KR20210050479A - Process for preparing ursodeoxycholic acid using deep eutectic solvent - Google Patents

Process for preparing ursodeoxycholic acid using deep eutectic solvent Download PDF

Info

Publication number
KR20210050479A
KR20210050479A KR1020200141188A KR20200141188A KR20210050479A KR 20210050479 A KR20210050479 A KR 20210050479A KR 1020200141188 A KR1020200141188 A KR 1020200141188A KR 20200141188 A KR20200141188 A KR 20200141188A KR 20210050479 A KR20210050479 A KR 20210050479A
Authority
KR
South Korea
Prior art keywords
udca
reaction
eutectic solvent
cdca
7βhsdh
Prior art date
Application number
KR1020200141188A
Other languages
Korean (ko)
Other versions
KR102557964B1 (en
Inventor
김희택
류미희
정예진
송봉근
강경희
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of KR20210050479A publication Critical patent/KR20210050479A/en
Application granted granted Critical
Publication of KR102557964B1 publication Critical patent/KR102557964B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011597-Alpha-hydroxysteroid dehydrogenase (1.1.1.159)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012017-Beta-hydroxysteroid dehydrogenase (NADP+) (1.1.1.201)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Steroid Compounds (AREA)

Abstract

The present invention relates to: a composition for producing ursodeoxycholic acid (UDCA), containing a deep eutectic solvent, a 7 alpha-hydroxy steroid dehydrogenase (7αHSDH), and a 7 beta-hydroxy steroid dehydrogenase (7βHSDH); a kit for producing the UDCA including the composition; and a method for producing the UDCA from chenodeoxycholic acid (CDCA) by using 7αHSDH and 7βHSDH in the presence of a reaction solvent including the deep eutectic solvent. A composition for producing the UDCA according to the present invention can be used to efficiently produce the UDCA from the CDCA by using an enzymatic reaction in which a reverse reaction does not occur, and thus can be widely used in the production of various products using the UDCA.

Description

공융용매를 이용한 우르소데옥시콜산의 제조방법{Process for preparing ursodeoxycholic acid using deep eutectic solvent}Method for preparing ursodeoxycholic acid using a eutectic solvent {Process for preparing ursodeoxycholic acid using deep eutectic solvent}

본 발명은 공융용매를 이용한 우르소데옥시콜산의 제조방법에 관한 것으로, 보다 구체적으로 본 발명은 공융용매, 7αHSDH(7 alpha-hydroxy steroid dehydrogenase) 및 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 포함하는 UDCA(ursodeoxycholic acid) 생산용 조성물, 상기 조성물을 포함하는 UDCA(ursodeoxycholic acid) 생산용 키트 및 공융용매를 포함하는 반응용매 조건하에서 7αHSDH와 7βHSDH를 이용하여 CDCA(Chenodeoxycholic acid)로부터 UDCA를 생산하는 방법에 관한 것이다.The present invention relates to a method for preparing ursodeoxycholic acid using a eutectic solvent, and more specifically, the present invention relates to a eutectic solvent, 7αHSDH (7 alpha-hydroxy steroid dehydrogenase), and 7βHSDH (7 beta-hydroxy steroid dehydrogenase) containing UDCA. A composition for producing (ursodeoxycholic acid), a kit for producing ursodeoxycholic acid (UDCA) containing the composition, and a method for producing UDCA from CDCA (Chenodeoxycholic acid) using 7αHSDH and 7βHSDH under the conditions of a reaction solvent including a eutectic solvent will be.

담즙산은 지방, 지방산 및 소수성 비타민의 소화 및 흡수에 필요한 생체분자이다. 인간에서 단지 소량으로만 발견되는 담즙산은 우르소데옥시콜산(UDCA)이다. 이는 최근에, 콜레스테롤-포함 담석의 용해에 있어서 큰 치료적 중요성을 얻었다. 이러한 화합물은 화학적 단계 또는 효소적 단계에서 톤 단위의 양(tonne quantity)으로 공업적으로 생산된다. UDCA의 합성에 대한 중요한 전구체는 12-케토우르소데옥시콜산이며, 이는 볼프-키슈너 환원(Wolff-Kishner reduction)에 의해 UDCA로 전환될 수 있다. 문헌에 기술된 12-케토우르소데옥시콜산의 합성 경로는 콜산(3α,7α,12α-트리하이드록시-5β-콜란산)으로 시작하며, 이는 7α-HSDH 및 12α-HSDH에 의해 촉매화되는 2개의 산화 단계, 및 7β-HSDH에 의해 촉매화되는 1개의 환원 단계에 의해 제조될 수 있다. 추가적인 경로는 7-케토리토콜산으로 시작하며, 이는 7-케토기를 입체선택적으로 환원시킴으로써 UDCA로 전환될 수 있으며; 이러한 단계는 또한, 7β-HSDH에 의해 촉매화되는 효소적 촉매 작용을 이용하여 유리하게 수행된다. 추가적인 유리한 합성 경로는 데하이드로콜산(DHCA)으로 시작하며, 이는 2개의 환원 단계에 의해 12-케토우르소데옥시콜산으로 전환될 수 있으며; 이들 2개의 단계는 2개의 입체선택적 HSDH(3α-HSDH 및 7β-HSDH)에 의해 촉매화될 수 있다.Bile acids are biomolecules necessary for digestion and absorption of fats, fatty acids and hydrophobic vitamins. The bile acid found only in small amounts in humans is ursodeoxycholic acid (UDCA). It has recently gained great therapeutic importance in the dissolution of cholesterol-containing gallstones. These compounds are produced industrially in tonnage quantities in chemical or enzymatic steps. An important precursor for the synthesis of UDCA is 12-ketoursodeoxycholic acid, which can be converted to UDCA by Wolf-Kishner reduction. The synthetic pathway of 12-ketoursodeoxycholic acid described in the literature begins with cholic acid (3α,7α,12α-trihydroxy-5β-cholanic acid), which is catalyzed by 7α-HSDH and 12α-HSDH. It can be prepared by two oxidation steps, and one reduction step catalyzed by 7β-HSDH. An additional pathway begins with 7-ketocholic acid, which can be converted to UDCA by stereoselective reduction of the 7-keto group; This step is also advantageously carried out using enzymatic catalysis catalyzed by 7β-HSDH. An additional advantageous synthetic route begins with dehydrocholic acid (DHCA), which can be converted to 12-ketoursodeoxycholic acid by two reduction steps; These two steps can be catalyzed by two stereoselective HSDHs (3α-HSDH and 7β-HSDH).

이같은 UDCA의 합성경로를 개량하기 위한 다양한 연구가 수행되고 있다. 예를 들어, 한국등록특허 제10-2023208호에는 7β-히드록시스테로이드 데히드로게나제 돌연변이체를 사용하여 UDCA를 합성하는 방법이 개시되어 있고, 한국공개특허 제10-2017-0036797호에는 신규 3α-하이드록시스테로이드 데하이드로게나제 돌연변이체를 사용하여 UDCA를 합성하는 방법이 개시되어 있다.Various studies are being conducted to improve the synthesis pathway of UDCA. For example, Korean Patent No. 10-2023208 discloses a method for synthesizing UDCA using a 7β-hydroxysteroid dehydrogenase mutant, and Korean Patent Publication No. 10-2017-0036797 discloses a new 3α -A method of synthesizing UDCA using a hydroxysteroid dehydrogenase mutant is disclosed.

이러한 배경하에서, 본 발명자들은 보다 용이하게 UDCA를 생산하는 방법을 개발하고자 예의 연구노력한 결과, 공융용매를 사용할 경우, 단일반응(one-pot reaction)에 의해 효과적으로 UDCA를 생산할 수 있음을 확인하고, 본 발명을 완성하였다.Under this background, the present inventors have made intensive research efforts to develop a method for producing UDCA more easily. As a result, when using a eutectic solvent, it has been confirmed that UDCA can be effectively produced by a one-pot reaction. The invention was completed.

본 발명의 주된 목적은 공융용매, 7αHSDH(7 alpha-hydroxy steroid dehydrogenase) 및 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 포함하는 UDCA(ursodeoxycholic acid) 생산용 조성물을 제공하는 것이다.The main object of the present invention is to provide a composition for producing ursodeoxycholic acid (UDCA) comprising a eutectic solvent, 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) and 7βHSDH (7 beta-hydroxy steroid dehydrogenase).

본 발명의 다른 목적은 상기 조성물을 포함하는 UDCA(ursodeoxycholic acid) 생산용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for producing UDCA (ursodeoxycholic acid) comprising the composition.

본 발명의 또 다른 목적은 공융용매를 포함하는 반응용매 조건하에서 7αHSDH와 7βHSDH를 이용하여 CDCA(Chenodeoxycholic acid)로부터 UDCA를 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing UDCA from CDCA (Chenodeoxycholic acid) using 7αHSDH and 7βHSDH under the conditions of a reaction solvent containing a eutectic solvent.

상술한 목적을 달성하기 위한 본 발명의 일 실시양태는 공융용매, 7αHSDH(7 alpha-hydroxy steroid dehydrogenase) 및 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 포함하는 UDCA(ursodeoxycholic acid) 생산용 조성물을 제공한다.One embodiment of the present invention for achieving the above object provides a composition for producing UDCA (ursodeoxycholic acid) comprising a eutectic solvent, 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) and 7βHSDH (7 beta-hydroxy steroid dehydrogenase). .

본 발명의 용어 "공융용매(Deep eutectic solvent)"란, 자연에 존재하는 고체 또는 액체상의 화합물을 실온에서 적당한 비율로 혼합했을 때, 각각의 화합물이 갖는 융점보다 낮은 온도에서 액상으로 되는 물질을 의미하는데, 유기용매 대비 저렴하고 생산이 쉬우며 생분해성의 물질들로 구성돼 있어 다양한 소재 개발을 위해 사용되고 있다.The term "deep eutectic solvent" of the present invention means a substance that becomes liquid at a temperature lower than the melting point of each compound when a solid or liquid compound existing in nature is mixed in an appropriate ratio at room temperature. However, since it is cheaper than organic solvents, is easy to produce, and is composed of biodegradable materials, it is used for various materials development.

본 발명에 있어서, 상기 공융용매는 HBA(Hydrogen bonding acceptors) 및 HBD(Hydrogen Bonding Donor)를 포함하는 것을 사용할 수 있는데, 상기 HBA로는 베타인 수화물(Betaine monohydrate)을 사용할 수 있고, 상기 HBD로는 프로필렌 글리콜을 사용할 수 있다.In the present invention, the eutectic solvent may be one containing HBA (Hydrogen bonding acceptors) and HBD (Hydrogen Bonding Donor), and as the HBA, betaine monohydrate may be used, and as the HBD, propylene glycol Can be used.

본 발명의 용어 "7αHSDH(7 alpha-hydroxy steroid dehydrogenase)"란, 상기 CDCA를 7-keto LCA(7-Ketolithocholic acid)로 전환시키는 활성을 나타내는 효소를 의미한다.The term "7αHSDH (7 alpha-hydroxy steroid dehydrogenase)" of the present invention means an enzyme exhibiting the activity of converting the CDCA into 7-keto LCA (7-Ketolithocholic acid).

본 발명에 있어서, 상기 7αHSDH는 특별히 이에 제한되지 않으나, 일 예로서, Escherichia coli 균주로부터 유래된 것이 될 수 있고, 다른 예로서, GenBank No. SMB28026.1의 것이 될 수 있다.In the present invention, the 7αHSDH is not particularly limited thereto, but as an example, it may be derived from the Escherichia coli strain, and as another example, GenBank No. It could be of SMB28026.1.

상기 7αHSDH를 사용하여 CDCA를 7-keto LCA로 전환시키는 반응을 수행하기 위하여는, 7αHSDH 및 CDCA 이외에도 7αHSDH를 활성화시키기 위한 NAD+, 상기 NAD+의 생성에 관여하는 LDH 및 상기 LDH를 활성화시키기 위한 sodium pyruvate를 필요로 한다.In order to perform the reaction of converting CDCA to 7-keto LCA using the 7αHSDH, in addition to 7αHSDH and CDCA, NAD + for activating 7αHSDH, LDH involved in the production of NAD + and sodium for activating the LDH Needs pyruvate.

본 발명의 용어 "7βHSDH(7 beta-hydroxy steroid dehydrogenase)"란, 상기 7βHSDH는 7-keto LCA를 UDCA로 전환시키는 활성을 나타는 효소를 의미한다/The term "7βHSDH (7 beta-hydroxy steroid dehydrogenase)" of the present invention means an enzyme exhibiting the activity of converting 7-keto LCA into UDCA/

본 발명에 있어서, 상기 7βHSDH는 특별히 이에 제한되지 않으나, 일 예로서, Ruminococcus gnavus 균주로부터 유래된 것이 될 수 있고, 다른 예로서, GenBank No. SMB28026.1의 것이 될 수 있다.In the present invention, the 7βHSDH is not particularly limited thereto, but as an example, it may be derived from the Ruminococcus gnavus strain, and as another example, GenBank No. It could be of SMB28026.1.

상기 7βHSDH를 사용하여 7-keto LCA를 UDCA로 전환시키는 반응을 수행하기 위하여는, 7βHSDH 및 7-keto LCA 이외에도 7βHSDH를 활성화시키기 위한 NADP+, 상기 NADP+의 생성에 관여하는 GDH 및 상기 GDH를 활성화시키기 위한 glucose를 필요로 한다.In order to perform the reaction of converting 7-keto LCA to UDCA using the 7βHSDH, in addition to 7βHSDH and 7-keto LCA, NADP + for activating 7βHSDH, GDH involved in the production of the NADP + and the GDH are activated. It needs glucose to make it.

상술한 바와 같이, 7αHSDH는 CDCA를 7-keto LCA로 전환시키고, 7βHSDH는 상기 7-keto LCA를 UDCA로 전환시키므로, 상기 7αHSDH 및 7βHSDH를 포함하는 본 발명의 조성물은 CDCA를 UDCA로 전환시키기 위하여 사용될 수 있다(도 1).As described above, since 7αHSDH converts CDCA to 7-keto LCA, and 7βHSDH converts the 7-keto LCA to UDCA, the composition of the present invention comprising the 7αHSDH and 7βHSDH is used to convert CDCA to UDCA. You can (Fig. 1).

도 1은 7αHSDH 및 7βHSDH를 사용하여 CDCA로부터 UDCA를 생산하는 공정을 나타내는 개략도이다.1 is a schematic diagram showing a process for producing UDCA from CDCA using 7αHSDH and 7βHSDH.

상기 7αHSDH 및 7βHSDH는 인산완충액 등의 일반적인 완충액 조건하에서도 효소활성을 나타내어 CDCA를 UDCA로 전환시킬 수 있으나, 공융용매를 사용할 경우에는 UDCA로의 전환율을 향상시킬 수 있다.The 7αHSDH and 7βHSDH exhibit enzymatic activity even under general buffer conditions such as phosphate buffer, so that CDCA can be converted to UDCA, but when a eutectic solvent is used, the conversion rate to UDCA can be improved.

본 발명의 다른 실시양태는 상기 조성물을 포함하는 UDCA(ursodeoxycholic acid) 생산용 키트를 제공한다.Another embodiment of the present invention provides a kit for producing ursodeoxycholic acid (UDCA) comprising the composition.

본 발명의 UDCA 생산용 키트는 상기 UDCA 생산용 조성물을 포함하여 CDCA로부터 UDCA를 생산하는데 사용될 수 있는데, 특별히 이에 제한되지 않으나, 상기 반응에 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치가 포함될 수 있다.The kit for producing UDCA of the present invention may be used to produce UDCA from CDCA, including the composition for producing UDCA, but is not particularly limited thereto, but one or more other constituent compositions, solutions, or devices suitable for the reaction are Can be included.

구체적인 예로서, 상기 조성물에 포함된 7αHSDH 및 7βHSDH 반응에 필요한 NAD+, NADP+, LDH, GDH, sodium pyruvate, glucose 등을 추가로 포함할 수 있다. As a specific example, NAD + , NADP + , LDH, GDH, sodium pyruvate, glucose, etc. required for 7αHSDH and 7βHSDH reactions included in the composition may be additionally included.

또한, 상기 반응에 필요한 인산완충액, 상기 반응을 수행하기 위한 반응용기, 상기 반응을 수행하기 위한 타이머 등을 추가로 포함할 수 있다.In addition, it may further include a phosphate buffer solution required for the reaction, a reaction vessel for performing the reaction, a timer for performing the reaction, and the like.

본 발명의 또 다른 실시양태는, 상기 조성물을 이용한 이단계 반응에 의해 CDCA로부터 UDCA를 생산하는 방법을 제공한다.Another embodiment of the present invention provides a method of producing UDCA from CDCA by a two-step reaction using the composition.

구체적으로, 이단계 반응에 의해 CDCA로부터 UDCA를 생산하는 방법은 (a) 공융용매를 포함하는 반응용매 조건에서, CDCA(Chenodeoxycholic acid)와 7αHSDH(7 alpha-hydroxy steroid dehydrogenase)를 반응시켜서 7-keto LCA(7-Ketolithocholic acid)를 수득하는 단계; 및, (b) 공융용매를 포함하는 반응용매 조건에서, 상기 수득한 7-keto LCA와 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 반응시켜서, UDCA(ursodeoxycholic acid)를 수득하는 단계를 포함한다.Specifically, the method of producing UDCA from CDCA by a two-step reaction is (a) 7-keto by reacting CDCA (Chenodeoxycholic acid) and 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) under the conditions of a reaction solvent containing a eutectic solvent. Obtaining LCA (7-Ketolithocholic acid); And, (b) reacting the obtained 7-keto LCA with 7βHSDH (7 beta-hydroxy steroid dehydrogenase) under conditions of a reaction solvent including a eutectic solvent, thereby obtaining UDCA (ursodeoxycholic acid).

상기 (a) 단계에서 사용되는 공융용매는 베타인 수화물(HBA) 및 프로필렌 글리콜(HBD)을 포함하는데, 상기 공융용매를 단독으로 사용하기 보다는 상기 공융용매와 인산완충액을 포함하는 반응용매를 사용할 수 있다. The eutectic solvent used in step (a) includes betaine hydrate (HBA) and propylene glycol (HBD), but rather than using the eutectic solvent alone, a reaction solvent including the eutectic solvent and phosphate buffer can be used. have.

상기 반응용매에 포함된 공융용매의 함량은 특별히 이에 제한되지 않으나, 일 예로서, 1 내지 40%(v/v)가 될 수 있고, 다른 예로서, 10 내지 30%(v/v)가 될 수 있으며, 또 다른 예로서, 20%(v/v)가 될 수 있다.The content of the eutectic solvent contained in the reaction solvent is not particularly limited thereto, but as an example, it may be 1 to 40% (v/v), and as another example, it may be 10 to 30% (v/v). And, as another example, it may be 20% (v/v).

또한, 7αHSDH 효소반응을 수행하기 위하여는, 기질로서 사용되는 CDCA 이외에도, NAD+, LDH 및 sodium pyruvate를 사용할 수 있다.In addition, in order to perform the 7αHSDH enzymatic reaction, in addition to CDCA used as a substrate, NAD + , LDH and sodium pyruvate may be used.

상기 (b) 단계에서 사용되는 공융용매는 베타인 수화물(HBA) 및 프로필렌 글리콜(HBD)을 포함하는데, 상기 공융용매를 단독으로 사용하기 보다는 상기 공융용매와 인산완충액을 포함하는 반응용매를 사용할 수 있다. The eutectic solvent used in step (b) includes betaine hydrate (HBA) and propylene glycol (HBD), but rather than using the eutectic solvent alone, a reaction solvent including the eutectic solvent and phosphate buffer can be used. have.

상기 반응용매에 포함된 공융용매의 함량은 특별히 이에 제한되지 않으나, 일 예로서, 1 내지 50%(v/v)가 될 수 있고, 다른 예로서, 10 내지 40%(v/v)가 될 수 있으며, 또 다른 예로서, 30%(v/v)가 될 수 있다.The content of the eutectic solvent contained in the reaction solvent is not particularly limited thereto, but as an example, it may be 1 to 50% (v/v), and as another example, it may be 10 to 40% (v/v). And, as another example, it may be 30% (v/v).

또한, 7βHSDH 효소반응을 수행하기 위하여는, 기질로서 사용되는 7-keto LCA 이외에도, 공융용매를 포함하는 조건에서 NADP+, GDH 및 glucose를 사용할 수 있다.In addition, in order to perform the 7βHSDH enzymatic reaction, in addition to 7-keto LCA used as a substrate, NADP + , GDH and glucose may be used under conditions containing a eutectic solvent.

한편, 상기 (b) 단계를 수행할 경우, glucose로부터 생성된 글루콘산(gluconic acid)에 의해 겔화(gelation)가 수행되어 UDCA의 최종수율이 감소될 수 있다.On the other hand, when the step (b) is performed, gelation is performed by gluconic acid generated from glucose, so that the final yield of UDCA may be reduced.

이를 방지하기 위하여, 반응을 수행하면서 반응물의 pH가 pH 8.0을 유지하도록 적정(titration)하는 단계를 추가로 포함할 수 있다.In order to prevent this, it may further include a step of titration so that the pH of the reactant maintains pH 8.0 while performing the reaction.

본 발명의 또 다른 실시양태는, 상기 조성물을 이용한 단일반응(one-pot reaction)에 의해 CDCA로부터 UDCA를 생산하는 방법을 제공한다.Another embodiment of the present invention provides a method of producing UDCA from CDCA by a one-pot reaction using the composition.

구체적으로, 단일반응(one-pot reaction)에 의해 CDCA로부터 UDCA를 생산하는 방법은 공융용매를 포함하는 반응용매 조건에서, CDCA(Chenodeoxycholic acid)에, 7αHSDH(7 alpha-hydroxy steroid dehydrogenase)와 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 함께 가하여 반응시키는 단계를 포함한다.Specifically, the method of producing UDCA from CDCA by a one-pot reaction is in CDCA (Chenodeoxycholic acid), 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) and 7βHSDH ( 7 beta-hydroxy steroid dehydrogenase) is added together to react.

상기 단일반응(one-pot reaction)을 수행하기 위하여 사용되는 공융용매는 베타인 수화물(HBA) 및 프로필렌 글리콜(HBD)을 포함하는데, 상기 공융용매를 단독으로 사용하기 보다는 상기 공융용매와 인산완충액을 포함하는 반응용매를 사용할 수 있다. The eutectic solvent used to perform the one-pot reaction includes betaine hydrate (HBA) and propylene glycol (HBD). Rather than using the eutectic solvent alone, the eutectic solvent and the phosphate buffer solution are used. It is possible to use a reaction solvent containing.

상기 반응용매에 포함된 공융용매의 함량은 특별히 이에 제한되지 않으나, 일 예로서, 1 내지 40%(v/v)가 될 수 있고, 다른 예로서, 10 내지 30%(v/v)가 될 수 있으며, 또 다른 예로서, 20%(v/v)가 될 수 있다.The content of the eutectic solvent contained in the reaction solvent is not particularly limited thereto, but as an example, it may be 1 to 40% (v/v), and as another example, it may be 10 to 30% (v/v). And, as another example, it may be 20% (v/v).

또한, 기질로서 사용되는 CDCA 이외에도, 공융용매를 포함하는 조건에서 NAD+, NADP+, LDH, GDH, sodium pyruvate 및 glucose를 사용할 수 있다.In addition, in addition to CDCA used as a substrate, NAD + , NADP + , LDH, GDH, sodium pyruvate and glucose can be used under conditions containing a eutectic solvent.

한편, 상술한 바와 같이, glucose로부터 생성된 글루콘산(gluconic acid)에 의해 겔화(gelation)가 수행되어 UDCA의 최종수율이 감소될 수 있기 때문에, 이를 방지하기 위하여, 반응을 수행하면서 pH 8.0을 유지하도록 적정(titration)하는 단계를 추가로 포함할 수 있다.On the other hand, as described above, since gelation is performed by gluconic acid generated from glucose, the final yield of UDCA can be reduced. To prevent this, pH 8.0 is maintained while performing the reaction. It may further include a step of titration to do so.

본 발명에서 제공하는 UDCA 생산용 조성물을 이용하면, 역반응이 수행되지 않는 효소반응을 이용하여 CDCA로부터 UDCA를 고수율로 생산할 수 있으므로, UDCA를 이용한 다양한 제품의 생산에 널리 활용될 수 있을 것이다.If the composition for producing UDCA provided by the present invention is used, since UDCA can be produced in high yield from CDCA using an enzymatic reaction in which the reverse reaction is not performed, it will be widely used in the production of various products using UDCA.

도 1은 7αHSDH 및 7βHSDH를 사용하여 CDCA로부터 UDCA를 생산하는 공정을 나타내는 개략도이다.
도 2a는 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성할 때, 7αHSDH의 처리농도에 따른 7-keto LCA의 생성수율의 변화를 비교한 결과를 나타내는 그래프이다.
도 2b는 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성할 때, LDH의 처리농도에 따른 7-keto LCA의 생성수율의 변화를 비교한 결과를 나타내는 그래프이다.
도 3a는 인산완충액 조건에서 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성하는 반응의 시간경과에 따른 CDCA 및 7-keto LCA의 농도변화를 비교한 그래프이다.
도 3b는 인산완충액 조건에서 7βHSDH와 GDH를 사용하여 7-keto LCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.
도 3c는 인산완충액 조건에서 7αHSDH, LDH, 7βHSDH 및 GDH를 사용한 단계별 반응에 의하여 CDCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.
도 3d는 인산완충액 조건에서 7αHSDH, LDH, 7βHSDH 및 GDH를 사용한 단일반응(one-pot reaction)에 의하여 CDCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.
도 3e는 7-keto LCA에 글루콘산을 가하고 희색 침전물이 생성되는지의 여부를 확인한 결과를 나타내는 사진이다.
도 3f는 UDCA에 글루콘산을 가하고 희색 침전물이 생성되는지의 여부를 확인한 결과를 나타내는 사진이다.
도 3g는 반응시간의 경과에 따른, 실험군 1 및 2 반응액의 pH 변화를 측정한 결과를 나타내는 그래프이다.
도 3h는 반응시간의 경과에 따른, 실험군 1, 2 및 3 반응액에서 측정된 UDCA 전환율 변화수준을 나타내는 그래프이다.
도 3i는 9시간이 경과된 후, 실험군 1, 2 및 3 반응액에서 측정된 UDCA 전환율을 비교한 결과를 나타내는 그래프이다.
도 4는 단일반응(one-pot reaction)에 의해 CDCA로부터 UDCA를 생산하기 위한 공융용매를 선발하는 실험과정 및 결과를 나타내는 사진 및 그래프이다.
도 5는 다양한 농도(20, 40 또는 60%)의 공융용매를 사용하여 7αHSDH 효소반응에 의해 전환된 7-keto LCA의 전환율을 반응시간의 경과에 따라 비교한 결과를 나타내는 그래프이다.
도 6a는 다양한 농도(20, 40 또는 60%)의 공융용매를 사용하여 7βHSDH 효소반응에 의해 전환된 UDCA의 전환율을 반응시간의 경과에 따라 비교한 결과를 나타내는 그래프이다.
도 6b는 0 내지 20%의 공융용매를 사용하여 7βHSDH 효소반응을 수행한 반응산물을 촬영한 결과를 나타내는 사진이다.
도 7a는 20% 공융용매 조건에서 7αHSDH, LDH, 7βHSDH 및 GDH를 사용한 단일반응(one-pot reaction)에 의하여 CDCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.
도 7b는 다양한 농도의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, CDCA, 7-keto LCA 및 UDCA의 최종 전환율(몰비)을 비교한 결과를 나타내는 그래프이다.
도 7c는 0, 20, 40 또는 60%의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 전환율(몰비)의 변화를 비교한 결과를 나타내는 그래프이다.
도 7d는 7βHSDH 및 GDH의 농도가 증가된 조건에서, 다양한 농도의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, UDCA의 최종 전환율(몰비)을 비교한 결과를 나타내는 그래프이다.
도 7e는 7βHSDH 및 GDH의 농도가 증가된 조건에서, 0, 20 또는 40%의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, 반응시간의 경과에 따른 UDCA의 전환율(몰비)의 변화를 비교한 결과를 나타내는 그래프이다.
도 7f는 단일반응(one-pot reaction)에 관여하는 각 성분의 농도가 증가된 조건에서, 20%의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 전환율(몰비)의 변화를 비교한 결과를 나타내는 그래프이다.
1 is a schematic diagram showing a process for producing UDCA from CDCA using 7αHSDH and 7βHSDH.
2A is a graph showing the result of comparing the change in the production yield of 7-keto LCA according to the treatment concentration of 7αHSDH when 7αHSDH and LDH are used to generate 7-keto LCA from CDCA.
2B is a graph showing the result of comparing the change in the production yield of 7-keto LCA according to the treatment concentration of LDH when 7αHSDH and LDH are used to generate 7-keto LCA from CDCA.
3A is a graph comparing the change in concentration of CDCA and 7-keto LCA over time of a reaction for generating 7-keto LCA from CDCA using 7αHSDH and LDH in phosphate buffer conditions.
3B is a graph comparing the change in concentration of 7-keto LCA and UDCA over time of the reaction for generating UDCA from 7-keto LCA using 7βHSDH and GDH in a phosphate buffer condition.
Figure 3c is a graph comparing the concentration change of CDCA, 7-keto LCA and UDCA over time of the reaction to generate UDCA from CDCA by a stepwise reaction using 7αHSDH, LDH, 7βHSDH and GDH in a phosphate buffer condition.
Figure 3d shows the change in the concentration of CDCA, 7-keto LCA and UDCA over time of the reaction to generate UDCA from CDCA by a one-pot reaction using 7αHSDH, LDH, 7βHSDH and GDH in phosphate buffer conditions. This is a comparison graph.
3E is a photograph showing the result of confirming whether or not a white precipitate is generated by adding gluconic acid to 7-keto LCA.
3F is a photograph showing the result of confirming whether or not a white precipitate is generated by adding gluconic acid to UDCA.
3G is a graph showing the result of measuring the pH change of the reaction solutions of Experimental Groups 1 and 2 as the reaction time elapsed.
3H is a graph showing the level of change in the UDCA conversion rate measured in the reaction solutions of Experimental Groups 1, 2 and 3 over the course of the reaction time.
3i is a graph showing the results of comparing the UDCA conversion rates measured in the reaction solutions of Experimental Groups 1, 2 and 3 after 9 hours elapsed.
4 is a photograph and graph showing the experimental process and results of selecting a eutectic solvent for producing UDCA from CDCA by a one-pot reaction.
5 is a graph showing the result of comparing the conversion rate of 7-keto LCA converted by the 7αHSDH enzymatic reaction using a eutectic solvent of various concentrations (20, 40 or 60%) over the course of the reaction time.
6A is a graph showing the result of comparing the conversion rate of UDCA converted by the 7βHSDH enzymatic reaction using a eutectic solvent of various concentrations (20, 40 or 60%) over the course of the reaction time.
6B is a photograph showing the result of photographing the reaction product obtained by performing the 7βHSDH enzymatic reaction using 0 to 20% eutectic solvent.
Figure 7a is the concentration of CDCA, 7-keto LCA and UDCA over time of the reaction to generate UDCA from CDCA by a one-pot reaction using 7αHSDH, LDH, 7βHSDH and GDH in a 20% eutectic solvent condition. This is a graph comparing changes.
7B is a graph showing the result of comparing the final conversion (molar ratio) of CDCA, 7-keto LCA, and UDCA when performing a one-pot reaction using a eutectic solvent of various concentrations.
Figure 7c is a case of performing a single reaction (one-pot reaction) using 0, 20, 40 or 60% eutectic solvent, the conversion rate (molar ratio) of CDCA, 7-keto LCA and UDCA according to the lapse of reaction time It is a graph showing the result of comparing the change.
Figure 7d is a graph showing the result of comparing the final conversion (molar ratio) of UDCA in the case of performing a one-pot reaction using a eutectic solvent of various concentrations under the condition of increasing the concentration of 7βHSDH and GDH. .
Figure 7e is a single reaction (one-pot reaction) using a eutectic solvent of 0, 20 or 40% under the condition of increasing the concentration of 7βHSDH and GDH, the conversion rate of UDCA (molar ratio) according to the course of the reaction time ) Is a graph showing the result of comparing the change.
Figure 7f is a single reaction (one-pot reaction) using a eutectic solvent of 20% under the condition of increasing the concentration of each component involved in the single reaction (one-pot reaction), the elapse of the reaction time It is a graph showing the result of comparing the change in the conversion rate (molar ratio) of CDCA, 7-keto LCA and UDCA according to this.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

실시예 1: LDH를 이용한 7αHSDH(7 alpha-hydroxy steroid dehydrogenase)의 효소반응Example 1: Enzymatic reaction of 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) using LDH

완충액(50mM potassium phosphate, pH 8)에서 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성할 때, 높은 생성수율을 나타낼 수 있는 7αHSDH와 LDH의 최적농도를 산출하고자 하였다.When 7αHSDH and LDH were used in a buffer solution (50mM potassium phosphate, pH 8) to generate 7-keto LCA from CDCA, we tried to calculate the optimal concentrations of 7αHSDH and LDH, which can represent a high production yield.

먼저, CDCA 50 mM, NAD+ 5 mM, sodium pyruvate 50 mM 및 LDH 0.1 unit/mL를 포함하는 완충액(50mM potassium phosphate, pH 8)에 다양한 농도(0.5, 1, 2, 4 또는 8 unit/mL)의 7αHSDH를 가하여 반응시키고, 상기 반응에 의해 생성된 7-keto LCA의 수율을 비교하였다(도 2a).First, CDCA 50 mM, NAD + 5 mM, sodium pyruvate 50 mM and LDH 0.1 unit / buffer containing mL various concentrations (0.5, 1, 2, 4 or 8 unit / mL) to (50mM potassium phosphate, pH 8) 7αHSDH was added to react, and the yield of 7-keto LCA produced by the reaction was compared (FIG. 2A).

도 2a는 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성할 때, 7αHSDH의 처리농도에 따른 7-keto LCA의 생성수율의 변화를 비교한 결과를 나타내는 그래프이다.2A is a graph showing the result of comparing the change in the production yield of 7-keto LCA according to the treatment concentration of 7αHSDH when 7αHSDH and LDH are used to generate 7-keto LCA from CDCA.

도 2a에서 보듯이, 0.5 내지 2 unit/mL의 7αHSDH를 가할 경우에는 7αHSDH의 처리농도에 비례하여 7-keto LCA의 생성수율이 증가하였으나, 4 unit/mL 이상의 7αHSDH를 가할 경우에는 더 이상 7-keto LCA의 생성수율이 증가되지 않음을 확인하였다.As shown in Figure 2a, when 0.5 to 2 unit/mL of 7αHSDH was added, the production yield of 7-keto LCA increased in proportion to the treatment concentration of 7αHSDH, but when 7αHSDH of 4 unit/mL or more was added, the 7αHSDH was no longer 7- It was confirmed that the production yield of keto LCA did not increase.

따라서, CDCA로부터 7-keto LCA를 생성할 때, 7αHSDH의 최적 처리농도는 2 unit/mL 임을 알 수 있었다.Therefore, when generating 7-keto LCA from CDCA, it was found that the optimal treatment concentration of 7αHSDH was 2 unit/mL.

다음으로, CDCA 50 mM, NAD+ 5 mM, pyruvate 50 mM 및 7αHSDH 2 unit/mL를 포함하는 완충액(50mM potassium phosphate, pH 8)에 다양한 농도(0, 0.01, 0.05, 0.1, 0.5 또는 1 unit/mL)의 LDH를 가하여 반응시키고, 상기 반응에 의해 생성된 7-keto LCA의 수율을 비교하였다(도 2b).Next, in a buffer solution (50mM potassium phosphate, pH 8) containing 50 mM CDCA, NAD + 5 mM, 50 mM pyruvate, and 2 unit/mL of 7αHSDH, various concentrations (0, 0.01, 0.05, 0.1, 0.5 or 1 unit/mL) mL) of LDH was added to react, and the yield of 7-keto LCA produced by the reaction was compared (Fig. 2b).

도 2b는 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성할 때, LDH의 처리농도에 따른 7-keto LCA의 생성수율의 변화를 비교한 결과를 나타내는 그래프이다.2B is a graph showing the result of comparing the change in the production yield of 7-keto LCA according to the treatment concentration of LDH when 7αHSDH and LDH are used to generate 7-keto LCA from CDCA.

도 2b에서 보듯이, 0 내지 0.1 unit/mL의 LDH를 가할 경우에는 LDH의 처리농도에 비례하여 7-keto LCA의 생성수율이 증가하였으나, 0.5 unit/mL 이상의 LDH를 가할 경우에는 더 이상 7-keto LCA의 생성수율이 증가되지 않음을 확인하였다.As shown in Fig. 2b, when 0 to 0.1 unit/mL of LDH was added, the production yield of 7-keto LCA increased in proportion to the treatment concentration of LDH, but when more than 0.5 unit/mL LDH was added, it was no longer 7- It was confirmed that the production yield of keto LCA did not increase.

따라서, CDCA로부터 7-keto LCA를 생성할 때, LDH의 최적 처리농도는 0.1 unit/mL 임을 알 수 있었다.Therefore, when generating 7-keto LCA from CDCA, it was found that the optimal treatment concentration of LDH was 0.1 unit/mL.

실시예 2: 7αHSDH 및 7βHSDH 효소반응을 이용한 UDCA의 생성Example 2: Generation of UDCA using 7αHSDH and 7βHSDH enzymatic reaction

실시예 2-1: 7αHSDH 효소반응Example 2-1: 7αHSDH enzyme reaction

완충액(50mM potassium phosphate, pH 8)에 CDCA 20 g/L, NAD+ 5 mM, sodium pyruvate 50 mM, LDH 0.1 unit/mL 및 7αHSDH 2 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응시간의 경과에 따른 CDCA 및 7-keto LCA의 농도변화를 측정하였다(도 3a). CDCA 20 g/L, NAD + 5 mM, sodium pyruvate 50 mM, LDH 0.1 unit/mL, and 7αHSDH 2 unit/mL were added to a buffer solution (50 mM potassium phosphate, pH 8), and reacted for 14 hours, and then the reaction time Changes in the concentration of CDCA and 7-keto LCA according to the course were measured (Fig. 3a).

도 3a는 인산완충액 조건에서 7αHSDH와 LDH를 사용하여 CDCA로부터 7-keto LCA를 생성하는 반응의 시간경과에 따른 CDCA 및 7-keto LCA의 농도변화를 비교한 그래프이다.3A is a graph comparing the change in concentration of CDCA and 7-keto LCA over time of a reaction for generating 7-keto LCA from CDCA using 7αHSDH and LDH in phosphate buffer conditions.

도 3a에서 보듯이, 7-keto LCA의 전환율은 약 87%임을 확인하였다.As shown in Figure 3a, it was confirmed that the conversion rate of 7-keto LCA was about 87%.

실시예 2-2: 7βHSDH(7 beta-hydroxy steroid dehydrogenase) 효소반응Example 2-2: 7βHSDH (7 beta-hydroxy steroid dehydrogenase) enzyme reaction

완충액(50mM potassium phosphate, pH 8)에 7-keto LCA, NADP+ 1 mM, glucose 100mM, GDH 0.1 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 4시간 동안 반응시킨 후, 반응시간의 경과에 따른 7-keto LCA 및 UDCA의 농도변화를 측정하였다(도 3b). 7-keto LCA, NADP + 1 mM, glucose 100mM, GDH 0.1 unit/mL, and 7βHSDH 2 unit/mL were added to a buffer solution (50 mM potassium phosphate, pH 8), and reacted for 4 hours. Changes in the concentration of 7-keto LCA and UDCA were measured (Fig. 3b).

도 3b는 인산완충액 조건에서 7βHSDH와 GDH를 사용하여 7-keto LCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.3B is a graph comparing the change in concentration of 7-keto LCA and UDCA over time of the reaction for generating UDCA from 7-keto LCA using 7βHSDH and GDH in a phosphate buffer condition.

도 3b에서 보듯이, 30분이 경과된 시점에서 반응이 종결되었으며, UDCA의 전환율은 약 48%임을 확인하였다.As shown in FIG. 3B, the reaction was terminated at the time point 30 minutes elapsed, and it was confirmed that the conversion rate of UDCA was about 48%.

다만, 반응산물이 겔화(gelation)되는 현상이 나타남을 확인하였다. However, it was confirmed that the reaction product was gelled.

실시예 2-3: 7αHSDH 및 7βHSDH의 cascade 효소반응Example 2-3: cascade enzyme reaction of 7αHSDH and 7βHSDH

완충액(50mM potassium phosphate, pH 8)에 CDCA 20 g/L, NAD+ 5 mM, sodium pyruvate 50 mM, LDH 0.1 unit/mL 및 7αHSDH 2 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응물을 가열하여 효소활성을 제거하였다. 이어, 상기 반응물에 NADP+ 1 mM, glucose 100mM, GDH 0.1 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 4시간 동안 반응시킨 후, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 측정하였다(도 3c). CDCA 20 g/L, NAD + 5 mM, sodium pyruvate 50 mM, LDH 0.1 unit/mL, and 7αHSDH 2 unit/mL were added to a buffer solution (50 mM potassium phosphate, pH 8), and reacted for 14 hours, and then the reaction product was heated. Thus, enzyme activity was removed. Then, NADP + 1 mM, glucose 100mM, GDH 0.1 unit/mL, and 7βHSDH 2 unit/mL were added to the reaction product, and after reacting for 4 hours, the concentration of CDCA, 7-keto LCA and UDCA according to the course of the reaction time The change was measured (Fig. 3c).

도 3c는 인산완충액 조건에서 7αHSDH, LDH, 7βHSDH 및 GDH를 사용한 단계별 반응에 의하여 CDCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.Figure 3c is a graph comparing the concentration change of CDCA, 7-keto LCA and UDCA over time of the reaction to generate UDCA from CDCA by a stepwise reaction using 7αHSDH, LDH, 7βHSDH and GDH in a phosphate buffer condition.

도 3c에서 보듯이, UDCA의 전환율은 약 48%임을 확인하였다.As shown in Figure 3c, it was confirmed that the conversion rate of UDCA was about 48%.

실시예 2-4: 7αHSDH 및 7βHSDH의 one pot 효소반응Example 2-4: One pot enzyme reaction of 7αHSDH and 7βHSDH

완충액(50mM potassium phosphate, pH 8)에 CDCA 20 g/L, NAD+ 5 mM, NADP+ 1 mM, sodium pyruvate 50 mM, glucose 100mM, LDH 0.1 unit/mL, GDH 0.1 unit/mL, 7αHSDH 2 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 측정하였다(도 3d).CDCA 20 g/L, NAD + 5 mM, NADP + 1 mM, sodium pyruvate 50 mM, glucose 100 mM, LDH 0.1 unit/mL, GDH 0.1 unit/mL, 7αHSDH 2 unit/ After adding mL and 2 unit/mL of 7βHSDH and reacting for 14 hours, changes in the concentration of CDCA, 7-keto LCA and UDCA were measured with the passage of the reaction time (FIG. 3D).

도 3d는 인산완충액 조건에서 7αHSDH, LDH, 7βHSDH 및 GDH를 사용한 단일반응(one-pot reaction)에 의하여 CDCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.Figure 3d shows the change in concentration of CDCA, 7-keto LCA and UDCA over time of the reaction to generate UDCA from CDCA by a one-pot reaction using 7αHSDH, LDH, 7βHSDH and GDH in phosphate buffer conditions. This is a comparison graph.

도 3d에서 보듯이, 2시간이 경과된 시점까지 UDCA가 생성되었으나, 이 후에는 더 이상 UDCA가 생성되지 않고, 7-keto LCA 만이 생성되었으며, UDCA의 전환율은 약 26%임을 확인하였다.As shown in FIG. 3D, UDCA was generated until 2 hours elapsed, but after that, UDCA was no longer generated, and only 7-keto LCA was generated, and it was confirmed that the conversion rate of UDCA was about 26%.

실시예 2-5: 7βHSDH 효소반응시 나타나는 겔화 현상에 대한 고찰Example 2-5: Study on the gelation phenomenon that occurs during the 7βHSDH enzyme reaction

상기 실시예 2-2에서 보듯이, 7βHSDH 효소반응시 반응산물이 겔화(gelation)되는 현상이 나타남을 확인하였는데, 이러한 겔화 현상이 나타나는 원인 및 겔화반응에 의한 영향을 규명하고자 하였다.As shown in Example 2-2, it was confirmed that the reaction product gelled during the 7βHSDH enzyme reaction, and the cause of the gelation and the effect of the gelling reaction were to be investigated.

먼저, 상기 겔화의 원인이 글루코스로부터 전환된 글루콘산(gluconic acid)일 것으로 가정하고, 이를 확인하고자 하였다.First, it was assumed that the cause of the gelation was gluconic acid converted from glucose, and this was to be confirmed.

대략적으로, 인산완충액(50mM potassium phosphate, pH 8)에 20 g/L의 7-keto LCA 또는 UDCA를 가한 다음, 이에 다양한 농도(0, 10, 25, 50, 75 또는 100 mM)의 글루콘산을 가하여 흰색 침전물의 형성여부를 확인하였다(도 3e 및 3f).Approximately, 20 g/L of 7-keto LCA or UDCA was added to a phosphate buffer (50 mM potassium phosphate, pH 8), followed by various concentrations (0, 10, 25, 50, 75 or 100 mM) of gluconic acid. Addition, it was confirmed whether a white precipitate was formed (Figs. 3e and 3f).

도 3e는 7-keto LCA에 글루콘산을 가하고 희색 침전물이 생성되는지의 여부를 확인한 결과를 나타내는 사진이고, 도 3f는 UDCA에 글루콘산을 가하고 희색 침전물이 생성되는지의 여부를 확인한 결과를 나타내는 사진이다.Figure 3e is a photograph showing the result of confirming whether a white precipitate is generated by adding gluconic acid to 7-keto LCA, and Figure 3f is a photograph showing the result of confirming whether a white precipitate is generated by adding gluconic acid to UDCA .

도 3e 및 3f에서 보듯이, 10 mM의 글루콘산을 가할 경우, 7-keto LCA 및 UDCA에서 흰색 침전물이 형성됨을 확인하였다.As shown in Figures 3e and 3f, when 10 mM of gluconic acid is added, it was confirmed that white precipitates were formed in 7-keto LCA and UDCA.

상기 글루콘산의 처리농도에 비례하여 pH가 감소됨을 확인할 수 있었으므로, 글루콘산의 부가에 따른 pH 저하에 의해 7-keto LCA 및 UDCA에서 흰색 침전물이 형성되는 것으로 분석되었다.Since it was confirmed that the pH decreased in proportion to the treatment concentration of gluconic acid, it was analyzed that white precipitates were formed in 7-keto LCA and UDCA due to the decrease in pH due to the addition of gluconic acid.

또한, 상기 겔화에 의해 7βHSDH 효소반응이 영향을 받는지의 여부를 확인하고자 하였다.In addition, it was attempted to confirm whether the 7βHSDH enzymatic reaction was affected by the gelation.

대략적으로, 3종의 인산완충액을 준비하였는데, 하나는 50 mM 인산완충액(실험군 1), 다른 하나는 100 mM 인산완충액(실험군 2), 또 다른 하나는 50 mM 인산완충액을 사용하되 7βHSDH 효소반응 과정 중에 지속적인 적정(titration)을 수행하여 반응시간 동안 pH 8.0을 유지하는 완충액(실험군 3)을 각각 준비하였다.Roughly, three kinds of phosphate buffers were prepared, one 50 mM phosphate buffer (Experiment Group 1), the other 100 mM phosphate buffer (Experiment Group 2), and the other 50 mM phosphate buffer solution, but the 7βHSDH enzyme reaction process During the reaction time, a buffer solution (Experiment Group 3) maintaining pH 8.0 was prepared by performing a continuous titration.

상기 준비된 3종의 인산완충액 각각에 7-keto LCA 20 g/L, NADP+ 1 mM, 글루코스 100 mM, GDH 0.1 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 9시간 동안 반응시킨 후, 반응시간의 경과에 따른 UDCA의 농도변화를 측정하고, 이로부터 UDCA의 전환율을 산출하였다(도 3g, 3h 및 3i).To each of the three prepared phosphate buffers, 7-keto LCA 20 g/L, NADP + 1 mM, glucose 100 mM, GDH 0.1 unit/mL, and 7βHSDH 2 unit/mL were added, reacted for 9 hours, and then the reaction time The change in the concentration of UDCA according to the course of was measured, and the conversion rate of UDCA was calculated from this (Figs. 3g, 3h and 3i).

도 3g는 반응시간의 경과에 따른, 실험군 1 및 2 반응액의 pH 변화를 측정한 결과를 나타내는 그래프이고, 도 3h는 반응시간의 경과에 따른, 실험군 1, 2 및 3 반응액에서 측정된 UDCA 전환율 변화수준을 나타내는 그래프이며, 도 3i는 9시간이 경과된 후, 실험군 1, 2 및 3 반응액에서 측정된 UDCA 전환율을 비교한 결과를 나타내는 그래프이다.Figure 3g is a graph showing the result of measuring the pH change of the reaction solutions in Experimental Groups 1 and 2 with the passage of the reaction time, and Figure 3h is the UDCA measured in the reaction solutions of Experimental groups 1, 2 and 3 with the passage of the reaction time. It is a graph showing the level of change in the conversion rate, and FIG. 3i is a graph showing the result of comparing the UDCA conversion rate measured in the reaction solutions of Experimental Groups 1, 2 and 3 after 9 hours have elapsed.

도 3g, 3h 및 3i에서 보듯이, 반응시작 1시간이 경과된 시점에서 전환반응이 종료되었는데, 상기 전환반응이 수행되는 동안 반응물의 pH는 7.1까지 저하되었고, 이후 점차 증가됨을 확인하였다.As shown in Figs. 3g, 3h and 3i, the conversion reaction was terminated when 1 hour elapsed from the start of the reaction, and it was confirmed that the pH of the reactant decreased to 7.1 during the conversion reaction, and then gradually increased.

또한, 50 mM 인산완충액과 100 mM 인산완충액을 사용한 경우의 UDCA 전환율 보다는 반응시간 동안 지속적으로 적정한 인산완충액을 사용한 경우의 UDCA 전환율이 상대적으로 높은 수준을 나타냄을 확인하였다.In addition, it was confirmed that the UDCA conversion rate was relatively high when the phosphate buffer was continuously appropriate for the reaction time, rather than the UDCA conversion rate when 50 mM phosphate buffer and 100 mM phosphate buffer were used.

따라서, 7βHSDH 효소반응시 나타나는 겔화현상을 억제하면 UDCA의 전환율을 증가시킬 수 있을 것으로 분석되었다.Therefore, it was analyzed that the conversion rate of UDCA could be increased by suppressing the gelation phenomenon that occurs during the 7βHSDH enzyme reaction.

실시예 3: 공융용매(Deep eutectic solvent DES)의 선별Example 3: Screening of deep eutectic solvent DES

상기 실시예 2의 결과에서 보듯이, 7αHSDH 및 7βHSDH를 이용하여 단일반응(one pot reaction)으로 CDCA(Chenodeoxycholic acid)로부터 UDCA(ursodeoxycholic acid)를 생산하는 방법을 수행함에 있어서, 인산염 완충액이 부적절함을 확인하였는 바, 보다 적절하게 사용될 수 있는 공융용매(DES)를 선발하고자 하였다.As shown in the results of Example 2, in performing the method of producing UDCA (ursodeoxycholic acid) from CDCA (Chenodeoxycholic acid) in a one pot reaction using 7αHSDH and 7βHSDH, the phosphate buffer solution was inappropriate. As confirmed, it was attempted to select a eutectic solvent (DES) that could be used more appropriately.

이에 따라, HBA(hydrogen bonding acceptor)의 후보물질로서, 콜린클로라이드(choline chloride) 또는 베타인 수화물(Betaine monohydrate)을 사용하고, HBD(hydrogen bonding donor)의 후보물질로서 에틸렌글리콜(EG), 글리세롤(Gly) 또는 프로필렌 글리콜(PG)을 사용하여 CDCA를 용해시킬 수 있는 공융용매를 선별하고자 하였다Accordingly, choline chloride or betaine monohydrate is used as a candidate material for HBA (hydrogen bonding acceptor), and ethylene glycol (EG), glycerol ( Gly) or propylene glycol (PG) was used to select a eutectic solvent capable of dissolving CDCA.

우선, HBA에 적합한 성분을 선별하기 위하여, 콜린클로라이드 또는 베타인 수화물의 반응전환율을 비교하였다. First, in order to select a component suitable for HBA, the reaction conversion rate of choline chloride or betaine hydrate was compared.

그 결과, 콜린클로라이드 보다는 베타인 수화물이 상대적으로 높은 수준의 반응전환율을 나타냄을 확인하였는 바, HBA로서 베타인 수화물을 선별하였다.As a result, it was confirmed that betaine hydrate showed a relatively high level of reaction conversion rate than choline chloride, and betaine hydrate was selected as HBA.

다음으로, 상기 선별된 베타인 수화물과 함께 사용하기 적합한 HBD를 선발하기 위하여, 베타인 수화물과 상기 HBD 후보물질을 각각 1:1, 1:2 또는 1:3(몰비)로 혼합한 각각의 공융용매를 제조하였다. 이어, 상기 제조된 각 공융용매에 CDCA, 7αHSDH 및 7βHSDH를 가하여 반응시킨 후, 반응산물에 포함된 CDCA, 7-keto-LCA 또는 UDCA의 농도를 측정한 후, 비교하였다(도 4).Next, in order to select HBD suitable for use with the selected betaine hydrate, each eutectic mixture of the betaine hydrate and the HBD candidate material at 1:1, 1:2 or 1:3 (molar ratio), respectively. A solvent was prepared. Then, CDCA, 7αHSDH and 7βHSDH were added to each of the prepared eutectic solvents to react, and then the concentration of CDCA, 7-keto-LCA or UDCA contained in the reaction product was measured and compared (FIG. 4 ).

도 4는 단일반응(one-pot reaction)에 의해 CDCA로부터 UDCA를 생산하기 위한 공융용매를 선발하는 실험과정 및 결과를 나타내는 사진 및 그래프이다.4 is a photograph and graph showing the experimental process and results of selecting a eutectic solvent for producing UDCA from CDCA by a one-pot reaction.

도 4에서 보듯이, 베타인 수화물과 HBD 후보물질의 몰비별 혼합에 의해 침전물이 생성되는 경우는 정상적인 진행되지 않아 제외하였다. 정상적인 반응이 진행된 반응산물 중에서 베타인 수화물과 프로필렌 글리콜(PG)이 1:3(몰비)으로 혼합된 공융용매를 사용한 경우에만 UDCA가 생성됨을 확인하였다.As shown in FIG. 4, the case where the precipitate was generated by mixing the betaine hydrate and the HBD candidate by molar ratio was excluded because it did not proceed normally. It was confirmed that UDCA was produced only when a eutectic solvent in which betaine hydrate and propylene glycol (PG) were mixed in a ratio of 1:3 (molar ratio) was used among the reaction products in which the normal reaction proceeded.

따라서, 단일반응(one-pot reaction)에 의해 CDCA로부터 UDCA를 생산하기 위한 공융용매로는 베타인 수화물과 프로필렌 글리콜(PG)이 1:3(몰비)으로 혼합된 용매를 사용함이 바람직함을 알 수 있었다.Therefore, it was found that it is preferable to use a solvent in which betaine hydrate and propylene glycol (PG) are mixed at 1:3 (molar ratio) as a eutectic solvent for producing UDCA from CDCA by a one-pot reaction. Could.

실시예 4: 공융용매에서 7αHSDH 효소반응Example 4: 7αHSDH enzyme reaction in eutectic solvent

상기 실시예 3에서 선발한 공융용매를 이용하여 7αHSDH 효소반응을 수행하고 이에 적합한 공융용매의 농도를 결정하고자 하였다.7αHSDH enzymatic reaction was performed using the eutectic solvent selected in Example 3, and an appropriate concentration of the eutectic solvent was determined.

대략적으로, 상기 공융용매와 인산완충액(50mM potassium phosphate, pH 8)을 혼합하여, 공융용매의 농도가 0, 10, 20, 30, 40, 50 또는 60%인 각각의 반응용매를 준비하였다. 상기 준비된 각 반응용매에 CDCA 20 g/L, NAD+ 5 mM, sodium pyruvate 50 mM, LDH 0.1 unit/mL 및 7αHSDH 2 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응시간의 경과에 따른 7-keto LCA의 농도변화를 측정하고, 이로부터 7-keto LCA의 전환율을 산출하였다(도 5 및 표 1).Approximately, by mixing the eutectic solvent and phosphate buffer (50mM potassium phosphate, pH 8), each reaction solvent having a concentration of the eutectic solvent of 0, 10, 20, 30, 40, 50 or 60% was prepared. CDCA 20 g/L, NAD + 5 mM, sodium pyruvate 50 mM, LDH 0.1 unit/mL, and 7αHSDH 2 unit/mL were added to each of the prepared reaction solvents, and reacted for 14 hours, followed by 7 The change in concentration of -keto LCA was measured, and the conversion rate of 7-keto LCA was calculated from this (FIG. 5 and Table 1).

도 5는 다양한 농도(20, 40 또는 60%)의 공융용매를 사용하여 7αHSDH 효소반응에 의해 전환된 7-keto LCA의 전환율을 반응시간의 경과에 따라 비교한 결과를 나타내는 그래프이다. 5 is a graph showing the result of comparing the conversion rate of 7-keto LCA converted by the 7αHSDH enzymatic reaction using a eutectic solvent of various concentrations (20, 40 or 60%) over the course of the reaction time.

공융용매 농도별 7-keto LCA 전환율7-keto LCA conversion rate by eutectic solvent concentration 공융용매농도(%)Eutectic solvent concentration (%) 전환율(%)Conversion rate (%) 0
10
20
30
40
50
60
0
10
20
30
40
50
60
87
90
93
90
71
24
8
87
90
93
90
71
24
8

상기 도 5 및 표 1에서 보듯이, 공융용매의 농도에 따라 7αHSDH 효소반응에 의한 7-keto LCA의 전환율이 변화됨을 확인하였다.As shown in Fig. 5 and Table 1, it was confirmed that the conversion rate of 7-keto LCA by the 7αHSDH enzyme reaction was changed according to the concentration of the eutectic solvent.

특히, 공융용매의 농도가 20%까지 증가할 경우 이에 비례하여 7-keto LCA의 전환율이 증가하여, 20%에서 최대 전환율을 나타내었으나, 공융용매의 농도가 더 증가하면 오히려 7-keto LCA의 전환율이 감소됨을 알 수 있었다.In particular, when the concentration of the eutectic solvent increased to 20%, the conversion rate of 7-keto LCA increased proportionally, showing the maximum conversion rate at 20%. However, when the concentration of the eutectic solvent increased further, the conversion rate of 7-keto LCA It can be seen that this decreases.

따라서, 7αHSDH 효소반응을 최적화하기 위한 공융용매의 농도는 20%임을 알 수 있었다.Therefore, it was found that the concentration of the eutectic solvent for optimizing the 7αHSDH enzymatic reaction was 20%.

실시예 5: 공융용매에서 7βHSDH 효소반응Example 5: 7βHSDH enzyme reaction in eutectic solvent

상기 실시예 3에서 선발한 공융용매를 이용하여 7βHSDH 효소반응을 수행하고 이에 적합한 공융용매의 농도를 결정하고자 하였다.7βHSDH enzymatic reaction was performed using the eutectic solvent selected in Example 3, and an appropriate concentration of the eutectic solvent was determined.

대략적으로, 상기 공융용매와 인산완충액(50mM potassium phosphate, pH 8)을 혼합하여, 공융용매의 농도가 0, 10, 20, 30, 40, 50 또는 60%인 각각의 반응용매를 준비하였다. 상기 준비된 각 반응용매에 7-keto LCA 20 g/L, NADP+ 1 mM, 글루코스 100 mM, GDH 0.1 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 6시간 동안 반응시킨 후, 반응시간의 경과에 따른 UDCA의 농도변화를 측정하고, 이로부터 UDCA의 전환율을 산출하였다(도 6a 및 표 2).Approximately, by mixing the eutectic solvent and phosphate buffer (50mM potassium phosphate, pH 8), each reaction solvent having a concentration of the eutectic solvent of 0, 10, 20, 30, 40, 50 or 60% was prepared. To each of the prepared reaction solvents, 7-keto LCA 20 g/L, NADP + 1 mM, glucose 100 mM, GDH 0.1 unit/mL, and 7βHSDH 2 unit/mL were added, reacted for 6 hours, and then the reaction time elapsed. The change in the concentration of UDCA was measured, and the conversion rate of UDCA was calculated from this (FIG. 6A and Table 2).

도 6a는 다양한 농도(20, 40 또는 60%)의 공융용매를 사용하여 7βHSDH 효소반응에 의해 전환된 UDCA의 전환율을 반응시간의 경과에 따라 비교한 결과를 나타내는 그래프이다. 6A is a graph showing the result of comparing the conversion rate of UDCA converted by the 7βHSDH enzymatic reaction using a eutectic solvent of various concentrations (20, 40 or 60%) over the course of the reaction time.

공융용매 농도별 UDCA 전환율UDCA conversion rate by eutectic solvent concentration 공융용매농도(%)Eutectic solvent concentration (%) 전환율(%)Conversion rate (%) 0
10
20
30
40
50
60
0
10
20
30
40
50
60
48
82
88
98
99
64
13
48
82
88
98
99
64
13

상기 도 6a 및 표 2에서 보듯이, 공융용매의 농도에 따라 7βHSDH 효소반응에 의한 UDCA의 전환율이 변화됨을 확인하였다.6A and Table 2, it was confirmed that the conversion rate of UDCA by the 7βHSDH enzyme reaction was changed according to the concentration of the eutectic solvent.

특히, 공융용매의 농도가 40%까지 증가할 경우 이에 비례하여 UDCA의 전환율이 증가하여, 40%에서 최대 전환율을 나타내었으나, 공융용매의 농도가 더 증가하면 오히려 UDCA의 전환율이 감소됨을 알 수 있었다.In particular, when the concentration of the eutectic solvent increased to 40%, the conversion rate of UDCA increased in proportion to this, showing the maximum conversion rate at 40%, but it was found that the conversion rate of UDCA decreased as the concentration of the eutectic solvent increased further. .

다만, 20% 공융용매를 사용한 반응 그래프와 40% 공융용매를 사용한 반응그래프에서 보듯이, 40% 공융용매를 사용할 경우에는 반응종결시간이 늦어짐을 확인하였다.However, as shown in the reaction graph using 20% eutectic solvent and the reaction graph using 40% eutectic solvent, it was confirmed that the reaction termination time was delayed when 40% eutectic solvent was used.

따라서, 7βHSDH 효소반응을 최적화하기 위한 공융용매의 농도는 40% 이하임을 알 수 있었다.Therefore, it was found that the concentration of the eutectic solvent for optimizing the 7βHSDH enzymatic reaction was 40% or less.

한편, 7βHSDH 효소반응을 1.5시간 동안 수행한 경우, 반응산물이 겔화(gelation)되는 현상이 나타남을 확인하였다(도 6b). On the other hand, when the 7βHSDH enzymatic reaction was performed for 1.5 hours, it was confirmed that the reaction product was gelled (Fig. 6b).

도 6b는 0 내지 20%의 공융용매를 사용하여 7βHSDH 효소반응을 수행한 반응산물을 촬영한 결과를 나타내는 사진이다.6B is a photograph showing the result of photographing a reaction product obtained by performing a 7βHSDH enzymatic reaction using 0 to 20% eutectic solvent.

실시예 6: 공융용매를 사용한 단일반응(one pot reaction)Example 6: One pot reaction using a eutectic solvent

실시예 6-1: 공융용매를 사용한 단일반응(one-pot reaction ) Example 6-1: One-pot reaction using a eutectic solvent

상기 실시예 4 및 5의 결과에 따라, 7αHSDH 및 7βHSDH 효소반응을 모두 만족시킬 수 있는 공융용매의 농도가 20%임을 확인하였는 바, 상기 20%의 공융용매를 사용한 단일반응(one-pot reaction)에 의하여 CDCA를 UDCA로 전환시키고자 하였다.According to the results of Examples 4 and 5, it was confirmed that the concentration of the eutectic solvent capable of satisfying both 7αHSDH and 7βHSDH enzymatic reaction was 20%, and a single reaction using the 20% eutectic solvent Was intended to convert CDCA to UDCA.

대략적으로, 20% 공융용매에 CDCA 20 g/L, NAD+ 5 mM, NADP+ 1 mM, sodium pyruvate 50 mM, glucose 100mM, LDH 0.1 unit/mL, GDH 0.1 unit/mL, 7αHSDH 2 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 측정하였다(도 7a).Approximately, 20 g/L of CDCA, NAD + 5 mM, NADP + 1 mM, sodium pyruvate 50 mM, glucose 100 mM, LDH 0.1 unit/mL, GDH 0.1 unit/mL, 7αHSDH 2 unit/mL and 7βHSDH 2 unit/mL was added, and after reacting for 14 hours, changes in the concentration of CDCA, 7-keto LCA, and UDCA were measured with the passage of the reaction time (FIG. 7A).

도 7a는 20% 공융용매 조건에서 7αHSDH, LDH, 7βHSDH 및 GDH를 사용한 단일반응(one-pot reaction)에 의하여 CDCA로부터 UDCA를 생성하는 반응의 시간경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 비교한 그래프이다.Figure 7a is the concentration of CDCA, 7-keto LCA, and UDCA over time of the reaction to generate UDCA from CDCA by a one-pot reaction using 7αHSDH, LDH, 7βHSDH and GDH under 20% eutectic solvent conditions. This is a graph comparing the changes.

도 7a에서 보듯이, 반응물내 중간산물인 7-keto LCA의 농도는 2.5%(몰비) 이하로 유지되었고, UDCA의 최종 전환율은 약 89%인 것으로 확인되었다.As shown in FIG. 7A, the concentration of 7-keto LCA, an intermediate product in the reaction product, was maintained at 2.5% (molar ratio) or less, and it was confirmed that the final conversion rate of UDCA was about 89%.

실시예 6-2: 단일반응(one-pot reaction)을 위한 공융용매의 최적 농도Example 6-2: Optimal concentration of eutectic solvent for one-pot reaction

다른 농도의 공융용매를 사용한 단일반응(one-pot reaction) 수행시 UDCA의 전환율을 비교하기 위하여, 다양한 농도의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행하였다.In order to compare the conversion rate of UDCA when performing a one-pot reaction using different concentrations of eutectic solvent, a one-pot reaction was performed using various concentrations of eutectic solvent.

대략적으로, 다양한 농도(0, 10, 20, 30, 40, 50 또는 60%)의 공융용매에 CDCA 20 g/L, NAD+ 5 mM, NADP+ 1 mM, sodium pyruvate 50 mM, glucose 100mM, LDH 0.1 unit/mL, GDH 0.1 unit/mL, 7αHSDH 2 unit/mL 및 7βHSDH 2 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 측정하였다(도 7b, 7c 및 표 3). Approximately, 20 g/L of CDCA, NAD + 5 mM, NADP + 1 mM, sodium pyruvate 50 mM, glucose 100 mM, LDH in eutectic solvents of various concentrations (0, 10, 20, 30, 40, 50 or 60%) 0.1 unit/mL, GDH 0.1 unit/mL, 7αHSDH 2 unit/mL and 7βHSDH 2 unit/mL were added and reacted for 14 hours. It was measured (Figs. 7b, 7c and Table 3).

도 7b는 다양한 농도의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, CDCA, 7-keto LCA 및 UDCA의 최종 전환율(몰비)을 비교한 결과를 나타내는 그래프이고, 도 7c는 0, 20, 40 또는 60%의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 전환율(몰비)의 변화를 비교한 결과를 나타내는 그래프이다.Figure 7b is a graph showing the result of comparing the final conversion (molar ratio) of CDCA, 7-keto LCA and UDCA when performing a one-pot reaction using a eutectic solvent of various concentrations, Figure 7c is When a one-pot reaction is performed using 0, 20, 40 or 60% eutectic solvent, the change in the conversion rate (molar ratio) of CDCA, 7-keto LCA and UDCA according to the elapse of the reaction time is compared. It is a graph showing one result.

단일반응(one-pot reaction)시 공융용매 농도별 UDCA 전환율UDCA conversion rate by concentration of eutectic solvent in one-pot reaction 공융용매농도(%)Eutectic solvent concentration (%) 전환율(%)Conversion rate (%) 0
10
20
30
40
50
60
0
10
20
30
40
50
60
26
77
89
85
65
18
6
26
77
89
85
65
18
6

도 7b, 7c 및 표 3에서 보듯이, 공융용매의 농도에 따라 단일반응(one-pot reaction)에 의한 UDCA의 전환율이 변화됨을 확인하였다.7b, 7c and Table 3, it was confirmed that the conversion rate of UDCA was changed by a one-pot reaction according to the concentration of the eutectic solvent.

특히, 공융용매의 농도가 20%까지 증가할 경우 이에 비례하여 UDCA의 전환율이 증가하여, 20%에서 최대 전환율을 나타내었으나, 공융용매의 농도가 더 증가하면 오히려 UDCA의 전환율이 감소됨을 알 수 있었다.In particular, when the concentration of the eutectic solvent increased to 20%, the conversion rate of UDCA increased in proportion to this, showing the maximum conversion rate at 20%, but it was found that the conversion rate of UDCA decreased as the concentration of the eutectic solvent increased further. .

따라서, 단일반응(one-pot reaction)을 최적화하기 위한 공융용매의 농도는 20% 임을 알 수 있었다.Therefore, it was found that the concentration of the eutectic solvent for optimizing the one-pot reaction was 20%.

실시예 6-3: 7βHSDH 효소반응 조건을 변화시킨 단일반응(one-pot reaction)Example 6-3: One-pot reaction with changing 7βHSDH enzymatic reaction conditions

단일반응(one-pot reaction) 결과에 7βHSDH 효소반응이 기여하는 바를 분석하기 위하여, 7βHSDH 효소반응에 관여하는 7βHSDH 및 GDH의 농도를 증가시킨 조건에서 단일반응(one-pot reaction)을 수행하였다.In order to analyze the contribution of the 7βHSDH enzymatic reaction to the one-pot reaction result, a one-pot reaction was performed under the condition of increasing the concentrations of 7βHSDH and GDH involved in the 7βHSDH enzymatic reaction.

대략적으로, 다양한 농도(0, 10, 20, 30, 40, 50 또는 60%)의 공융용매에 CDCA 20 g/L, NAD+ 5 mM, NADP+ 1 mM, sodium pyruvate 50 mM, glucose 100mM, LDH 0.1 unit/mL, GDH 1 unit/mL, 7αHSDH 2 unit/mL 및 7βHSDH 10 unit/mL를 가하고, 14시간 동안 반응시킨 후, 반응시간의 경과에 따른 UDCA의 농도변화를 측정하였다(도 7d 및 7e). Approximately, 20 g/L of CDCA, NAD + 5 mM, NADP + 1 mM, sodium pyruvate 50 mM, glucose 100 mM, LDH in eutectic solvents of various concentrations (0, 10, 20, 30, 40, 50 or 60%) 0.1 unit/mL, GDH 1 unit/mL, 7αHSDH 2 unit/mL, and 7βHSDH 10 unit/mL were added and reacted for 14 hours, and then the change in the concentration of UDCA with the passage of the reaction time was measured (Figs. 7d and 7e. ).

도 7d는 7βHSDH 및 GDH의 농도가 증가된 조건에서, 다양한 농도의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, UDCA의 최종 전환율(몰비)을 비교한 결과를 나타내는 그래프이고, 도 7e는 7βHSDH 및 GDH의 농도가 증가된 조건에서, 0, 20 또는 40%의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, 반응시간의 경과에 따른 UDCA의 전환율(몰비)의 변화를 비교한 결과를 나타내는 그래프이다.7D is a graph showing the result of comparing the final conversion rate (molar ratio) of UDCA in the case of performing a one-pot reaction using a eutectic solvent of various concentrations under the condition of increasing the concentration of 7βHSDH and GDH. 7E is a case in which a one-pot reaction was performed using a eutectic solvent of 0, 20 or 40% under the condition of increasing the concentration of 7βHSDH and GDH, the conversion rate of UDCA according to the course of the reaction time ( This is a graph showing the result of comparing the change in molar ratio).

상기 도 7b의 결과와 도 7d의 결과를 비교하면, 7βHSDH 및 GDH의 농도가 증가된 조건에서는 단일반응(one-pot reaction)에 의한 UDCA의 최대 전환율이 89%에서 93%로 증가됨을 확인하였다.Comparing the results of FIG. 7b with the results of FIG. 7d, it was confirmed that the maximum conversion rate of UDCA by a one-pot reaction increased from 89% to 93% under the condition of increasing the concentration of 7βHSDH and GDH.

또한, 상기 도 7c의 결과와 도 7e의 결과를 비교하면, UDCA의 전환이 종료되는 반응시간이 7시간에서 2시간으로 단축됨을 확인하였다.In addition, when comparing the results of FIG. 7c with the results of FIG. 7e, it was confirmed that the reaction time for ending the conversion of UDCA was shortened from 7 hours to 2 hours.

따라서, 단일반응(one-pot reaction)시 각 성분의 농도를 변화시키면, UDCA의 최종 전환율과 반응시간을 조절할 수 있을 것으로 분석되었다.Therefore, it was analyzed that if the concentration of each component was changed during a one-pot reaction, the final conversion rate and reaction time of UDCA could be controlled.

실시예 6-4: 단일반응(one-pot reaction)시 반응조건의 조정에 따른 UDCA의 전환율 증가Example 6-4: Increasing the conversion rate of UDCA according to the adjustment of the reaction conditions during a one-pot reaction

상기 실시예 6-3의 결과로부터, 단일반응(one-pot reaction) 수행시 각 성분의 농도를 변화시킬 경우, 최종 UDCA의 최종 전환율과 반응시간을 조절할 수 있을 것으로 분석되었으므로, 각 성분의 농도를 증가시킨 조건(2.5배)에서 단일반응(one-pot reaction)을 수행하였다.From the results of Example 6-3, it was analyzed that when the concentration of each component was changed when performing a one-pot reaction, the final conversion rate and reaction time of the final UDCA could be controlled, so the concentration of each component was A single-pot reaction was performed under the increased conditions (2.5 times).

대략적으로, 20% 공융용매에 CDCA 50 g/L, NAD+ 5 mM, NADP+ 1 mM, sodium pyruvate 125 mM, glucose 250mM, LDH 0.25 unit/mL, GDH 0.25 unit/mL, 7αHSDH 5 unit/mL 및 7βHSDH 5 unit/mL를 가하고, 18시간 동안 반응시킨 후, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 농도변화를 측정하였다(도 7f).Approximately, 50 g/L of CDCA, NAD + 5 mM, NADP + 1 mM, sodium pyruvate 125 mM, glucose 250 mM, LDH 0.25 unit/mL, GDH 0.25 unit/mL, 7αHSDH 5 unit/mL and 7βHSDH 5 unit/mL was added, and after reacting for 18 hours, changes in the concentration of CDCA, 7-keto LCA, and UDCA were measured with the passage of the reaction time (FIG. 7f).

도 7f는 단일반응(one-pot reaction)에 관여하는 각 성분의 농도가 증가된 조건에서, 20%의 공융용매를 사용하여 단일반응(one-pot reaction)을 수행한 경우, 반응시간의 경과에 따른 CDCA, 7-keto LCA 및 UDCA의 전환율(몰비)의 변화를 비교한 결과를 나타내는 그래프이다.Figure 7f is a single reaction (one-pot reaction) using a eutectic solvent of 20% under the condition of increasing the concentration of each component involved in the single reaction (one-pot reaction), the elapse of the reaction time It is a graph showing the result of comparing the change in the conversion rate (molar ratio) of CDCA, 7-keto LCA, and UDCA according to the above.

도 7f에서 보듯이, 반응시작 후 약 12시간이 경과된 시점에서 UDCA의 전환이 종료되었으며, 종료된 UDCA의 전환율을 약 70%를 나타냄을 확인하였다.As shown in FIG. 7f, it was confirmed that the conversion of UDCA was terminated at about 12 hours after the start of the reaction, and the conversion rate of the terminated UDCA was about 70%.

상기 UDCA의 전환이 종료된 시점에서, 반응물에 7αHSDH 및 7βHSDH를 추가하고 반응물의 pH를 8.0으로 적정한 결과, 단일반응(one-pot reaction)이 추가로 진행되어 UDCA의 전환율이 증가하였으며, 약 6시간이 추가로 경과된 시점에서 UDCA의 전환이 종료되었으며, 종료된 UDCA의 전환율을 약 93%를 나타냄을 확인하였다.When the conversion of UDCA was completed, 7αHSDH and 7βHSDH were added to the reaction product and the pH of the reactant was titrated to 8.0. As a result, a one-pot reaction further proceeded to increase the conversion rate of UDCA, and about 6 hours. It was confirmed that the conversion of UDCA was terminated at the time when this addition elapsed, and the conversion rate of UDCA that was terminated was about 93%.

따라서, 20% 공융용매 조건에서 실용화 가능한 고농도의 CDCA(50g/L)를 기질로 사용할 경우 93%의 높은 전환율을 나타내었으므로, 산업적인 생산 가능성이 높을 것으로 예상되었다.Therefore, when a high concentration of CDCA (50g/L), which can be practically used in a 20% eutectic solvent condition, was used as a substrate, it exhibited a high conversion rate of 93%, which is expected to have high industrial production potential.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features thereof. In this regard, the embodiments described above are illustrative in all respects and should be understood as not limiting. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the claims to be described later rather than the above detailed description and equivalent concepts are included in the scope of the present invention.

Claims (19)

공융용매, 7αHSDH(7 alpha-hydroxy steroid dehydrogenase) 및 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 포함하는, UDCA(ursodeoxycholic acid) 생산용 조성물.
A eutectic solvent, 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) and 7βHSDH (7 beta-hydroxy steroid dehydrogenase) containing, UDCA (ursodeoxycholic acid) production composition.
제1항에 있어서,
상기 공융용매는 HBA(Hydrogen bonding acceptors) 및 HBD(Hydrogen Bonding Donor)를 포함하는 것인, UDCA 생산용 조성물.
The method of claim 1,
The eutectic solvent is HBA (Hydrogen bonding acceptors) and HBD (Hydrogen Bonding Donor) containing the, UDCA production composition.
제4항에 있어서,
상기 HBA는 베타인 수화물(Betaine monohydrate)인 것인, UDCA 생산용 조성물.
The method of claim 4,
The HBA is a betaine hydrate (Betaine monohydrate) that, UDCA production composition.
제4항에 있어서,
상기 HBD는 프로필렌 글리콜인 것인, UDCA 생산용 조성물.
The method of claim 4,
The HBD is propylene glycol, the composition for producing UDCA.
제1항에 있어서,
상기 조성물은 CDCA(Chenodeoxycholic acid)를 기질로 사용하여 UDCA를 생산하는데 사용되는 것인, UDCA 생산용 조성물.
The method of claim 1,
The composition is used to produce UDCA using CDCA (Chenodeoxycholic acid) as a substrate, a composition for producing UDCA.
제1항에 있어서,
상기 7αHSDH는 CDCA를 7-keto LCA(7-Ketolithocholic acid)로 전환시키는 효소활성을 나타내고, 상기 7βHSDH는 7-keto LCA를 UDCA로 전환시키는 효소활성을 나타내는 것인, UDCA 생산용 조성물.
The method of claim 1,
The 7αHSDH represents the enzymatic activity of converting CDCA into 7-keto LCA (7-Ketolithocholic acid), and the 7βHSDH represents the enzymatic activity of converting 7-keto LCA into UDCA, a composition for UDCA production.
제1항 내지 제6항 중 어느 한 항의 조성물을 포함하는 UDCA(ursodeoxycholic acid) 생산용 키트.
A kit for producing UDCA (ursodeoxycholic acid) comprising the composition of any one of claims 1 to 6.
(a) 공융용매를 포함하는 반응용매 조건에서, CDCA(Chenodeoxycholic acid)와 7αHSDH(7 alpha-hydroxy steroid dehydrogenase)를 반응시켜서 7-keto LCA(7-Ketolithocholic acid)를 수득하는 단계; 및,
(b) 공융용매를 포함하는 반응용매 조건에서, 상기 수득한 7-keto LCA와 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 반응시켜서, UDCA(ursodeoxycholic acid)를 수득하는 단계를 포함하는, 이단계 반응에 의한 UDCA 생산방법.
(a) obtaining 7-keto LCA (7-Ketolithocholic acid) by reacting CDCA (Chenodeoxycholic acid) and 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) under a reaction solvent condition including a eutectic solvent; And,
(b) a two-step reaction comprising the step of reacting the obtained 7-keto LCA with 7βHSDH (7 beta-hydroxy steroid dehydrogenase) under the reaction solvent condition containing a eutectic solvent to obtain UDCA (ursodeoxycholic acid). UDCA production method by.
제8항에 있어서,
상기 (a) 단계는 NAD+, LDH 및 피루베이트(sodium pyruvate)를 추가로 사용하여 수행하는 것인, 방법.
The method of claim 8,
The (a) step is to be performed by using NAD + , LDH and pyruvate (sodium pyruvate) additionally.
제8항에 있어서,
상기 (b) 단계는 NADP+, GDH 및 글루코스를 추가로 사용하여 수행하는 것인, 방법.
The method of claim 8,
The (b) step is to be performed by using NADP + , GDH and glucose additionally.
제8항에 있어서,
상기 공융용매는 베타인 수화물(HBA) 및 프로필렌 글리콜(HBD)을 포함하는 것인, 방법.
The method of claim 8,
The eutectic solvent is a method comprising betaine hydrate (HBA) and propylene glycol (HBD).
제8항에 있어서,
상기 (a) 단계의 반응용매는 1 내지 40%(v/v)의 공융용매를 포함하는 것인, 방법.
The method of claim 8,
The reaction solvent in step (a) is 1 to 40% (v/v) of the eutectic solvent.
제11항에 있어서,
상기 (b) 단계의 반응용매는 1 내지 50%(v/v)의 공융용매를 포함하는 것인, 방법.
The method of claim 11,
The reaction solvent of the step (b) is 1 to 50% (v/v) of the eutectic solvent.
제8항에 있어서,
상기 (b) 단계를 수행할 경우, 반응물이 pH 8.0을 유지하도록 적정(titration)하는 단계를 추가로 포함하는 것인, 방법.
The method of claim 8,
When performing the step (b), the method further comprising the step of titration (titration) so that the reactant maintains a pH of 8.0.
공융용매를 포함하는 반응용매 조건에서, CDCA(Chenodeoxycholic acid)에, 7αHSDH(7 alpha-hydroxy steroid dehydrogenase)와 7βHSDH(7 beta-hydroxy steroid dehydrogenase)를 함께 가하여 반응시키는 단계를 포함하는, 단일반응(one-pot reaction)에 의한 UDCA(ursodeoxycholic acid) 생산방법.
One reaction comprising the step of reacting by adding 7αHSDH (7 alpha-hydroxy steroid dehydrogenase) and 7βHSDH (7 beta-hydroxy steroid dehydrogenase) to CDCA (Chenodeoxycholic acid) under the conditions of a reaction solvent including a eutectic solvent. -pot reaction) production method of UDCA (ursodeoxycholic acid).
제15항에 있어서,
상기 공융용매는 베타인 수화물(HBA) 및 프로필렌 글리콜(HBD)을 포함하는 것인, 방법.
The method of claim 15,
The eutectic solvent is a method comprising betaine hydrate (HBA) and propylene glycol (HBD).
제15항에 있어서,
상기 반응용매는 1 내지 40%(v/v)의 공융용매를 포함하는 것인, 방법.
The method of claim 15,
The reaction solvent is to contain a eutectic solvent of 1 to 40% (v / v), the method.
제15항에 있어서,
상기 반응은 NAD+, NADP+, LDH, GDH, 피루베이트(sodium pyruvate) 및 글루코스를 추가로 사용하여 수행하는 것인, 방법.
The method of claim 15,
The reaction is NAD + , NADP + , LDH, GDH, pyruvate (sodium pyruvate) and glucose are further used to perform the method.
제15항에 있어서,
반응물이 pH 8.0을 유지하도록 적정(titration)하는 단계를 추가로 포함하는 것인, 방법.


The method of claim 15,
The method of claim 1, further comprising titrating the reaction to maintain a pH of 8.0.


KR1020200141188A 2019-10-28 2020-10-28 Process for preparing ursodeoxycholic acid using deep eutectic solvent KR102557964B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190134445 2019-10-28
KR1020190134445 2019-10-28

Publications (2)

Publication Number Publication Date
KR20210050479A true KR20210050479A (en) 2021-05-07
KR102557964B1 KR102557964B1 (en) 2023-07-21

Family

ID=75715411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200141188A KR102557964B1 (en) 2019-10-28 2020-10-28 Process for preparing ursodeoxycholic acid using deep eutectic solvent

Country Status (2)

Country Link
KR (1) KR102557964B1 (en)
WO (1) WO2021085997A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521964A (en) * 2022-09-19 2022-12-27 湖北共同生物科技有限公司 Preparation method of steroid hormone drug intermediate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018675A (en) * 2016-06-20 2019-02-25 파마젤 게엠베하 The in vivo transformation coupled with ursodeoxycholic acid of chenodeoxycholic acid and the enzyme mutants applicable to this method
KR20190069016A (en) * 2017-12-11 2019-06-19 주식회사 비제이바이오켐 Manufacturing method of fatty acid ester

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247198B2 (en) * 2007-09-21 2012-08-21 Friedrich Srienc Enzymatic processing in deep eutectic solvents
CN105861613B (en) * 2016-03-30 2019-12-13 中山百灵生物技术有限公司 Preparation method of ursodeoxycholic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018675A (en) * 2016-06-20 2019-02-25 파마젤 게엠베하 The in vivo transformation coupled with ursodeoxycholic acid of chenodeoxycholic acid and the enzyme mutants applicable to this method
KR20190069016A (en) * 2017-12-11 2019-06-19 주식회사 비제이바이오켐 Manufacturing method of fatty acid ester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521964A (en) * 2022-09-19 2022-12-27 湖北共同生物科技有限公司 Preparation method of steroid hormone drug intermediate
CN115521964B (en) * 2022-09-19 2024-04-12 湖北共同生物科技有限公司 Preparation method of steroid hormone drug intermediate

Also Published As

Publication number Publication date
WO2021085997A1 (en) 2021-05-06
KR102557964B1 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
KR102557964B1 (en) Process for preparing ursodeoxycholic acid using deep eutectic solvent
CN106086149A (en) A kind of chemical-enzymatic prepares the method for ursodesoxycholic acid
CN104350157B (en) Process for the selective reduction of bile acids, salts or derivatives thereof, in biphasic system
WO2013117584A1 (en) Method for enzymatic redox cofactor regeneration
Partridge et al. A stereoselective synthesis of the 24 (R), 25-dihydroxycholesterol side chain
WO2013117251A1 (en) Method for enzymatic redox cofactor regeneration
IE55533B1 (en) Steroid bioconversion
WO2017051437A2 (en) A nucleotide sequence encoding 7-dehydrocholesterol reductase, recombinant constructs and recombinant organisms comprising said sequence
Biellmann Resolution of alcohols by cholesterol oxidase from Rhodococcus erythropolis: lack of enantiospecificity for the steroids
JP6947409B2 (en) Lipase activity measurement method, measurement reagent, and substrate solution for lipase activity measurement
WO2022084752A1 (en) Process for the production of 21-(acetyloxy)-17-(propionyloxy)-pregn-4-ene-3,20-dione
CN106957886A (en) A kind of preparation method of urso
CN111118079A (en) Composite powder containing calcium gluconate and fructo-oligosaccharide and preparation method thereof
Criss et al. Inhibitors of the catalytic activity of bovine adrenal glucose-6-phosphate dehydrogenase
KR20220088563A (en) Agent and method for preparing peracetic acid-type composition using enzyme
JP2590228B2 (en) Method for producing diiodomethyl-p-tolylsulfone
CN114410727B (en) Preparation method of clavulanone
CN107764989A (en) A kind of Detection reagent for aspartate aminotransferase box and its preparation application method
CN109231274B (en) Method for preparing photocatalyst potassium phosphotungstate by using tungsten-containing alkali cooking residues
SU1204567A1 (en) Method of producing tetrachlormercurhydrogen acid
CN114752636A (en) Application of composition containing alpha-glucosidase in production of gluconate by taking glucose crystallization mother liquor as raw material and method
JPH05163002A (en) Production of hydrogen by using grana
JPS62244500A (en) Methane fermentation method and apparatus
US742174A (en) Process of making adhesives.
KR20060123647A (en) Improved process for the preparation of 9,11 epoxy steroids

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant