KR20210051163A - Method of mineralcarbonation using waste asbestos slate - Google Patents

Method of mineralcarbonation using waste asbestos slate Download PDF

Info

Publication number
KR20210051163A
KR20210051163A KR1020190136086A KR20190136086A KR20210051163A KR 20210051163 A KR20210051163 A KR 20210051163A KR 1020190136086 A KR1020190136086 A KR 1020190136086A KR 20190136086 A KR20190136086 A KR 20190136086A KR 20210051163 A KR20210051163 A KR 20210051163A
Authority
KR
South Korea
Prior art keywords
asbestos slate
waste asbestos
slurry
detoxified
calcium
Prior art date
Application number
KR1020190136086A
Other languages
Korean (ko)
Other versions
KR102260722B1 (en
Inventor
김동욱
임병현
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Priority to KR1020190136086A priority Critical patent/KR102260722B1/en
Publication of KR20210051163A publication Critical patent/KR20210051163A/en
Application granted granted Critical
Publication of KR102260722B1 publication Critical patent/KR102260722B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention provides a method for carbonate mineralization using detoxified waste asbestos slate comprising the following steps: manufactured a slurry of waste asbestos slate by mixing dry waste asbestos slate powder with water; obtaining a calcium eluate by adding hydrochloric acid to the waste asbestos slate slurry; performing a mineral carbonation reaction by adding carbon dioxide to the calcium eluate; and recovering the calcium carbonate produced by the mineral carbonation reaction. According to the present invention as described above, provided is the method for carbonate mineralization using detoxified waste asbestos slate, which can produce useful minerals with high efficiency and inexpensively while promoting environmental protection and public health.

Description

폐석면슬레이트를 이용한 탄산염광물화 방법{METHOD OF MINERALCARBONATION USING WASTE ASBESTOS SLATE}Carbonate mineralization method using waste asbestos slate{METHOD OF MINERALCARBONATION USING WASTE ASBESTOS SLATE}

본 발명은 무해화 석면슬레이트를 이용한 탄산염광물화 방법에 관한 것으로, 보다 상세하게는 무해화한 석면슬레이트를 이용하여 이산화탄소를 효율적으로 고정할 수 있는 최적의 탄산염광물화 조건을 확립함으로써, 환경보호 및 국민건강을 증진시킴과 동시에 유용한 광물을 고효율로 저렴하게 제조할 수 있는 무해화 석면슬레이트를 이용한 탄산염광물화 방법에 관한 것이다.The present invention relates to a carbonate mineralization method using harmless asbestos slate, and more particularly, by establishing an optimal carbonate mineralization condition capable of efficiently fixing carbon dioxide using harmless asbestos slate, environmental protection and The present invention relates to a carbonate mineralization method using harmless asbestos slate that can improve public health and produce useful minerals at high efficiency and inexpensively.

석면(asbestos)은 섬유상이나 침상으로 산출되어 상업적으로 사용되는 함수 규산염 광물로써 미국산업안전보건청(Occupational Safety and Health Administration)에서는 종횡비 3:1 이상에 길이 5 ㎛ 이상의 형태를 지니는 경우에 한하여 석면으로 분류하고 있다. Asbestos is a hydrated silicate mineral that is commercially used because it is calculated in the form of fibers or needles. The Occupational Safety and Health Administration (Occupational Safety and Health Administration) uses asbestos only when it has an aspect ratio of 3:1 or more and a length of 5 µm or more. Classify.

석면은 광물학적 특성에 따라 크게 사문석(serpentine)군 석면인 백석면(chrysotile)과 각섬석(amphibole)군 석면인 amosite, crocidolite, anthophyllite, tremolite, actinolite 등으로 나눌 수 있다.Asbestos can be largely divided into serpentine group asbestos, chrysotile and amphibole group, asbestos, amosite, crocidolite, anthophyllite, tremolite, and actinolite.

이러한 석면은 인장력과 고온·저온 환경에 강하고 전기를 통하지 않으며, 화학적으로 부식이 강한 특성으로 인해 19세기말 산업 혁명 이후 섬유, 건설재, 절연재, 내화재, 브레이크 라이닝 등 3,000종 이상의 제품에 이용되어져 왔다.Such asbestos has been used in more than 3,000 types of products such as textiles, construction materials, insulation materials, fireproof materials, and brake linings since the industrial revolution at the end of the 19th century due to its strong tensile strength, high temperature and low temperature environment, does not conduct electricity, and is chemically resistant to corrosion.

그러나 석면을 함유한 제품 및 폐기물이 풍화되어 인체에 유입 되면 세포 손상이나 변형을 일으키고 또한, 체외로 잘 배출되지 않아 폐암, 석면폐, 악성중피종 및 흉막비후 등과 같은 질병을 일으키는 원인이 된다. 실제로, 석면제품을 생산하는 업종 근로자들 또는 제품에 노출된 사람들의 폐질환 발병이 꾸준히 보고되고 있으며, 석면에 의한 폐질환 역학조사 결과 석면 흡입과 특정 폐질환과의 연관성이 입증되었다.However, when products and wastes containing asbestos are weathered and introduced into the human body, they cause cell damage or deformation, and are not well discharged outside the body, causing diseases such as lung cancer, asbestos lung, malignant mesothelioma and pleural thickening. In fact, pulmonary disease incidence of workers in the industry that produces asbestos products or those exposed to the product has been reported steadily, and asbestos-induced pulmonary disease epidemiological investigations have demonstrated the association between asbestos inhalation and specific lung diseases.

이러한 석면을 함유한 대표적인 폐기물 중 하나는 석면 슬레이트다. 석면슬레이트는 사문석계 석면 10~20%와 시멘트 80~90%로 구성되어 있으며, 시간이 경과함에 따라 시멘트의 주 구성성분인 수산화칼슘은 물에 녹지만, 그 외의 석면은 주변 환경으로 방출되어 인간의 건강을 위협하고 있다. 최근 환경부조사에 따르면 석면 슬레이트 건축물이 전국적으로 약 123만여동 분포하고 있으며, 1990년대까지 꾸준히 사용되어지다 근래에 석면이 1급 발암물질로 지정되면서 2000년 이후 그 사용량이 감소하였다. 또한, 전국 석면슬레이트 건축물 중 과반수(55.4%)가 내구연한(30년)을 경과하여 석면비산이 우려되는 것으로 나타났으며, 실제로 70년대 이전의 건축물 주변 채취 토양에서 22%의 석면이 검출되었다.One of the representative wastes containing such asbestos is asbestos slate. Asbestos slate is composed of 10-20% serpentine asbestos and 80-90% cement. Over time, calcium hydroxide, which is the main component of cement, dissolves in water, but other asbestos is released into the surrounding environment. It is threatening health. According to a recent survey by the Ministry of Environment, about 1.23 million asbestos slate buildings are distributed nationwide, and they have been used steadily until the 1990s, and recently, as asbestos was designated as a first-class carcinogen, and its use decreased after 2000. In addition, most of the nation's asbestos slate buildings (55.4%) were concerned about scattering of asbestos after the endurance period (30 years) has passed, and in fact, 22% of asbestos was detected in the soil collected around buildings before the 1970s.

현재 우리나라에서는 이러한 석면 슬레이트를 폐기물 업체가 수거하여 비산을 방지하기 위해 폴리에틸렌 용기에 밀봉 처리하여 지정 폐기물 매립장에 복토하고 있다. 그러나 폐석면 매립 용량은 2016년 이후(2017년, 152천톤ㅧ5년) 포화상태에 이를 것으로 예상된다. 또한, 지정 매립장에 매립한다고 하여도 추후 풍화에 의해 다시 주위환경으로 노출될 가능성이 있어 문제가 된다.Currently, in Korea, such asbestos slates are collected by waste companies and sealed in polyethylene containers to prevent scattering and covered in designated waste landfills. However, the reclamation capacity of waste asbestos is expected to reach saturation after 2016 (2017, 152,000 tons x 5 years). In addition, even if it is buried in a designated landfill, it is a problem because there is a possibility of being exposed to the surrounding environment again due to weathering in the future.

본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 목적은 무해화한 석면슬레이트를 이용하여 이산화탄소를 효율적으로 고정할 수 있는 최적의 탄산염광물화 조건을 확립함으로써, 환경보호 및 국민건강을 증진시킴과 동시에 유용한 광물을 고효율로 저렴하게 제조할 수 있는 무해화 석면슬레이트를 이용한 탄산염광물화 방법을 제공함에 있다.The present invention was conceived to solve the problems of the prior art as described above, and its object is to establish optimal carbonate mineralization conditions that can efficiently fix carbon dioxide using harmless asbestos slate, The objective is to provide a carbonate mineralization method using harmless asbestos slate that can produce useful minerals at low cost with high efficiency while promoting protection and public health.

상기한 바와 같은 본 발명의 기술적 과제는 다음과 같은 수단에 의해 달성되어진다.The technical problem of the present invention as described above is achieved by the following means.

(1) 건식 폐석면슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리를 제조하는 단계; 상기 폐석면슬레이트 슬러리에 염산을 첨가하여 칼슘용출액을 얻는 단계; 상기 칼슘용출액에 이산화탄소를 투입하여 광물탄산화 반응을 수행하는 단계; 및 상기 광물탄산화 반응에 의해 생성된 탄산칼슘을 회수하는 단계를 포함하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.(1) preparing a waste asbestos slate slurry by mixing water with dry waste asbestos slate powder; Adding hydrochloric acid to the waste asbestos slate slurry to obtain a calcium eluate; Performing a mineral carbonation reaction by adding carbon dioxide to the calcium eluate; And recovering calcium carbonate generated by the mineral carbonation reaction.

(2) 상기 (1)에 있어서,(2) In the above (1),

폐석면슬레이트 슬러리는 무해화된 건식 폐석면슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리 농도가 8~10g/L(1%)가 되도록 조정하는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.The waste asbestos slate slurry comprises the step of adjusting the concentration of the waste asbestos slate slurry to be 8-10 g/L (1%) by mixing water with the detoxified dry waste asbestos slate powder. Carbonate mineralization method using.

(3) 상기 (1)에 있어서,(3) In the above (1),

염산을 이용하여 중성영역으로 pH를 조절하고 30~60분간 반응시켜 칼슘용출액을 얻는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.Carbonate mineralization method using a detoxified waste asbestos slate comprising the step of obtaining a calcium eluate by adjusting the pH to a neutral region using hydrochloric acid and reacting for 30 to 60 minutes.

(4) 상기 (1)에 있어서,(4) In the above (1),

폐석면슬레이트 슬러리는 무해화된 건식 폐석면슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리 농도가 10g/L(1%)가 되도록 조정하고, 염산을 이용하여 pH 7로 조절하고 30분간 반응시켜 칼슘용출액을 얻는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.The waste asbestos slate slurry is adjusted so that the concentration of the waste asbestos slate slurry is 10g/L (1%) by mixing water with the detoxified dry waste asbestos slate powder, adjusted to pH 7 with hydrochloric acid, and reacted for 30 minutes. Carbonate mineralization method using detoxified waste asbestos slate, characterized in that it comprises the step of obtaining an eluate.

(5) 상기 (1)에 있어서,(5) In the above (1),

염산으로 1차 칼슘용출액을 얻은 후, 인산, 주석산, 프로피온산이 각각 중량비(w/w)로 1:1:1~2:2:2로 조성된 복합유기산을 염산과 함께 투입하되, 염산의 중량대비 10~30중량% 첨가하여 pH 7로 조정하는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.After obtaining the primary calcium eluate with hydrochloric acid, a complex organic acid composed of 1:1:1~2:2:2 of phosphoric acid, tartaric acid, and propionic acid in a weight ratio (w/w) is added together with hydrochloric acid, but the weight of hydrochloric acid Carbonate mineralization method using a detoxified waste asbestos slate, characterized in that it comprises the step of adjusting the pH to 7 by adding 10 to 30% by weight compared.

(6) 상기 (1)에 있어서,(6) In the above (1),

폐석면슬레이트 슬러리를 100℃로 10~20분간 가열한 후, 여기에 물을 2차 투입하여 100℃로 20~30분간 가열하여 후속공정에서의 칼슘의 용출이 용이하도록 전처리하는 단계를 더 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.After heating the waste asbestos slate slurry at 100° C. for 10 to 20 minutes, water is added thereto and heated at 100° C. for 20 to 30 minutes to facilitate the elution of calcium in a subsequent process. Carbonate mineralization method using a detoxified waste asbestos slate, characterized in that.

상기와 같은 본 발명에 따르면, 무해화한 석면슬레이트를 이용하여 이산화탄소를 효율적으로 고정할 수 있는 최적의 탄산염광물화 조건을 확립함으로써, 환경보호 및 국민건강을 증진시킴과 동시에 유용한 광물을 고효율로 저렴하게 제조할 수 있는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법을 제공한다.According to the present invention as described above, by establishing the optimal carbonate mineralization conditions that can efficiently fix carbon dioxide using harmless asbestos slate, environmental protection and public health are promoted, and useful minerals are highly efficient and inexpensive. It provides a carbonate mineralization method using a detoxified waste asbestos slate that can be prepared in a way.

도 1은 본 발명에 따른 폐석면슬레이트를 이용한 탄산염광물화 장치의 구성도이다.
도 2는 폐석면 슬레이트(WAS) XRF 분석도.
도 3은 무해화된 폐석면 슬레이트(HWAS) XRF 분석도.
도 4는 폐석면 슬레이트(WAS) SEM-EDS 분석도.
도 5는 무해화된 폐석면 슬레이트(HWAS) SEM-EDS 분석도.
도 6은 WAS, HWAS, WC의 pH별 Ca2+ 용출 농도
도 7은 WAS, HWAS, WC의 pH별 Mg2+ 용출 농도
1 is a block diagram of a carbonate mineralization apparatus using waste asbestos slate according to the present invention.
Figure 2 is a waste asbestos slate (WAS) XRF analysis diagram.
Figure 3 is a detoxified waste asbestos slate (HWAS) XRF analysis diagram.
Figure 4 is a waste asbestos slate (WAS) SEM-EDS analysis diagram.
Figure 5 is a detoxified waste asbestos slate (HWAS) SEM-EDS analysis diagram.
6 is Ca 2+ elution concentration by pH of WAS, HWAS, and WC
Figure 7 is the concentration of Mg 2+ elution by pH of WAS, HWAS, and WC

본 발명에 따른 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법은 건식 폐석면슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리를 제조하는 단계; 상기 폐석면슬레이트 슬러리에 염산을 첨가하여 칼슘용출액을 얻는 단계; 상기 칼슘용출액에 이산화탄소를 투입하여 광물탄산화 반응을 수행하는 단계; 및 상기 광물탄산화 반응에 의해 생성된 탄산칼슘을 회수하는 단계를 포함한다.The carbonate mineralization method using the detoxified waste asbestos slate according to the present invention comprises the steps of preparing a waste asbestos slate slurry by mixing water with dry waste asbestos slate powder; Adding hydrochloric acid to the waste asbestos slate slurry to obtain a calcium eluate; Performing a mineral carbonation reaction by adding carbon dioxide to the calcium eluate; And recovering calcium carbonate generated by the mineral carbonation reaction.

도 1은 본 발명에 따른 무해화 폐석면슬레이트를 이용한 탄산염광물화 장치로서, 폐석면슬레이트 슬러리 공급부(10), pH 조정조(20), 탄산칼슘 침전조(30), 및 이산화탄소 공급부(40)를 포함한다.1 is a carbonate mineralization apparatus using detoxified waste asbestos slate according to the present invention, including a waste asbestos slate slurry supply unit 10, a pH adjustment tank 20, a calcium carbonate precipitation tank 30, and a carbon dioxide supply unit 40 do.

폐석면슬레이트 슬러리 공급부(10)는 무해화한 폐석면슬레이트를 건조 분말화한 후, 물과 혼합하여 슬러리화 한 상태로 반응에 공급한다. 바람직하게는 폐석면슬레이트 슬러리는 무해화된 건식 폐석면슬레이트 분말에 물을 혼합[예로, 건식 폐석면슬레이트 8~10g에 증류수 1L를 혼합]하여 폐석면슬레이트 슬러리 농도가 8~10g/L(1%)가 되도록 조정하되, 바람직하게는 10g/L가 되도록 조정한다.The waste asbestos slate slurry supply unit 10 dry and pulverizes the detoxified waste asbestos slate, mixes it with water, and supplies it to the reaction in a slurry state. Preferably, the waste asbestos slate slurry is mixed with water to the detoxified dry waste asbestos slate powder [e.g., 8-10 g of dry waste asbestos slate and 1L of distilled water are mixed] so that the concentration of the waste asbestos slate is 8-10 g/L (1 %), but preferably 10g/L.

본 발명에서 무해화 폐석면슬레이트는 폐석면슬레이트를 회수하여, 이를 1mm 이하로 분쇄하고, 얻어진 분쇄물에 무기소재(예로, SiC)를 혼합하여 마이크로파로 1,100℃ 정도로 가열하여 얻어질 수 있다. In the present invention, the detoxified waste asbestos slate may be obtained by recovering the waste asbestos slate, pulverizing it to 1 mm or less, mixing the obtained pulverized material with an inorganic material (eg, SiC) and heating it to about 1,100°C with microwaves.

바람직하게는 상기와 같이 얻어진 무해화 폐석면슬레이트 슬러리를 100℃로 10~20분간 가열한 후, 여기에 1~3배수의 물을 2차 투입하여 100℃로 20~30분간 가열하여 후속공정에서의 칼슘의 용출이 용이하도록 전처리하고, 최종적으로 슬러리의 농도를 8~10g/L(1%)가 되도록 조정하되, 바람직하게는 10g/L가 되도록 조정한다. 이 경우 후속하는 산에 의한 칼슘의 용출이 보다 용이하게 일어날 수 있도록 조직을 연화시키는 효과를 제공한다.Preferably, the detoxified waste asbestos slate slurry obtained as described above is heated at 100°C for 10 to 20 minutes, and then 1 to 3 times the amount of water is secondly added and heated at 100°C for 20 to 30 minutes. Pretreatment to facilitate the elution of calcium, and finally, the concentration of the slurry is adjusted to be 8-10 g/L (1%), preferably 10 g/L. In this case, it provides an effect of softening the tissue so that the subsequent elution of calcium by the acid can occur more easily.

pH 조정조(20)는 투입된 폐석면슬레이트 슬러리에 염산을 투입하여, 바람직하게는 pH 2~7, 보다 바람직하게는 pH 7의 중성영역으로 조정한다. 비록 pH가 낮은 상태, 예로 pH 4에서 가장 높은 칼슘이온 농도를 나타내지만, 칼슘용출액을 후속하는 광물탄산화 공정에 적용하였을 때, 공정폐액의 pH나, 산 투입량에 따른 경제성과 환경영향성 등을 고려한 결과 pH 7정도의 용출조건이 광물탄산화 반응에 필요한 충분한 칼슘을 확보할 수 있으면서 환경적 영향에 대한 부담도 낮고 효율성 또한 높여줄 수 있을 것으로 판단된다.In the pH adjustment tank 20, hydrochloric acid is added to the inputted waste asbestos slate slurry, and the pH is preferably adjusted to a neutral range of pH 2-7, more preferably pH 7. Although the pH is low, for example, it shows the highest calcium ion concentration at pH 4, when the calcium eluate is applied to the subsequent mineral carbonation process, the economical and environmental impact of the pH of the process waste or the amount of acid input are considered. As a result, it is judged that the elution condition of about pH 7 can secure sufficient calcium necessary for the mineral carbonation reaction, while also lowering the burden on the environmental impact and increasing the efficiency.

보다 바람직하게는 염산으로 슬러리에 투입하여 1차 칼슘용출액을 얻은 후, 인산, 주석산, 프로피온산이 각각 중량비(w/w)로 1:1:1~2:2:2로 조성된 복합유기산을 염산과 함께 투입하되, 염산의 중량대비 10~30중량% 첨가하여 pH 7로 조정하는 것이 칼슘의 용출에 있어서 효율이 높게 나타난다.More preferably, after adding hydrochloric acid to the slurry to obtain a primary calcium eluate, a complex organic acid consisting of phosphoric acid, tartaric acid, and propionic acid in a weight ratio (w/w) of 1:1:1 to 2:2:2 is added to hydrochloric acid. However, the addition of 10 to 30% by weight relative to the weight of hydrochloric acid to adjust the pH to 7 shows high efficiency in the elution of calcium.

광물탄산화 반응기(30)는 광물탄산화 공정이 일어나는 반응조로서, 이산화탄소 공급부(40)로부터 유입되는 이산화탄소와 pH 조정조(20)로부터 유입되는 pH 조정된 슬러리와 반응하여 탄산칼슘을 침전시킨다.The mineral carbonation reactor 30 is a reaction tank in which a mineral carbonation process takes place, and reacts with carbon dioxide flowing from the carbon dioxide supply unit 40 and a pH-adjusted slurry flowing from the pH adjusting tank 20 to precipitate calcium carbonate.

광물탄산화 반응기(30)의 상부의 가스유입구로 이산화탄소가 유입되면 가스 유입관 하단 타공판(미도시)의 공극에 의해 작은 기포로서 확산되도록 유도하고 폐석면슬레이트 슬러리로부터 칼슘이 용출되도록 산처리한 용액의 상등액을 통과하여 반응 후 수면으로 배출된 이산화탄소 가스는 가스유출구로 빠져나가 CO2 센서(50)로 이동하여 배출 이산화탄소의 농도가 실시간으로 측정된다.When carbon dioxide flows into the gas inlet at the top of the mineral carbonation reactor 30, it is induced to diffuse as small bubbles by the pores of the perforated plate (not shown) at the bottom of the gas inlet pipe, and the acid-treated solution so that calcium is eluted from the waste asbestos slate slurry. After the reaction through the supernatant, the carbon dioxide gas discharged to the water surface exits through the gas outlet and moves to the CO 2 sensor 50 so that the concentration of the discharged carbon dioxide is measured in real time.

이산화탄소 공급부(40)는 발전시설 배출가스가 이용될 수 있으며, 공급형태는 특별한 한정으로 요하는 것은 아니며, 평균 CO2 배출농도 5% 정도인 배출가스를 직접 공급하거나, 포집하여 탱크에 압축가스 형태로 충전한 상태에서 공급할 수도 있다.The carbon dioxide supply unit 40 can use the exhaust gas of the power generation facility, and the supply type is not required as a special limitation, and the exhaust gas with an average CO 2 emission concentration of about 5% is directly supplied or collected in the form of compressed gas in the tank. It can also be supplied while charged with.

반응에 의해 형성된 탄산칼슘은 광물탄산화 반응기(30)의 하단에 침전되어지고, 침전된 탄산칼슘은 별도로 회수되어진다.Calcium carbonate formed by the reaction is precipitated at the bottom of the mineral carbonation reactor 30, and the precipitated calcium carbonate is recovered separately.

이하, 본 발명을 하기의 실시예로써 더욱 상세히 설명하고자 한다. 하지만 이는 본 발명의 보다 쉬운 이해를 돕기 위한 것이지, 이들을 통하여 본 발명을 한정하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with the following examples. However, this is to help easier understanding of the present invention, but is not intended to limit the present invention through these.

[실시예 1] 금속이온 용출실험[Example 1] Metal ion elution experiment

실험원료 및 과정Experimental materials and process

실험재료는 폐석면 슬레이트(Waste Asbestos Slate, 이하 'WAS'(직경 1mm 이하), 무기소재 마이크로웨이브를 조사시켜 무해화된 폐석면 슬레이트(Harmless Waste Asbestos, 이하 'HWAS'(직경 1mm 이하, 고등기술연구원 제공) 사용하였다. 폐콘크리트 또한 비교 재료로 사용하였다(이하 'WC'로 명칭한다).Experimental materials are Waste Asbestos Slate (hereinafter'WAS' (diameter less than 1mm), Harmless Waste Asbestos (hereinafter referred to as'HWAS') (diameter less than 1mm, advanced technology) (Provided by the researcher) Waste concrete was also used as a comparative material (hereinafter referred to as'WC').

공주대학교 공동실험실습관의 XRF(Fluoresecence X-ray Element Analyzer, SEA2220A and mobile:SEA 200, Sll Nano Technology Inc), SEM-EDS(NORMAL SEM-EDS, JSM-5400, INCAx-sight, Jeol/Oxford), ICP-OES/AES(Ioductively coupled plasma optical emission sepctrometer, OPTIMA200 DV, Perkinelmer)을 이용하여 분석을 실시하였고 원료물질인 Ca2+, Mg2+ 용출은 WAS, HWAS, WC를 대상으로 H2SO4, HCl을 이용하여 용출실험을 진행하였다. XRF(Fluoresecence X-ray Element Analyzer, SEA2220A and mobile:SEA 200, Sll Nano Technology Inc), SEM-EDS(NORMAL SEM-EDS, JSM-5400, INCAx-sight, Jeol/Oxford) of the joint laboratory of Kongju National University, Analysis was performed using ICP-OES/AES (Ioductively coupled plasma optical emission sepctrometer, OPTIMA200 DV, Perkinelmer), and the raw materials Ca 2+ and Mg 2+ were analyzed. Dissolution was conducted for WAS, HWAS, and WC using H 2 SO 4 and HCl.

실험결과 1: XRF 분석Experiment Result 1: XRF analysis

광물탄산화에 필요한 물질인 Ca2+, Mg2+이 폐석면 슬레이트와 무해화된 폐석면 슬레이트에 어느 정도 함유되어 있는지 확인하였다. XRF를 통해 측정한 결과 CaO의 함량은 WAS(40.8wt%), HWAS(37.9wt%) 이었으며, MgO 함량이 WAS(10.6wt%), HWAS(10.8wt%)로 탄산화 가능 물질이 분석되었다. It was confirmed how much Ca 2+ and Mg 2+, which are materials necessary for mineral carbonation, are contained in waste asbestos slate and innoxious waste asbestos slate. As a result of measuring through XRF, the content of CaO was WAS (40.8wt%) and HWAS (37.9wt%), and the carbonation-capable material was analyzed with MgO content of WAS (10.6wt%) and HWAS (10.8wt%).

폐석면 슬레이트(WAS)와 무해화된 폐석면슬레이트(HWAS)의 XRF 분석 결과XRF analysis results of waste asbestos slate (WAS) and harmless waste asbestos slate (HWAS) XRF Result(wt%)XRF Result(wt%) WASWAS HWASHWAS WC[9]WC[9] MgOMgO 10.610.6 10.810.8 2.72.7 Al2O3 Al 2 O 3 7.47.4 8.28.2 8.78.7 SiO2 SiO 2 23.123.1 25.925.9 35.835.8 K2OK 2 O 2.82.8 2.42.4 4.94.9 CaOCaO 40.840.8 37.937.9 22.122.1 Fe2O3 Fe 2 O 3 15.315.3 14.814.8 18.518.5

실험결과 2: SEM-EDS 분석Experimental result 2: SEM-EDS analysis

폐석면 슬레이트의 8개 Spectrum을 평균하여 분석한 결과 Ca가 25.3wt%, 무해화된 폐석면 슬레이트의 12개 Spectrum을 평균하여 분석한 결과 Ca가 37.7wt%로 분석되었고 Mg은 WAS가 10.2wt%, HWAS가 6.2wt% 분석 되었다. WC(Waste Concrete)는 Ca, Mg이 16.2wt%, 5.4wt%로 분석되었으며 이는 무해화된 폐석면슬레이트 보다 낮은 값을 보여주고 있다.As a result of analyzing by averaging 8 spectrums of waste asbestos slate, Ca was 25.3 wt%, and as a result of analyzing 12 spectrums of harmless waste asbestos slate, Ca was 37.7 wt%, and Mg was 10.2 wt% of WAS. , HWAS was analyzed at 6.2wt%. WC (Waste Concrete) was analyzed as 16.2wt% and 5.4wt% of Ca and Mg, which show lower values than the harmless waste asbestos slate.

폐석면슬레이트와 무해화된 폐석면슬레이트의 SEM-EDS 분석 결과(wt%)SEM-EDS analysis results of waste asbestos slate and harmless waste asbestos slate (wt%) SEM-EDS result AverageSEM-EDS result Average WAS
norm.C
WAS
norm.C
HWAS
norm.C
HWAS
norm.C
WC[9]
norm.C
WC[9]
norm.C
CC 21.621.6 5.95.9 7.17.1 OO 30.230.2 34.334.3 38.738.7 NaNa -- 0.90.9 0.60.6 MgMg 10.210.2 6.26.2 5.45.4 AlAl 1.21.2 2.32.3 8.68.6 SiSi 9.79.7 8.78.7 14.214.2 KK 0.50.5 0.80.8 3.13.1 SS 0.60.6 0.90.9 0.80.8 CaCa 25.325.3 37.737.7 16.216.2 FeFe 1.11.1 1.41.4 5.55.5 CuCu -- 0.610.61 0.30.3 SUMSUM 100.41100.41 99.1799.17 100.5100.5

실험결과 3: ICP-OES/AES 분석Experimental result 3: ICP-OES/AES analysis

폐석면 슬레이트 시료와 무해화된 폐석면 시료에 물을 혼합하여 1g/100mL로 조정하여 슬러리 상태로 만들었다. 용출용매는 H2SO4, HCl을 이용하여 상기 슬러리에 각각 적용하여 pH 11, 9, 7, 5, 3 상태가 되도록 조성하면서 Ca2+, Mg2+, Si+를 5분동안 용출하였다. ICP-OES/AES로 분석한 결과 HCl, pH 3에서 폐석면 슬레이트 Ca2+은 2,761.71mg/L, 무해화된 폐석면에서 Ca2+ 2,65.36mg/L으로 거의 동일하게 높게 분석되었다. Mg2+은 Ca2+과 마찬가지로 HCl, pH 3에서 폐석면 슬레이트에서 Mg2+은 93.88mg/L 농도로 나타났으나 무해화된 폐석면 슬레이트에서는 213.87mg/L로 더 높은 농도를 보였다.Water was mixed with the waste asbestos slate sample and the detoxified waste asbestos sample and adjusted to 1g/100mL to make a slurry. The elution solvent was applied to the slurry using H 2 SO 4 and HCl, respectively, and the pH was 11, 9, 7, 5, and 3, while Ca 2+ , Mg 2+ , and Si + were eluted for 5 minutes. Analyzed by ICP-OES / AES in HCl, pH 3 waste asbestos slate Ca 2+ is Ca 2+ in 2,761.71mg / L, the detoxified asbestos waste It was analyzed as high as 2,65.36mg/L. Mg 2+ is in the same manner as Ca 2+ HCl, in a waste asbestos slate at pH 3 is Mg 2+ waste asbestos slate or a detoxifying've found to 93.88mg / L concentration showed a higher concentration to 213.87mg / L.

폐석면슬레이트와 무해화된 폐석면슬레이트, 폐콘크리트의 ICP-OES/AES Ca2+ 농도 비교Comparison of ICP-OES/AES Ca 2+ concentration of waste asbestos slate, detoxified waste asbestos slate, and waste concrete pHpH WAS(mg/L)WAS(mg/L) HWAS(mg/L)HWAS(mg/L) WC(mg/L)WC(mg/L) H2SO4 H 2 SO 4 HClHCl H2SO4 H 2 SO 4 HClHCl HClHCl 1111 103.02103.02 54.7654.76 96.8996.89 128.68128.68 30.9830.98 99 693.48693.48 678.08678.08 1,287.511,287.51 1,644.151,644.15 151.78151.78 77 965.53965.53 2,089.632,089.63 1,547.291,547.29 2,132.802,132.80 563.23563.23 55 1,826.801,826.80 1,893.901,893.90 994.01994.01 2,592.402,592.40 826.45826.45 33 2,187.432,187.43 2,761.712,761.71 1,043.601,043.60 2,653.362,653.36 984.17984.17

폐석면슬레이트와 무해화된 폐석면슬레이트, 폐콘크리트의 ICP-OES/AES Mg2+ 농도 비교Comparison of ICP-OES/AES Mg 2+ concentration of waste asbestos slate, detoxified waste asbestos slate, and waste concrete pHpH WAS(mg/L)WAS(mg/L) HWAS(mg/L)HWAS(mg/L) WC(mg/L)WC(mg/L) H2SO4 H 2 SO 4 HClHCl H2SO4 H 2 SO 4 HClHCl HClHCl 1111 0.420.42 0.480.48 0.090.09 0.090.09 0.170.17 99 10.1910.19 6.326.32 41.1741.17 90.2490.24 1.361.36 77 17.8017.80 43.1043.10 123.87123.87 133.63133.63 7.997.99 55 33.2133.21 34.1734.17 165.19165.19 190.93190.93 18.8218.82 33 81.0581.05 93.8893.88 201.46201.46 213.87213.87 34.7534.75

상기와 같이 폐석면 슬레이트(WAS), 무해화된 폐석면 슬레이트(HWAS), 폐콘크리트(WC)를 다양한 방법으로 분석한 결과 H2SO4, HCl로 용출하여 1g/100ml로 교반하면서 pH를 조절하였다. 용출 결과 pH가 낮아질수록 Ca2+, Mg2+의 농도가 높게 나타났고 WAS보다 HWAS에서 광물탄산화 관련 이온의 용출 농도가 높게 측정 되었다. 무해화 과정에서 고온의 마이크로웨이브를 통해 결정상 구조의 파괴 및 변형에 따라 광물탄산화에 더 유리한 원료로 변형되었다고 판단된다. pH 5에서 HCl로 용출시켰을 때 WAS의 Ca2+은 189.3mg(Ca2+)/1g (WAS), HWAS의 Ca2+은 259.2mg(Ca2+)/1g(HWAS)로 pH 3 과는 대비되는 결과가 나왔는데 이는 무해화로 인한 결정화 구조의 해체가 pH가 낮아지지 않아도 광물탄산화가 가능한 원료가 용출 되어지는데 유리해 졌음을 알 수 있다. 또 폐콘크리트는 폐석면 슬레이트, 무해화된 폐석면 슬레이트보다 1/2 정도의 용출량만 보여 폐석면 슬레이트 및 무해화된 폐석면 슬레이트가 더 광물탄산화에 유리한 원료로 판단된다.As described above, as a result of analyzing waste asbestos slate (WAS), detoxified waste asbestos slate (HWAS), and waste concrete (WC) in various ways, it is eluted with H 2 SO 4 and HCl, and the pH is adjusted while stirring at 1 g/100 ml. I did. As a result of the elution, the lower the pH, the higher the concentration of Ca 2+ and Mg 2+ was, and the elution concentration of mineral carbonation-related ions was higher in HWAS than in WAS. In the detoxification process, it is believed that it was transformed into a more advantageous raw material for mineral carbonation due to the destruction and transformation of the crystalline structure through high-temperature microwaves. When eluted with HCl at pH 5, Ca 2+ of WAS is 189.3 mg(Ca 2+ )/1g (WAS), Ca 2+ of HWAS is 259.2 mg(Ca 2+ )/1g(HWAS), which is different from pH 3 Contrasting results came out, which shows that the decomposition of the crystallized structure due to detoxification is advantageous in that raw materials capable of mineral carbonation are eluted even if the pH is not lowered. In addition, waste concrete has only about half the elution of waste asbestos slate and detoxified waste asbestos slate, so waste asbestos slate and detoxified waste asbestos slate are considered more advantageous raw materials for mineral carbonation.

[실시예 2] 복합유기산을 이용한 pH에 따른 폐석면슬레이트 내 Ca2+ 이온 용출[Example 2] Elution of Ca 2+ ions in waste asbestos slate according to pH using complex organic acid

염산으로 1차 처리한 후, 인산, 2차로 주석산, 프로피온산이 각각 중량비(w/w)로 1:1:1로 조성된 복합유기산을 염산과 함께 투입하되, 염산의 중량대비 10중량% 첨가하여 pH 7로 조정한 것을 제외하고 위 실시예 1과 동일한 과정에 의해 Ca2+ 이온 용출실험을 수행하면, pH 7에서 HWAS가 2,315mg/L로 나타난다.After the first treatment with hydrochloric acid, phosphoric acid, secondly, tartaric acid, and propionic acid in a weight ratio (w/w) of 1:1:1 were added together with hydrochloric acid, but 10% by weight of hydrochloric acid was added. When the Ca 2+ ion elution experiment was performed by the same procedure as in Example 1 above except that the pH was adjusted to 7, HWAS was 2,315 mg/L at pH 7.

[실시예 3] 반응시간이 Ca2+ 이온 용출에 미치는 영향[Example 3] Effect of reaction time on Ca 2+ ion elution

염산(HCl)을 이용하여 pH 5에서 반응시간에 따른 무해화 폐석면 슬레이트(1 g/L) 내 칼슘이온을 용출시킨 결과, 반응시간 5분에서 평균 2,653.36mg/L를 나타내었으며 10분에서 평균 3,242.5mg/L, 반응시간 15분에서 평균 4,235.5mg/L, 반응시간 20분에서 평균 6,265.0mg/L, 반응시간 25분에서 평균 7,385.5mg/L, 반응시간 30분에서 평균 8,107.0mg/L, 반응시간 35분에서 평균 8,185.5mg/L, 반응시간 40분에서 평균 8,329.0mg/L, 반응시간 45분에서 평균 8,280.0mg/L, 반응시간 50분에서 평균 8,149.0mg/L, 반응시간 55분에서 평균 8,340.0mg/L, 반응시간 60분에서 평균 8,295.0mg/L,로 나타내었다. 반응시간 30분까지는 지속적으로 용출된 칼슘농도가 높아지는 경향을 보였으나 30분 이상에서는 최적 반응시간을 초과하여 농도 증가가 더딘 현상을 보인다. 따라서 칼슘이온 용출단계에서 반응시간 30분이 적합한 것으로 판단된다.As a result of eluting calcium ions in the detoxified waste asbestos slate (1 g/L) according to the reaction time at pH 5 using hydrochloric acid (HCl), the average reaction time was 2,653.36 mg/L at 5 minutes, and the average at 10 minutes. 3,242.5mg/L, an average of 4,235.5mg/L at a reaction time of 15 minutes, an average of 6,265.0mg/L at a reaction time of 20 minutes, an average of 7,385.5mg/L at a reaction time of 25 minutes, an average of 8,107.0mg/L at a reaction time of 30 minutes, reaction An average of 8,185.5mg/L at 35 minutes, an average of 8,329.0mg/L at a reaction time of 40 minutes, an average of 8,280.0mg/L at a reaction time of 45 minutes, an average of 8,149.0mg/L at a reaction time of 50 minutes, and an average of 8,340.0 at a reaction time of 55 minutes It was expressed as an average of 8,295.0 mg/L at mg/L and a reaction time of 60 minutes. Up to 30 minutes of reaction time, the concentration of eluted calcium showed a tendency to increase continuously, but at more than 30 minutes, the concentration increase was slower than the optimum reaction time. Therefore, it is judged that a reaction time of 30 minutes is suitable in the calcium ion elution step.

[실시예 4][Example 4]

실시예 1에 사용된 무해화된 폐석면 슬레이트 슬러리(1 g/L)를 100℃로 20분간 가열한 후, 여기에 물을 2차 투입하여 100℃로 30분간 가열하여 폐석면슬레이트 슬러리의 농도를 다시 1 g/L로 조정한 것을 이용하여(pH 7) 실시예 1에서와 동일한 실험을 반복할 경우 5분에서의 칼슘이온의 용출농도가 평균 2,678.2mg/L로 높게 나타난다.After heating the detoxified waste asbestos slate slurry (1 g/L) used in Example 1 at 100°C for 20 minutes, water was added thereto and heated at 100°C for 30 minutes to obtain the concentration of the waste asbestos slate slurry. When the same experiment as in Example 1 is repeated using the adjusted to 1 g/L again (pH 7), the elution concentration of calcium ions at 5 minutes is high, on average, 2,678.2 mg/L.

[실시예 5][Example 5]

광물탄산화 반응효율을 평가하기 위하여 도 1과 같은 회분식 반응공정을 고안하였다. 실험에 사용한 이산화탄소 가스는 MFC(Mass Flow Controller)로 Air와 99.99% CO2를 혼합하여 발전시설 배출가스의 평균 CO2 배출농도인 5%가 되도록 5% CO2를 제조하여 사용하였다.In order to evaluate the mineral carbonation reaction efficiency, a batch reaction process as shown in FIG. 1 was devised. The carbon dioxide gas used in the experiment was mixed with Air and 99.99% CO 2 with a MFC (Mass Flow Controller) to prepare 5% CO 2 so that the average CO 2 emission concentration of the power plant exhaust gas was 5%.

MFC에 의해 혼합 제조된 5% CO2 가스는 도 1과 같은 광물탄산화 반응기로 유입되어 반응기 내부를 채우고 있는 칼슘용출액(실시예 1의 무해화된 폐석면슬레이트를 이용하여 pH 7하에 얻은 샘플)과 반응 후 광물탄산화 반응기 상부의 가스유출구로 배출된다. 배출된 이산화탄소 가스는 CO2 센서로 유입되어 배출가스의 농도를 측정할 수 있도록 하였다. 도 1의 광물탄산화 반응기는 상부의 가스유입구로 이산화탄소가 유입되면 가스 유입관 하단 타공판의 공극에 의해 작은 기포로서 확산되도록 유도하였고 폐석면 슬레이트로부터 칼슘이 용출되도록 산처리한 용액의 상등액을 통과하여 반응 후 수면으로 배출된 이산화탄소 가스는 가스유출구로 빠져나가 CO2 센서로 이동하여 배출 이산화탄소의 농도가 실시간으로 측정되도록 고안하였다. 5% CO 2 gas mixed and prepared by MFC was introduced into the mineral carbonation reactor as shown in FIG. 1 to fill the inside of the reactor (a sample obtained under pH 7 using the detoxified waste asbestos slate of Example 1) and After the reaction, it is discharged to the gas outlet at the top of the mineral carbonation reactor. The exhausted carbon dioxide gas was introduced into the CO 2 sensor so that the concentration of the exhaust gas could be measured. In the mineral carbonation reactor of FIG. 1, when carbon dioxide flows into the gas inlet at the top, it is induced to diffuse as small bubbles by the pores of the perforated plate at the bottom of the gas inlet pipe, and the reaction passes through the supernatant of the acid-treated solution so that calcium is eluted from the waste asbestos slate. Afterwards, the carbon dioxide gas discharged to the water surface exits through the gas outlet and moves to the CO 2 sensor to measure the concentration of the discharged carbon dioxide in real time.

또한 광물탄산화 반응기에서 광물탄산화 반응이 일어나는 동안의 반응추이를 확인하기 위하여 CO2 농도 그리고 칼슘이온농도를 실시간으로 측정하였다. 그 결과 표 5에서와 같이 배출되는 이산화탄소의 농도와 침전조내 칼슘이온의 농도가 감소하면서 바닥에 침전이 점차 증가되는 것이 육안에 의해 관찰되었는 바 광물탄산화 반응이 순조롭게 진행되고 있음을 알 수 있었다. In addition, CO 2 concentration and calcium ion concentration were measured in real time to confirm the reaction trend during the mineral carbonation reaction in the mineral carbonation reactor. As a result, as shown in Table 5, it was observed by the naked eye that the concentration of carbon dioxide discharged and the concentration of calcium ions in the sedimentation tank decreased, and the precipitation at the bottom gradually increased. As a result, it was found that the mineral carbonation reaction proceeded smoothly.

반응시간Reaction time CO2 CO 2 Ca2+(mg/L)Ca 2+ (mg/L) 10분10 minutes 3.2%3.2% 1,518.71,518.7 20분20 minutes 2.3%2.3% 682.8682.8 30분30 minutes 0.2%0.2% 325.3325.3

상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although it has been described with reference to a preferred embodiment of the present invention, those skilled in the art will variously modify and change the present invention within the scope not departing from the spirit and scope of the present invention described in the following claims. You will understand that you can do it.

10: 폐석면슬레이트 슬러리 공급부
20: pH 조정조
30: 탄산칼슘 침전조
40: 이산화탄소 공급부
10: Waste asbestos slate slurry supply unit
20: pH adjustment tank
30: calcium carbonate precipitation tank
40: carbon dioxide supply

Claims (6)

폐석면 슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리를 제조하는 단계; 상기 폐석면슬레이트 슬러리에 염산을 첨가하여 칼슘용출액을 얻는 단계; 상기 칼슘용출액에 이산화탄소를 투입하여 광물탄산화 반응을 수행하는 단계; 및 상기 광물탄산화 반응에 의해 생성된 탄산칼슘을 회수하는 단계를 포함하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.Preparing waste asbestos slate slurry by mixing water with waste asbestos slate powder; Adding hydrochloric acid to the waste asbestos slate slurry to obtain a calcium eluate; Performing a mineral carbonation reaction by adding carbon dioxide to the calcium eluate; And recovering calcium carbonate generated by the mineral carbonation reaction. 제 1항에 있어서,
폐석면슬레이트 슬러리는 무해화된 건식 폐석면슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리 농도가 8~10g/L(1%)가 되도록 조정하는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.
The method of claim 1,
The waste asbestos slate slurry comprises the step of adjusting the concentration of the waste asbestos slate slurry to be 8-10 g/L (1%) by mixing water with the detoxified dry waste asbestos slate powder. Carbonate mineralization method using.
제 1항에 있어서,
염산을 이용하여 중성영역으로 pH를 조절하고 30~60분간 반응시켜 칼슘용출액을 얻는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.
The method of claim 1,
Carbonate mineralization method using detoxified waste asbestos slate, comprising the step of obtaining a calcium eluate by adjusting the pH to a neutral region using hydrochloric acid and reacting for 30 to 60 minutes.
제 1항에 있어서,
폐석면슬레이트 슬러리는 무해화된 건식 폐석면슬레이트 분말에 물을 혼합하여 폐석면슬레이트 슬러리 농도가 10g/L(1%)가 되도록 조정하고, 염산을 이용하여 pH 7로 조절하고 30분간 반응시켜 칼슘용출액을 얻는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.
The method of claim 1,
The waste asbestos slate slurry is adjusted so that the concentration of the waste asbestos slate slurry is 10g/L (1%) by mixing water with the detoxified dry waste asbestos slate powder, adjusted to pH 7 with hydrochloric acid, and reacted for 30 minutes. Carbonate mineralization method using detoxified waste asbestos slate, characterized in that it comprises the step of obtaining an eluate.
제 1항에 있어서,
염산으로 1차 칼슘용출액을 얻은 후, 인산, 주석산, 프로피온산이 각각 중량비(w/w)로 1:1:1~2:2:2로 조성된 복합유기산을 염산과 함께 투입하되, 염산의 중량대비 10~30중량% 첨가하여 pH 7로 조정하는 단계를 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.
The method of claim 1,
After obtaining the primary calcium eluate with hydrochloric acid, a complex organic acid composed of 1:1:1~2:2:2 of phosphoric acid, tartaric acid, and propionic acid in a weight ratio (w/w) is added together with hydrochloric acid, but the weight of hydrochloric acid Carbonate mineralization method using a detoxified waste asbestos slate comprising the step of adjusting the pH to 7 by adding 10 to 30% by weight of the ratio.
제 1항에 있어서,
폐석면슬레이트 슬러리를 100℃로 10~20분간 가열한 후, 여기에 물을 2차 투입하여 100℃로 20~30분간 가열하여 후속공정에서의 칼슘의 용출이 용이하도록 전처리하는 단계를 더 포함하는 것을 특징으로 하는 무해화 폐석면슬레이트를 이용한 탄산염광물화 방법.
The method of claim 1,
After heating the waste asbestos slate slurry at 100° C. for 10 to 20 minutes, water is added thereto and heated at 100° C. for 20 to 30 minutes to facilitate the elution of calcium in a subsequent process. Carbonate mineralization method using a detoxified waste asbestos slate, characterized in that.
KR1020190136086A 2019-10-30 2019-10-30 Method of mineralcarbonation using waste asbestos slate KR102260722B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190136086A KR102260722B1 (en) 2019-10-30 2019-10-30 Method of mineralcarbonation using waste asbestos slate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190136086A KR102260722B1 (en) 2019-10-30 2019-10-30 Method of mineralcarbonation using waste asbestos slate

Publications (2)

Publication Number Publication Date
KR20210051163A true KR20210051163A (en) 2021-05-10
KR102260722B1 KR102260722B1 (en) 2021-06-03

Family

ID=75917418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190136086A KR102260722B1 (en) 2019-10-30 2019-10-30 Method of mineralcarbonation using waste asbestos slate

Country Status (1)

Country Link
KR (1) KR102260722B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000039135A (en) * 1998-12-11 2000-07-05 이구택 Method for neutralizing waste sulfuric acid using by-products of an iron foundry, and process for preparing gypsum using precipitation occurred in the neutralization
KR20120069366A (en) * 2010-12-20 2012-06-28 재단법인 포항산업과학연구원 Method for producing calcium carbonate
KR20140114855A (en) * 2012-02-07 2014-09-29 가부시키가이샤 상기 Calcium phosphate dispersion composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000039135A (en) * 1998-12-11 2000-07-05 이구택 Method for neutralizing waste sulfuric acid using by-products of an iron foundry, and process for preparing gypsum using precipitation occurred in the neutralization
KR20120069366A (en) * 2010-12-20 2012-06-28 재단법인 포항산업과학연구원 Method for producing calcium carbonate
KR20140114855A (en) * 2012-02-07 2014-09-29 가부시키가이샤 상기 Calcium phosphate dispersion composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Energy, Volume 20, Issue 11, Pages 1153-1170* *
Int. J. Miner. Process. 83 (2007) 36-46 *

Also Published As

Publication number Publication date
KR102260722B1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
Wang et al. Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash
Colangelo et al. Treatment and recycling of asbestos-cement containing waste
Zaremba et al. Study on the thermal decomposition of chrysotile asbestos
Nam et al. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid
Pawełczyk et al. Chemical elimination of the harmful properties of asbestos from military facilities
Belardi et al. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products
CN111777344B (en) Method for treating waste incineration fly ash as admixture by cooperation of cement kiln
CN107057705A (en) A kind of heavy-metal contaminated soil repair materials, preparation method and purposes
JP3769569B2 (en) Asbestos detoxification treatment method
KR20210016132A (en) Detoxification of asbestos by mechano-chemical treating method
US20100130806A1 (en) Method of treating asbestos-containing waste material
KR102260723B1 (en) Apparatus of mineralcarbonation using waste asbestos slate
KR102260722B1 (en) Method of mineralcarbonation using waste asbestos slate
US20110101267A1 (en) Acid treatment under low temperature and pressure of waste containing asbestos
US20100113859A1 (en) Method of asbestos detoxification and aqueous solution for asbestos detoxification
US8470087B2 (en) Production method for a lightweight construction material using asbestos waste
Albino et al. Stabilization of residue containing heavy metals by means of matrices generating calcium trisulphoaluminate and silicate hydrates
CN114315182B (en) Method for harmless pretreatment and synchronous activation of aluminum ash
KR102146082B1 (en) Mehtod for manufacturing calcium silicate
KR101302473B1 (en) Method of asbestos detoxification and calcium compound reaction liquid used therefor
JP2008049205A (en) Treatment method of chrysotile or chrysotile inclusion
KR101535273B1 (en) The method of detoxification of asbestos by heat and acid treatment
JP5280405B2 (en) Method for insolubilizing and detoxifying hexavalent chromium
KR101786310B1 (en) Detoxification method of chrysotile using alkaline solution
KR20210052684A (en) Detoxification method of asbestos by mineral transition

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant