by electrochemical deposition; and forming an oxide semiconductor layer on the surface of the metal layer by electrochemical deposition.

Description

3차원 프린팅을 이용한 광전극 및 그의 제조 방법{Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof}BACKGROUND OF THE INVENTION Photoelectrode Based on 3D Printing, And Manufacturing Methods Thereof Using 3D Printing

본 발명은 광전극 및 그의 제조 방법에 관한 것으로, 보다 상세하게는 3차원 프린팅 방법을 적용한 광전극 및 그 제조방법에 관한 것이다. The present invention relates to a photoelectrode and a method of manufacturing the same, and more particularly, to a photoelectrode to which a three-dimensional printing method is applied and a method of manufacturing the same.

화석연료의 고갈 및 환경 문제로 인하여 새로운 에너지원 필요한 실정이다. 물 분해를 통하여 얻어지는 수소 에너지는 친환경적이고 고갈의 문제도 없다. 다양한 물 분해 방식 중 태양광 수전해(water-splitting) 방식은 매우 효율적인 방식으로 알려져 있다. Due to the depletion of fossil fuels and environmental problems, a new energy source is needed. Hydrogen energy obtained through water decomposition is environmentally friendly and there is no problem of depletion. Among various water decomposition methods, the solar water-splitting method is known to be a very efficient method.

물의 수전해 방식에는 태양광을 에너지원으로 수소를 제조하는 광화학적 방식이 널리 알려져 있으며, 예를 들어 광전기화학적 방식, 광촉매 방식 등이 제안되어 있다. 광화학적 방식의 수전해 방식의 원리는 다음과 같다. As the water electrolysis method of water, a photochemical method of producing hydrogen using sunlight as an energy source is widely known, and, for example, a photoelectrochemical method and a photocatalytic method have been proposed. The principle of the photochemical method of water electrolysis is as follows.

먼저, n형 반도체를 수용액에 담지하면, 전극으로부터 용액으로 전자 이동이 발생하여 고액 계면 부근에 반도체 캐리어 밀도가 낮아지게 되는데, 이로 인해 반도체 표면으로부터 수백 nm에 걸쳐 정전하층이 형성되며 전도대와 가전자대에 계면 구배가 발생하게 된다. 이와 같은 상태에서 반도체에 밴드 갭 이상의 에너지를 갖는 광을 조사하면 가전자대로부터 전도대로 전자가 여기 되지만, 밴드 구배 때문에 전자는 내부로 정공은 외부로 향하는 힘을 받는다. 이 결과, 전자와 정공의 분리가 효율적으로 이루어지고, 광전극에서 생성된 전자는 도선을 통하여 상대 전극으로 이동하여 상대 전극에서 수소를 발생시킨다. 이 때, 외부로부터 전원을 인가하지 않고 광분해를 진행하기 위해서는 반도체의 밴드 갭이 물의 전해 전압보다 커야 하는데, 따라서 사용되는 반도체의 종류에 따라 외부 전원의 인가 여부가 결정되게 된다.First, when an n-type semiconductor is supported in an aqueous solution, electron transfer occurs from the electrode to the solution, resulting in a decrease in the semiconductor carrier density near the solid-liquid interface, which results in the formation of an electrostatic layer over several hundred nm from the semiconductor surface, and conduction and valence bands. An interface gradient occurs at In such a state, when the semiconductor is irradiated with light having an energy greater than the band gap, electrons are excited from the valence band to the conduction band, but due to the band gradient, the electrons are forced to the inside and the holes to the outside. As a result, the separation of electrons and holes is efficiently performed, and electrons generated from the photoelectrode move to the counter electrode through the conducting wire to generate hydrogen at the counter electrode. In this case, in order to proceed with photolysis without applying power from the outside, the band gap of the semiconductor must be greater than the electrolytic voltage of water. Therefore, whether to apply the external power is determined according to the type of semiconductor used.

종래에는 고효율의 태양광 수전해 전극 제작을 위하여 표면적이 넓은 다공성 구조와 같은 전극을 제작하여 왔다. 하지만, 2차원 형태의 전극 구조는 표면적을 넓히는데 한계를 갖는다. Conventionally, an electrode such as a porous structure having a large surface area has been manufactured in order to manufacture a high-efficiency solar electrolytic electrode. However, the two-dimensional electrode structure has a limitation in increasing the surface area.

따라서 3차원 구조의 표면적이 넓은 광전극 및 그 제조방법에 대한 요구가 있다. Therefore, there is a need for a photoelectrode having a large surface area and a method of manufacturing the same.

(1) US 2015-36156 A(1) US 2015-36156 A

본 발명은 넓은 표면적을 갖는 3차원 구조의 태양광 수전해 전극을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a photovoltaic electrolytic electrode having a three-dimensional structure having a large surface area.

또한, 본 발명은 3차원 구조의 태양광 수전해 전극의 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method of manufacturing a solar photovoltaic electrode having a three-dimensional structure.

상기 기술적 과제를 달성하기 위하여 본 발명은, 3차원 도전성 구조체를 적층제조하는 단계; 전기화학적 증착에 의해 상기 도전성 구조체 표면에 금속층을 형성하는 단계; 및 전기화학적 증착에 의해 상기 금속층 표면에 산화물 반도체층을 형성하는 단계를 포함하는 광전극의 제조방법을 제공한다. In order to achieve the above technical problem, the present invention includes the steps of manufacturing a three-dimensional conductive structure by lamination; Forming a metal layer on the surface of the conductive structure by electrochemical vapor deposition; And forming an oxide semiconductor layer on the surface of the metal layer by electrochemical deposition.

본 발명에서 상기 금속층은 Au, Cu, Ag 및 Ni로 이루어진 그룹으로부터 선택된 최소한 1종의 금속 또는 그 금속의 합금을 포함할 수 있다. In the present invention, the metal layer may include at least one metal selected from the group consisting of Au, Cu, Ag, and Ni, or an alloy of the metal.

또한, 상기 산화물 반도체층은 산화구리, 산화아연, 산화철, 산화텅스텐 및 산화니켈로 이루어진 그룹 중에서 선택된 최소항 1종의 산화물을 포함한다. In addition, the oxide semiconductor layer includes at least one oxide selected from the group consisting of copper oxide, zinc oxide, iron oxide, tungsten oxide, and nickel oxide.

본 발명에서 상기 도전성 구조체는 그래핀을 포함하는 것이 바람직하다. In the present invention, it is preferable that the conductive structure includes graphene.

본 발명에서 상기 그래핀 적층제조 단계는 잉크기반 사출 인쇄법에 의해 수행될 수 있다.In the present invention, the graphene laminate manufacturing step may be performed by an ink-based injection printing method.

본 발명에서 상기 금속층 형성 단계의 전기화학적 증착은 전기 도금을 포함할 수 있다. 또한, 상기 산화물 반도체층 형성 단계의 전기화학적 증착은 전기 도금을 포함할 수 있다. In the present invention, the electrochemical deposition of the metal layer forming step may include electroplating. In addition, the electrochemical deposition of the oxide semiconductor layer forming step may include electroplating.

상기 다른 기술적 과제를 달성하기 위하여 본 발명은, 적층 구조의 그래핀 3 D 골격; 및 상기 3D 골격 표면의 도전성 금속층 및 산화물 반도체층을 포함하는 광전극을 제공한다.In order to achieve the above other technical problem, the present invention is a stacked structure of graphene 3D skeleton; And a photoelectrode including a conductive metal layer and an oxide semiconductor layer on the surface of the 3D skeleton.

본 발명에 따르면, 높은 비표면적을 갖는 3차원 구조의 태양광 수분해 전극을 간단한 제조방법으로 제조할 수 있게 된다.According to the present invention, it is possible to manufacture a photovoltaic hydrolysis electrode of a three-dimensional structure having a high specific surface area by a simple manufacturing method.

도 1의 (a) 내지 (c)는 본 발명의 일실시예에 따른 광전극 형성 방법을 모식적으로 도시한 절차도이다.
도 2는 본 발명의 일실시예로서 잉크기반 사출인쇄기법을 설명하기 위한 개략도이다.
도 3의 (a) 내지 (c)는 본 발명의 일실시예에 따라 제조된 각 단계의 구조체의 표면을 관찰한 사진이다.
도 4의 (a) 내지 (c)는 각각 3차원 구조체 광전극의 정면, 평면 및 사시도를 촬영한 전자현미경 사진이다.
도 5는 도 4의 3차원 구조체의 단면 구조를 촬영한 사진이다.
도 6의 (a) 내지 (c)는 본 발명의 일실시예에 따라 제조된 광전극의 전자현미경 사진이다.
도 7은 본 발명의 일실시예에 따라 제조된 광전극의 광전류밀도 측정 결과를 나타낸 그래프이다.
1A to 1C are procedure diagrams schematically showing a method of forming a photoelectrode according to an embodiment of the present invention.
2 is a schematic diagram for explaining an ink-based injection printing technique as an embodiment of the present invention.
3A to 3C are photographs of observing the surface of the structure of each step manufactured according to an embodiment of the present invention.
4A to 4C are electron micrographs of the front, top, and perspective views of a three-dimensional photoelectrode, respectively.
5 is a photograph of a cross-sectional structure of the 3D structure of FIG. 4.
6A to 6C are electron micrographs of a photoelectrode manufactured according to an embodiment of the present invention.
7 is a graph showing the photocurrent density measurement result of a photoelectrode manufactured according to an embodiment of the present invention.

이하에서는 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상술한다. Hereinafter, the present invention will be described in detail by describing a preferred embodiment of the present invention.

도 1의 (a) 내지 (c)는 본 발명의 일실시예에 따른 광전극 형성 방법을 모식적으로 도시한 절차도이다.1A to 1C are procedure diagrams schematically showing a method of forming a photoelectrode according to an embodiment of the present invention.

먼저, 도 1의 (a)를 참조하면, 기판 상에 소정 형상으로 도전성의 3차원 구조체를 적층 제조한다. First, referring to FIG. 1A, a conductive 3D structure is laminated and manufactured in a predetermined shape on a substrate.

본 발명에서 3차원 프린팅에는 FDM(fused deposition modeling), SLS(Selective Laser Sintering), SLA(Selective Laser Sintering) 또는 잉크젯 프린팅과 같은 잉크기반의 사출인쇄기법 등이 사용될 수 있다. In the present invention, ink-based injection printing techniques such as fused deposition modeling (FDM), selective laser sintering (SLS), selective laser sintering (SLA), or inkjet printing may be used for 3D printing.

도 2는 본 발명의 일실시예로서 잉크기반 사출인쇄기법을 개략적으로 설명하기 위한 도면이다. 2 is a diagram schematically illustrating an ink-based injection printing technique as an embodiment of the present invention.

도 2를 참조하면, 본 발명의 구조체 형성용 잉크(20)가 노즐을 구비한 프린팅펜(110) 내에 유지된다. 상기 잉크(20)는 도전성 입자를 포함하는 분산 입자(22), 바인더 폴리머 및 용매(24)를 포함할 수 있다. 본 발명에서 도전성 입자로는 그래핀, CNT 또는 금속 입자가 사용될 수 있다. 또한, 상기 바인더 폴리머로는 에틸 셀룰로오스(Ethylene cellulose), 폴리스티렌(polystyeren), 폴리에틸렌(polyethylene), 프로필렌(propylene) 등이 사용될 수 있고, 상기 용매로는 자일렌(Xylene), 톨루엔(Tolluene), 아세톤(acetone) 등이 사용될 수 있다. Referring to FIG. 2, the ink 20 for forming a structure of the present invention is held in a printing pen 110 having a nozzle. The ink 20 may include dispersion particles 22 including conductive particles, a binder polymer, and a solvent 24. In the present invention, graphene, CNT, or metal particles may be used as the conductive particles. In addition, ethyl cellulose, polystyrene, polyethylene, propylene, etc. may be used as the binder polymer, and as the solvent, xylene, toluene, and acetone (acetone) Etc. can be used.

프린팅 펜(110)이 기판(10)과 접촉하고, 펜(110)이 접촉점으로부터 특정 방향 예컨대 기판과 평행한 방향으로 소정 거리만큼 이동하면서 노즐의 잉크를 가압 토출한다(도 2의 (a)). 잉크의 가압 방식은 공압 또는 유압 등 임의의 방식이 사용될 수 있다. 펜이 기판과 평행한 방향으로 소정 속도로 이동하면 그 결과 기판 상에는 노즐의 이동 궤적에 상응하는 패턴(12)이 인쇄된다. 이어서, 노즐이 기재 상의 소정 위치로 복귀하고 동일한 방식으로 잉크를 방출하여 상기 패턴(12A) 상에 새로운 패턴(12B)을 적층한다. 이러한 적층 제조에 의해 원하는 3차원 패턴이 형성될 수 있다. 본 발명에서 3차원 패턴의 형상은 다양하게 설계될 수 있다. 예시적으로, 피라미드 형상의 구조체가 도시되어 있지만, 원기둥, 사각기둥과 같이 표면적을 증가시키는 여하한 형태의 3차원 구조체가 사용될 수 있음은 물론이다. The printing pen 110 contacts the substrate 10, and the pen 110 presses and discharges ink from the nozzle while moving a predetermined distance from the contact point in a specific direction, for example, in a direction parallel to the substrate (Fig. 2(a)). . Any method such as pneumatic or hydraulic pressure may be used as the ink pressurization method. When the pen moves at a predetermined speed in a direction parallel to the substrate, as a result, a pattern 12 corresponding to the movement trajectory of the nozzle is printed on the substrate. Subsequently, the nozzle returns to a predetermined position on the substrate and discharges ink in the same manner to deposit a new pattern 12B on the pattern 12A. A desired three-dimensional pattern may be formed by such additive manufacturing. In the present invention, the shape of the three-dimensional pattern can be designed in various ways. Illustratively, although a pyramid-shaped structure is shown, it goes without saying that any type of three-dimensional structure that increases the surface area, such as a cylinder or a square column, may be used.

또한, 3차원 구조체 패턴의 형성을 위하여 노즐이 기재와 수평 방향으로 이동하는 것을 설명하였지만, 본 발명은 이에 한정되지 않으며 노즐이 기재에 대하여 수직 방향으로 이동하면서 잉크를 방출하여 기둥 형상 또는 와이어 형상의 구조체 패턴을 형성할 수도 있다. In addition, although it has been described that the nozzle moves in a horizontal direction with the substrate to form a three-dimensional structure pattern, the present invention is not limited thereto, and the nozzle moves in a vertical direction with respect to the substrate and releases ink to form a column shape or a wire shape. It is also possible to form a structure pattern.

본 발명에서 인쇄된 패턴과 기재(기판)와의 충분한 결합력을 제공하기 위하여, 적당량의 바인더 및 커플링제가 사용될 수 있다. 이 때, 본 발명의 도금용 잉크는 응력의 크기에 따라 액체 유사 거동(liquid like behavior)에서 고체 유사 거동(solid like behavior)로 전환하는 유동 특성을 나타낼 수 있다. 즉, 본 발명의 잉크는 가압에 의해 노즐을 통과하는 동안 겪는 전단응력 하에서는 액체 유사 거동을 나타내고, 노즐을 통과하여 기재 상에 패턴화 된 후에는 고체 유사 거동을 나타내어 3차원 구조체의 일부분으로서 형상을 유지할 수 있게 된다. In order to provide sufficient bonding strength between the printed pattern and the substrate (substrate) in the present invention, an appropriate amount of a binder and a coupling agent may be used. In this case, the plating ink of the present invention may exhibit a flow characteristic that converts from a liquid like behavior to a solid like behavior according to the magnitude of the stress. That is, the ink of the present invention exhibits a liquid-like behavior under the shear stress experienced while passing through the nozzle by pressure, and after passing through the nozzle and patterned on the substrate, it exhibits a solid-like behavior, thus forming a shape as a part of a three-dimensional structure. You will be able to keep it.

다시 도 1을 참조하면, 도전성의 3차원 구조체의 표면에 도전성 금속층을 형성한다(b). 본 발명에서 상기 도전성 금속층은 Au, Cu, Ag 및 Ni로 이루어진 그룹으로부터 선택된 최소한 1종의 금속 또는 그 금속의 합금을 포함할 수 있다. 본 발명에서 3차원 구조체는 도전성 재질이기 때문에 도전성 금속층은 전기 도금과 같은 전기화학적 증착법을 적용하여 형성될 수 있다. Referring back to FIG. 1, a conductive metal layer is formed on the surface of a conductive three-dimensional structure (b). In the present invention, the conductive metal layer may include at least one metal selected from the group consisting of Au, Cu, Ag, and Ni, or an alloy of the metal. In the present invention, since the 3D structure is a conductive material, the conductive metal layer may be formed by applying an electrochemical deposition method such as electroplating.

다음으로, 도전성 금속층이 피복된 3차원 구조체에 산화물 반도체층을 형성한다(c). 상기 산화물 반도체층은 태양광 수전해 활성화층으로 작용한다. 예컨대, Cu2O, CuO, ZnO, Fe2O3, NiO, WO3, TiO2 등의 산화물 반도체층을 도전성 금속층 상에 형성한다. 예시적으로, 상기 산화물 반도체층의 형성에는 전기화학증착법이사용될 수 있다. Next, an oxide semiconductor layer is formed on the three-dimensional structure coated with the conductive metal layer (c). The oxide semiconductor layer acts as a photovoltaic electrolysis activation layer. For example, an oxide semiconductor layer such as Cu 2 O, CuO, ZnO, Fe 2 O 3 , NiO, WO 3 , TiO 2 is formed on the conductive metal layer. For example, an electrochemical deposition method may be used to form the oxide semiconductor layer.

<실험예 1 : 그래핀 잉크의 제조><Experimental Example 1: Preparation of graphene ink>

그래핀 잉크는 그래핀 파우더(90~200 nm, Graphene Supermarket), Ethylene Cellulose(Sigma aldrich)와 Tolluene (Sigma aldrich), 그리고 Xylene (sigma aldrich)을 혼합하여 제조하였다. 먼저 0.65g의 Tolluene과 0.65 g의 Xylene을 혼합하고, 상기 혼합용액에 0.2g의 Ethylene cellulose와 0.5g의 그래핀을 넣은 후 믹서(mixer)를 이용하여 5분 간 균일 하게 혼합하여 잉크를 제조하였다. Graphene ink was prepared by mixing graphene powder (90-200 nm, Graphene Supermarket), Ethylene Cellulose (Sigma aldrich), Tolluene (Sigma aldrich), and Xylene (sigma aldrich). First, 0.65 g of Tolluene and 0.65 g of Xylene were mixed, 0.2 g of Ethylene cellulose and 0.5 g of graphene were added to the mixed solution, and then uniformly mixed for 5 minutes using a mixer to prepare an ink. .

< 실험예 2 : 3차원 구조체 패턴의 제작><Experimental Example 2: Preparation of a three-dimensional structure pattern>

실험예 1에서 제조된 잉크로 노즐 팁의 개구 직경 200 ㎛인 마이크로 노즐을 이용하여 구리 필름 기재상에 500 ㎛* 500 ㎛ * 375 ㎛ (L*W*H)인 피라미드 구조의 반복 패턴을 형성하였다그래핀 잉크는 피펫(펜)의 후단부를 통해 공급되었고 공압에 의해 선단에서 방출되었다. 마이크로피펫의 위치 및 당김 속도는 3축 스테핑 모터로 100 nm의 위치 정밀도로 정밀하게 제어하였다. With the ink prepared in Experimental Example 1, a repeating pattern of a pyramid structure of 500 µm* 500 µm * 375 µm (L*W*H) was formed on a copper film substrate using a micronozzle having an opening diameter of 200 µm of the nozzle tip. Graphene ink was supplied through the rear end of the pipette (pen) and discharged from the front end by pneumatic pressure. The position and pulling speed of the micropipette were precisely controlled with a position precision of 100 nm with a 3-axis stepping motor.

이어서, 제조된 구조체 패턴을 약 25 ℃의 온도로 유지되는 Cu 도금 용액 내에 3~30 분간 침지하여 전기도금 하였다. 도금 용액은 0.5 M의 CuSO4 ·5H2O와 H2SO4를 혼합하여 pH2로 적정했다. 도금을 위해 전압은 Ag/AgCl전극 대비 -0.1 V로 인가하였다. Subsequently, the prepared structure pattern was immersed in a Cu plating solution maintained at a temperature of about 25° C. for 3 to 30 minutes to be electroplated. The plating solution was titrated to pH 2 by mixing 0.5 M CuSO 4 ·5H 2 O and H 2 SO 4. For plating, the voltage was applied at -0.1 V compared to the Ag/AgCl electrode.

다음으로, 약 60 ℃의 온도로 유지되는 도금 용액 내에 30 분간 침지하여 Cu 도금 표면에 Cu2O를 전기 도금하였다. 도금 용액의 조성은 0.4M CuSO4·5H2O, 3M NaC3H5O3 및 NaOH를 이용하여 pH 12로 적정하였다. 전압은 Ag/AgCl전극 대비 -0.4V를 가하였다. Next, Cu 2 O was electroplated on the Cu plating surface by immersing for 30 minutes in a plating solution maintained at a temperature of about 60°C. The composition of the plating solution was titrated to pH 12 using 0.4M CuSO 4 ·5H 2 O, 3M NaC 3 H 5 O 3 and NaOH. The voltage was -0.4V compared to the Ag/AgCl electrode.

도 3의 (a)는 그래핀 구조체 패턴의 형성 후, (b)는 Cu 금속층 증착 후. (c)는 Cu2O 증착 후의 표면을 촬영한 사진이고, 도 4의 (a) 내지 (c)는 각각 3차원 구조체 광전극의 정면, 평면 및 사시도를 촬영한 전자현미경 사진이다. 3(a) is after formation of a graphene structure pattern, and (b) is after deposition of a Cu metal layer. (c) is a photograph of the surface after Cu2O deposition, and (a) to (c) of FIG. 4 are electron micrographs of the front, plane, and perspective views of the three-dimensional photoelectrode, respectively.

도 5는 도 4의 3차원 구조체의 단면 구조를 촬영한 사진이다. 도 5를 참조하면, 그래핀 골격의 표면에 Cu 코팅층과 Cu2O 코팅층이 형성되었음을 알 수 있다. 5 is a photograph of a cross-sectional structure of the 3D structure of FIG. 4. Referring to FIG. 5, it can be seen that a Cu coating layer and a Cu 2 O coating layer were formed on the surface of the graphene skeleton.

<실험예 3 : 3차원 구조체 표면적에 따른 광전류밀도 측정><Experimental Example 3: Measurement of photocurrent density according to the surface area of a three-dimensional structure>

피라미드형 3차원 구조체의 폭과 길이를 일정하게 하고, 높이를 변화시켜 광전극을 제조하였다. 제조된 광전극의 광전류밀도를 측정하였다. 전압을 레퍼런스 전극인 Ag/AgCl 대비 0 ~0.6 V까지 초당 10 mV씩 증가시켰으며 전극을 솔라시뮬레이터를 통하여 1 sun의 크기의 빛에 반복적으로 노출시켰다. A photoelectrode was manufactured by making the width and length of the pyramid-shaped three-dimensional structure constant and changing the height. The photocurrent density of the prepared photoelectrode was measured. The voltage was increased by 10 mV per second from 0 to 0.6 V compared to the reference electrode Ag/AgCl, and the electrode was repeatedly exposed to light of 1 sun through a solar simulator.

도 6의 (a) 내지 (c)는 각각 본 실험예에서 제조된 높이가 375 ㎛, 500 ㎛, 750 ㎛인 광전극의 전자현미경 사진이고, 도 7은 광전류밀도 측정 결과를 나타낸 그래프이다. 6A to 6C are electron micrographs of photoelectrodes having heights of 375 µm, 500 µm, and 750 µm, respectively, and Fig. 7 is a graph showing the photocurrent density measurement results.

도 7의 (b) 내지 (d)는 각각 높이가 375 ㎛, 500 ㎛, 750 ㎛인 광전극의 광전류밀도 측정결과를 나타낸 그래프이다. 비교를 위해 2차원 평면 구조의 광전극의 광전류밀도 측정결과를 (a)에 나타내었다. 7B to 7D are graphs showing photocurrent density measurement results of photoelectrodes having heights of 375 µm, 500 µm, and 750 µm, respectively. For comparison, the results of measuring the photocurrent density of the photoelectrode of a two-dimensional planar structure are shown in (a).

도 7을 참조하면, 광전극 구조체의 높이가 증가함에 따라 광전류밀도가 증가함을 알 수 있다. 이것은 구조체의 높이가 증가함에 따라 구조체의 표면적이 증가하기 때문에 기인한다. Referring to FIG. 7, it can be seen that the photocurrent density increases as the height of the photoelectrode structure increases. This is because the surface area of the structure increases as the height of the structure increases.

이상, 본 발명의 실시예를 통해 본 발명을 상술하였지만 이상의 설명은 본 발명을 예시한 것으로 본 발명이 이에 한정되는 것이 아니다. 첨부된 청구범위와 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 범위에 속하는 것으로 간주 되어야 할 것이다. In the above, the present invention has been described above through the embodiments of the present invention, but the above description is illustrative of the present invention and the present invention is not limited thereto. Anyone of ordinary skill in the field to which the present invention belongs without departing from the appended claims and the gist of the present invention should be regarded as belonging to the scope of the present invention to the extent that various modifications can be implemented.

Claims (8)

3차원 도전성 구조체를 적층제조하는 단계;
전기화학적 증착에 의해 상기 도전성 구조체 표면에 금속층을 형성하는 단계; 및
전기화학적 증착에 의해 상기 금속층 표면에 산화물 반도체층을 형성하는 단계를 포함하는 광전극의 제조방법.
Laminating manufacturing a three-dimensional conductive structure;
Forming a metal layer on the surface of the conductive structure by electrochemical vapor deposition; And
A method of manufacturing a photoelectrode comprising the step of forming an oxide semiconductor layer on the surface of the metal layer by electrochemical deposition.
제1항에 있어서,
상기 금속층은 Au, Cu, Ag 및 Ni로 이루어진 그룹으로부터 선택된 최소한 1종의 금속 또는 그 금속의 합금을 포함하는 것을 특징으로 하는 광전극의 제조방법.
The method of claim 1,
The method of manufacturing a photoelectrode, wherein the metal layer includes at least one metal selected from the group consisting of Au, Cu, Ag, and Ni, or an alloy of the metal.
제1항에 있어서,
상기 산화물 반도체층은 산화구리, 산화아연, 산화철 및 산화니켈로 이루어진 그룹 중에서 선택된 최소항 1종의 산화물을 포함하는 것을 특징으로 하는 광전극의 제조방법.
The method of claim 1,
The oxide semiconductor layer is a method of manufacturing a photoelectrode, characterized in that it contains at least one oxide selected from the group consisting of copper oxide, zinc oxide, iron oxide, and nickel oxide.
제1항에 있어서,
상기 도전성 구조체는 그래핀을 포함하는 것을 특징으로 광전극의 제조방법.
The method of claim 1,
The method of manufacturing a photoelectrode, characterized in that the conductive structure includes graphene.
제1항에 있어서,
상기 그래핀 적층제조 단계는 잉크기반 사출 인쇄법에 의해 수행되는 것을 특징으로 하는 광전극의 제조방법.
The method of claim 1,
The manufacturing method of the photoelectrode, characterized in that the graphene laminate manufacturing step is performed by an ink-based injection printing method.
제1항에 있어서,
상기 금속층 형성 단계의 전기화학적 증착은 전기 도금을 포함하는 것을 특징으로 하는 광전극의 제조방법.
The method of claim 1,
Electrochemical deposition of the metal layer forming step includes electroplating.
제1항에 있어서,
상기 산화물 반도체층 형성 단계의 전기화학적 증착은 전기 도금을 포함하는 것을 특징으로 하는 광전극의 제조방법.
The method of claim 1,
Electrochemical deposition of the oxide semiconductor layer forming step includes electroplating.
적층 구조의 그래핀 3 D 골격; 및
상기 3D 골격 표면의 도전성 금속층 및 산화물 반도체층을 포함하는 광전극.
Stacked graphene 3D skeleton; And
A photoelectrode comprising a conductive metal layer and an oxide semiconductor layer on the surface of the 3D skeleton.
KR1020190139409A 2019-11-04 2019-11-04 Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof KR20210053607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190139409A KR20210053607A (en) 2019-11-04 2019-11-04 Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190139409A KR20210053607A (en) 2019-11-04 2019-11-04 Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof

Publications (1)

Publication Number Publication Date
KR20210053607A true KR20210053607A (en) 2021-05-12

Family

ID=75918795

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190139409A KR20210053607A (en) 2019-11-04 2019-11-04 Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof

Country Status (1)

Country Link
KR (1) KR20210053607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231093A1 (en) 2021-04-26 2022-11-03 주식회사 엘지에너지솔루션 Method for measuring properties of anode slurry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036156A1 (en) 2013-07-30 2015-02-05 Seiko Epson Corporation Printing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036156A1 (en) 2013-07-30 2015-02-05 Seiko Epson Corporation Printing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231093A1 (en) 2021-04-26 2022-11-03 주식회사 엘지에너지솔루션 Method for measuring properties of anode slurry

Similar Documents

Publication Publication Date Title
Kale et al. Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion
Zhang et al. Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: flexible bifunctional gas-evolving electrode for highly efficient overall water splitting
EP3744197B1 (en) Coated silicon-based atomization chip of electronic cigarette and method for preparing same
CN105513831B (en) A kind of hollow tubular structure electrode material and preparation method thereof
CN110997988B (en) The valve metal layer is transformed into a template comprising a plurality of spaced (nano) channels and forming a spacer structure therein
Liang et al. Inorganic porous films for renewable energy storage
US10626518B2 (en) Method for treating a surface of a metallic structure
CN103503101A (en) Nano-porous electrode for super capacitor and manufacturing method thereof
DE112009001684B4 (en) Fuel cell separator and fuel cell
DE102008062691A1 (en) Electrolyzer and electrodes
Larson et al. Current research and potential applications for pulsed current electrodeposition–a review
CN105568328A (en) Nano-copper deposited film and preparation method and application thereof
KR101520260B1 (en) Manufacturing Methods of Hematite Photo-electrochemcal Electrodes And Photo-electrode thereof
Ge et al. Vertical silver@ silver chloride core–shell nanowire array for carbon dioxide electroreduction
Eugénio et al. Nanostructured 3D metallic foams for H2O2 electroreduction
KR20210053607A (en) Photochemical Electrode Based on 3D Printing, And Manufacturing Methods Thereof
Hengsteler et al. Electrochemical 3D micro‐and nanoprinting: current state and future perspective
CN106549168B (en) The preparation method of the three-dimensional Pd-Ni nano-wire array catalyst of catalyzing hydrogen peroxide electroreduction
Ahmad et al. Oxygen evolution reaction enhancement of copper electrodes in alkaline medium using ultrafast femtosecond laser structuring
CN104846411B (en) The method and its product of flower-like nanometer metal cobalt are prepared using anodic oxidation aluminium formwork
CN103806040A (en) Electrochemical synthesis method of nickel-phosphorus alloy nanotube array
Huang et al. Recent Progress in the Application of Ion Beam Technology in the Modification and Fabrication of Nanostructured Energy Materials
CN102925933B (en) Au-FeNi double-section type alloy nano motor and production method thereof
CN110055567A (en) The electro-deposition preparation method and microporous membrane material of microporous membrane material and its application
KR20160088548A (en) Metallic nanotube and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal