KR20210047299A - 자산으로서의 유량계 - Google Patents

자산으로서의 유량계 Download PDF

Info

Publication number
KR20210047299A
KR20210047299A KR1020217003870A KR20217003870A KR20210047299A KR 20210047299 A KR20210047299 A KR 20210047299A KR 1020217003870 A KR1020217003870 A KR 1020217003870A KR 20217003870 A KR20217003870 A KR 20217003870A KR 20210047299 A KR20210047299 A KR 20210047299A
Authority
KR
South Korea
Prior art keywords
flow meter
asset
state object
indication
diagnostic data
Prior art date
Application number
KR1020217003870A
Other languages
English (en)
Other versions
KR102560270B1 (ko
Inventor
미카일 브루실로브스키
Original Assignee
파나메트릭스 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파나메트릭스 엘엘씨 filed Critical 파나메트릭스 엘엘씨
Publication of KR20210047299A publication Critical patent/KR20210047299A/ko
Application granted granted Critical
Publication of KR102560270B1 publication Critical patent/KR102560270B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measuring Volume Flow (AREA)

Abstract

모니터링하는 산업 플랜트 내의 유량계의 동작을 특징짓는 진단 데이터가 수신될 수 있다. 유량계의 상태를 특징짓는 자산 상태 객체가 결정될 수 있다. 그 결정은 유량계 내에 구성된 데이터 프로세서에 의해 수행될 수 있다. 자산 상태 객체는 데이터 프로세서에 의해 제공될 수 있다. 관련 장치, 시스템, 기법, 및 물품이 또한 기술된다.

Description

자산으로서의 유량계
관련 출원의 상호 참조
본 출원은, 그 각각의 전체 내용이 본 명세서에 참고로 포함되는, 2018년 8월 2일자로 출원된 미국 가출원 제62/714,064호에 대한 우선권의 이익을 주장한다.
몇몇 자산 관리 소프트웨어(asset management software, AMS) 제품들은 유량계의 진단 정보를 검색하고/하거나 처리하는 능력이 없다. 현재, 몇몇 AMS 제품들은 유량계로부터 진단 파라미터들을 수집할 수 있지만, 그들은 동작 파라미터들이 동작 마진들 내에 있는지를 정의하는 기능이 없다. 충분한 유량계 동작 건강 정보가 없다면, 유량계가 올바르게 동작하고 있는지를 평가하는 것이 어려울 수 있다. 유량계에 의해 생성된 데이터가 부정확한 경우, 그것은 유량계에 의해 생성된 데이터에 의존하는 프로세스 모델링 및 최적화가 정확하지 못하게 할 수 있다.
일 태양에서, 개선된 유량계를 사용하는 유량계 모니터링을 위한 방법이 제공된다. 일 실시예에서, 방법은, 데이터 프로세서에 의해, 산업 플랜트와 연관된 파이프 내의 유체의 유량(flow rate)을 모니터링하기 위해 산업 플랜트 내에 구성된 유량계의 동작을 특징짓는 진단 데이터를 수신하는 단계를 포함할 수 있다. 데이터 프로세서는 유량계 내에 구성된다. 방법은, 데이터 프로세서에 의해 그리고 수신된 진단 데이터에 기초하여, 유량계의 상태를 특징짓는 자산 상태 객체(asset state object)를 결정하는 단계를 추가로 포함할 수 있다. 방법은 또한, 데이터 프로세서에 의해, 자산 상태 객체를 제공하는 단계를 포함할 수 있다.
다른 태양에서, 개선된 유량계를 사용하는 유량계 모니터링을 위한 시스템이 제공된다. 시스템은 유량계 내에 구성된 적어도 하나의 데이터 프로세서, 및 적어도 하나의 데이터 프로세서로 하여금 동작들을 수행하게 하도록 구성된 명령어들을 저장하는 메모리를 포함할 수 있다. 명령어들은, 실행될 때, 적어도 하나의 데이터 프로세서로 하여금 유량계의 동작을 특징짓는 진단 데이터를 수신하게 할 수 있다. 유량계는 산업 플랜트와 연관된 파이프 내의 유체의 유량을 모니터링하기 위해 산업 플랜트 내에 구성될 수 있다. 명령어들은, 실행될 때, 추가로 적어도 하나의 데이터 프로세서로 하여금, 수신된 진단 데이터에 기초하여, 유량계의 상태를 특징짓는 자산 상태 객체를 결정하게 할 수 있다. 명령어들은, 실행될 때, 추가로 적어도 하나의 데이터 프로세서로 하여금 자산 상태 객체를 제공하게 할 수 있다.
하나 이상의 컴퓨팅 시스템의 하나 이상의 데이터 프로세서에 의해 실행될 때, 적어도 하나의 데이터 프로세서로 하여금 본 명세서에서의 동작들을 수행하게 하는 명령어들을 저장하는 비일시적 컴퓨터 프로그램 제품들(즉, 물리적으로 구현된 컴퓨터 프로그램 제품들)이 또한 기술된다. 유사하게, 하나 이상의 데이터 프로세서 및 하나 이상의 데이터 프로세서에 결합된 메모리를 포함할 수 있는 컴퓨터 시스템들이 또한 기술된다. 메모리는 적어도 하나의 프로세서로 하여금 본 명세서에 기술된 동작들 중 하나 이상을 수행하게 하는 명령어들을 일시적으로 또는 영구적으로 저장할 수 있다. 또한, 방법들은 단일 컴퓨팅 시스템 내에 있는, 또는 둘 이상의 컴퓨팅 시스템 간에 분산된 하나 이상의 데이터 프로세서에 의해 구현될 수 있다. 그러한 컴퓨팅 시스템들은 네트워크(예를 들어, 인터넷, 무선 광역 네트워크, 로컬 영역 네트워크, 광역 네트워크, 유선 네트워크 등)를 통한 연결, 다수의 컴퓨팅 시스템들 중 하나 이상의 컴퓨팅 시스템 간의 직접 연결을 통해 등등을 포함하여, 하나 이상의 연결을 통해 연결될 수 있고 데이터 및/또는 커맨드들 또는 다른 명령어들 등을 교환할 수 있다.
본 명세서에 기술된 주제의 하나 이상의 변형의 상세 사항이 첨부 도면 및 하기의 설명에 기재된다. 본 명세서에 기술된 주제의 다른 특징 및 이점이 설명 및 도면으로부터, 그리고 청구범위로부터 명백할 것이다.
도 1은 유량계로서의 자산을 제공할 수 있는 본 주제의 몇몇 구현들의 예시적인 프로세스를 예시하는 프로세스 흐름도이다.
도 2는 개선된 유량계 모니터링을 제공할 수 있는 본 주제의 몇몇 구현들의 예시적인 유량계 자산을 예시하는 예시적인 프로세스 흐름도이다.
도 3은 일 실시예에 따른 유량계로부터 출력된 예시적인 원시 신호 파일의 내용을 디스플레이하는 플롯이다.
도 4는 일 실시예에 따른 유량계에 설정된 피크 백분율을 보여주는 수평 라인과 함께, 상관된 업스트림 및 다운스트림, 예시적인 신호 파일의 내용을 디스플레이하는 플롯이다.
도 5는 예시적인 건강한 교차-상관된 신호 파일의 내용을 디스플레이하는 플롯이다.
다양한 도면에서의 동일한 도면 부호는 동일한 요소를 지시한다.
펌프 스테이션과 같은, 오일 및 가스 장비에 대한 건강 상태 정보는, 예를 들어, 자산 관리 소프트웨어(AMS)를 사용하여 획득될 수 있다. 몇몇 AMS 제품들은 파이프 내의, 유동의, 때때로 유체의 하나 이상의 특성(예를 들어, 속도 또는 압력)을 측정하기 위한 계기들인, 유량계들의 진단 정보를 검색하고/하거나 처리하는 능력이 없다. 유량계들은 오일 및 가스 산업에서 사용될 수 있지만, 또한 다른 산업들에서 사용될 수 있다. 유량계의 포괄적인 건강 상태를 알지 못하면, 유량계가 유동의 측정을 올바르게 하고 있는지 그리고 정확도가 마진들 내에 있는지를 평가하기가 어려울 수 있다. 유량계에 의해 생성된 데이터가 부정확한 경우, 그것은 자산 성능 관리자 소프트웨어(예를 들어, 개선된 동작 신뢰성 및 효율성을 달성하기 위한, 그리고 유량계에 의해 생성된 측정 데이터에 의존할 수 있는 소프트웨어 프로그램)에 의한 프로세스 모델링 및 최적화가 정확하지 못하게 할 수 있다. 이 문제를 해결하기 위해, 유량계의 동작 건강에 대한 정보를 제공함으로써 유량계의 진단을 개선할 수 있는 디지털 애플리케이션이 제공된다.
디지털 애플리케이션은 유량계로부터의 진단 데이터에 기초하여 유량계 건강 객체를 생성할 수 있는 디지털 모델을 포함할 수 있다. 디지털 애플리케이션은 자산 관리 및 최적화 소프트웨어에서 사용하기 위한 유량계의 포괄적인 건강 상태를 제공할 수 있다. 몇몇 구현들에서, 디지털 애플리케이션은 유량계 자체에, 또는 디지털 산업 솔루션 플랫폼 상에, 또는 둘 모두에 구현될 수 있다.
디지털 산업 솔루션 플랫폼은 산업 기계들로부터 데이터를 수집하고 분석하는 데 사용될 수 있는 클라우드 기반의, 서비스로서의 플랫폼(platform-as-a-service) 소프트웨어 플랫폼을 포함할 수 있다. 디지털 산업 솔루션 플랫폼은 기계들, 데이터, 및 사람들을 관리하는 표준 방식을 제공함으로써 자산 성능 관리 및 동작 최적화를 위한 산업 규모 분석을 가능하게 할 수 있다.
도 1은 개선된 유량계 모니터링을 제공할 수 있는 본 주제의 몇몇 구현들의 예시적인 프로세스(100)를 예시하는 프로세스 흐름도이다.
105에서, 오일과 같은 유체의 유량을 모니터링하는 산업 플랜트 내의 유량계의 동작을 특징짓는 진단 데이터가 수신될 수 있다. 유량계들은 개선된 효율성, 문제의 식별 및 증가된 정확도를 위한 프로세스의 일부로서 파이프들을 통한 유동을 측정하기 위해 음속을 분석할 수 있다. 특정 기체, 액체, 유체, 또는 다른 매체에 대한 음속은 음파들이 얼마나 빨리 기체, 액체, 유체 또는 다른 매체를 통과할 수 있는지를 기술할 수 있다. 유량계는 클램프 온 유량계(clamp on flow meter) 또는 습식 유량계(wetted flow meter)를 포함할 수 있다. 각각의 유형의 유량계는 동작 온도, 유량계를 통해 유동하는 액체 또는 기체의 액체 또는 기체 온도, 소프트웨어 오류, 및/또는 하드웨어 오류를 포함하는 진단 데이터를 생성하도록 구성될 수 있다. 몇몇 구현들에서, 진단 데이터는 진단 파라미터들 및 구성 데이터를 포함할 수 있다. 몇몇 구현들에서, 진단 파라미터들 및 구성 데이터는 하나 이상의 파라미터를 포함할 수 있다. 예를 들어, 진단 데이터는 파라미터들 데이터의 세트들을 포함할 수 있다. 몇몇 실시예들에서, 진단 데이터는 1개 내지 10개, 15개 내지 30개, 25개 내지 50개, 40개 내지 75개, 또는 70개 내지 100개의 파라미터를 포함할 수 있다.
진단 데이터는 클램프 온 유량계 및 습식 유량계 둘 모두에 대한 온도, 음속, 및 진폭과 같은 채널당 파라미터들을 포함할 수 있다. 몇몇 실시예들에서, 예를 들어, 클램프 온 유량계들에 대해, 진단 데이터는 웨지 음속(wedge sound speed)과 같은 채널당 파라미터를 포함할 수 있다. 예를 들어, 채널당 웨지 음속은 유량계의 온도 센서가 올바르게 동작하고 있는지를 지시할 수 있다. 몇몇 실시예들에서, 예를 들어, 습식 유량계들에 대해, 진단 데이터는 웨지 온도, 웨지 온도 변화, 웨지 간격, 및/또는 웨지 내 시간(time in wedge)에 대한 채널당 파라미터를 포함할 수 있다.
진단 데이터는 상향 또는 하향 신호 방향에서와 같은 신호 방향과 연관된 채널당 파라미터를 추가로 포함할 수 있다. 진단 데이터는 신호 품질, 신호 대 잡음비, 이득 피크, 및/또는 진폭과 같은, 클램프 온 유량계 및 습식 유량계 둘 모두에 대한 주어진 신호 방향에 대한 채널당 파라미터들을 포함할 수 있다. 예를 들어, 몇몇 구현들에서, 신호 대 잡음비는 변환기(transducer)로부터 수신된 신호 진폭 대 그의 잡음 플로어의 비율을 포함할 수 있다. 몇몇 구현들에서, 예를 들어 클램프 온 유량계 및 습식 유량계에서, 진단 데이터는 주어진 신호 방향에 대한 채널당 파라미터들을 제공하는 신호 파일을 포함할 수 있다. 신호 파일은 채널당 적어도 하나의 파일을 포함할 수 있다. 다른 구현들에서, 신호 파일은 채널당 5개 내지 7개의 파일을 포함할 수 있다. 신호 파일은 수신 변환기에 의해 수신될 수 있는 측정 포인트들 또는 데이터 값들의 컬렉션을 포함할 수 있다. 몇몇 구현들에서, 신호 파일에 포함된 포인트들의 컬렉션은 약 1000개 내지 2000개의 포인트를 포함할 수 있다. 신호 파일에 포함된 정보는, 예를 들어, 초음파 이동 시간(ultrasonic transit time)의 결정에 사용될 수 있다.
습식 유량계들에 대해, 몇몇 구현들에서, 진단 데이터는 웨지 신호 품질, 웨지 신호 대 잡음비, 웨지 이득, 웨지 피크, 및 웨지 진폭과 같은, 주어진 신호 방향에 대한 채널당 파라미터들을 포함할 수 있다.
몇몇 구현들에서, 다른 유형의 진단 데이터가 수신될 수 있다. 진단 데이터는 유량계의 내부 설계, 및 진단, 구성, 유동 파라미터들 등을 계산하기 위해 그 안에 통합된 임의의 알고리즘에 기초하여 달라질 수 있다. 몇몇 구현들에서, 하나 이상의 진단 및 구성 파라미터들은 유량계에 통신적으로 결합된 하나 이상의 디바이스에 의해 검색될 수 있다.
110에서, 자산 상태 객체가 결정될 수 있다. 자산 상태 객체를 결정하는 것은 자산 모델 엔진에 의해 수행될 수 있다. 자산 상태 객체는 유량계의 신뢰성을 나타내는 유량계의 상태를 특징지을 수 있다. 자산 상태 객체는 객체 지향 프로그래밍에서 사용되는 바와 같은 객체와 같은, 클래스의 인스턴스로서 구현될 수 있다. 자산 상태 객체는 유량계 진단 데이터가 AMS 소프트웨어 제품들에 의해 보다 쉽게 수신되고 처리될 수 있게 하는 유연하게 포맷된 객체일 수 있다. 자산 상태 객체는 유량계 진단 파라미터들을 초기 처리하고 후속하여 진단 파라미터들을 객체 포맷에 결합하는 것에 의해 생성될 수 있다. 기존의 AMS 시스템들은 전형적으로 유량계의 개별 진단 파라미터들의 전부는 아닌 일부를 수신하거나 검색하도록 구성된다. 진단 파라미터들을 처리하는 것은 시간이 많이 걸리고 오류가 발생하기 쉽지만 유량계의 동작 건강의 결정에 중요하다. 종종 진단 파라미터들을 처리하는 것은 유량계 동작 또는 진단 데이터에 특정 경험이 있는 숙련된 인력을 필요로 하였다. AMS 소프트웨어 시스템들은 일단 진단 데이터가 적절하게 포맷되면 진단 데이터를 처리하도록 구성될 수 있다. 진단 파라미터들의 초기 처리는, 예를 들어, 자산 상태 객체에 포함될 수 있는 하나 이상의 신호 파일을 생성하기 위해, 유량계에서 수행될 수 있다. 그러나, 원시 신호 파일들은 데이터의 복잡성을 숨길 수 있고 유량계의 동작 건강에 관해 최상의 통찰력을 제공하지 못할 수 있다. 자산 상태 객체의 포맷으로 유량계의 건강 상태를 제시함으로써, AMS 소프트웨어는 유량계의 건강 상태를 결정하는 것을 단순화할 수 있고 이 상태가 AMS 소프트웨어 패키지들에 의해 보다 쉽게 판독되고 처리되게 할 수 있다.
유량계는 자산 상태 객체를 생성하기 위해 필요한 하나 이상의 진단 처리 알고리즘을 갖도록 구성될 수 있다. 자산 모델 엔진은 하나 이상의 진단 처리 알고리즘을 포함할 수 있으며, 이러한 진단 처리 알고리즘은 유량계의 진단 파라미터들의 초기 처리를 수행하도록 그리고 진단 파라미터들을 진단 데이터가 그에 대해 연관된 특정 유량계에 대응하는 자산 상태 객체에 결합하도록 유량계 내에 구성될 수 있다. 몇몇 실시예들에서, 자산 모델 엔진은 진단 데이터에 기초하여 자산 상태 객체를 생성하기 위해 기계 학습 프로세스에서 훈련된 하나 이상의 예측 모델 또는 기계 학습 프로세스를 구현하거나 달리 포함할 수 있다. 이러한 방식으로, 자산 상태 객체는 유량계의 동작 상태 또는 건강의 정확한 표현을 포함하도록 생성될 수 있다. 몇몇 구현들에서, 자산 상태 객체는 각각의 채널, 케이블링, 전자 기기 등에 대해 구성될 수 있는, 변환기들의 세트와 같은, 하나 이상의 유량계 부품과 연관된 상태를 포함할 수 있다.
115에서, 자산 상태 객체가 제공될 수 있다. 몇몇 구현들에서, 자산 상태 객체는 추가 처리를 위해 AMS 및/또는 최적화 소프트웨어에 제공될 수 있다. 몇몇 구현들에서, 자산 상태 객체는 유량계에 결합된 컴퓨팅 디바이스의 디스플레이에 출력될 수 있다. 몇몇 실시예들에서, 자산 상태 객체는 유량계의 동작 건강에 관하여 조작자들에게 지시(indication)를 제공할 수 있다. 몇몇 실시예들에서, 자산 상태 객체에 지시된 동작 건강은 유량계를 동작 상태로 유지하기 위해 필요한 유지보수 또는 서비스 활동들을 결정하는 데 사용될 수 있다. 몇몇 구현들에서, 자산 상태 객체는 산업 플랜트의 동작 효율성을 개선하기 위해 AMS 및/또는 최적화 소프트웨어에 의해 사용될 수 있다.
도 2는 본 명세서에 기술된 바와 같은 개선된 유량계 모니터링을 제공하도록 구성된, 유량계(202)를 포함하는, 예시적인 시스템(200)을 예시하는 예시적인 시스템 블록도이다.
몇몇 구현들에서, 시스템(200)은 유동 측정 서브시스템(205)을 포함하도록 구성된 유량계(202)를 포함할 수 있다. 유동 측정 서브시스템(205)은 자산 모델 서브시스템(210)과 동작 가능하게 통신할 수 있다. 진단 파라미터들 및 구성 데이터는 유동 측정 서브시스템(205)에 의해 검색될 수 있다. 자산 모델 서브시스템(210)은 유동 측정 서브시스템(205)으로부터 진단 데이터를 수신할 수 있는 진단 데이터 저장소(210A)를 포함할 수 있다. 몇몇 구현들에서, 진단 데이터는 진단 데이터의 대략 하나 이상의 측정 또는 데이터 포인트를 포함할 수 있다. 예를 들어, 진단 데이터는 (유량계(202) 내에 구성될 수 있는 3개의 채널 각각에 걸쳐) 100개의 항목을 포함할 수 있다. 몇몇 구현들에서, 진단 데이터는 다수의 신호 파일들을 포함할 수 있다. 몇몇 구현들에서, 진단 데이터 저장소(210A)는 데이터베이스와 같은 메모리를 포함할 수 있다.
몇몇 구현들에서, 진단 데이터는 자산 모델 엔진(210B)으로 송신될 수 있다. 자산 모델 엔진(210B)은 자산 모델(210C)과 동작 가능하게 통신할 수 있다. 몇몇 구현들에서, 자산 모델 엔진(210B)은 동작들을 수행하도록 구성된 프로세서를 포함할 수 있다. 자산 모델(210C)은 진단 데이터의 처리를 위해 자산 모델 엔진(210B)에 명령어들을 제공할 수 있다. 자산 모델(210B)은 수신된 진단 데이터 및 자산 모델 엔진(210C)으로부터의 명령어들을 사용하여 자산 상태를 결정하기 위해 알고리즘 또는 예측 모델을 실행할 수 있다. 몇몇 구현들에서, 자산 모델(210C)은 진단 데이터 및 신호 파일들을 분석하는 데 사용될 수 있는 XML 스크립트 또는 유사한 포맷의 컴퓨터 판독 가능 및 실행 가능 명령어들일 수 있다. 몇몇 구현들에서, 자산 모델(210C)은 동작들을 수행하도록 구성된 프로세서를 포함할 수 있다.
이어서 자산 모델 엔진(210B)은 자산 상태를 포함하는 유동 자산 객체(210D)를 출력할 수 있고, 이는 추가 처리를 위해 제1 통신 서브시스템(215)에 제공될 수 있다. 통신 서브시스템(215)은, 몇몇 구현들에서, 디스플레이, 키보드, 마우스, 단말기 등과 같은, 하드웨어 입력/출력 디바이스를 포함할 수 있다. 유동 자산 객체(210D)는, 몇몇 구현들에서, 유량계(202)의 동작 건강 또는 유량계(202)의 건강 상태에 관한 정보를 포함할 수 있다. 몇몇 구현들에서, 건강 상태는 원격으로 생성될 수 있다. 몇몇 구현들에서, 건강 상태는 AMS 소프트웨어에서 생성될 수 있다. 몇몇 구현들에서, 유동 측정 서브시스템(205)과 자산 모델 서브시스템(210)이 별개의 디지털 컨테이너들에서 동작하여, 유동 측정 서브시스템(205)에서 발생하는 유동 측정 및 유동 계산 프로세스들이 중단되지 않고 계속될 수 있고 컴퓨팅 리소스들을 효율적으로 이용할 수 있다는 것이 기술된 주제의 이점이다. 그러한 구성은 또한, 유량계에서 실행될 새로운 작업들을 포함할 수 있는, 자산 모델 서브시스템(210)의 펌웨어의 독립적인 업그레이드들 또는 수정들을 가능하게 할 수 있다.
몇몇 구현들에서, 진단 데이터는 하나 이상의 변환기(220A) 및/또는 하나 이상의 게이트(220B)로부터 유래할 수 있으며 이는 계측기 인터페이스(220C)를 통해 유량계(202)로 송신될 수 있다. 계측기 인터페이스(220C)는, 몇몇 구현들에서, 하드웨어 입력/출력 디바이스를 포함할 수 있다. 몇몇 구현들에서, 유동 자산 객체(210D)는, 클라우드에 위치한 AMS 소프트웨어 패키지를 실행할 수 있는, 원격 서버(225A)로의 전파를 위해 제1 통신 서브시스템(215)에 제공될 수 있다. 몇몇 구현들에서, 원격 서버(225A)는 원격 디바이스들(225B)에 의해 액세스될 수 있다. 제1 통신 서브시스템(215)은, 몇몇 구현들에서, 디스플레이, 키보드, 마우스, 단말기 등과 같은, 하드웨어 입력/출력 디바이스를 포함할 수 있다.
몇몇 구현들에서, 원격 서버(225A)는 동작들을 수행하도록 구성될 수 있는 하나 이상의 프로세서들(225C), 및 프로세서들(225C)에 의해 액세스될 수 있는 저장소(225D)(예를 들어, 데이터베이스 또는 메모리)를 포함할 수 있다. 몇몇 구현들에서, 원격 서버(225A)에의 데이터의 제공은 서비스 인터페이스(225E)를 통해 그리고 매체(227)를 통해 발생할 수 있다. 몇몇 구현들에서, 매체는 유선 또는 무선 통신 인터페이스들을 포함할 수 있다. 서비스 인터페이스(225E)는, 몇몇 구현들에서, 디스플레이, 키보드, 마우스, 단말기 등과 같은, 하드웨어 입력/출력 디바이스를 포함할 수 있다. 몇몇 구현들에서, 자산 모델 서브시스템(210)은 제2 통신 서브시스템(230)과 동작 가능하게 통신할 수 있고, 제2 통신 서브시스템은 프로세스 인터페이스(235)와 추가로 통신할 수 있다. 몇몇 구현들에서, 프로세스 인터페이스(235)는 산업용 버스 또는 프로세스 인터페이스를 포함할 수 있다. 몇몇 구현들에서, 건강 상태는 원격으로 생성될 수 있다. 몇몇 구현들에서, 건강 상태는 AMS 소프트웨어에서 생성될 수 있다.
도 3은 도 2의 유량계(202)와 같은, 일 실시예에 따른 이동 시간을 측정하도록 구성된 유량계로부터 출력될 수 있는 원시 신호 파일의 예시적인 표현을 디스플레이하는 플롯(300)이다. 원시 신호 파일은 연관된 파라미터(예를 들어, 신호 대 잡음비, 채널당 웨지 음속, 채널당 피크 백분율, 파이프 음속, 활성 간격, 활성 온도 변화, 및/또는 피크 백분율)를 인덱스(x 축)에 대한 값(y 축)으로서 특징지을 수 있다. 신호 파일이 원시이기 때문에, x 축 및 y 축들은 파라미터 및 인덱스의 값들에 대응하는 상대적 치수들로 예시되어 있다.
도 4는 업스트림 및 다운스트림 변환기 데이터를 상관시키도록 처리된 신호 파일의 예시적인 표현을 디스플레이하는 플롯(400)이다. 예를 들어, 도 4에 도시된 바와 같이, 플롯(400)은 일 실시예에 따른 유량계의 다운스트림 라인에 설정된 전류 피크 백분율을 보여주는 수평 라인(410)을 포함한다. 동작 시, 조작자는 유량계가 동작적으로 건강한 상태에서 작동하고 있는지 그리고 유동이 유량계에 의해 올바르게 측정되고 있는지를 확인하기 위해 상관된 신호 파일 내의 정보를 사용하여 동작 분석을 수행할 수 있다. (도 4에 도시된 참조 번호 415에 의해 예시된 바와 같은) 업스트림 라인(405)과 다운스트림 라인(410)이 교차하는 위치는 유량계가 부정확한 측정치들을 제공하고 있을 수 있거나 측정 사이클들을 건너뛰고 있을 수 있다는 것을 지시할 수 있다. 몇몇 기존 시스템들에서, 동작 분석은 신호 파일들만으로 행해질 수 있다. 몇몇 기존 시스템들에서, 동작 분석은 서비스 엔지니어들에 의해 수동으로만 수행될 수 있다.
도 5는 동작적으로 건강한 유량계에 대한 교차-상관된 신호 파일의 예시적인 표현을 디스플레이하는 예시적인 플롯(500)을 디스플레이한다. 교차-상관된 신호 파일은 신호 파일의 컴포넌트들 간의 유사성의 표시 또는 지시를 제공할 수 있다. 교차-상관된 신호 파일은 연관된 파라미터(예를 들어, 신호 대 잡음비, 채널당 웨지 음속, 채널당 피크 백분율, 파이프 음속, 활성 간격, 활성 온도 변화, 및/또는 피크 백분율)를 인덱스(예를 들어, x 축 상에 디스플레이된 인덱스 값)에 대한 값(예를 들어, y 축 상에 디스플레이된 파라미터 값)으로서 특징지을 수 있다.
본 명세서에 기술된 바와 같은 개선된 시스템은 유량계의 동작 상태를 모니터링하는 것의 기술적 문제를 해결한다. 본 명세서에 기술된 방법들, 시스템들, 디바이스들, 및 컴퓨터 판독 가능 매체들의 예시적인 기술적 효과들은 유량계들의 개선된 동작을 포함할 수 있다. 본 명세서에 기술된 프로세스들 및 시스템들 중 일부의 출력으로서 제공되는 건강 상태 정보는 유량계들의 사용을 필요로 하는 프로세스들 및 동작들의 개선된 최적화를 가능하게 할 수 있다. 또한, 유량계와 상호 작용하기 위한 개선된 인터페이스가 본 명세서에 기술된 주제로부터 생길 수 있다. 원격 분석이 본 명세서에 기술된 주제에 의해 제공될 수 있으며, 이는 진단 데이터를 분석하기 위해 원격 컴퓨터에 액세스할 필요성을 제거할 수 있다. 추가적으로, 본 명세서에 기술된 주제는 유량계들과 자산 관리 소프트웨어의 몇몇 구현들 간의 개선된 통신을 제공할 수 있다. 예를 들어, 본 명세서에 기술된 주제는, 유량계의 건강 상태를 제공할 목적으로, 진단 파라미터들 및 신호 파일들과 같은, 자산 관리 소프트웨어의 몇몇 구현들이 처리하지 못하는 유량계를 온보드로 처리할 수 있다. 따라서, 본 명세서에 기술된 주제에 의해 생성된 건강 상태 정보는, 건강 상태 정보의 생성을 위한 기능을 AMS 플랫폼들에 통합할 필요 없이, 임의의 AMS 플랫폼에 전달될 수 있다.
따라서 시스템은 유량계와 연관된 진단 데이터를 처리하고 유량계 유형들에 대응하는 또는, 유량계에 관하여 구성될 수 있는 변환기와 같은, 센서에 대응하는 상태 데이터를 생성하는 컴퓨터 기능의 개선을 제시한다. 추가적으로, 원격 디바이스들(225B)은 예컨대 유량계 또는 유량계에 관하여 구성될 수 있는 센서들과 연관된 하나 이상의 파라미터를 시각화할 때 진단 및 상태 데이터의 보다 효율적인 시각화 및 실행을 제공하는 개선된 디스플레이 또는 그래픽 사용자 인터페이스(GUI)를 포함할 수 있다. 개선된 GUI는 또한 비정상 동작 상태들의 경고 또는 알림을 위한, 진단 또는 상태 데이터에 기초하여 유량계들에 대한 유지보수 또는 수리 절차들을 계획하거나, 산업 플랜트의 생산율을 바람직한 범위들 내에서 관리하기 위한 향상된 시각화들을 제공할 수 있다.
본 명세서에 기술된 주제의 하나 이상의 태양 또는 특징은 디지털 전자 회로, 집적 회로, 특수 설계된 ASIC(application specific integrated circuit), FPGA(field programmable gate array) 컴퓨터 하드웨어, 펌웨어, 소프트웨어 및/또는 이들의 조합들로 실현될 수 있다. 이러한 다양한 태양들 또는 특징들은 저장 시스템, 적어도 하나의 입력 디바이스, 및 적어도 하나의 출력 디바이스로부터 데이터 및 명령어들을 수신하고 이들에 데이터 및 명령어들을 송신하도록 결합된, 특수 목적 또는 범용일 수 있는, 적어도 하나의 프로그래밍 가능 프로세서를 포함하는 프로그래밍 가능 시스템 상에서 실행 가능하고/하거나 해석 가능한 하나 이상의 컴퓨터 프로그램으로의 구현을 포함할 수 있다. 프로그래밍 가능 시스템 또는 컴퓨팅 시스템은 클라이언트들 및 서버들을 포함할 수 있다. 클라이언트와 서버는 일반적으로 서로 원격에 있고 전형적으로 통신 네트워크를 통해 상호 작용한다. 클라이언트와 서버의 관계는 각자의 컴퓨터들 상에서 실행되고 서로 클라이언트-서버 관계를 가진 컴퓨터 프로그램들에 의해 발생한다.
프로그램들, 소프트웨어, 소프트웨어 애플리케이션들, 애플리케이션들, 컴포넌트들 또는 코드로 또한 지칭될 수 있는 이러한 컴퓨터 프로그램들은 프로그래밍 가능 프로세서에 대한 기계 명령어들을 포함하며, 고급 절차 언어, 객체 지향 프로그래밍 언어, 함수형 프로그래밍 언어, 논리형 프로그래밍 언어로, 그리고/또는 어셈블리 언어/기계어로 구현될 수 있다. 본 명세서에서 사용된 바와 같이, 용어 "기계 판독 가능 매체"는 기계 판독 가능 신호로서 기계 명령어들을 수신하는 기계 판독 가능 매체를 포함하여, 프로그래밍 가능 프로세서에 기계 명령어들 및/또는 데이터를 제공하는 데 사용되는, 예를 들어 자기 디스크, 광 디스크, 메모리, 및 PLD(Programmable Logic Device)와 같은, 임의의 컴퓨터 프로그램 제품, 장치 및/또는 디바이스를 지칭한다. 용어 "기계 판독 가능 신호"는 기계 명령어들 및/또는 데이터를 프로그래밍 가능 프로세서에 제공하는 데 사용되는 임의의 신호를 지칭한다. 기계 판독 가능 매체는, 예를 들어 비일시적 솔리드-스테이트 메모리 또는 자기 하드 드라이브 또는 임의의 동등한 저장 매체가 그러할 바와 같이, 그러한 기계 명령어들을 비일시적으로 저장할 수 있다. 기계 판독 가능 매체는 대안적으로 또는 추가적으로, 예를 들어 하나 이상의 물리적 프로세서 코어와 연관된 프로세서 캐시 또는 다른 랜덤 액세스 메모리가 그러할 바와 같이, 그러한 기계 명령어들을 일시적인 방식으로 저장할 수 있다.
사용자와의 상호 작용을 제공하기 위해, 본 명세서에 기술된 주제의 하나 이상의 태양 또는 특징은 디스플레이 디바이스, 이를테면 예를 들어 사용자에게 정보를 디스플레이하기 위한 음극선관(CRT) 또는 액정 디스플레이(LCD) 또는 발광 다이오드(LED) 모니터와 키보드 및 포인팅 디바이스, 이를테면 예를 들어 사용자가 컴퓨터에 입력을 제공할 수 있게 하는 마우스 또는 트랙볼을 갖는 컴퓨터 상에서 구현될 수 있다. 다른 종류의 디바이스들이 또한 사용자와의 상호 작용을 제공하는 데 사용될 수 있다. 예를 들어, 사용자에게 제공되는 피드백은 예를 들어 시각 피드백, 청각 피드백, 또는 촉각 피드백과 같은 임의의 형태의 감각 피드백일 수 있고; 사용자로부터의 입력은 음향, 말, 또는 촉각 입력을 포함하여, 임의의 형태로 수신될 수 있다. 다른 가능한 입력 디바이스들은 터치 스크린들 또는 다른 터치 감지 디바이스들, 예컨대 단일점 또는 다점 저항성 또는 용량성 트랙패드들, 음성 인식 하드웨어 및 소프트웨어, 광학 스캐너들, 광학 포인터들, 디지털 이미지 캡처 디바이스들 및 연관된 해석 소프트웨어 등을 포함한다.
상기 설명에서 그리고 청구범위에서, "~ 중 적어도 하나" 또는 "~ 중 하나 이상"과 같은 어구들은 요소들 또는 특징부들의 연결 목록에 뒤따라 존재할 수 있다. 용어 "및/또는"이 또한 둘 이상의 요소 또는 특징부의 목록에 존재할 수 있다. 그것이 사용되는 문맥에 의해 달리 암시적으로 또는 명시적으로 모순되지 않는 한, 그러한 어구는 열거된 요소들 또는 특징부들 중 임의의 것을 개별적으로 의미하거나, 다른 언급된 요소들 또는 특징부들 중 임의의 것과 조합된 언급된 요소들 또는 특징부들 중 임의의 것을 의미하는 것으로 의도된다. 예를 들어, 어구들 "A 및 B 중 적어도 하나"; "A 및 B 중 하나 이상"; 및 "A 및/또는 B"는 각각 "A 단독, B 단독, 또는 A 및 B 함께"를 의미하는 것으로 의도된다. 3개 이상의 항목을 포함하는 목록들에 대해서도 유사한 해석이 의도된다. 예를 들어, 어구들 "A, B, 및 C 중 적어도 하나"; "A, B 및 C 중 하나 이상"; 및 "A, B, 및/또는 C"는 각각 "A 단독, B 단독, C 단독, A 및 B 함께, A 및 C 함께, B 및 C 함께, 또는 A 및 B 및 C 함께"를 의미하는 것으로 의도된다. 또한, 위에서 그리고 청구범위에서, 용어 "~에 기초하여"의 사용은 "~에 적어도 부분적으로 기초하여"를 의미하는 것으로 의도되며, 따라서 언급되지 않은 특징부 또는 요소가 또한 허용 가능하다.
본 명세서에 기술된 주제는 원하는 구성에 따라 시스템들, 장치들, 방법들, 및/또는 물품들로 구현될 수 있다. 상기 설명에 기재된 구현들은 본 명세서에 기술된 주제와 일치하는 모든 구현들을 나타내는 것은 아니다. 대신에, 그들은 단지 기술된 주제에 관련된 태양들과 일치하는 몇몇 예들일 뿐이다. 위에서 몇 가지 변형들이 상세히 기술되었지만, 다른 수정들 또는 추가들이 가능하다. 특히, 본 명세서에 기재된 것들에 더하여 추가 특징들 및/또는 변형들이 제공될 수 있다. 예를 들어, 위에 기술된 구현들은 개시된 특징들의 다양한 조합들 및 하위 조합들 및/또는 위에 개시된 몇몇의 추가 특징들의 조합들 및 하위 조합들에 관한 것일 수 있다. 또한, 첨부 도면들에 도시된 그리고/또는 본 명세서에 기술된 로직 흐름들은 바람직한 결과들을 달성하기 위해 반드시 제시된 특정 순서 또는 순차적 순서를 필요로 하는 것은 아니다. 다른 구현들이 다음의 청구범위의 범위 내에 있을 수 있다.

Claims (24)

  1. 방법으로서,
    데이터 프로세서에 의해, 산업 플랜트와 연관된 파이프 내의 유체의 유량(flow rate)을 모니터링하기 위해 상기 산업 플랜트 내에 구성된 유량계의 동작을 특징짓는 진단 데이터를 수신하는 단계 - 상기 데이터 프로세서는 상기 유량계 내에 구성됨 -;
    상기 데이터 프로세서에 의해 그리고 상기 수신된 진단 데이터에 기초하여, 상기 유량계의 상태를 특징짓는 자산 상태 객체(asset state object)를 결정하는 단계; 및
    상기 데이터 프로세서에 의해, 상기 자산 상태 객체를 제공하는 단계를 포함하는, 방법.
  2. 제1항에 있어서, 상기 진단 데이터는 신호 대 잡음비, 신호 파일, 채널당 음속, 채널당 웨지 음속(wedge sound speed), 채널당 피크 백분율, 온도, 및/또는 피크 백분율을 포함하는, 방법.
  3. 제1항에 있어서, 상기 자산 상태 객체는 기계 학습 엔진 및/또는 예측 모델을 포함하는 자산 모델 엔진을 사용하여 결정되는, 방법.
  4. 제1항에 있어서, 상기 유량계의 상기 상태는 상기 유량계의 신뢰성의 지시(indication)를 포함하는, 방법.
  5. 제4항에 있어서, 상기 유량계의 상기 상태는 측정 정확도의 저하, 고장들의 수, 채널 상태, 및/또는 상기 유량계와 연관된 전반적인 상태의 지시를 포함하는, 방법.
  6. 제1항에 있어서, 상기 자산 상태 객체는 상기 유량계에 결합된 하나 이상의 센서들에 대응하는 신뢰성의 지시를 포함하는, 방법.
  7. 제6항에 있어서, 상기 자산 상태 객체는 상기 유량계에 결합된 상기 하나 이상의 센서들과 연관된 송신 및/또는 수신에 있어서의 악화의 지시를 포함하는, 방법.
  8. 제6항에 있어서, 상기 하나 이상의 센서들은 변환기(transducer)를 포함하는, 방법.
  9. 시스템으로서,
    유량계 내에 구성된 적어도 하나의 데이터 프로세서; 및
    상기 적어도 하나의 데이터 프로세서로 하여금,
    상기 유량계의 동작을 특징짓는 진단 데이터를 수신하는 것 - 상기 유량계는 산업 플랜트와 연관된 파이프 내의 유체의 유량을 모니터링하기 위해 상기 산업 플랜트 내에 구성됨 -,
    상기 수신된 진단 데이터에 기초하여, 상기 유량계의 상태를 특징짓는 자산 상태 객체를 결정하는 것, 및 상기 자산 상태 객체를 제공하는 것
    을 포함하는 동작들을 수행하게 하도록 구성된 명령어들을 저장하는 메모리를 포함하는, 시스템.
  10. 제9항에 있어서, 상기 진단 데이터는 신호 대 잡음비, 신호 파일, 채널당 음속, 채널당 웨지 음속, 채널당 피크 백분율, 온도, 및/또는 피크 백분율을 포함하는, 시스템.
  11. 제9항에 있어서, 상기 자산 상태 객체는 기계 학습 엔진 및/또는 예측 모델을 포함하는 자산 모델 엔진을 사용하여 결정되는, 시스템.
  12. 제9항에 있어서, 상기 유량계의 상기 상태는 상기 유량계의 신뢰성의 지시를 포함하는, 시스템.
  13. 제12항에 있어서, 상기 유량계의 상기 상태는 측정 정확도의 저하, 고장들의 수, 채널 상태, 및/또는 상기 유량계와 연관된 전반적인 상태의 지시를 포함하는, 시스템.
  14. 제9항에 있어서, 상기 자산 상태 객체는 상기 유량계에 결합된 하나 이상의 센서들에 대응하는 신뢰성의 지시를 포함하는, 시스템.
  15. 제14항에 있어서, 상기 자산 상태 객체는 상기 유량계에 결합된 상기 하나 이상의 센서들과 연관된 송신 및/또는 수신에 있어서의 악화의 지시를 포함하는, 시스템.
  16. 제14항에 있어서, 상기 하나 이상의 센서들은 변환기를 포함하는, 시스템.
  17. 명령어들을 저장하는 비일시적 컴퓨터 프로그램 제품으로서, 상기 명령어들은, 적어도 하나의 컴퓨팅 시스템의 일부를 형성하는 적어도 하나의 데이터 프로세서에 의해 실행될 때, 상기 적어도 하나의 데이터 프로세서로 하여금,
    산업 플랜트와 연관된 파이프 내의 유체의 유량을 모니터링하기 위해 상기 산업 플랜트 내에 구성된 유량계의 동작을 특징짓는 진단 데이터를 수신하는 것 - 상기 진단 데이터는 상기 유량계 내에 구성된 데이터 프로세서에 의해 수신됨 -;
    상기 수신된 진단 데이터에 기초하여 그리고 상기 유량계 내에 구성된 상기 데이터 프로세서에 의해, 상기 유량계의 상태를 특징짓는 자산 상태 객체를 결정하는 것; 및
    상기 유량계 내에 구성된 상기 데이터 프로세서에 의해, 상기 자산 상태 객체를 제공하는 것
    을 포함하는 동작들을 구현하게 하는, 비일시적 컴퓨터 프로그램 제품.
  18. 제17항에 있어서, 상기 진단 데이터는 신호 대 잡음비, 신호 파일, 채널당 음속, 채널당 웨지 음속, 채널당 피크 백분율, 온도, 및/또는 피크 백분율을 포함하는, 비일시적 컴퓨터 프로그램 제품.
  19. 제17항에 있어서, 상기 자산 상태 객체는 기계 학습 엔진 및/또는 예측 모델을 포함하는 자산 모델 엔진을 사용하여 결정되는, 비일시적 컴퓨터 프로그램 제품.
  20. 제17항에 있어서, 상기 유량계의 상기 상태는 상기 유량계의 신뢰성의 지시를 포함하는, 비일시적 컴퓨터 프로그램 제품.
  21. 제20항에 있어서, 상기 유량계의 상기 상태는 측정 정확도의 저하, 고장들의 수, 채널 상태, 및/또는 상기 유량계와 연관된 전반적인 상태의 지시를 포함하는, 비일시적 컴퓨터 프로그램 제품.
  22. 제17항에 있어서, 상기 자산 상태 객체는 상기 유량계에 결합된 하나 이상의 센서들에 대응하는 신뢰성의 지시를 포함하는, 비일시적 컴퓨터 프로그램 제품.
  23. 제22항에 있어서, 상기 자산 상태 객체는 상기 유량계에 결합된 상기 하나 이상의 센서들과 연관된 송신 및/또는 수신에 있어서의 악화의 지시를 포함하는, 비일시적 컴퓨터 프로그램 제품.
  24. 제22항에 있어서, 상기 하나 이상의 센서들은 변환기를 포함하는, 비일시적 컴퓨터 프로그램 제품.
KR1020217003870A 2018-08-02 2019-08-01 자산으로서의 유량계 KR102560270B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862714064P 2018-08-02 2018-08-02
US62/714,064 2018-08-02
PCT/US2019/044632 WO2020028644A1 (en) 2018-08-02 2019-08-01 Flowmeter as an asset

Publications (2)

Publication Number Publication Date
KR20210047299A true KR20210047299A (ko) 2021-04-29
KR102560270B1 KR102560270B1 (ko) 2023-07-26

Family

ID=69228748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217003870A KR102560270B1 (ko) 2018-08-02 2019-08-01 자산으로서의 유량계

Country Status (5)

Country Link
US (1) US11215493B2 (ko)
EP (1) EP3857176A4 (ko)
JP (1) JP7079897B2 (ko)
KR (1) KR102560270B1 (ko)
WO (1) WO2020028644A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113536711B (zh) * 2021-07-27 2024-03-15 江苏科技大学 一种基于田口法的橄榄形流量计结构优化设计方法
DE102023106668A1 (de) * 2023-03-16 2024-09-19 Sick Engineering Gmbh Fluiddurchflussmessgerät, Überwachungssystem mit zumindest einem solchen Fluiddurchflussmessgerät und Verfahren zum Betrieb eines Fluiddurchflussmessgeräts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070192046A1 (en) * 2006-02-15 2007-08-16 Hairston Ronald J Flow meter diagnostics

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654697B1 (en) * 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US6766276B1 (en) * 1999-12-29 2004-07-20 Actaris S.A.S. Method and device for detecting a dysfunction of an ulatrasonic flowmeter
JP4153721B2 (ja) * 2002-05-14 2008-09-24 松下電器産業株式会社 超音波流量計および超音波流量計の自己診断方法
RU2324171C2 (ru) 2003-07-18 2008-05-10 Роузмаунт Инк. Диагностика процесса
US7866211B2 (en) 2004-07-16 2011-01-11 Rosemount Inc. Fouling and corrosion detector for process control industries
US8639464B2 (en) * 2008-01-18 2014-01-28 Dresser, Inc. Flow meter diagnostic processing
US9658097B2 (en) 2012-05-11 2017-05-23 Bristol, Inc. Systems and methods to initiate a verification test within a flow meter via a flow computer
DE102012012252B4 (de) * 2012-06-22 2022-05-05 Krohne Ag System zur Durchflussmessung
US9134156B2 (en) * 2012-10-19 2015-09-15 Daniel Measurement And Control, Inc. Determination of reference values for ultrasonic flow metering systems
US9665536B2 (en) * 2013-01-22 2017-05-30 General Electric Company Systems and methods for providing a cloud flowmeter
US9581479B2 (en) * 2013-04-08 2017-02-28 Western Energy Support And Technology, Inc. Ultrasonic meter flow measurement monitoring system
US9625305B2 (en) * 2014-03-17 2017-04-18 Siemens Aktiengesellschaft Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter
US9689736B2 (en) * 2014-10-31 2017-06-27 Invensys Systems, Inc. Method to provide a quality measure for meter verification results
US9767671B2 (en) 2014-11-05 2017-09-19 Intel Corporation System for determining sensor condition
WO2016176224A1 (en) * 2015-04-27 2016-11-03 Kim Lewis Fluid flow meter diagnostics
US20170082469A1 (en) * 2015-09-21 2017-03-23 Honeywell International Inc. Inline ultrasonic meter (usm) condition based monitoring (cbm)-based adaptation to maintain high accuracy under various flow conditions
DE102016111509B4 (de) * 2016-06-23 2022-05-25 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines Durchflussmessgeräts und Durchflussmessgerät

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070192046A1 (en) * 2006-02-15 2007-08-16 Hairston Ronald J Flow meter diagnostics

Also Published As

Publication number Publication date
EP3857176A1 (en) 2021-08-04
US20200041327A1 (en) 2020-02-06
KR102560270B1 (ko) 2023-07-26
WO2020028644A1 (en) 2020-02-06
JP2021536018A (ja) 2021-12-23
EP3857176A4 (en) 2022-08-03
JP7079897B2 (ja) 2022-06-02
US11215493B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
US11543283B2 (en) Flow metering system condition-based monitoring and failure to predictive mode
KR102065231B1 (ko) 발전된 데이터 정화 시스템 및 방법
US9134155B2 (en) Reynolds number based verification for ultrasonic flow metering systems
US9134156B2 (en) Determination of reference values for ultrasonic flow metering systems
US12007251B2 (en) Methods and internet of things (IoT) systems for diagnosing accuracy of smart gas ultrasonic meters
US9134154B2 (en) Percentage deviation based evaluation of velocity dependent characteristics in ultrasonic flow metering systems
KR102560270B1 (ko) 자산으로서의 유량계
KR20150057408A (ko) 수도계량기 자동시험장치
CN105571658A (zh) 包括压力脉冲振幅分析的漩涡流量计
CN207456571U (zh) 一种差压流量计远程故障快速诊断系统
JP6471035B2 (ja) 漏水発生位置推定装置、システムおよび方法
CN110537002A (zh) 用于监测生产系统中的管接头的位置的系统和方法
JP2020042692A (ja) プラント診断用データ生成システムおよび方法
CA2888145C (en) Systems and methods for managing hydrocarbon material producing wellsites using clamp-on flow meters
EP3959572B1 (en) Method and system for fault detection using correlation of noise signals
JP6279243B2 (ja) 流向推定システム、及び流向推定方法
US11454529B2 (en) Augmented flowmeter with a system for simulating fluid parameters
WO2015087378A1 (ja) 水道施設網の異常検知装置及び異常検知方法
KR20220060890A (ko) 배관 상태 모니터링 시스템
JP2015072512A (ja) プラント設備異常診断装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant