KR20210047654A - MEG regeneration system and marine structure including the same - Google Patents
MEG regeneration system and marine structure including the same Download PDFInfo
- Publication number
- KR20210047654A KR20210047654A KR1020190131516A KR20190131516A KR20210047654A KR 20210047654 A KR20210047654 A KR 20210047654A KR 1020190131516 A KR1020190131516 A KR 1020190131516A KR 20190131516 A KR20190131516 A KR 20190131516A KR 20210047654 A KR20210047654 A KR 20210047654A
- Authority
- KR
- South Korea
- Prior art keywords
- meg
- rich
- salt
- discharged
- rich meg
- Prior art date
Links
- 230000008929 regeneration Effects 0.000 title claims abstract description 36
- 238000011069 regeneration method Methods 0.000 title claims abstract description 36
- 150000003839 salts Chemical class 0.000 claims abstract description 130
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000004821 distillation Methods 0.000 claims abstract description 35
- 239000012528 membrane Substances 0.000 claims abstract description 30
- 239000002002 slurry Substances 0.000 claims abstract description 21
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 11
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 6
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 4
- GAPFINWZKMCSBG-UHFFFAOYSA-N 2-(2-sulfanylethyl)guanidine Chemical compound NC(=N)NCCS GAPFINWZKMCSBG-UHFFFAOYSA-N 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 4
- 238000007781 pre-processing Methods 0.000 abstract 2
- 230000001376 precipitating effect Effects 0.000 abstract 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 188
- 239000007789 gas Substances 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000000645 desinfectant Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/06—Separation of liquids from each other by electricity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/008—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using chemical heat generating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/202—Alcohols or their derivatives
- B01D2252/2023—Glycols, diols or their derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/22—Cooling or heating elements
- B01D2313/221—Heat exchangers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 MEG 재생 시스템 및 이를 포함하는 해양 구조물에 관한 것이다.The present invention relates to a MEG regeneration system and an offshore structure including the same.
천연 가스 생산을 위한 해양 구조물에서, 천연 가스 생산 시 해저 생산 배관 내부가 하이드레이트 생성 온도, 압력 조건에 도달하면 하이드레이트가 생성될 수 있고, 이는 상기 배관 내부의 막힘을 초래할 수 있다.In offshore structures for natural gas production, hydrates may be generated when the inside of the subsea production pipe reaches the hydrate production temperature and pressure conditions during natural gas production, which may cause clogging of the inside of the pipe.
하이드레이트의 생성을 근본적으로 억제하기 위한 수단으로 열역학적 억제제가 사용될 수 있으며, 일반적으로 MEG(Mono Ethylene Glycol)가 널리 이용되고 있다. 따라서, 대부분의 해양 구조물에서는 해저 생산 배관 막힘을 방지하기 위해 웰(well)이나 매니폴드(manifold), 또는 탑사이드 시스템 중 하이드레이트 형성 가능성이 높은 부분에 MEG를 주입하고 있다.A thermodynamic inhibitor may be used as a means for fundamentally inhibiting the formation of hydrate, and in general, Mono Ethylene Glycol (MEG) is widely used. Accordingly, in most offshore structures, MEG is injected into a well, a manifold, or a portion of a top-side system with a high possibility of hydrate formation in order to prevent clogging of subsea production pipes.
해저 생산 배관에 MEG를 주입하는 경우, MEG는 물을 머금게 되면서 리치(Rich) MEG를 형성하게 되는데, 리치 MEG는 물 속에 녹아있던 염 성분도 함유하게 된다. 사용된 MEG는 재사용을 위해 소정의 MEG 재생 공정을 거칠 수 있다. 상기 MEG 재생 공정은 예를 들어, 리치 MEG를 탑사이드에 설치된 재생 시스템에 공급하여 MEG를 재생하는 단계를 포함할 수 있으며, 이는 염 성분의 제거 공정(reclamation) 및 물 제거 공정(regeneration)을 포함할 수 있다. When MEG is injected into a submarine production pipe, the MEG retains water and forms a rich MEG, and the rich MEG also contains salts dissolved in the water. The used MEG may undergo a predetermined MEG regeneration process for reuse. The MEG regeneration process may include, for example, supplying rich MEG to a regeneration system installed on the top side to regenerate MEG, which includes a salt component reclamation and a water removal process. can do.
종래 염 성분의 제거 공정은 플래시 세퍼레이터를 사용하여 MEG와 물을 기상으로, 염 성분을 슬러리 형태로 분리하였다. 이때 상기 세퍼레이터로 유입되는 리치 MEG의 온도는 약 20 내지 50℃이며, 염 성분 제거에 요구되는 온도는 약 100 내지 120℃이다. 따라서, 염 성분 제거를 위해 상기 세퍼레이터 하단에 히터를 연결하여 리치 MEG를 순환시키는 방식을 사용하는데, 이러한 경우에도 50℃ 이상의 온도 상승을 위해 순환에 요구되는 유량이 증가하게 되고, 이는 상기 세퍼레이터의 높이를 증가시키는 원인이 되었다.In the conventional process of removing salt components, a flash separator was used to separate MEG and water in a gas phase, and a salt component in a slurry form. At this time, the temperature of the rich MEG introduced into the separator is about 20 to 50°C, and the temperature required to remove the salt component is about 100 to 120°C. Therefore, a method of circulating the rich MEG by connecting a heater to the bottom of the separator is used to remove salt components. Even in this case, the flow rate required for circulation increases to increase the temperature of 50°C or higher, which is the height of the separator. Caused to increase.
염 성분의 제거를 위해 플래시 세퍼레이터를 사용하는 경우, 이는 가스 처리 시스템에서 가장 큰 부피를 차지하게 되며, 상기 세퍼레이터로부터 배출되는 염 성분의 슬러리를 처리하기 위한 원심분리기도 큰 부피를 차지하게 되는 문제가 있다. 해양 구조물의 경우, 공간이 협소하여 각 공정 시스템별 부피와 무게가 증가함에 따라 플랫폼 내 배치 및 설치가 어려워지는데, 이는 플랫폼의 원가와 직결되는 문제에 해당한다. 따라서, 해양 구조물에 적용하기 위한 MEG 처리 시스템의 경우, 시스템의 효율 개선 방안뿐만 아니라 시스템의 부피와 무게 절감 방안도 주목 받고 있는 실정이다.When a flash separator is used to remove salt components, it occupies the largest volume in the gas treatment system, and a centrifuge for processing the salt component slurry discharged from the separator also occupies a large volume. have. In the case of offshore structures, as the space is narrow and the volume and weight of each process system increase, it becomes difficult to arrange and install in the platform, which is a problem that is directly related to the cost of the platform. Therefore, in the case of a MEG treatment system for application to offshore structures, not only a method of improving the efficiency of the system, but also a method of reducing the volume and weight of the system is drawing attention.
본 발명은 염 성분 제거 시 발생하는 염 슬러리를 활용하는 MEG 재생 시스템 및 이를 포함하는 해양 구조물을 제공하기 위한 것이다.The present invention is to provide a MEG regeneration system and an offshore structure including the same, utilizing a salt slurry generated during salt component removal.
본 발명의 일 견지는 MEG 재생 시스템에 있어서, 리치 MEG를 공급받아 상기 리치 MEG로부터 탄화수소를 제거하는 전처리부; 상기 전처리부로부터 배출되는 리치 MEG를 저장하는 리치 MEG 탱크; 상기 리치 MEG 탱크로부터 배출되는 리치 MEG로부터 염 성분을 석출하여 배출하는 염제거 멤브레인; 상기 염제거 멤브레인으로부터 염 성분이 석출된 리치 MEG를 증류하여 탑정으로 물을 배출하고 탑저로 린 MEG를 배출하는 증류탑; 및 상기 염제거 멤브레인에서 석출되어 배출된 염 성분이 염 슬러리 형태로 주입되는 전기분해부를 포함하는, MEG 재생 시스템을 제공한다. One aspect of the present invention is a MEG regeneration system, comprising: a pretreatment unit receiving a rich MEG and removing hydrocarbons from the rich MEG; A rich MEG tank for storing the rich MEG discharged from the pretreatment unit; A salt removal membrane that precipitates and discharges salt components from the rich MEG discharged from the rich MEG tank; A distillation column for distilling the rich MEG in which the salt component is deposited from the salt removal membrane to discharge water to the top of the column and discharge lean MEG to the bottom of the column; And it provides a MEG regeneration system comprising an electrolysis unit in which the salt component precipitated and discharged from the salt removal membrane is injected in the form of a salt slurry.
본 발명의 다른 견지는 상기 MEG 재생 시스템을 포함하는 해양 구조물을 제공한다. Another aspect of the present invention provides an offshore structure including the MEG regeneration system.
본 발명은 리치 MEG의 염 성분 제거를 위해 하나 이상의 염 제거 멤브레인을 사용함으로써, 리치 MEG로부터 염 제거 효율을 조절할 수 있어 원하는 염 제거 효율을 달성할 수 있다. The present invention can control the salt removal efficiency from the rich MEG by using one or more salt removal membranes to remove the salt component of the rich MEG, thereby achieving the desired salt removal efficiency.
본 발명은 종래 플래시 세퍼레이터에 비해 부피가 작고, 염 성분 슬러리를 제거하기 위한 원심분리기를 사용하지 않아 공간 배치상의 이점을 제공할 수 있다. The present invention has a smaller volume compared to the conventional flash separator, and does not use a centrifuge for removing the salt component slurry, thereby providing an advantage in space arrangement.
본 발명은 제거된 염 성분을 포함하는 슬러리를 전기분해하여 생활용수 살균소독제를 생산할 수 있어, 별도의 살균제 생산 장치 및 저장 장치가 필요하지 않으며, CO2 흡수제를 생산할 수 있어 CO2 배출이 적은 친환경 시스템을 제공할 수 있다. 나아가, 종래 염 슬러리 생성 저감을 위해 사용되는 원심분리기를 사용할 필요가 없어, 상기 원심분리기에 필요한 에너지를 절약할 수 있다. The present invention is subject to containing the removed salts component slurry electrolyzing it to produce the domestic water disinfectant, separate disinfectant production apparatus and the storage device is not required, to produce a CO 2 absorber's environment-friendly the CO 2 emissions less System can be provided. Furthermore, there is no need to use a centrifuge that is used to reduce the generation of salt slurry, and energy required for the centrifuge can be saved.
본 발명은 증류탑에서 배출되는 물과 린 MEG의 열을 리치 MEG에 공급하여 가열함으로써, 리치 MEG의 염 성분 제거에 필요한 에너지를 절감할 수 있다.In the present invention, by supplying the heat of water and lean MEG discharged from the distillation column to the rich MEG and heating it, energy required for removing salt components of the rich MEG can be reduced.
본 발명은 리치 MEG를 저장하는 리치 MEG 탱크에 린 MEG를 주입함으로써, 린 MEG의 열 에너지를 활용함과 동시에 탱크 내 MEG 농도 상승으로 인한 염 성분의 용해도를 낮추어 염 제거 멤브레인에서의 염 제거 효율을 크게 향상시킬 수 있다.In the present invention, by injecting lean MEG into the rich MEG tank that stores the rich MEG, the heat energy of the lean MEG is utilized and the solubility of the salt component due to the increase in the MEG concentration in the tank is lowered, thereby improving the salt removal efficiency in the salt removal membrane It can be greatly improved.
도 1은 본 발명의 일 실시예에 따른 MEG 재생 시스템의 개략도를 나타낸다.
도 2는 본 발명의 다른 실시예에 따른 MEG 재생 시스템의 개략도를 나타낸다.
도 3은 본 발명의 또 다른 실시예에 따른 MEG 재생 시스템의 개략도를 나타낸다. 1 shows a schematic diagram of a MEG playback system according to an embodiment of the present invention.
2 shows a schematic diagram of a MEG playback system according to another embodiment of the present invention.
3 shows a schematic diagram of a MEG playback system according to another embodiment of the present invention.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples to aid understanding of the present invention, and the scope of the present invention is not limited thereto.
본 발명은 효율적으로 MEG를 재생할 수 있는 MEG 재생 시스템을 제공한다. The present invention provides a MEG reproduction system capable of efficiently reproducing MEG.
상세하게, 본 발명은 MEG 재생 시스템에 있어서, 리치 MEG를 공급받아 상기 리치 MEG로부터 탄화수소를 제거하는 전처리부; 상기 전처리부로부터 배출되는 리치 MEG를 저장하는 리치 MEG 탱크; 상기 리치 MEG 탱크로부터 배출되는 리치 MEG로부터 염 성분을 석출하여 배출하는 염제거 멤브레인; 상기 염제거 멤브레인으로부터 염 성분이 석출된 리치 MEG를 증류하여 탑정으로 물을 배출하고 탑저로 린 MEG를 배출하는 증류탑; 및 상기 염제거 멤브레인에서 석출되어 배출된 염 성분이 염 슬러리 형태로 주입되는 전기분해부를 포함하는, MEG 재생 시스템을 제공한다. In detail, the present invention provides a MEG regeneration system, comprising: a pretreatment unit receiving a rich MEG and removing hydrocarbons from the rich MEG; A rich MEG tank for storing the rich MEG discharged from the pretreatment unit; A salt removal membrane that precipitates and discharges salt components from the rich MEG discharged from the rich MEG tank; A distillation column for distilling the rich MEG in which the salt component is deposited from the salt removal membrane to discharge water to the top of the column and discharge lean MEG to the bottom of the column; And it provides a MEG regeneration system comprising an electrolysis unit in which the salt component precipitated and discharged from the salt removal membrane is injected in the form of a salt slurry.
이 때, 상기 리치 MEG는 천연 가스 생산 시 가스 하이드레이트의 생성 억제 및 저감을 위해 MEG를 주입한 후 회수한 MEG일 수 있으며, 상기 MEG 재생 시스템은 상기 리치 MEG로부터 물 및 염 성분을 제거하여 MEG를 재생시킬 수 있으며, 재생된 MEG는 다시 상기 천연 가스 생산에 이용될 수 있다. In this case, the rich MEG may be MEG recovered after injecting MEG to suppress and reduce the generation of gas hydrate during natural gas production, and the MEG regeneration system removes water and salt components from the rich MEG to remove MEG. It can be regenerated, and the regenerated MEG can again be used to produce the natural gas.
나아가, 제거된 물 및 염 성분을 재활용하여 MEG 재생 공정의 효율을 높일 수 있다. Furthermore, it is possible to increase the efficiency of the MEG regeneration process by recycling the removed water and salt components.
이하, 첨부된 도면을 참조하여 본 발명의 MEG 재생 시스템을 상세히 설명하도록 한다. Hereinafter, the MEG playback system of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예에 따른 MEG 재생 시스템(1)은 전처리부(100), 리치 MEG 탱크(110), 염 성분 제거부(120), 증류탑(130) 및 염분차 발전부(140)을 포함한다.The MEG regeneration system 1 according to an embodiment of the present invention includes a
본 실시예의 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 리치 MEG, 염 슬러리, 물, 린 MEG 등의 유체 흐름이 조절될 수 있다.Valves (not shown) capable of adjusting the opening degree may be installed in each line of the present embodiment, and fluid flow such as rich MEG, salt slurry, water, and lean MEG may be adjusted according to the adjustment of the opening degree of each valve.
상기 전처리부(100)에 리치 MEG가 공급되고, 전처리부에서 처리된 리치 MEG는 상기 리치 MEG 탱크(110)에 저장된 후, 상기 염 성분 제거부(120)에 공급되어, 염 성분이 제거된 다음, 상기 증류탑(130)으로 이동된다. Rich MEG is supplied to the
이하, 상기 개별적인 구성들에 대해 더욱 상세하게 설명하도록 한다. Hereinafter, the individual configurations will be described in more detail.
전처리부Pretreatment
상기 전처리부(100)에는 리치 MEG가 공급될 수 있으며, 예를 들어, 리치 MEG 공급 라인으로부터 리치 MEG를 공급받을 수 있다. 상기 리치 MEG는 웰, 매니폴드 등 하이드레이트 생성 가능성이 높은 부분에 MEG를 주입함에 따라 생산된 것일 수 있으며, MEG, 물, 탄화수소를 포함하는 가스 및 고형분을 포함할 수 있다. MEG 재생 시스템(1)에 공급되는 리치 MEG의 온도는 5 내지 30℃일 수 있으며, 압력은 3 내지 7bar일 수 있다.A rich MEG may be supplied to the
상기 전처리부(100)는 리치 MEG를 공급받고, 리치 MEG의 염 성분 제거 및 물 제거 공정을 거치기 전에 상기 리치 MEG 내에 포함된 탄화수소를 제거하기 위한 수단을 구비할 수 있다. The
바람직하게, 상기 전처리부(100)는 리치 MEG로부터 MEG 및 염 성분을 제외한 나머지 성분과 리치 MEG에 포함된 물의 일부를 분리하여 제거할 수 있다. 예를 들어, 상기 전처리부(100)는 분리막(도시하지 않음)을 포함하여 상기 리치 MEG에 포함된 물의 일부와 탄화수소 등의 가스를 제거할 수 있으며, 필터(도시하지 않음)를 포함하여 고형분의 일부 또는 전부를 제거할 수 있다. 상기 고형분은 리치 MEG, 물 또는 린 MEG에 용해되지 않은 상태로 가스 처리 시스템(1)을 유동할 수 있는 고체 상태의 모든 물질을 포괄하는 개념이다. 전처리부(100) 내부의 온도는 20 내지 50℃로 유지될 수 있으며, 압력은 1 내지 2bar일 수 있다.Preferably, the
상기 전처리부(100)에서 탄화수소, 물, 고형분 등이 제거된 리치 MEG는 리치 MEG 탱크(110)에 공급될 수 있다. 이때, 상기 전처리부(100)로부터 배출되는 리치 MEG는 상기 리치 MEG 탱크(110)로 바로 주입될 수 있으며, 또는 상기 리치 MEG 탱크(110)의 전단에 구비된 제1 열교환기(102) 및 제2 열교환기(103)를 거치면서 가열될 수 있고, 원활한 이송을 위해 하나 이상의 펌프(101)를 거칠 수 있다.The rich MEG from which hydrocarbons, water, solids, etc. are removed from the
추가적으로, 전처리부(100)는 리치 MEG에서 분리한 탄화수소 등의 가스, 물, 고형분 또는 이들의 조합을 상기 MEG 재생 시스템(1) 외부로 배출하기 위한 배출부(도시하지 않음)를 하나 이상 구비할 수 있다. 상기 전처리부(100)에 마련된 일 배출부(도시하지 않음)를 통해 가스를 배출하고, 또 다른 일 배출부(도시하지 않음)를 통해 물과 고형분을 배출할 수 있다. 상기 전처리부(100)로부터 배출되는 탄화수소 등의 가스는 따로 저장되었다가 수요처에 공급되거나 외부로 배출될 수 있다.Additionally, the
제1 열교환기 및 제2 열교환기First heat exchanger and second heat exchanger
도 2에 보이는 바와 같이 본 발명은 제1 열교환기(102) 및 제2 열교환기(103)을 포함할 수 있다. As shown in FIG. 2, the present invention may include a
제1 열교환기(102)는 상기 전처리부(100)로부터 배출되는 리치 MEG를 후술할 증류탑(130)의 탑정으로 배출되는 물을 이용하여 가열하는 것일 수 있다. 즉, 상기 제1 열교환기(102)에서 상기 증류탑(130)에서 배출된 물과 리치 MEG와의 열교환이 일어날 수 있으며, 상기 배출된 물은 상기 리치 MEG에 비해 고온일 수 있다. 예를 들어, 상기 리치 MEG의 온도는 20 내지 50℃일 수 있고, 상기 증류탑(130)에서 배출된 물의 온도는 80 내지 90℃일 수 있다.The
리치 MEG가 상기 제1 열교환기(102)를 통한 열교환에 의해 가열되는 것은 상기 리치 MEG의 온도가 30 내지 70℃로 상승하는 것일 수 있으며, 후술할 염 성분 제거 공정에 대한 예비로 가열(예열)되는 것일 수 있다. 이러한 상기 제1 교환기(102)를 통한 열교환에 의해 리치 MEG의 예열에 필요한 에너지를 절감할 수 있다.When the rich MEG is heated by heat exchange through the
제1 열교환기(102)로부터 배출되는 리치 MEG는 제2 열교환기(103)로 유입될 수 있으며, 상기 제1 열교환기(102)로부터 배출되는 물은 MEG 재생 시스템(1)의 외부로 배출될 수 있다.The rich MEG discharged from the
제2 열교환기(103)는 상기 제1 열교환기(102)에서 열교환된 리치 MEG를 후술할 증류탑(130)의 탑저로 배출되는 린 MEG를 이용하여 가열하는 것일 수 있다. 즉, 상기 제2 열교환기(103)에서 상기 리치 MEG와 린 MEG의 열교환이 일어날 수 있으며, 상기 린 MEG는 상기 리치 MEG에 비해 고온일 수 있다. 예를 들어, 상기 리치 MEG의 온도는 20 내지 50℃일 수 있고, 상기 린 MEG의 온도는 70 내지 90℃일 수 있다.The
상기 리치 MEG가 상기 제2 열교환기(103)를 통한 열교환에 의해 가열되는 것은 상기 리치 MEG의 온도가 30 내지 80℃로 상승하는 것일 수 있으며, 후술할 염 성분 제거 공정에 대한 예비로 예열되는 것일 수 있다. 이러한 상기 제2 열교환기(103)를 통한 열교환에 의해 리치 MEG의 예열에 필요한 에너지를 절감할 수 있다.When the rich MEG is heated by heat exchange through the
제2 열교환기(103)로부터 배출되는 리치 MEG는 리치 MEG 탱크(110)로 유입되어 저장될 수 있으며, 상기 제2 열교환기(103)로부터 배출되는 린 MEG는 재사용을 위해 별도 저장부(도시하지 않음)에 저장하였다가 수요처로 공급할 수 있다.The rich MEG discharged from the
따라서, 본 발명의 MEG 재생 시스템은 상기 리치 MEG 탱크의 전단에 설치되고, 상기 전처리부로부터 배출되는 리치 MEG를 상기 증류탑의 탑정으로 배출되는 물을 이용하여 가열하는 제1 열교환기; 및 상기 리치 MEG 탱크의 전단에 설치되고, 상기 제1 열교환기에서 열교환된 리치 MEG를 상기 증류탑의 탑저로 배출되는 린 MEG를 이용하여 가열하는 제2 열교환기를 추가로 포함할 수 있다. Accordingly, the MEG regeneration system of the present invention includes: a first heat exchanger installed at the front end of the rich MEG tank and heating the rich MEG discharged from the pretreatment unit using water discharged to the top of the distillation column; And a second heat exchanger installed at the front end of the rich MEG tank and heating the rich MEG heat-exchanged in the first heat exchanger using the lean MEG discharged to the bottom of the distillation column.
한편, 도 3에 보이는 바와 같이, 상기 증류탑(130)의 탑저에서 배출되는 린 MEG가 상기 리치 MEG 탱크(110)에 공급될 수 있다. 이를 통해, 상기 린 MEG 자체의 열 에너지를 상기 탱크 내의 리치 MEG에 공급함과 동시에 탱크 내 MEG의 농도를 상승시킴으로써, 리치 MEG에 대한 염 성분의 용해도를 낮추어 염 성분 제거부(120)에서의 염제거 효율을 크게 향상시킬 수 있다.Meanwhile, as shown in FIG. 3, lean MEG discharged from the bottom of the
따라서, 본 발명의 MEG 재생 시스템은 상기 리치 MEG 탱크의 전단에 설치되고, 상기 전처리부로부터 배출되는 리치 MEG를 상기 증류탑의 탑정으로 배출되는 물을 이용하여 가열하는 제1 열교환기를 추가로 포함하고, 상기 증류탑의 탑저로 배출되는 린 MEG는 상기 리치 MEG 탱크로 공급될 수 있다. Accordingly, the MEG regeneration system of the present invention further includes a first heat exchanger installed at the front end of the rich MEG tank and heating the rich MEG discharged from the pretreatment unit using water discharged to the top of the distillation column, Lean MEG discharged to the bottom of the distillation column may be supplied to the rich MEG tank.
리치 MEG 탱크Rich MEG tank
상기 리치 MEG 탱크(110)는 리치 MEG와 후술할 염 성분 제거부(120)로부터 공급되는 염 농축물을 저장하기 위한 장소를 제공할 수 있다. 상기 염 농축물은 염, 물 및 MEG를 포함함으로써 액상과 고상이 혼합된 슬러지 형태일 수 있다. 상기 염 농축물의 온도는 100 내지 120℃일 수 있고, 상기 리치 MEG 탱크(110) 내로 유입됨에 따라 상기 리치 MEG와 혼합되어 상기 리치 MEG 탱크(110) 내부의 온도는 50 내지 90℃가 될 수 있다. 바람직하게는, 상기 리치 MEG 탱크(110)는 가열 부재(도시하지 않음)를 더 포함하여 내부의 온도를 100 내지 120℃로 유지할 수 있다. 상기 리치 MEG와 염 농축물은 상기 리치 MEG 탱크(110) 내부로 유입됨과 동시에 그 일부가 기화될 수 있고, 상기 리치 MEG 탱크(110) 내부의 압력은 0.1 내지 0.5bar가 될 수 있다.The
상기 리치 MEG 탱크(110)로부터 배출되는 리치 MEG는 염 성분 제거부(120)에 공급될 수 있으며, 바람직하게는 열증기 압축기(111)를 거쳐 공급될 수 있다.The rich MEG discharged from the
염 성분 제거부Salt component removal unit
염 성분 제거부(120)는 하나 이상의 염제거 멤브레인(121, 123, 125)을 포함하여 공급되는 리치 MEG로부터 염 성분을 석출하여 염 슬러리 형태로 분리, 배출할 수 있다. The salt
상기 염 성분은 염화나트륨, 염화칼륨, 수산화나트륨, 수산화칼륨 등의 1가염과, 탄산칼슘, 황산칼슘, 탄산바륨, 황산바륨, 황산마그네슘 등의 2가염으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되지는 않는다. 상기 염 성분의 리치 MEG에 대한 용해도는 리치 MEG의 온도에 반비례할 수 있으며, 리치 MEG의 온도가 높아질 때 2가염 성분이 1가염 성분보다 석출이 용이할 수 있다.The salt component may be one or more selected from the group consisting of monovalent salts such as sodium chloride, potassium chloride, sodium hydroxide, and potassium hydroxide, and divalent salts such as calcium carbonate, calcium sulfate, barium carbonate, barium sulfate, and magnesium sulfate, but limited thereto. It doesn't work. The solubility of the salt component in the rich MEG may be inversely proportional to the temperature of the rich MEG, and when the temperature of the rich MEG increases, the divalent salt component may be more easily precipitated than the monovalent salt component.
염 성분 제거부(120)는 100 내지 120℃ 및 0.1 내지 0.5bar 조건에서 작동할 수 있다. 추가적으로, 상기 리치 MEG를 염 성분 제거부(120)에 공급할 때 열증기를 주입하는 열증기 압축기(111)를 거침으로써 상기 염 성분 제거부(120)의 염제거 효율을 더욱 향상시킬 수 있다.The salt
상기 염제거 멤브레인(121, 123, 125)은 폴리설폰, 폴리에스터설폰, 폴리프로필렌, 폴리아크릴로니트릴, 폴리카보네이트, 폴리페닐렌옥사이드 등 다양한 고분자 또는 이들의 조합으로 구성되어 리치 MEG를 통과시키는 경우 상기 리치 MEG에 포함된 염 성분을 석출할 수 있다. 염제거 멤브레인을 통과하면서 염 성분이 제거된 리치 MEG는 증류탑(130)에 공급될 수 있다.When the salt-removing
염 성분 제거부(120)가 하나 이상의 염제거 멤브레인(121, 123, 125)을 포함하는 경우, 상기 멤브레인들은 다단 구조로 배치될 수 있다. 상기 멤브레인의 수를 조절하고 다단 구조로 배치함으로써 염제거 효율을 조절할 수 있으며, 이를 통해 원심분리기를 사용하지 않을 수 있게 되어 플래시 세퍼레이터 및 원심분리기를 채용하는 경우에 비해 시스템에서 차지하는 부피를 현저히 감소시킬 수 있게 된다. When the salt
구체적으로, 리치 MEG는 염 성분 제거부(120)에 공급되어 염제거 멤브레인(121)을 통과하여 염이 석출될 수 있다. 석출되는 염은 여전히 물과 소량의 MEG와 함께 혼합된 상태일 수 있으며, 펌프(122)를 통해 가압된 후 다른 염제거 멤브레인(123)을 통과하여 염이 석출될 수 있다. 석출되는 염은 여전히 물과 미량의 MEG와 함께 혼합된 상태일 수 있으며, 펌프(124)를 통해 가압된 후 또 다른 염제거 멤브레인(125)을 통과하여 염이 석출될 수 있다. 석출되는 염은 물과 미량의 MEG와 함께 혼합된 상태일 수 있으며, 염 슬러리의 형태로 염 성분 제거부(120) 외부로 배출될 수 있다. 상기 염제거 멤브레인(121, 123, 125)을 통과하여 염 성분이 제거된 리치 MEG는 증류탑(130)으로 공급될 수 있다.Specifically, the rich MEG may be supplied to the salt
염 성분 제거부(120)로부터 배출되는 염 슬러리의 일부는 염 농축물의 형태로 상기 리치 MEG 탱크(110)로 재공급될 수 있으며, 나머지 일부는 MEG 재생 시스템(1)의 외부로 배출될 수 있다. 이때, 염 슬러리의 원활한 순환 및 배출을 위해 펌프(126)를 이용하여 상기 염 슬러리를 이송할 수 있다.Part of the salt slurry discharged from the salt
전기분해부Electrolysis unit
전기분해부(140)는 상기 염 성분 제거부(120)에서 배출된 염 성분을 포함하는 염 슬러리를 전기분해 하여 살균소독제 및 CO2 흡수제를 생산할 수 있다. The
상기 전기분해부(140)는 양극(141), 음극(142), 분리막(143) 및 외부 전원(146)으로 구성되어 있다. The
이 때, 상기 분리막(143)은 양극(141)이 수용된 용액(양극 용액)과 음극(142)이 수용된 용액(음극 용액) 사이에 설치되어 양이온만을 선택적으로 통과시키는 역할을 하는 것으로, 상기 양극 용액과 음극 용액의 생성물 및 pH가 다르게 유지되는 것을 가능하게 한다. At this time, the
한편, 상기 전기 분해부(140)는 염 슬러리를 전기 분해하여 HClO 및 NaOH를 생성할 수 있으며, 구체적으로 상기 HClO는 양극(141)에서, 상기 NaOH는 음극(142)에서 생성된다. Meanwhile, the
상세하게, 상기 염 슬러리에는 NaCl 및 물이 포함되어 있으므로, 상기 양극(141) 및 음극(142)에서 일어나는 반응은 다음과 같다. In detail, since NaCl and water are included in the salt slurry, reactions occurring in the
<양극(141)에서 일어나는 반응><Reaction occurring at the
2H2O → 4H+ + O2 + 4e- 2H 2 O → 4H + + O 2 + 4e -
2NaCl → Cl2 + 2e- + 2Na+ 2NaCl → Cl 2 + 2e - + 2Na +
Cl2 + 2H2O → HCl + HClOCl 2 + 2H 2 O → HCl + HClO
<음극(142)에서 일어나는 반응><Reaction that occurs at the
2H2O + 2e- → 2OH- + H2 2H 2 O + 2e - → 2OH - + H 2
2NaCl + 2OH- → 2NaOH + Cl- 2NaCl + 2OH - → 2NaOH + Cl -
상기와 같이 음극(142)에서 H2O가 환원되어 OH-와 H2를 형성하고 분리막(143)을 통과한 Na+와 OH-가 반응하여 NaOH를 생성하여 용액의 pH를 알칼리로 유지할 수 있다.As described above, H 2 O is reduced at the cathode 142 to form OH- and H 2 , and Na + and OH - passing through the
양극(141)에서 생성된 HClO는 박테리아나 바이러스 등을 살균하는 역할을 할 수 있으며, 음극(142)에서 생성된 NaOH는 CO2 흡수물질로 알려져 있다. NaOH는 CO2와 반응하여 탄산나트륨을 생성한다(CO2 + 2NaOH → Na2CO3 + H2O).HClO generated in the
따라서, 본 발명은 MEG 재생 시스템에서 발생한 염 슬러리를 이용하여 생활용수 살균 소독제를 생산할 수 있어, 종래 생활용수의 처리가 필수적인 거주구가 있는 해양플랜트와 같이, 자체적으로 생활용수 처리장치(144)를 통해 살균소독장치의 필요성 및 살균제 저장장치에 의한 위험성(염소기체 유출에 따른 위험, 염소 가스 폭발 등에 따른 위험)을 감소시킬 수 있으며, 나아가 CO2 흡수제를 생산할 수 있어, 종래 산성가스 제거 장치를 대체하거나 최소화할 수 있으며, 자체적으로 CO2 포집 장치(145)를 통해 CO2 배출이 적은 친환경 시스템을 제공할 수 있다. Accordingly, the present invention can produce a living water sterilization and disinfectant using the salt slurry generated in the MEG regeneration system, so that the living
증류탑Distillation tower
증류탑(130)은 상기 염 성분 제거부로부터 공급되는 리치 MEG를 증류하여 탑정으로 물을 배출하고 탑저로 린 MEG를 배출할 수 있다. 상기 증류탑(130)은 상압 조건에서 물의 끓는점이 약 100℃이고, MEG의 끓는점이 약 200℃인 점을 이용하여 리치 MEG로부터 물을 증류시킬 수 있다. 상기 증류탑(130)의 탑저로 배출되는 린 MEG는 80 중량% 이상의 MEG를 함유할 수 있다. 바람직하게는 상기 린 MEG는 80 내지 99.99 중량%의 MEG를 함유할 수 있다.The
상기 증류탑(130)의 탑정으로부터 배출되는 물의 일부 또는 전부를 전술한 제1 열교환기(102)로 공급하여 리치 MEG 가열을 위한 열매로 제공할 수 있고, 열교환에 사용된 물은 MEG 재생 시스템(1) 외부로 배출될 수 있다.Part or all of the water discharged from the top of the
상기 증류탑(130)의 탑정에서 고온의 수증기 상태로 배출되는 물을 응축기(131)를 통해 응축시킬 수 있고, 상기 응축기(131)에서 응축된 응축수의 일부 또는 전부를 전술한 제1 열교환기(102)에 공급할 수도 있다. 상기 증류탑(130)의 탑정에서 배출되는 물의 일부 또는 전부를 상기와 같이 제1 열교환기(102)에 대한 열매로 제공함으로써, 상기 응축기(131)의 용량을 절감시킬 수 있다.The water discharged from the top of the
증류탑(130)의 탑정으로 배출되는 물 중에서 상기 제1 열교환기(102)로 공급되지 않는 나머지는 MEG 재생 시스템(1) 외부로 배출될 수 있다.The rest of the water discharged to the top of the
상기 증류탑(130)의 탑저에서 배출된 린 MEG를 전술한 제2 열교환기(103)에 공급하여 상기 제1 열교환기(102)에서 열교환된 리치 MEG의 추가적인 가열을 위한 열매로 제공할 수 있고, 열교환에 사용된 린 MEG는 별도의 회수라인을 통해 회수할 수 있다.The lean MEG discharged from the bottom of the
또는, 상기 증류탑(130)의 탑저에서 배출된 린 MEG를 전술한 리치 MEG 탱크(110)에 공급하여, 상기 린 MEG 자체의 열 에너지를 상기 탱크 내의 리치 MEG에 공급함과 동시에 탱크 내 MEG의 농도를 상승시킴으로써, 리치 MEG에 대한 염 성분의 용해도를 낮추어 염 성분 제거부(120)에서의 염제거 효율을 크게 향상시킬 수 있다. Alternatively, by supplying the lean MEG discharged from the bottom of the
상기 린 MEG는 진공 펌프(132)를 통해 증류탑(130)의 탑저로부터 린 MEG의 배출 및 린 MEG의 이송을 원활하게 할 수 있다.The lean MEG may smoothly discharge the lean MEG and transfer the lean MEG from the bottom of the
본 발명의 MEG 재생 시스템은 리치 MEG의 물 제거 공정에서 배출되는 물과 린 MEG의 폐열을 이용하여 리치 MEG를 가열함으로써, 염 성분 제거 시 요구되는 열 에너지를 절감하고 염제거 효율을 향상시킬 수 있으며, 염 성분 제거부(120)에 염제거 멤브레인(121, 123, 125)을 채용함으로써 염제거 효율의 조절이 가능하고, 플래시 세퍼레이터 및 원심분리기 대비 체적의 감소를 통한 공간 배치상의 이점을 제공할 수 있다.The MEG regeneration system of the present invention heats the rich MEG by using the water discharged from the water removal process of the rich MEG and the waste heat of the lean MEG, thereby reducing the thermal energy required when removing salt components and improving the salt removal efficiency. , By adopting the
한편, 본 발명은 본 발명의 MEG 재생 시스템을 포함하는 해양 구조물을 제공한다. On the other hand, the present invention provides an offshore structure including the MEG regeneration system of the present invention.
상기 해양 구조물은 해양에서 천연 가스를 생산할 수 있는 선박, 가스 플랫폼과 해양 부유물을 모두 포괄하는 것이며, 또한, 본 발명의 MEG 재생 시스템은 하이드레이트 생성 억제가 필요한 육상 가스 플랜트에도 적용될 수 있다.The offshore structure encompasses all ships, gas platforms, and offshore floats capable of producing natural gas at sea, and the MEG regeneration system of the present invention can also be applied to onshore gas plants that require suppression of hydrate generation.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible without departing from the technical spirit of the present invention described in the claims. It will be obvious to those of ordinary skill in the field.
100: 전처리부 101, 122, 124, 126: 펌프
102: 제1 열교환기 103: 제2 열교환기
110: 리치 MEG 탱크 111: 열증기 압축기
120: 염 성분 제거부 121, 123, 125: 염제거 멤브레인
130: 증류탑 131: 응축기
132: 진공 펌프 140:
전기분해부
141: 양극 142: 음극
143: 분리막 144: 생활용수 처리장치
145: CO2 포집 장치 146: 외부 전원100:
102: first heat exchanger 103: second heat exchanger
110: rich MEG tank 111: thermal steam compressor
120: salt
130: distillation column 131: condenser
132: vacuum pump 140: electrolysis unit
141: anode 142: cathode
143: separation membrane 144: household water treatment device
145: CO 2 capture device 146: external power supply
Claims (8)
리치 MEG를 공급받아 상기 리치 MEG로부터 탄화수소를 제거하는 전처리부;
상기 전처리부로부터 배출되는 리치 MEG를 저장하는 리치 MEG 탱크;
상기 리치 MEG 탱크로부터 배출되는 리치 MEG로부터 염 성분을 석출하여 배출하는 염제거 멤브레인;
상기 염제거 멤브레인으로부터 염 성분이 석출된 리치 MEG를 증류하여 탑정으로 물을 배출하고 탑저로 린 MEG를 배출하는 증류탑; 및
상기 염제거 멤브레인에서 석출되어 배출된 염 성분이 염 슬러리 형태로 주입되는 전기분해부;
를 포함하는, MEG 재생 시스템.
In the MEG playback system,
A pretreatment unit receiving the rich MEG and removing hydrocarbons from the rich MEG;
A rich MEG tank for storing the rich MEG discharged from the pretreatment unit;
A salt removal membrane that precipitates and discharges salt components from the rich MEG discharged from the rich MEG tank;
A distillation column for distilling the rich MEG in which the salt component is deposited from the salt removal membrane to discharge water to the top and discharge lean MEG to the bottom of the column; And
An electrolysis unit in which the salt component precipitated and discharged from the salt removal membrane is injected in the form of a salt slurry;
Containing, MEG playback system.
상기 리치 MEG 탱크의 전단에 설치되고, 상기 전처리부로부터 배출되는 리치 MEG를 상기 증류탑의 탑정으로 배출되는 물을 이용하여 가열하는 제1 열교환기; 및
상기 리치 MEG 탱크의 전단에 설치되고, 상기 제1 열교환기에서 열교환된 리치 MEG를 상기 증류탑의 탑저로 배출되는 린 MEG를 이용하여 가열하는 제2 열교환기를 추가로 포함하는, MEG 재생 시스템.
The method of claim 1,
A first heat exchanger installed at the front end of the rich MEG tank and heating the rich MEG discharged from the pretreatment unit using water discharged to the top of the distillation column; And
The MEG regeneration system further comprises a second heat exchanger installed at the front end of the rich MEG tank and heating the rich MEG heat-exchanged in the first heat exchanger using the lean MEG discharged to the bottom of the distillation column.
상기 리치 MEG 탱크의 전단에 설치되고, 상기 전처리부로부터 배출되는 리치 MEG를 상기 증류탑의 탑정으로 배출되는 물을 이용하여 가열하는 제1 열교환기를 추가로 포함하고,
상기 증류탑의 탑저로 배출되는 린 MEG는 상기 리치 MEG 탱크로 공급되는, MEG 재생 시스템.
The method of claim 1,
Further comprising a first heat exchanger installed at the front end of the rich MEG tank and heating the rich MEG discharged from the pretreatment unit using water discharged to the top of the distillation column,
Lean MEG discharged to the bottom of the distillation column is supplied to the rich MEG tank, MEG regeneration system.
상기 염제거 멤브레인은 다단 구조인, MEG 재생 시스템.
The method of claim 1,
The salt removal membrane is a multi-stage structure, MEG regeneration system.
상기 증류탑의 탑저로 배출되는 린 MEG는 80 내지 99.99 중량%의 MEG를 함유하는, MEG 재생 시스템.
The method of claim 1,
Lean MEG discharged to the bottom of the distillation column contains 80 to 99.99% by weight of MEG, MEG regeneration system.
상기 전기분해부는 상기 염 슬러리를 전기분해하여 HClO 및 NaOH를 생성하는, MEG 재생 시스템.
The method of claim 1,
The electrolysis unit electrolyzes the salt slurry to generate HClO and NaOH, MEG regeneration system.
상기 전기분해 시 양극 및 음극에서 일어나는 반응은 다음과 같은, MEG 재생 시스템.
양극의 반응
2H2O → 4H+ + O2 + 4e-
2NaCl → Cl2 + 2e- + 2Na+
Cl2 + 2H2O → HCl + HClO
음극의 반응
2H2O + 2e- → 2OH- + H2
2NaCl + 2OH- → 2NaOH + Cl-
The method of claim 6,
The reaction occurring at the anode and the cathode during the electrolysis is as follows, MEG regeneration system.
Positive reaction
2H 2 O → 4H + + O 2 + 4e -
2NaCl → Cl 2 + 2e - + 2Na +
Cl 2 + 2H 2 O → HCl + HClO
Cathode reaction
2H 2 O + 2e - → 2OH - + H 2
2NaCl + 2OH - → 2NaOH + Cl -
A marine structure comprising the MEG regeneration system of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190131516A KR102373291B1 (en) | 2019-10-22 | 2019-10-22 | MEG regeneration system and marine structure including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190131516A KR102373291B1 (en) | 2019-10-22 | 2019-10-22 | MEG regeneration system and marine structure including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210047654A true KR20210047654A (en) | 2021-04-30 |
KR102373291B1 KR102373291B1 (en) | 2022-03-11 |
Family
ID=75740653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190131516A KR102373291B1 (en) | 2019-10-22 | 2019-10-22 | MEG regeneration system and marine structure including the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102373291B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101662174B1 (en) * | 2014-06-27 | 2016-10-05 | 삼성중공업 주식회사 | Apparatus for recovering MEG |
KR20180078093A (en) * | 2016-12-29 | 2018-07-09 | 대우조선해양 주식회사 | MEG regeneration system including electrolysis system |
KR102008834B1 (en) * | 2018-04-30 | 2019-08-08 | 삼성중공업 주식회사 | Meg regeneration apparatus |
-
2019
- 2019-10-22 KR KR1020190131516A patent/KR102373291B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101662174B1 (en) * | 2014-06-27 | 2016-10-05 | 삼성중공업 주식회사 | Apparatus for recovering MEG |
KR20180078093A (en) * | 2016-12-29 | 2018-07-09 | 대우조선해양 주식회사 | MEG regeneration system including electrolysis system |
KR102008834B1 (en) * | 2018-04-30 | 2019-08-08 | 삼성중공업 주식회사 | Meg regeneration apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR102373291B1 (en) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010219284B2 (en) | Desalination system | |
JP5865495B2 (en) | Salt drainage treatment method and apparatus | |
KR101373389B1 (en) | On-site sodium hypochlorite generator for high concentration product | |
WO2014007033A1 (en) | Method for treating saline wastewater and device for treating same | |
KR102207458B1 (en) | A fresh water system capable of producing hydrogen gas | |
KR102055255B1 (en) | A seawater desalination plant integrated with seawater battery | |
CN105016541A (en) | Method for separating and recovering salts from high-salt wastewater | |
CN109851137A (en) | A kind of desulfurization wastewater treatment system and method | |
JP6182342B2 (en) | Steam plant and operating method thereof | |
CN110526439A (en) | A kind of reuse method and device of RO strong brine | |
JP2014237129A (en) | Water pretreatment unit using fluorination liquid | |
KR102328974B1 (en) | A fresh water system capable of producing hydrogen gas | |
KR101289848B1 (en) | Byproduct generated during the electrolysis of hydrogen processing unit | |
JP4043328B2 (en) | Power plant and power generation method | |
KR102373291B1 (en) | MEG regeneration system and marine structure including the same | |
JP2013213660A (en) | Steam plant and method for operating the same | |
KR102373290B1 (en) | MEG regeneration system and marine structure including the same | |
CN204824476U (en) | Separation and recovery unit of high salt waste water mesohaline | |
KR102239296B1 (en) | Gas treating system and marine structure including the same | |
JP2914665B2 (en) | Fuel cell water treatment equipment | |
CN219156730U (en) | Regenerated water softening and recycling system for sodium type cation exchange resin | |
KR102696776B1 (en) | MEG regeneration system including electrolysis system | |
KR101453754B1 (en) | Electrolysis apparatus with salt water concentrating process | |
Xin et al. | Green Development Approach Of Chemical Water Treatment Process In Thermal Power Plant | |
CN209652063U (en) | A kind of processing system of high temperature film method for removing sulfate ion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |