KR20210047422A - Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead - Google Patents

Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead Download PDF

Info

Publication number
KR20210047422A
KR20210047422A KR1020190130827A KR20190130827A KR20210047422A KR 20210047422 A KR20210047422 A KR 20210047422A KR 1020190130827 A KR1020190130827 A KR 1020190130827A KR 20190130827 A KR20190130827 A KR 20190130827A KR 20210047422 A KR20210047422 A KR 20210047422A
Authority
KR
South Korea
Prior art keywords
reaction
corrosion
struvite
sludge
magnesium
Prior art date
Application number
KR1020190130827A
Other languages
Korean (ko)
Inventor
김성배
최낙철
조강희
박성용
Original Assignee
서울대학교산학협력단
주식회사 이시엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 주식회사 이시엘 filed Critical 서울대학교산학협력단
Priority to KR1020190130827A priority Critical patent/KR20210047422A/en
Publication of KR20210047422A publication Critical patent/KR20210047422A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The present invention relates to a phosphate recovery method from sludge desorption filtrate using corrosion of magnesium metal, comprising the steps of: supplying sludge desorption filtrate and magnesium (Mg) metal; causing a struvite crystallization reaction for the sludge desorption filtrate; separating the sludge desorption filtrate crystallized in a struvite crystallization reactor with solid and liquid; and extracting phosphate from the crystallized sludge desorption filtrate.

Description

마그네슘 금속의 부식을 이용한 슬러지 탈리여액으로부터의 인산염 회수방법{Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead}Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead}

본 발명은 스트루바이트 결정화 방법으로 하수처리공정에서 발생되는 슬러지탈리여액을 대상으로 스트루바이트를 결정화하며 이를 회수하는 방법에 관한 것이다.The present invention relates to a method of crystallizing struvite and recovering it from a sludge release filtrate generated in a sewage treatment process by a struvite crystallization method.

일반적으로 하수처리공정은 크게 수처리시스템과 슬러지 처리시스템으로 구성되며, 소화조, 농축조, 탈수조 등의 슬러지 처리시스템에서 발생된 상징액 및 여액은 수처리 시스템으로 반송 후 처리된다. 반류수(Reject water)는 하수처리과정의 슬러지 처리공정 중에 발생되는 슬러지 농축여액, 슬러지 탈수여액 등에서 나오는 고농도 혼합 폐액이다.In general, the sewage treatment process is largely composed of a water treatment system and a sludge treatment system, and the supernatant and filtrate generated in the sludge treatment system such as a digester, a concentration tank, and a dewatering tank are returned to the water treatment system and then treated. Reject water is a high-concentration mixed waste liquid generated from the sludge concentrated filtrate, sludge dewatering filtrate, etc. generated during the sludge treatment process in the sewage treatment process.

반류수는 전체유량의 1.2%에 지나지 않지만 이러한 반류수에 의해 하수처리장의 BOD 10%, SS 31%, TN 21%, TP 22% 가량의 부하가 각각 증가하는 결과를 가져오게 된다. 하지만 국내하수의 C/N비는 합류식의 경우 20:8로 미국의 28:5, 일본의 30:6에 비하여 상대적으로 낮아 추가적인 외부 탄소원의 주입 없이는 질소와 인을 충분히 처리하지 못하는 문제를 가지고 있다. The backwash water is only 1.2% of the total flow, but the load of the sewage treatment plant increases by 10%, SS 31%, TN 21%, and TP 22%, respectively. However, the C/N ratio of domestic sewage is relatively low compared to 28:5 in the United States and 30:6 in Japan, which is 20:8 in the case of the confluence type, and it has a problem that nitrogen and phosphorus cannot be sufficiently treated without the injection of additional external carbon sources. .

특히 중소규모 하수처리장의 경우 반류수의 발생이 연속적이지 않고 그 발생빈도가 일정치 않기 때문에 대규모 처리장에 비해 수처리 과정의 효율 유지에 더 많은 어려움이 있다. 특히 중소규모 하수처리장의 경우 반류수의 발생이 연속적이지 않고 그 발생빈도가 일정치 않기 때문에 대규모 처리장에 비해 수처리 과정의 효율유지에 더 많은 어려움이 있다.In particular, in the case of small and medium-sized sewage treatment plants, there is more difficulty in maintaining the efficiency of the water treatment process compared to large-scale treatment plants because the generation of backwash water is not continuous and the frequency of occurrence is not constant. In particular, in the case of small and medium-sized sewage treatment plants, there is more difficulty in maintaining the efficiency of the water treatment process compared to large-scale treatment plants because the generation of backwash water is not continuous and the frequency of occurrence is not constant.

본 발명은 마그네슘금속 부식에 따른 반응특성을 이용하여 슬러지탈리여액으로부터 스트루바이트를 결정화하며, 침전된 스트루바이트는 세라믹필터를 이용하여회수한다.In the present invention, struvite is crystallized from a sludge depleting filtrate by using reaction characteristics due to magnesium metal corrosion, and the precipitated struvite is recovered using a ceramic filter.

본 발명은 혐기성 소화 슬러지의 탈리여액으로부터 인을 회수할 수 있는 기술로 기존 MgCl2, MgO 등과 같은 화학약품을 사용함에 따라 대상성상에 따른 몰비 설정, pH 조절 및 인버터, 펌프 등과 같은 부대시설 등이 필요함에 따라 시설장치의 규모가 커지며, 경제성이 감소된 점을 고려하여, 마그네슘금속을 활용한 부식반응을 이용하여 스트루바이트결정 및 인을 회수하는 방법을 제공하는데 목적이 있다.The present invention is a technology capable of recovering phosphorus from the desorption filtrate of anaerobic digestion sludge , and according to the use of chemicals such as MgCl 2 and MgO, the molar ratio setting according to the object properties, pH control, and auxiliary facilities such as inverters and pumps are provided. The purpose of this is to provide a method of recovering struvite crystals and phosphorus by using a corrosion reaction using magnesium metal, taking into account that the scale of the facility and equipment is increased as necessary and the economic feasibility is reduced.

본발명은 마그네슘 부식반응을 이용하여 스트루바이트결정 형성에 필요한 Mg2+공급 및 부식반응으로 인한 수소 발생반응으로 인해 pH를 상승 역할을 동시에 수행함으로써 약품을 사용하지 않고 탈리여액으로부터 스트루바이트 및 인을 회수할 수 있다.The present invention uses magnesium corrosion reaction to supply Mg 2+ necessary for the formation of struvite crystals and increases pH due to hydrogen generation reactions due to corrosion reactions. Thus, struvite and struvite from the desorption filtrate are not used without chemicals. Phosphorus can be recovered.

목표하는 적정입도크기의 스트루바이트결정이 형성되면, 세라믹필터를 이용하여 침전물형태의 스트루바이트를 회수한다.세라믹필터를 이용하여 부유성 스트루바이트침전물을 여과하며, 세라믹필터에 흡착된 스트루바이트는 역세공정을 통해서회수하게 된다.When struvite crystals of the desired appropriate particle size are formed, the struvite in the form of sediment is recovered using a ceramic filter. The suspended struvite precipitate is filtered using a ceramic filter, and the filter adsorbed on the ceramic filter is used. True bite is recovered through the backwashing process.

도1은 마그네슘금속의 XRD 분석결과이다.
도2는 마그네슘(Mg) 금속부식반응을 확인하고자 반응실험(Exp. A)을 진행한 결과이다.
도3은 탈리여액을 대상으로 반응실험(Exp. B)을 진행한 결과이다.
도4는 반응실험(Exp. A, B, C)에 대한 ORP 측정결과이다.
도5는 반응실험(Exp. C)에 대한 NH4-N, PO4-P 및 pH결과이다.
도6은 반응실험(Exp. C)에 대한 Ca, Mg의 결과이다.
도7은 반응실험(Exp. C)결과(물리, 화학적자료)를 대상으로 Visual MINTEQ을 통한 포화지수 결과이다.
도8은 반응실험(Exp. C)에 대한 침전물의 XRD분석결과이다.
도9는 반응실험(Exp. C)에 대한 침전물의 SEM-EDS 분석결과이다.
도10은 반응실험(Exp. C)에 대한 침전물의 입도분석결과이다.
도11은 반응실험이 종료된 후 발생된 침전물(스트루바이트)을 여과하여 회수하는 공정도이다.
1 is an XRD analysis result of magnesium metal.
2 is a result of a reaction experiment (Exp. A) to confirm a metal corrosion reaction of magnesium (Mg).
3 shows the results of a reaction experiment (Exp. B) for the desorption filtrate.
4 is an ORP measurement result for reaction experiments (Exp. A, B, C).
5 is a result of NH 4 -N, PO 4 -P and pH for the reaction experiment (Exp. C).
6 shows the results of Ca and Mg for the reaction experiment (Exp. C).
7 is a saturation index result through Visual MINTEQ for the reaction experiment (Exp. C) result (physical and chemical data).
8 is an XRD analysis result of a precipitate for a reaction experiment (Exp. C).
9 is a SEM-EDS analysis result of the precipitate for the reaction experiment (Exp. C).
10 is a result of particle size analysis of a precipitate for a reaction experiment (Exp. C).
Fig. 11 is a process chart of filtering and recovering the precipitate (struvite) generated after the reaction experiment is completed.

일반적으로, 혐기성 소화슬러지의 탈리여액에서 인을 회수할 있는 기술은 결정화법, 흡착법 등 다양하지만 경제적으로나 기술적으로 결정화법이 가장 적합하다. 결정화법에서는 특정 pH 조건에서 인산염을 Mg2+나 Ca2+과 같은 2가 금속과 결정화반응시켜 MAP(Magnesium ammonium phosphate) 혹은 HAP(Hydroxyapatite) 결정체로 회수한다. 이중에서 MAP법은 알칼리도의 영향이 적고, 암모니아성 질소도 함께 회수할 수 있어 혐기성 소화 슬러지의 탈리여액에 적합한 것으로 알려져 있다.In general, there are various techniques for recovering phosphorus from the desorption filtrate of anaerobic digested sludge, such as crystallization and adsorption, but the crystallization method is most suitable economically and technically. In the crystallization method, phosphate is crystallized with a divalent metal such as Mg 2+ or Ca 2+ under a specific pH condition, and recovered as MAP (Magnesium ammonium phosphate) or HAP (Hydroxyapatite) crystals. Among them, the MAP method is known to be suitable for the desorption filtrate of anaerobic digested sludge because it has little effect of alkalinity and can also recover ammonia nitrogen.

고순도 인회수를 위한 대표적인 공정은 Struvite 결정화공정으로 알려져 있다. Struvite는 Mg2+, NH4+, PO4 3-가 1:1:1의 몰비로 결합한 결정체이며 Magnesium Ammonium Phosphate(MAP)로 알려져 있다. Struvite 결정화 공정은 질소와 인을 동시에 처리할 수 있고, 반응시간이 짧기 때문에 부지면적이 작게 소요되며, 생물학적 처리공정과 연계처리가 가능하여 하수처리장 전체 처리효율을 증진시킨다는 장점을 가지고 있다.The representative process for high purity phosphorus recovery is known as the struvite crystallization process. Struvite is a crystal in which Mg 2+ , NH 4+ , and PO 4 3- are combined in a molar ratio of 1:1:1 and is known as Magnesium Ammonium Phosphate (MAP). Struvite crystallization process can treat nitrogen and phosphorus at the same time, and because the reaction time is short, it requires a small site area, and it has the advantage of improving the overall treatment efficiency of the sewage treatment plant because it can be treated in conjunction with the biological treatment process.

본 발명에 따르면, Struvite 침전을 위해 마그네슘 공급원으로 마그네슘(Mg) 금속(도 1)부식 반응을 적용하고자 반응실험(표. 2, Exp. A)을 진행하였다. 시간에따른 pH, ORP, EC 및 Mg2+이온을 확인한 결과 pH는 반응 1분 8.94로급격히 증가되며, 반응 10분이후부터 평형상태(equilibrium state)에 도달한 후 pH 10.82로나타났다. Mg 금속은 수소발생반응(hydrogen evolution reaction, HER)이 높은 금속으로 표준 환원전위(standard reduction potential)는 -2.37Vnhe(25℃)로 보고되고 있다. According to the present invention, a reaction experiment (Table 2, Exp. A) was conducted to apply a corrosion reaction of a magnesium (Mg) metal (FIG. 1) as a magnesium source for precipitation of struvite. As a result of checking the pH, ORP, EC, and Mg 2+ ions over time, the pH rapidly increased to 8.94 for 1 minute of the reaction, and after reaching the equilibrium state after 10 minutes of the reaction, the pH appeared to be 10.82. Mg metal is a metal having a high hydrogen evolution reaction (HER), and the standard reduction potential is reported to be -2.37V nhe (25℃).

Mg 부식반응에 따른 ORP는 환원환경으로 120.4mV에서 -123.8mV, EC는 0.6에서 12.99 mS/m로 확인되었다. 또한, 교반속도(30, 200rpm)에 따른 Mg2+이온농도변화는 나타나지 않았다(도 2). 수용액에서 Mg 금속은 Eq (1) ~ (3)과 같은 부식반응으로 Mg2+, OH-이온용해 및 Mg(OH)2침전물을 발생시킨다. pH, ORP는 부식반응으로 지수적으로 각각 증가 및 감소하게 되며, Eq (3)을 통해 평형상태에 도달하게 된다. 부식반응으로 발생된 Mg(OH)2는 금속표면에 필름형성 및 표준환원전위보다 Mg의 부식전위(the actual corrosion potential)가 낮기때문에 금속표면부식을 방지할 수 있다.The ORP according to the Mg corrosion reaction was found to be -123.8mV at 120.4mV and the EC at 0.6 to 12.99 mS/m as a reducing environment. In addition, there was no change in Mg 2+ ion concentration according to the stirring speed (30, 200 rpm) (FIG. 2). In aqueous solution, Mg metal generates Mg 2+ , OH - ion dissolution and Mg(OH) 2 precipitate through corrosion reaction such as Eq (1) ~ (3). The pH and ORP increase and decrease exponentially by corrosion reaction, respectively, and reach equilibrium through Eq (3). Mg(OH) 2 generated by the corrosion reaction can prevent metal surface corrosion because the actual corrosion potential of Mg is lower than that of the standard reduction potential and film formation on the metal surface.

부식반응으로 과포화(supersaturated)된 Mg(OH)2는 수산화물 형태로 Eq (4), (5)와 같이 Mg2+이온을 소비하게 되며, 각 반응실험후 부식반응으로 Mg은 금속광택(metallic luster)이 없어지는 것을 관찰할 수 있었다. Mg(OH) 2 supersaturated by the corrosion reaction consumes Mg 2+ ions in the form of hydroxides like Eq (4) and (5), and after each reaction experiment, Mg is a metallic luster. ) Could be observed to disappear.

[수학식][Equation]

Figure pat00001
Figure pat00001

일반적으로 염소이온은 부식을 촉진시키며, 이에 반해 PO4-P, Ca이온은 화합물 형성 및 흡착으로 인해 부식을 방지한다고 알려져 있다. 본 발명에 사 용된 탈리여액 성상(표. 1)은 Mg 금속의 부식을 촉진시킬 수 있는 염분을 함유하고 있어 이에 따른 반응특성실험(표. 2, Exp. B)을 진행한 결과, pH는 반응 5분 이후부터 급격히 증가되며, PO4-P 제거율은 반응시간 10분에서 100%로 나타났다. In general, chlorine ions promote corrosion, whereas PO 4 -P and Ca ions are known to prevent corrosion due to compound formation and adsorption. The properties of the desorption filtrate used in the present invention (Table. 1) contain salts that can accelerate the corrosion of Mg metal. As a result of the reaction characteristics experiment (Table. 2, Exp. B) according to this, the pH is the reaction. It rapidly increased after 5 minutes, and the PO 4 -P removal rate was 100% at 10 minutes of reaction time.

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

PO4-P는 Cl-에 의한 Mg의 부식반응을 지연시키며, PO4-P가 제거된 이후 부식반응이 촉진되어 Mg2+이온이 급격히 증가되는 것을 확인할 수 있었다(도. 3). Mg의 수소발생반응에 따른 pH증가는 Ca와 Mg의 화합물형성으로 PO4-P 제거에 영향을 주고 있으며, 교반속도변화(30rpm vs 200rpm)에 따른 물리적 반응은 수소발생반응을 촉진시켜, 도 4와같이 Mg의 자발적 부식을 발생시키는 역할을 하고 있다.PO 4 -P delayed the corrosion reaction of Mg by Cl − , and after the removal of PO 4 -P, the corrosion reaction was accelerated, indicating that Mg 2+ ions were rapidly increased (Fig. 3). The increase in pH according to the hydrogen generation reaction of Mg affects the removal of PO 4 -P by the formation of Ca and Mg compounds, and the physical reaction according to the agitation speed change (30rpm vs 200rpm) promotes the hydrogen generation reaction, FIG. 4 Likewise, it plays a role of generating spontaneous corrosion of Mg.

반응용액에 함유된 불순물 혹은 second phases는 양극(anode)역할로 Mg의 Galvanic 부식을 촉진시키는 역할을 한다고 한다. 하지만, 반응을 통해 형성된 침전물들은 Mg 표면에 흡착되어 부식을 저해하거나, Struvite 회수효율에 영향을 미칠 수 있기때문에 교반속도 조절 및 Air bubble 등을 활용하여 침전물의 금속표면흡착 및 응집에 대한 조건 설정이 필요할 것으로 예상된다. 또한, 교반속도에 따른물리적 반응은 부식으로 발생된 Mg(OH)2침전물의 Mg2+이온 소비반응 Eq (4)와 (5)에영향을 주게 된다.It is said that impurities or second phases contained in the reaction solution act as an anode and promote galvanic corrosion of Mg. However, since the precipitates formed through the reaction are adsorbed on the Mg surface to inhibit corrosion or affect the efficiency of struvite recovery, it is necessary to adjust the stirring speed and use air bubbles to set the conditions for adsorption and aggregation of the metal surface of the precipitate. It is expected to be needed. In addition, the physical reaction according to the stirring speed affects the Mg 2+ ion consumption reaction Eq (4) and (5) of the Mg(OH) 2 precipitate generated by corrosion.

탈리여액을 대상(표. 2, Exp. C)으로 Mg 금속부식에 따른 PO4-P 제거를 진행하였다(도 5). 반응이 진행됨에 따라 pH는 8.19에서 8.87, ORP는 4.21에서 -316.2 mV로 나타났다(표 3). The desorption filtrate was subjected to the removal of PO 4 -P according to Mg metal corrosion as the target (Table. 2, Exp. C) (FIG. 5). As the reaction proceeded, the pH was 8.19 to 8.87, and the ORP was 4.21 to -316.2 mV (Table 3).

Figure pat00004
Figure pat00004

PO4-P 제거는 1차 반응식(the first order kinetic)에 적용하여 계산한 결과(R2: 0.969, 0.996, 0.963) k상수는 0.124 min-1(Exp. C-1), 0.471 min-1(Exp. C-2), 0.733 min-1(Exp. C-3)로 나타나며, PO4-P 제거율은 각각 46.46%, 97.73% 및 100%로 나타났다. Mg 금속을 활용한 이전 연구들은 (1) Galvanic corrosion을 활용한 Graphite-Mg metal air bubbling column(PO4-P: 96.3%, pH 8.91, 15min), (2) Mg alloy plate(PO4-P: 96.4%, pH 9.17, 150min)로 조사되며, 본 연구결과와 비교하여 반응속도가 낮은 것으로 조사되었다. 부식반응이후 Mg2+, OH-이온의 용해 및 탈리여액내 NH4-N, PO4-P와 반응하여 조건별 반응실험이 종료된 이후 흰색 및 갈색 침전물을 확인할 수 있었다. 이처럼, Mg 금속부식은 마그네슘공급원으로 Eq (6)을 통해서 Struvite 결정을 형성하게 된다.The removal of PO 4 -P was calculated by applying the first order kinetic (R 2 : 0.969, 0.996, 0.963) and k constant was 0.124 min -1 (Exp. C-1), 0.471 min -1 (Exp. C-2), 0.733 min -1 (Exp. C-3), and the removal rates of PO 4 -P were 46.46%, 97.73% and 100%, respectively. Previous studies using Mg metal (1) Graphite-Mg metal air bubbling column using galvanic corrosion (PO 4 -P: 96.3%, pH 8.91, 15min), (2) Mg alloy plate (PO 4 -P: 96.4%, pH 9.17, 150min), and the reaction rate was found to be low compared to the results of this study. After the corrosion reaction, Mg 2+ and OH - ions were dissolved and reacted with NH 4 -N and PO 4 -P in the desorption filtrate, and white and brown precipitates were confirmed after the reaction experiment by conditions was completed. As such, Mg metal corrosion forms struvite crystals through Eq (6) as a magnesium source.

[수학식] [Equation]

Figure pat00005
Figure pat00005

부식반응으로 Mg는 반응시간에 따라 점진적으로 증가되고 Struvite 원인이온과 반응하여 NH4-N, PO4-P 농도는 감소하게 된다. 하지만, 부식반응을 촉진시키는 Cl-이온은 과도한 Mg를 발생시켜 Struvite의 이론적몰비(N(1) : P(1) : Mg(1))를 초과시키며, Mg의 손실 및 Struvite 결정은 newberyite(pksp; 5.51)로 상변화가 발생된다. 침전물이 형성됨에 따라 Mg3(PO4)2, MgHPO4·3H2O, Mg2(OH)3Cl·4H2O 등과 같은화합물형성으로, PO4-P 제거효율(최대 100%)이 증가되는 반면 상대적으로 NH4-N 제거율(최대 8.84%)은감소되며, NH4-N은 전환반응(NH4-N3-N, 최대 3.87%) 및 Struvite 결정을 형성하는데 소비하는 것으로 나타났다.Due to the corrosion reaction, Mg gradually increases according to the reaction time, and the concentration of NH 4 -N and PO 4 -P decreases by reacting with the struvite causative ion. However, the Cl- ion that promotes the corrosion reaction generates excessive Mg, which exceeds the theoretical molar ratio of Struvite (N(1): P(1): Mg(1)), and the loss of Mg and the struvite crystal are newberyite (pksp). ; 5.51), a phase change occurs. As the precipitate is formed, the formation of compounds such as Mg 3 (PO 4 ) 2 , MgHPO 4 ·3H 2 O, Mg 2 (OH) 3 Cl·4H 2 O, etc. increases the PO 4 -P removal efficiency (up to 100%). On the other hand, it was found that the removal rate of NH 4 -N (up to 8.84%) was relatively reduced, and NH 4 -N was consumed in the conversion reaction (NH 4 -N 3 -N, up to 3.87%) and to form struvite crystals.

Struvite 결정화 반응은 pH 의존도가 높고, 생성반응(Eq 6)을 통해 H+이온발생으로 결정형성을 지체하게 되지만, 이온종(NH4-N, PO4-P)의 전환반응과 Mg의 부식반응을 통해 pH 완충작용을받게된다. 또한, pH(8 -> 9) 증가는 NH4-N의제거율(90% 을 감소시키며, H+가 감소됨에 따라 HPO4 2-를 증가시킨다. 이와 같은 반응으로 인해 침전물 발생을 촉진시키며, 부식반응으로 Mg2+공급 및 PO4-P, NH4-N의 소비로 인해 Struvite 결정이 형성된다(도. 8).Struvite crystallization reaction is highly dependent on pH, and the formation reaction (Eq 6) delays crystal formation due to H + ion generation, but the conversion reaction of ionic species (NH 4 -N, PO 4 -P) and corrosion reaction of Mg Through the pH buffer. In addition, an increase in pH (8 -> 9) decreases the removal rate of NH 4 -N (90%, and increases HPO 4 2- as H + decreases. This reaction promotes the generation of precipitates and corrosion). Struvite crystals are formed due to the supply of Mg 2+ and consumption of PO 4 -P and NH 4 -N in the reaction (Fig. 8).

phosphate는 monovalent(H2PO4 -), divalent(HPO4 2-), trivalent(PO4 3-)로 존재하게 되며, pH 환경에 따라 pH 5-6.5(H2PO4 -), pH 7-9(HPO4 2-)에서 각각 우세하다고 한다. Visual MINTEQ 3.1을 이용한 화학종(species) 분포를 확인한 결과 탈리여액은 divalent(HPO4 2-)가 87.24%(pH 8.19)로 우세하고, 부식반응 이후 HPO4 2-는 pH 변화 및 화합물 형성으로 인해 각각 89.74%(pH 8.41, Exp. C-1), 79.09%(pH 8.67, Exp. C-2), 66.26%(pH 8.87, Exp. C-3)로 나타난다. PO4-P는 반응물질(Ca, Mg, NH4-N)과 침전반응을 통해 과포화된 화합물은 ACP(Amorphous calcium phosphate, Ca3(PO4)2:am2, SI: 1.93), TCP(Tricalcium phosphate, Ca3(PO4)2:beta, SI: 2.60), OCP(Octacalcium phosphate, Ca4H(PO4)3:3H2O(s), SI: 2.31), Hydroxyapatite(HAP, Ca5(PO4)3(OH), SI: 11.01) 및 Struvite(MAP, MgNH4PO4·6H2O, SI: 0.39)로 나타났다(도. 7).phosphate is monovalent (H 2 PO 4 -) , divalent (HPO 4 2-), and exists as trivalent (PO 4 3-), pH 5-6.5 (H 2 PO 4 -) in accordance with the pH environment, pH 7- 9 (HPO 4 2- ) is said to be dominant, respectively. As a result of confirming the distribution of species using Visual MINTEQ 3.1, divalent (HPO 4 2- ) is dominant in 87.24% (pH 8.19), and after corrosion reaction, HPO 4 2- is due to pH change and compound formation. They are 89.74% (pH 8.41, Exp. C-1), 79.09% (pH 8.67, Exp. C-2), and 66.26% (pH 8.87, Exp. C-3), respectively. PO 4 -P is a reactant (Ca, Mg, NH 4 -N) and a supersaturated compound through precipitation reaction is ACP (Amorphous calcium phosphate, Ca 3 (PO 4 ) 2 :am2, SI: 1.93), TCP (Tricalcium phosphate, Ca 3 (PO 4 ) 2 :beta, SI: 2.60), OCP(Octacalcium phosphate, Ca 4 H(PO 4 ) 3 :3H 2 O(s), SI: 2.31), Hydroxyapatite(HAP, Ca 5 ( PO 4 ) 3 (OH), SI: 11.01) and Struvite (MAP, MgNH 4 PO 4 ·6H 2 O, SI: 0.39) (Fig. 7).

수용액에 함유된 Ca는 Struvite 결정을 형성하는데 경쟁 및 간섭을 발생시켜 다양한 반응 기작을 통해 Mg-P, Ca-P화합물 및 Struvite 결정을 형성하는데 영향을미친다. 부식반응에 따른 Ca/Mg 몰농도비를 확인한 결과 표. 4와 같이 나타났다.Ca contained in aqueous solution causes competition and interference to form struvite crystals, and affects the formation of Mg-P, Ca-P compounds and struvite crystals through various reaction mechanisms. Table of the results of checking the Ca/Mg molar ratio according to the corrosion reaction. It appeared like 4.

Figure pat00006
Figure pat00006

Ca 제거율은 Exp. C-1(83~84%), Exp. C-2(65~84%), Exp. C-3(32~73%)로 반응초기 급격히 증가된 후 반응시간이 지남에 따라 감소된다(도. 6). Ca removal rate is Exp. C-1 (83-84%), Exp. C-2 (65-84%), Exp. C-3 (32~73%) rapidly increased in the initial reaction and then decreased with the passage of reaction time (Fig. 6).

Mg의 부식 특성으로 인해 반응초기 Ca는 Mg보다 우세하게 PO4-P와 반응하여 ACP(pksp; 28.25), TCP(pksp; 28.92) 및 HAP(pksp; 58.7)와 같은 Ca-P화합물을 형성하지만, 반응시간에 따라 Ca/Mg 몰농도비(Ca/Mg > 1/4)가 증가되어 점차 Mg는 NH4 +, PO4-P와 반응하여 MAP(pksp; 13.26)를 형성하게 된다. 부식반응이 진행됨에 따라 Ca보다 Mg의 PO4-P의 소비가 증가됨에 따라 MAP의 포화지수는 반응전보다 증가하는 반면, Ca-P화합물은 불포화 및 포화지수가 감소된다. 열역학적 에너지 차이로 인해 MAP는 비정질형태의 ACP보다 평형상태에 우세하게 도달하게 되어 결정형태에 영향을 미치게 된다. 또한, 반응초기 형성된 Ca-P화합물은 부식반응과 교반속도에 따른 물리적 반응으로 인하여 침전 및 용해를 반복하게 되며, 반응시간이 진행됨에따라 Ca이온은 재용해(re-dissolution)되는 것을 확인할 수 있었다(도. 6).Due to the corrosion properties of Mg, Ca reacts with PO 4 -P predominantly over Mg to form Ca-P compounds such as ACP (pksp; 28.25), TCP (pksp; 28.92) and HAP (pksp; 58.7). , Depending on the reaction time, the Ca/Mg molar ratio (Ca/Mg> 1/4) increases, so that Mg gradually reacts with NH 4 + and PO 4 -P to form MAP (pksp; 13.26). As the corrosion reaction proceeds, the saturation index of MAP increases as the consumption of PO 4 -P of Mg is increased than that of Ca, while the unsaturation and saturation index of Ca-P compound decreases. Due to the difference in thermodynamic energy, MAP reaches an equilibrium state predominantly than the amorphous form of ACP, thereby affecting the crystalline form. In addition, it was confirmed that the Ca-P compound formed at the beginning of the reaction repeated precipitation and dissolution due to the physical reaction according to the corrosion reaction and the stirring speed, and as the reaction time progressed, the Ca ions were re-dissolution. (Fig. 6).

반응종료 후 침전물에 대해 XRD분석을 실시한 결과 Ca-P화합물의 경우 비정질로 나타났으며, Struvite 결정만 확인할 수 있었다(도. 8). 반응실험(표. 2, Exp. C)을 통해 Ca, PO4-P는 빠르게 감소되어 침전물을 형성하지만, 불안정한 Ca-P화합물형성으로 인해 분해 및 용해되어 결정을 형성하지못하고 비정질 형태로 존재하게 된다. 부식에 따른 Mg 공급 및 NH4-N의 소비로 인해 Struvite결정이 형성되지만, Ca의 용해로 인해 Struvite 결정강도(peak, 15-16o, 16-17o, 21-22o)에 영향을 미치는 것을 확인할 수 있었다.As a result of performing XRD analysis on the precipitate after completion of the reaction, the Ca-P compound was found to be amorphous, and only struvite crystals could be identified (Fig. 8). Through the reaction experiment (Table 2, Exp. C), Ca and PO 4 -P rapidly decreased to form a precipitate, but due to the formation of an unstable Ca-P compound, it was decomposed and dissolved to form a crystal and to exist in an amorphous form. do. Struvite crystals are formed due to the supply of Mg and the consumption of NH 4 -N due to corrosion, but the dissolution of Ca affects the struvite crystal strength (peak, 15-16 o , 16-17 o , 21-22 o ). I could confirm.

침전물(표. 2, Exp. C)에 대한 결정특성을 파악한 결과(도. 9), 막대(rod)와불규칙한(irregular) 모양의 MAP 및 고형 침전물이 확인된다. 즉, Ca와 Mg의 경쟁을 통해 침전물은 순차적으로 형성되는 것이 아니라, 동시에 발생되어 작은 입도의 Ca-P화합물과 MAP의 핵 형성 및 결정성장이 유지되는 것을 확인할 수 있었다. 또한, 막대모양의 균일한 침전물과 불규칙한 형태의 침전물을 비교한 결과, 불순물 이온(K, Na, Cl etc.)들이 함유된 고형 침전물들은 균일한 형태의 결정보다는 불규칙한 결정표면에 흡착 혹은 응집되는 특징을 확인할 수 있다.As a result of grasping the crystallization characteristics of the sediment (Table. 2, Exp. C) (Fig. 9), MAP and solid sediments of a rod and irregular shape were identified. In other words, it was confirmed that the precipitates were not formed sequentially through competition between Ca and Mg, but were generated simultaneously to maintain the nucleation and crystal growth of the Ca-P compound and MAP having a small particle size. In addition, as a result of comparing the rod-shaped uniform precipitate and the irregular precipitate, solid precipitates containing impurity ions (K, Na, Cl, etc.) are characterized by adsorption or aggregation on irregular crystal surfaces rather than uniform crystals. can confirm.

반응시간에 따른 입도분포 특성을 관찰한 결과 D[4, 3]과 Dv(50)는 표. 5와같이 침전물의 입도크기가 감소하는 것을 확인할 수 있었다. As a result of observing the particle size distribution characteristics according to the reaction time, D[4, 3] and Dv(50) are shown in Table. As shown in Fig. 5, it was confirmed that the particle size of the precipitate was reduced.

Figure pat00007
Figure pat00007

입도분포특징을 확인한 결과(도. 10) Exp. C-1은 입도분포가 균일한 반면, Exp. C-2는 반응시간이 진행됨에 따라 입도가 감소되면서 Exp. C-3과 비슷해지는 것을 확인할 수 있었다. 이처럼, 탈리여액에 함유된 Ca이온은 PO4-P와 빠르게 반응하여 침전을 통해 제거시키는데 영향을 주고 있으나, Struvite의 입도 분포 및 입도 크기에 영향을 주고 있는 것을 확인할 수 있었다.As a result of checking the characteristics of particle size distribution (Fig. 10), Exp. C-1 has a uniform particle size distribution, while Exp. As the reaction time progresses, the particle size of C-2 decreases and Exp. It was confirmed that it became similar to C-3. As such, Ca ions contained in the desorption filtrate react quickly with PO 4 -P and have an effect on removal through precipitation, but it was confirmed that it has an effect on the particle size distribution and particle size of struvite.

스트루바이트회수공정(도. 11)은 다음과 같이 운전된다.The struvite recovery process (Fig. 11) is operated as follows.

1. 탈리여액은 세라믹필터를 이용하여 SS 500ppm 이하로 여과하며, 여과된 처리수를 Mg 볼이 함유된 Struvite 반응조로 이동한다.1. The desorption filtrate is filtered with SS 500ppm or less using a ceramic filter, and the filtered treated water is transferred to a Struvite reactor containing Mg balls.

2. Struvite 반응조는 브로워를 이용하여 Mg 볼이 유동한다. 탈리여액과 반응한 Mg는 부식반응으로 인해 침전물이 발생되며, 세라믹필터 반응조로 이동한다.2. In the Struvite reaction tank, Mg balls flow using a blower. Mg reacted with the desorption filtrate generates precipitates due to corrosion reaction, and moves to the ceramic filter reactor.

3. 침전물(스트루바이트)이 형성된 탈리여액은 세라믹필터 반응조로 이동 및 여과되며, 세라믹필터 여과를 이용하여 결정화된 스트루바이트를 회수할 수 있다.3. The desorption filtrate in which the precipitate (struvite) is formed is transferred to a ceramic filter reaction tank and filtered, and crystallized struvite can be recovered using ceramic filter filtration.

본 발명에 따른 Mg 금속 부식반응으로 pH 상승 및 마그네슘 공급 역할을 통해서 탈리여액으로부터 Struvite를 회수할 수 있도록 하며, Mg 금속은 교반속도에 따른 물리적 반응보다는 탈리여액에 함유된 염분이온으로 인하여 부식속도에 영향을 받게 되며, 부식반응에 따른 PO4-P 회수율은 반응실험(Exp. C)을 통해서 100%회수할 수 있었다.The Mg metal corrosion reaction according to the present invention makes it possible to recover struvite from the desorption filtrate by raising the pH and supplying magnesium. It will be affected, and the PO 4 -P recovery rate according to the corrosion reaction could be recovered 100% through the reaction experiment (Exp. C).

스트루바이트 원인이온 중 PO4-P는 Ca와 Mg의 경쟁반응을 통해 다양한 화합물을 형성하면서 빠르게 감소되는 반면, NH4-N은 전환반응 및 Struvite 결정을 형성하는데 소비되어 상대적으로 제거율이 낮게 나타난다. 또한, Ca이온이 빠르게 감소되어 침전물을 형성시키는 반면, Struvite결정 형성은 열역학적 에너지 차이로 인해 불안정한 Ca-P화합물을 분해시키며, Ca이온의 재용해 및 용해된 PO4-P를 활용하여 결정을 형성하지만, 불규칙한 모양의 MAP결정을 형성시킨다. 또한, 재용해된 Ca는 MAP 결정의 입도크기 및 분포특성에 영향을 주는 것을 확인할 수 있었다.Of the struvite causative ions, PO 4 -P is rapidly reduced while forming various compounds through a competitive reaction between Ca and Mg, whereas NH 4 -N is consumed in the conversion reaction and formation of struvite crystals, resulting in a relatively low removal rate. . In addition, while Ca ions rapidly decrease to form precipitates, struvite crystal formation decomposes unstable Ca-P compounds due to thermodynamic energy differences, and re-dissolves Ca ions and forms crystals using dissolved PO 4 -P. However, MAP crystals of irregular shape are formed. In addition, it was confirmed that the re-dissolved Ca affects the particle size and distribution characteristics of the MAP crystal.

Claims (3)

슬러지 탈리여액 및 마그네슘(Mg) 금속을 공급하는 단계;
상기 슬러지 탈리여액에 대한 스트루바이트 결정화 반응을 일으키는 단계;
상기 스트루바이트 결정화 반응조에서 결정화된 슬러지 탈리여액을 고액 분리하는 단계; 및
상기 결정화된 슬러지 탈리여액으로부터 인산염을 추출하는 단계를 포함하는 마그네슘 금속의 부식을 이용한 슬러지 탈리여액으로부터의 인산염 회수방법.
Supplying a sludge desorbing filtrate and a magnesium (Mg) metal;
Causing a struvite crystallization reaction to the sludge desorption filtrate;
Solid-liquid separating the sludge desorption filtrate crystallized in the struvite crystallization reactor; And
A method for recovering phosphate from the sludge desorption filtrate using corrosion of magnesium metal, comprising the step of extracting phosphate from the crystallized sludge desorption filtrate.
청구항 1에 있어서,
상기 스트루바이트 결정화 반응조로 공급되는 슬러지 탈리여액의 공급 유량 및 질소 부하율을 조절하는 단계를 더 포함하는 마그네슘 금속의 부식을 이용한 슬러지 탈리여액으로부터의 인산염 회수방법.
The method according to claim 1,
Phosphate recovery method from the sludge desorption filtrate using corrosion of magnesium metal further comprising the step of adjusting the supply flow rate and nitrogen loading rate of the sludge desorption filtrate supplied to the struvite crystallization reaction tank.
청구항 1에 있어서,
상기 슬러지 탈리여액 및 상기 마그네슘 금속 이외에 일정량의 공기가 공급되는 것을 특징으로 하는 마그네슘 금속의 부식을 이용한 슬러지 탈리여액으로부터의 인산염 회수방법.

The method according to claim 1,
A method for recovering phosphate from the sludge desorption filtrate using corrosion of magnesium metal, characterized in that a certain amount of air is supplied in addition to the sludge desorption filtrate and the magnesium metal.

KR1020190130827A 2019-10-21 2019-10-21 Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead KR20210047422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190130827A KR20210047422A (en) 2019-10-21 2019-10-21 Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190130827A KR20210047422A (en) 2019-10-21 2019-10-21 Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead

Publications (1)

Publication Number Publication Date
KR20210047422A true KR20210047422A (en) 2021-04-30

Family

ID=75740831

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190130827A KR20210047422A (en) 2019-10-21 2019-10-21 Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead

Country Status (1)

Country Link
KR (1) KR20210047422A (en)

Similar Documents

Publication Publication Date Title
Huang et al. Phosphate recovery from swine wastewater using plant ash in chemical crystallization
Korchef et al. Phosphate recovery through struvite precipitation by CO2 removal: Effect of magnesium, phosphate and ammonium concentrations
Guadie et al. Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor
Huang et al. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology
Booker et al. Struvite formation in wastewater treatment plants: opportunities for nutrient recovery
Saidou et al. Struvite precipitation by the dissolved CO2 degasification technique: Impact of the airflow rate and pH
Gao et al. An experimental study on the recovery of potassium (K) and phosphorous (P) from synthetic urine by crystallization of magnesium potassium phosphate
Huang et al. Recovery and removal of ammonia–nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product
CN101168852B (en) Mass production method for calcium sulfate whisker
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
Fujimoto et al. Phosphorus fixation in the sludge treatment system of a biological phosphorus removal process
Huang et al. Feasibility of physicochemical recovery of nutrients from swine wastewater: evaluation of three kinds of magnesium sources
Lee et al. Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters
CN107601716A (en) The method for improving guanite precipitation method processing ammonia nitrogen waste water efficiency
CN102092871A (en) Method for reclaiming nitrogen and phosphorus in nitrogen and phosphorus-containing wastewater by using bittern as magnesium source
CN104944561B (en) A kind of denitrogenation of waste water phosphorus removing method based on magnesite
Shimamura et al. Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system
Shaddel et al. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization
Priambodo et al. Fluidized-bed crystallization of iron phosphate from solution containing phosphorus
CN105110308A (en) Phosphorite comprehensive utilization method
JPH11151500A (en) Dephosphorizer
CN114072371A (en) Decomposition of struvite
KR20210047422A (en) Method for collecting Phosphate from sludge dewatering liquor using slow corrosion of magnesium bead
Rodlia et al. The effect of mixing rate on struvite recovery from the fertilizer industry
CN102874784A (en) Method for recovering nitrogen and phosphor from sewage by precipitation using concentrated seawater generated by sea water desalination