KR20210046902A - Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature - Google Patents

Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature Download PDF

Info

Publication number
KR20210046902A
KR20210046902A KR1020190130031A KR20190130031A KR20210046902A KR 20210046902 A KR20210046902 A KR 20210046902A KR 1020190130031 A KR1020190130031 A KR 1020190130031A KR 20190130031 A KR20190130031 A KR 20190130031A KR 20210046902 A KR20210046902 A KR 20210046902A
Authority
KR
South Korea
Prior art keywords
temperature
current
factor
lithium secondary
capacity
Prior art date
Application number
KR1020190130031A
Other languages
Korean (ko)
Other versions
KR102255914B1 (en
Inventor
김성철
Original Assignee
주식회사티움리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사티움리서치 filed Critical 주식회사티움리서치
Priority to KR1020190130031A priority Critical patent/KR102255914B1/en
Publication of KR20210046902A publication Critical patent/KR20210046902A/en
Application granted granted Critical
Publication of KR102255914B1 publication Critical patent/KR102255914B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to a method and device for predicting the remaining capacity of a lithium secondary battery by adding or subtracting the accumulated current of the lithium secondary battery, which applies the current accumulated amount corrected according to the battery temperature and battery current, and improves prediction accuracy in a low-temperature environment. Based on the formula for calculating the temperature factor obtained by curve fitting the capacity utilization rate in environments with different temperatures, the remaining capacity is estimated by adding or subtracting the accumulated current corrected by a temperature factor corresponding to the measured temperature.

Description

저온 환경에서의 예측 정확도 향상을 위한 리튬이차전지 잔량 예측방법 및 예측장치{Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature}[Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature]

본 발명은 리튬이차전지의 전류 적산량에 가감하여 리튬이차전지의 잔여 용량을 예측함에 있어서, 전지 온도 및 전지 전류에 따라 보정한 전류 적산량을 적용함으로써, 저온 환경에서의 예측 정확도를 향상시킨 리튬이차전지 잔량 예측방법 및 예측장치에 관한 것이다.In the present invention, in predicting the remaining capacity of a lithium secondary battery by adding or subtracting the current accumulated amount of the lithium secondary battery, the lithium secondary battery improves the prediction accuracy in a low-temperature environment by applying the corrected current accumulated amount according to the battery temperature and the battery current. It relates to a method and a prediction device for predicting the remaining amount of secondary batteries.

리튬이차전지를 충전할 경우에 권장하는 주위 온도는 0℃ ~ 45℃ 범위로서 실제 사용 환경에 비해 상대적으로 범위가 좁다. When charging a lithium secondary battery, the recommended ambient temperature is in the range of 0℃ to 45℃, which is relatively narrow compared to the actual use environment.

이와 같이 온도 범위를 권장하는 이유는 0℃ 이하의 저온 환경에서 충전하면, 리튬이 전극 표면에서 석출되어, 가용 용량이 감소하고 안전성도 저하되며, 또한, 고온 환경에서 충전하면, 과도한 열발생으로 인한 부반응으로 전지 성능이 저하될 수 있기 때문이다. The reason for recommending this temperature range is that when charging in a low temperature environment of 0°C or lower, lithium precipitates on the electrode surface, reducing the usable capacity and reducing safety. In addition, charging in a high temperature environment results in excessive heat generation. This is because battery performance may be deteriorated due to side reactions.

방전할 시에도 저온 환경에서 방전하면, 리튬 석출과 같은 부반응이 발생하지는 않지만, 전하 이동 속도 또는 전극 반응 속도가 저하되어서, 상온 대비 가용 용량(또는 용량 활용율)이 감소된다. 고온 환경에서 방전하면, 전하 이동 속도 및 전극 반응 속도는 약간 증가하지만, 전해액의 부반응이 증가하는 등 원치 않는 다른 반응이 발생하여 가용 용량이 감소하고 비가역 용량은 증가하며, 결국, 고온 환경에서 방전하는 시간이 누적될수록 수명이 급격히 줄어들 수 있다. 이에 따라, 리튬이차전지를 권장 온도 환경에서 방전시킬 것을 권고한다.Even when discharging, when discharging in a low-temperature environment, side reactions such as lithium precipitation do not occur, but the charge transfer rate or electrode reaction rate is lowered, thereby reducing the usable capacity (or capacity utilization rate) compared to room temperature. When discharging in a high-temperature environment, the charge transfer rate and electrode reaction rate slightly increase, but other unwanted reactions such as an increase in side reactions of the electrolyte occur, resulting in a decrease in the usable capacity and an increase in irreversible capacity. As the time accumulates, the lifespan can be drastically reduced. Accordingly, it is recommended to discharge the lithium secondary battery in the recommended temperature environment.

아울러, 충전 전류 및 방전 전류는 가용 용량에 영향을 주는 데, 특히, 온도가 낮아질수록 전극 반응 속도 및 전하 이동 속도가 저하되고 저항 크기도 변동하여, 상온 대비 반응 효율이 급격히 저하된다.In addition, the charging current and the discharging current affect the usable capacity. In particular, as the temperature decreases, the electrode reaction speed and the charge transfer speed decrease, and the resistance size also fluctuates, so that the reaction efficiency sharply decreases compared to room temperature.

따라서, 온도 및 전류의 영향을 반영하며 리튬이차전지의 잔여 용량을 예측하여야 하며, 특히, 권장 온도 범위를 벗어난 저온 구간의 예측을 위해서는 온도에 따른 특성 변화를 충분히 반영하며 예측하여야 한다.Therefore, it is necessary to predict the residual capacity of the lithium secondary battery by reflecting the effects of temperature and current. In particular, for the prediction of a low-temperature section outside the recommended temperature range, it is necessary to sufficiently reflect and predict the characteristic change according to temperature.

잔여 용량을 예측하는 방법으로는 룩업테이블(Look-up Table) 이용 방법, 전류 적산(Ampere-Hour Counting) 방법, 수학적 모델링(Mathematiclal Modeling) 이용 방법 및 등가회로(Equivalent Circuit model) 이용 방법이 주로 사용되고 있다.As a method of predicting the remaining capacity, a method of using a look-up table, an ampere-hour counting method, a method of using mathematical modeling, and a method of using an equivalent circuit model are mainly used. have.

이들 방법 중에 전류 적산 방법은 만충전할 시의 용량을 100으로 하며, 충전 또는 방전할 시에 전류를 누적하여 얻는 충전량 또는 방전량을 용량 변화량으로 하여, 이전 용량에서 용량 변화량을 가감하여 잔여 용량을 산출하는 방법으로서, 비교적 예측 정확성이 높고, 계산하기에 유리하며, 외부 노이즈(또는 외부 환경)에 덜 민감하기도 하여서, 다른 방법에 비해 상대적으로 많이 사용되고 있다. Among these methods, the current integration method sets the capacity at full charge to 100, and calculates the remaining capacity by adding or subtracting the capacity change amount from the previous capacity by using the amount of charge or discharge obtained by accumulating current at the time of charging or discharging as the capacity change amount. As a method of doing so, the prediction accuracy is relatively high, it is advantageous for calculation, and it is less sensitive to external noise (or external environment), and thus, it is used relatively more than other methods.

그렇지만, 전류 적산 방법은 상온 및 고온 환경에서 비교적 정확하게 예측할 수 있으나, 저온 환경에서는 예측 오차가 큰 편이다. However, the current integration method can predict relatively accurately in a room temperature and high temperature environment, but the prediction error tends to be large in a low temperature environment.

즉, 저온 환경에서는 전하 이동 속도와 전극 반응 속도가 급격히 저하됨에 따라, 상온 기준으로 한 잔여 용량의 활용률이 크게 낮아지므로, 전류를 적산하여 얻는 용량 변화량만 그대로 반영하면 잔여 용량의 오차가 발생하고, 오차가 누적되는 문제도 발생한다.That is, in a low-temperature environment, as the charge transfer speed and electrode reaction speed rapidly decrease, the utilization rate of the remaining capacity based on the room temperature is significantly lowered, so if only the amount of change in capacity obtained by integrating the current is reflected as it is, an error in the remaining capacity occurs. There is also a problem of accumulating errors.

이에 따라, 저온에서의 활용률을 실험적으로 얻어 반영할 수는 있으나, 그럴 경우 실험 온도에 한정되어 실험 온도가 아닌 저온 온도에서의 오차는 보정할 수 없다. 즉, 충전 또는 방전할 시의 실시간으로 온도변화를 반영하는 잔여 용량을 예측하는 기술이 요구된다.Accordingly, the utilization rate at a low temperature can be experimentally obtained and reflected, but in that case, the error at a low temperature temperature other than the experimental temperature cannot be corrected because it is limited to the experiment temperature. That is, there is a need for a technique for predicting the residual capacity reflecting the temperature change in real time when charging or discharging.

KR 10-0740099 B1 2007.07.10.KR 10-0740099 B1 2007.07.10. KR 10-1946877 B1 2019.02.01.KR 10-1946877 B1 2019.02.01.

따라서, 본 발명의 목적은 충전 또는 방전할 시의 온도 변화를 반영하며 용량 활용률을 예측하고, 예측한 용량 활용률을 전류 적산식에 반영하여 저온 환경에서의 잔여 용량을 정확하게 예측하는 리튬이차전지 잔량 예측방법 및 예측장치를 제공하는 것이다.Accordingly, an object of the present invention is to predict the capacity utilization rate by reflecting the temperature change during charging or discharging, and to accurately predict the remaining capacity in a low-temperature environment by reflecting the predicted capacity utilization rate to the current integration equation. It is to provide a method and a prediction device.

상기 목적을 달성하기 위해 본 발명은 충방전할 시의 전류 적산량을 가감하여 리튬이차전지의 잔여용량을 예측하는 리튬이차전지 잔량 예측방법에 있어서, 전류 적산량을 가감하여 리튬이차전지의 잔여용량을 예측하는 리튬이차전지 잔량 예측방법에 있어서, 리튬이차전지의 온도 및 전류를 센서로 측정하는 측정단계; 서로 다른 온도의 환경에서 각각 방전종지전압까지 방전시켜 얻는 온도별 방전용량의 상온 방전용량 대비 비율을 커브 피팅(Curve Fitting)한 기설정 온도인자 산정식에 근거하여, 측정 온도에 대응되는 온도인자를 산정하는 성능 예측단계; 산정한 온도인자에 따라 보정한 전류 적산량을 적용하여 리튬이차전지의 잔여용량을 예측하는 잔량 예측단계; 를 포함하며, 상기 성능 예측단계에서 온도인자 산정식은

Figure pat00001
이되,
Figure pat00002
은 온도인자이고,
Figure pat00003
는 측정 온도이고, a, b 및 c는 커브 피팅(Curve Fitting)에 의해 얻은 기설정 상수로 한다.In order to achieve the above object, the present invention is a method for predicting the remaining capacity of a lithium secondary battery by adding or subtracting the accumulated current during charging and discharging, in the method for predicting the remaining capacity of the lithium secondary battery, by adding or subtracting the accumulated current. A method for predicting remaining amount of a lithium secondary battery, comprising: a measuring step of measuring a temperature and a current of a lithium secondary battery with a sensor; The temperature factor corresponding to the measured temperature is determined based on the preset temperature factor calculation formula that curve fitting the ratio of the discharge capacity of each temperature to the room temperature discharge capacity obtained by discharging each temperature to the discharge end voltage in different temperature environments. A performance prediction step of calculating; A residual amount prediction step of predicting the residual capacity of the lithium secondary battery by applying the corrected current accumulated amount according to the calculated temperature factor; And, in the performance prediction step, the temperature factor calculation equation is
Figure pat00001
This,
Figure pat00002
Is the temperature factor,
Figure pat00003
Is the measurement temperature, and a, b, and c are preset constants obtained by curve fitting.

본 발명의 실시 예에 따르면, 상기 성능 예측단계의 상기 온도인자 산정식은 온도별 방전용량의 상온 방전용량 대비 비율을 0.2C 및 0.5C를 포함한 방전율에 대해 각각 얻어 커브 피팅(Curve Fitting)한 것으로 한다.According to an embodiment of the present invention, the temperature factor calculation equation in the performance prediction step is a curve fitting obtained by obtaining the ratio of the discharge capacity for each temperature to the room temperature discharge capacity for discharge rates including 0.2C and 0.5C, respectively. .

본 발명의 실시 예에 따르면, 상기 성능 예측단계의 상기 온도인자 산정식은 온도별 방전용량의 상온 방전용량 대비 비율을 서로 다른 방전율에 대해 각각 얻어 커브 피팅(Curve Fitting)한 것으로 한다.According to an embodiment of the present invention, the temperature factor calculation equation in the performance prediction step is a curve fitting obtained by obtaining a ratio of the discharge capacity for each temperature to the room temperature discharge capacity for different discharge rates, respectively.

본 발명의 실시 예에 따르면, 상기 성능 예측단계에서, 상기 온도인자 산정식은 -30℃와 50℃를 포함한 서로 다른 온도의 환경에서 얻은 온도별 방전용량으로 얻은 것으로 한다.According to an exemplary embodiment of the present invention, in the performance prediction step, the temperature factor calculation equation is obtained as a discharge capacity for each temperature obtained in an environment of different temperatures including -30°C and 50°C.

본 발명의 실시 예에 따르면, 상기 잔량 예측단계에서 온도인자에 따라 보정한 전류 적산량은

Figure pat00004
으로 산정하며,
Figure pat00005
는 온도인자로 하는 성능 예측인자이고,
Figure pat00006
는 성능 예측인자
Figure pat00007
에 의해 보정되어 적산하는 측정 전류로 한다.According to an embodiment of the present invention, the accumulated current amount corrected according to the temperature factor in the residual amount prediction step is
Figure pat00004
Is calculated as,
Figure pat00005
Is the performance predictor as a temperature factor,
Figure pat00006
Is the performance predictor
Figure pat00007
It is set as the measured current corrected by and accumulated by.

본 발명의 실시 예에 따르면, 상기 성능 예측인자

Figure pat00008
는 충방전율 구간별 용량 활용률로 정의한 전류인자를 설정하여 둔 룩업테이블에 근거하여, 측정 전류의 충방전율에 대응되는 전류인자를 선정한 후, 온도인자와 전류인자의 곱셈으로 얻는 값을 상기 성능 예측인자로 한다.According to an embodiment of the present invention, the performance predictor
Figure pat00008
Is a value obtained by multiplying the temperature factor and the current factor based on a lookup table in which the current factor defined as the capacity utilization rate for each charging/discharging rate section is set, and then selecting the current factor corresponding to the charging/discharging rate of the measured current is the performance prediction factor. It should be.

본 발명의 실시 예에 따르면, 상기 성능 예측단계는 리튬이차전지가 0℃ 미만이면서 휴지 기간에 있을 시에, 전류인자를 1로 하여 온도인자의 값으로 되는 성능 예측인자를 적용한다. According to an exemplary embodiment of the present invention, in the performance prediction step, when the lithium secondary battery is less than 0°C and is in the idle period, a current factor is set to 1 and a performance predictor is applied as a value of the temperature factor.

상기 목적을 달성하기 위해 본 발명은 충방전할 시의 전류 적산량을 가감하여 리튬이차전지의 잔여용량을 예측하는 리튬이차전지 잔량 예측장치에 있어서, 서로 다른 온도의 환경에서 각각 방전종지전압까지 방전시켜 얻는 온도별 방전용량의 상온 방전용량 대비 비율을 커브 피팅(Curve Fitting)한 기설정 온도인자 산정식의 파라미터 값을 저장하여 둔 데이터 저장부(10); 리튬이차전지의 온도 및 전류를 센서로 측정하는 측정부(20); 및 측정 온도에 대응되는 온도인자를 상기 온도인자 산정식으로 얻은 후, 온도인자를 적용하여 전류 적산량을 보정하고, 보정한 전류 적산량을 적용하여 리튬이차전지의 잔여용량을 예측하는 잔량 예측부(30); 를 포함하며, 상기 온도인자 산정식은

Figure pat00009
이되,
Figure pat00010
은 온도인자이고,
Figure pat00011
는 측정 온도이고, a, b 및 c는 커브 피팅(Curve Fitting)에 의해 얻은 기설정 상수로 한다.In order to achieve the above object, the present invention is an apparatus for predicting the remaining capacity of a lithium secondary battery by adding or subtracting an accumulated amount of current during charging and discharging. A data storage unit 10 storing a parameter value of a preset temperature factor calculation formula obtained by curve fitting a ratio of the discharge capacity for each temperature to the room temperature discharge capacity obtained by performing a curve fitting; A measuring unit 20 for measuring the temperature and current of the lithium secondary battery with a sensor; And a residual amount prediction unit that obtains a temperature factor corresponding to the measured temperature by the above temperature factor calculation formula, corrects the accumulated current amount by applying the temperature factor, and predicts the remaining capacity of the lithium secondary battery by applying the corrected current accumulation amount. (30); Including, the temperature factor calculation formula is
Figure pat00009
This,
Figure pat00010
Is the temperature factor,
Figure pat00011
Is the measurement temperature, and a, b, and c are preset constants obtained by curve fitting.

상기와 같이 이루어지는 본 발명은 온도에 따른 용량 활용률을 온도별로 획득한 후 커브 피팅하여 얻은 온도인자 산정식을 사용하였고, 온도인자 산정식이 온도별 용량 활용률을 잘 반영할 수 있었으며, 이에, 온도인자 산정식으로 산정한 온도인자를 적용하며 전류를 적산하므로, 온도 영향을 상쇄한 잔여 용량을 예측할 수 있고, 특히, 저온 환경하의 잔여 용량을 보다 정확하게 예측하며, 연속적인 온도 변화에 적응하며 온도 영향을 상쇄한 잔여 용량을 예측할 수 있다.In the present invention made as described above, the temperature factor calculation equation obtained by curve fitting after acquiring the capacity utilization rate according to temperature for each temperature was used, and the temperature factor calculation formula could well reflect the capacity utilization rate for each temperature. Accordingly, the temperature factor calculation By applying the officially calculated temperature factor and accumulating the current, it is possible to predict the residual capacity that offsets the effect of temperature. In particular, it more accurately predicts the residual capacity under a low-temperature environment, adapts to continuous temperature changes, and offsets the temperature effect. One can predict the remaining capacity.

도 1은 본 발명의 실시 예에 따른 리튬이차전지 잔량 예측장치의 블록 구성도.
도 2는 본 발명의 실시 예에 따른 리튬이차전지 잔량 예측방법의 순서도.
도 3은 -30℃, -10℃, 0℃, 25℃ 및 50℃ 환경에서 각각 방전종지전압까지 방전하여 얻는 온도별 방전용량의 상온(25℃) 방전용량에 대한 비율을 0.2C 및 0.5C 방전율로 각각 획득한 후, 커브 피팅한 그래프를 보여주는 도면.
도 4는 상온에서 대략 61% 충전한 리튬이차전지를 -10℃에서 2시간 정치한 후, EV(Electric Vehicle) 평가를 수행하는 중에 측정한 온도, 전압 및 전류의 그래프.
도 5는 성능 예측인자를 적용하기 전후의 잔여 용량 예측 결과를 비교한 그래프.
1 is a block diagram of an apparatus for predicting remaining amount of a lithium secondary battery according to an embodiment of the present invention.
2 is a flow chart of a method for predicting a remaining amount of a lithium secondary battery according to an embodiment of the present invention.
3 shows the ratio of the discharge capacity by temperature to the discharge capacity at room temperature (25°C) obtained by discharging to the discharge end voltage in the environments of -30°C, -10°C, 0°C, 25°C and 50°C, respectively, 0.2C and 0.5C. A diagram showing a curve-fitting graph after each obtained by discharge rate.
FIG. 4 is a graph of temperature, voltage, and current measured while performing electric vehicle (EV) evaluation after a lithium secondary battery charged with approximately 61% at room temperature is allowed to stand at -10°C for 2 hours.
5 is a graph comparing residual capacity prediction results before and after applying a performance predictor.

이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 당해 분야에 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명한다. 본 발명의 실시 예를 설명함에 있어, 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement them. In describing an embodiment of the present invention, if it is determined that a detailed description of a related known function or a known configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

도 1에 도시한 블록 구성도를 참조하면, 본 발명의 실시 예에 따른 리튬이차전지 잔량 예측장치는 개량한 전류 적산 방법으로 리튬이차전지의 잔여용량을 예측하는 장치로서, 전지의 전류 및 온도에 따라 전류 적산량을 보정하여, 보정한 전류 적산량으로 잔여용량을 예측하며, 이를 위해서 데이터 저장부(10), 측정부(20) 및 잔량 예측부(30)를 포함한다.Referring to the block diagram shown in FIG. 1, the apparatus for predicting remaining capacity of a lithium secondary battery according to an embodiment of the present invention is a device for predicting the remaining capacity of a lithium secondary battery by using an improved current integration method. Accordingly, the accumulated current amount is corrected, and the remaining capacity is predicted with the corrected accumulated current amount. To this end, a data storage unit 10, a measuring unit 20, and a residual amount predicting unit 30 are included.

이와 같이 구성되는 리튬이차전지 잔량 예측장치에 따르면, 측정부(20)에서 리튬이차전지(1)를 충전 또는 방전할 시의 전류 및 전압과 리튬이차전지(1)의 온도를 실시간 측정하여 데이터 저장부(10)에 저장하고, 잔량 예측부(30)에서 리튬이차전지(1)의 전류, 온도 및 전압에 따라 잔여 용량을 예측하고, 데이터 저장부(10)에는 잔여 용량 예측에 필요한 데이터를 미리 저장하여 두어서 잔여 용량을 예측할 시에 활용되게 하며, 구체적으로 설명하면 다음과 같다.According to the lithium secondary battery remaining amount prediction device configured as described above, the measurement unit 20 measures the current and voltage when charging or discharging the lithium secondary battery 1 and the temperature of the lithium secondary battery 1 in real time and stores data. It is stored in the unit 10, and the remaining capacity prediction unit 30 predicts the remaining capacity according to the current, temperature, and voltage of the lithium secondary battery 1, and the data storage unit 10 stores the data necessary for the remaining capacity prediction in advance. It is stored and used when predicting the remaining capacity, and a detailed description is as follows.

상기 데이터 저장부(10)에는 전지 온도를 변수로 하는 온도인자 산정식의 파라미터 값과, 충방전율 구간별 전류인자의 룩업테이블이 미리 저장되어 있고, 상기 측정부(20)에서 측정되는 전류, 전압 및 온도와, 예측한 잔여 용량 이력을 기록하여 보관한다.In the data storage unit 10, a parameter value of a temperature factor calculation equation using the battery temperature as a variable and a lookup table of current factors for each charge/discharge rate section are stored in advance, and the current and voltage measured by the measurement unit 20 And the temperature and the history of the predicted remaining capacity are recorded and stored.

먼저, 상기 온도인자 산정식에 대해서 상세하게 설명한다.First, the temperature factor calculation equation will be described in detail.

리튬이차전지의 잔여 용량은 일반적으로 아래의 수학식 1로 정의되는 SOC(State of Charge)로 표현한다.The remaining capacity of the lithium secondary battery is generally expressed by SOC (State of Charge) defined by Equation 1 below.

Figure pat00012
Figure pat00012

수학식 1에서,

Figure pat00013
는 현재 보유하고 있는 잔여 용량이고,
Figure pat00014
는 상온에서 최대한 충전한 상태의 잔여 용량(즉, 만충전 용량)이며, 통상적으로 [Ah] 단위를 사용한다. 수학식 1에 따르면, 만충전 용량 대한 현재 잔여 용량의 비율로 정의한 SOC로 잔여 용량을 표현함으로써, 만충전 용량이 상이한 리튬이차전지에 대해 표준화된 잔여 용량으로 표현할 수 있다.In Equation 1,
Figure pat00013
Is the remaining capacity currently held,
Figure pat00014
Is the remaining capacity (ie, fully charged capacity) in the state of being fully charged at room temperature, and is usually used in units of [Ah]. According to Equation 1, by expressing the residual capacity in SOC defined as the ratio of the current remaining capacity to the full charging capacity, it can be expressed as the standardized residual capacity for lithium secondary batteries having different full charging capacity.

본 발명에 따르면, 전류 적산 방법에 따라 전류 적산량을 산정할 시에 성능 예측인자

Figure pat00015
을 반영하여, 아래의 수학식 2로 잔여 용량 SOC를 산정한다. According to the present invention, the performance predictor when calculating the current integration amount according to the current integration method
Figure pat00015
In reflection, the remaining capacity SOC is calculated by Equation 2 below.

Figure pat00016
Figure pat00016

수학식 2에서,

Figure pat00017
는 이전 시점
Figure pat00018
에서의 SOC이고,
Figure pat00019
Figure pat00020
이후의 시점
Figure pat00021
에 예측되는 SOC이고,
Figure pat00022
는 순시 전류이고,
Figure pat00023
Figure pat00024
부터
Figure pat00025
까지 측정한 전류의 적산량이며,
Figure pat00026
는 상수로서
Figure pat00027
의 단위를 [sec]로 하고
Figure pat00028
의 단위를 [A]로 하는 경우
Figure pat00029
이다.In Equation 2,
Figure pat00017
Is the previous point
Figure pat00018
Is the SOC at,
Figure pat00019
Is
Figure pat00020
A later point of view
Figure pat00021
Is the predicted SOC,
Figure pat00022
Is the instantaneous current,
Figure pat00023
Is
Figure pat00024
from
Figure pat00025
It is the cumulative amount of current measured to,
Figure pat00026
Is a constant
Figure pat00027
And the unit of [sec]
Figure pat00028
When the unit of is [A]
Figure pat00029
to be.

여기서, 성능 예측인자

Figure pat00030
는 전류 i 및 온도 T를 변수로 하는 함수로서, 아래의 수학식 3과 같이 정의하였다.Here, the performance predictor
Figure pat00030
Is a function using current i and temperature T as variables, and is defined as in Equation 3 below.

Figure pat00031
Figure pat00031

수학식 3에서,

Figure pat00032
는 온도의 영향에 따른 용량 활용률로서 아래의 수학식 4로 정의한 온도인자 산정식으로 산정한다.In Equation 3,
Figure pat00032
Is the capacity utilization rate according to the influence of temperature and is calculated by the temperature factor calculation formula defined by Equation 4 below.

Figure pat00033
Figure pat00033

여기서, a, b 및 c는 실험적으로 얻은 온도별 용량 활용률에 따라 선정하는 상수이다. 즉, 동일하게 충전한 후 전지를 서로 다른 온도의 환경에서 각각 방전종지전압까지 방전시켜 온도별 방전용량(또는 방전량)을 얻은 후, 상온 방전용량에 대한 각 온도별 방전용량의 비율을 용량 활용률로서 얻는다. 그리고, 용량 활용률을 상기 수학식 4의 온도인자 산정식으로 커브 피팅(Curve Fitting)하여 상수 a, b, c를 얻는다. 커브 피팅할 시에는 예를 들어, 최소 자승법을 사용할 수 있다.Here, a, b, and c are constants selected according to the experimentally obtained capacity utilization rate for each temperature. In other words, after charging the same, the batteries are discharged to the discharge end voltage in an environment at different temperatures to obtain the discharge capacity (or discharge amount) for each temperature, and then the ratio of the discharge capacity for each temperature to the room temperature discharge capacity is calculated as the capacity utilization rate. Get as. In addition, constants a, b, and c are obtained by curve fitting the capacity utilization rate using the temperature factor calculation equation of Equation 4 above. When fitting a curve, for example, the least squares method can be used.

예를 들어, 만충전한 리튬이차전지를 서로 다른 온도 환경 하에서 각각 방전종지전압까지 방전시키며 방전 전류를 적산하여, 온도별 방전용량을 얻을 수 있고, 이와 같이 얻은 온도별 방전용량 중에 최대치가 발현되는 온도(통상적으로 대략 25℃)를 상온으로 하여, 상온 방전용량에 대한 비율을 얻을 수 있다. 이때 얻는 비율은 온도 T의 영향을 반영한 용량 활용률로서, 상기 수학식 4로 정의한 바와 같이 온도 T를 변수로 하는 2차 다항식을 지수로 하는 함수로 모델링하였다. For example, a fully charged lithium secondary battery can be discharged to the discharge end voltage under different temperature environments, and the discharge current is accumulated to obtain the discharge capacity for each temperature, and the temperature at which the maximum value is expressed among the discharge capacity for each temperature thus obtained. By setting (usually about 25°C) to room temperature, the ratio to the room temperature discharge capacity can be obtained. The ratio obtained at this time is a capacity utilization rate reflecting the effect of temperature T, and as defined by Equation 4 above, it was modeled as a function using a second-order polynomial with temperature T as a variable as an exponent.

그런데, 방전용량이 방전 전류의 영향도 받으므로, 본 발명의 실시 예에서는 상온 방전용량 대비 각 온도별 방전용량의 비율을 서로 다른 방전율(Discharge rate)에 대해 각각 얻어서 상기 수학식 4로 커브 피팅(Curve Fitting)하였다. 이때의 서로 다른 방전율은 0.2C 및 0.5C로 하여서, 방전전류의 영향에 따른 오차를 최대한 줄일 수 있는 온도인자 산정식을 얻었다.However, since the discharge capacity is also affected by the discharge current, in the embodiment of the present invention, the ratio of the discharge capacity for each temperature to the room temperature discharge capacity is obtained for different discharge rates, and curve fitting ( Curve Fitting). The different discharge rates at this time were set to 0.2C and 0.5C, so that a temperature factor calculation formula was obtained that can reduce the error due to the influence of the discharge current as much as possible.

한편, 커브 피팅을 위해 실험할 서로 다른 온도는 저온부터 고온까지 커브 피팅할 수 있도록 적어도 -30℃와 50℃를 포함하고, -30℃와 50℃ 사이를 다수 구간으로 나누는 온도를 포함하게 하였다. Meanwhile, different temperatures to be tested for curve fitting included at least -30°C and 50°C so that curve fitting from low temperature to high temperature, and temperatures dividing between -30°C and 50°C into multiple sections were included.

상기한 바와 같이 수학식 4로 정의한 온도인자 산정식은 후술하는 잔량 예측부(30)의 성능 예측인자 산정부(31)의 온도인자 선정부(31a)에서 사용하도록 프로그램적으로 코드화하였고, 커브 피팅에 의해 얻는 상수 a, b 및 c는 온도인자 산정식의 파라미터 값으로서 상기 데이터 저장부(10)에 저장하여 두었다.As described above, the temperature factor calculation equation defined by Equation 4 is programmatically coded to be used in the temperature factor selection unit 31a of the performance prediction factor calculation unit 31 of the residual amount estimating unit 30 to be described later. The constants a, b and c obtained by this are stored in the data storage unit 10 as parameter values of the temperature factor calculation equation.

다음으로 상기 전류인자

Figure pat00034
는 충방전율에 따른 용량 활용률로서, 아래의 표 1로 보여주는 룩업테이블과 같이 정의하여, 상기 데이터 저장부(10)에 저장하여 두었다.Next, the current factor
Figure pat00034
Is a capacity utilization rate according to a charge/discharge rate, defined as a lookup table shown in Table 1 below, and stored in the data storage unit 10.

충전율 또는 방전율Charge rate or discharge rate

Figure pat00035
Figure pat00035
T < 0.2C T <0.2C 1.0 1.0 0.2C ≤T < 0.5C 0.2C ≤T <0.5C 0.9 0.9 0.5C ≤T < 1.0C 0.5C ≤T <1.0C 0.85 0.85 1.0C ≤T 1.0C ≤T 0.8 0.8

상기 표 1을 참조하면, 상기 전류인자

Figure pat00036
는 충방전율 구간별로 설정되어 있으므로, 측정 전류가 속한 구간의 값을 전류 영향을 반영한 용량 활용률로서 사용할 수 있게 한다. 예를 들어, 충방전율 구간별 전류인자
Figure pat00037
의 값은 구간별 대표 방전율에 대해 각각 측정한 용량 활용률로 선정할 수 있다. 아울러, 서로 다른 온도 환경에 각각 충방전율 구간별 용량 활용률을 얻은 후, 오차를 최소화할 수 있는 최적으로 값으로 선정할 수도 있다. 또한, 표 1의 충방전율 구간 수는 좀 더 많게 하여 구간을 세분화할 수도 있다.Referring to Table 1 above, the current factor
Figure pat00036
Since is set for each charge/discharge rate section, the value of the section to which the measured current belongs can be used as a capacity utilization rate reflecting the current effect. For example, the current factor for each charge/discharge rate section
Figure pat00037
The value of can be selected as the capacity utilization rate measured for each representative discharge rate for each section. In addition, after obtaining the capacity utilization rate for each charge/discharge rate section in different temperature environments, it may be selected as an optimal value that can minimize an error. In addition, the number of charge/discharge rate sections in Table 1 may be increased to further subdivide the sections.

이와 같이, 상기 수학식 4로 정의한 온도인자 산정식의 상수 a,b 및 c의 값과, 상기 표 1로 정의한 전류인자

Figure pat00038
의 룩업테이블을 상기 데이터 저장부(10)에 저장하여 둠으로써, 후술하는 바와 같이 충방전에 따른 잔여 용량을 예측할 시에 활용되게 한다.As described above, the values of the constants a, b and c of the temperature factor calculation equation defined by Equation 4 and the current factor defined in Table 1
Figure pat00038
The lookup table of is stored in the data storage unit 10 to be used when predicting the remaining capacity due to charging and discharging, as described later.

상기 측정부(20)는 전류 센서(21), 온도 센서(22) 및 전압 센서(23)를 포함하여, 리튬이차전지(1)의 전류, 온도 및 전압을 실시간 측정하고, 데이터 저장부(10)에 저장한다. 물론, 전류, 온도 및 전압을 기설정한 샘플 주기의 디지털 데이터 값으로 얻어 저장한다.The measurement unit 20 includes a current sensor 21, a temperature sensor 22, and a voltage sensor 23 to measure the current, temperature, and voltage of the lithium secondary battery 1 in real time, and the data storage unit 10 ). Of course, current, temperature, and voltage are obtained and stored as digital data values of a preset sample period.

본 발명의 실시 예를 설명함에 있어서, 측정한 전압을 어떻게 활용하는지에 대해서는 설명하지 아니하지만, 리튬이차전지(1)의 상태를 모니터링하기 위한 데이터로서 활용될 수 있고, 아울러, 측정 전압에 따라 잔여 용량을 예측하는 공지의 기술을 채택하여, 잔여 용량을 수정하는 데 활용될 수 있다. 예를 들어, 상기 수학식 2에 따라 전류 적산하여 잔여 용량을 예측하더라도, 리튬이차전지(1)를 사용하지 않는 휴지 기간에 측정된 전압에 대응되는 잔여 용량을 전압-용량 상관성에 근거하여 선정하고 수정하는 것이다.In describing the embodiment of the present invention, it is not described how the measured voltage is used, but it can be used as data for monitoring the state of the lithium secondary battery 1, and in addition, the remaining voltage according to the measured voltage is not described. By adopting a known technique for predicting capacity, it can be utilized to correct the remaining capacity. For example, even if the remaining capacity is predicted by integrating the current according to Equation 2, the remaining capacity corresponding to the voltage measured during the idle period when the lithium secondary battery 1 is not used is selected based on the voltage-capacity correlation. It is to correct.

상기 잔량 예측부(30)는 리튬이차전지를 충방전할 시에 측정된 온도 및 전류에 따라 성능 예측인자를 산정하는 성능 예측인자 산정부(31), 성능 예측인자를 적용하여 용량 증감분을 산정하는 용량 증감분 연산부(32) 및 용량 증감분에 따라 잔여 용량을 수정 예측하는 잔여 용량 예측부(33)를 포함한다.The remaining amount prediction unit 30 is a performance prediction factor calculation unit 31 that calculates a performance prediction factor according to the temperature and current measured when charging and discharging a lithium secondary battery, and calculates an increase or decrease in capacity by applying the performance prediction factor. It includes a capacity increase/decrease operation unit 32 and a remaining capacity prediction unit 33 that corrects and predicts the remaining capacity according to the capacity increase/decrease.

상기 성능 예측인자 산정부(31)는 측정 온도에 대응되는 온도인자를 수학식 4의 온도인자 산정식에 근거하여 산정하는 온도인자 선정부(31a)와, 측정 전류의 충방전율에 대응되는 전류인자를 표 1의 룩업테이블에 따라 선정하는 전류인자 선정부(31b)를 구비하며, 온도인자와 전류인자를 곱셈 연산하여 수학식 3의 성능 예측인자를 얻는다. The performance prediction factor calculation unit 31 includes a temperature factor selection unit 31a that calculates a temperature factor corresponding to the measured temperature based on the temperature factor calculation equation of Equation 4, and a current factor corresponding to the charge/discharge rate of the measured current. A current factor selection unit 31b is provided for selecting according to the lookup table of Table 1, and a temperature factor and a current factor are multiplied to obtain a performance prediction factor of Equation 3.

물론, 온도인자 산정식의 상수 a, b 및 c는 상기 데이터 저장부(10)에 저장되어 있는 값을 적용하고, 룩업테이블은 상기 데이터 저장부(10)에 저장되어 있는 것을 적용한다.Of course, the constants a, b, and c of the temperature factor calculation equation apply the values stored in the data storage unit 10, and the lookup table applies what is stored in the data storage unit 10.

여기서, 온도인자는 상기 수학식 4로 피팅한 온도인자 산정식을 사용함으로써, 연속적인 온도 변화에도 온도에 대응되는 값을 적용할 수 있다.Here, as the temperature factor, a value corresponding to the temperature can be applied to a continuous temperature change by using the temperature factor calculation equation fitted with Equation 4 above.

상기 용량 증감분 연산부(32)는 상기 수학식 2에서, 용량 증감분

Figure pat00039
을 얻는다. The capacity increase/decrease operation unit 32 is in Equation 2, the capacity increase/decrease
Figure pat00039
Get

즉, 측정 온도에 대응되는 온도인자를 포함한 성능 예측인자를 적용함으로써, 온도 영향을 반영하여 보정한 전류 적산량을 얻는다.That is, by applying a performance prediction factor including a temperature factor corresponding to the measured temperature, the integrated current amount corrected by reflecting the temperature effect is obtained.

마찬가지로, 측정 전류의 충방전율에 대응되는 전류인자를 포함한 성능 예측인자를 적용함으로써, 전류 영향을 반영하여 보정한 전류 적산량을 얻게 된다.Similarly, by applying a performance prediction factor including a current factor corresponding to the charge/discharge rate of the measured current, the accumulated current amount corrected by reflecting the current effect is obtained.

상기 잔여 용량 예측부(33)는 용량 증감분

Figure pat00040
을 상기 수학식 2에 대입하여, SOC로 표현한 잔여 용량을 얻는다. 앞서 언급하였듯이, 최대 충전 용량에 따른 상수 k에 용량 증감분을 곱셈하여 얻는
Figure pat00041
는 SOC 증감분이 되므로, 이전 SOC에 SOC 증감분을 가감하여 현재의 SOC의 예측치를 얻게 된다.The remaining capacity prediction unit 33 increases or decreases the capacity
Figure pat00040
Substituting in Equation 2 above, a residual capacity expressed by SOC is obtained. As mentioned earlier, the constant k according to the maximum charging capacity is multiplied by the capacity increase or decrease.
Figure pat00041
Is the SOC increase or decrease, so by adding or subtracting the SOC increase or decrease to the previous SOC, the predicted value of the current SOC is obtained.

이와 같이 예측한 SOC는 상기 데이터 저장부(10)에 저장하여, SOC 이력에 기록에 되게 하고, 도면에 도시하지는 아니하였지만, 예측한 SOC를 활용하기 위해서, 공지의 디스플레이할 수단 또는 BMS(Battery Management System)와 연계할 공지의 수단을 포함할 수 있다. 물론, 본 발명에 따른 리튬이차전지 잔량 예측장치는 BMS에 내장되게 구성할 수도 있다.The predicted SOC is stored in the data storage unit 10 and recorded in the SOC history. Although not shown in the drawing, in order to utilize the predicted SOC, a known display means or BMS (Battery Management System) and may include a known means of linking. Of course, the apparatus for predicting the remaining amount of a lithium secondary battery according to the present invention may be configured to be built into the BMS.

도 2는 본 발명의 실시 예에 따른 리튬이차전지 잔량 예측방법의 순서도로서, 상기 도 1을 참조하며 설명한 리튬이차전지 잔량 예측장치에 의해 이루어지므로, 반복 설명은 생략하고, 방법의 순서 위주로 설명한다.FIG. 2 is a flow chart of a method for predicting remaining amount of a lithium secondary battery according to an embodiment of the present invention. Since it is made by the device for predicting remaining amount of remaining lithium secondary battery described with reference to FIG. 1, repeated descriptions will be omitted, and the method will be mainly described. .

잔여 용량을 디지털 데이터 처리에 의해 예측하므로, 본 발명의 실시 예에 따른 리튬이차전지 잔량 예측방법은 측정 단계(S10), 성능 예측단계(S20, S21, S22) 및 잔량 예측단계(S30, S31)를

Figure pat00042
간격마다 순차적으로 수행하여, 잔여 용량을
Figure pat00043
간격으로 갱신하는 것으로 설명한다. 여기서,
Figure pat00044
는 디지털 데이터 처리를 위한 시간 간격으로서, 디지털 데이터로 얻기 위한 샘플 주기의 배수로 할 수 있다.Since the remaining capacity is predicted by digital data processing, the method for predicting the remaining amount of a lithium secondary battery according to an embodiment of the present invention includes a measuring step (S10), a performance predicting step (S20, S21, S22), and a remaining amount predicting step (S30, S31). To
Figure pat00042
It is performed sequentially at intervals, and the remaining capacity is
Figure pat00043
It will be described as updating at intervals. here,
Figure pat00044
Is a time interval for digital data processing, and can be a multiple of the sample period for obtaining digital data.

잔량 예측부(30)는 측정부(20)에 의해 측정된 전류를 모니터링하여 충전 또는 방전이 실시되는 것으로 판단되면, 측정 단계(S10), 성능 예측단계(S20, S21, S22) 및 잔량 예측단계(S30, S31)를 순차적으로 수행하는 순환루프를 반복 수행하고, 종료 확인 단계(S40)에서 종료 조건이 발생하면 순환루프를 종료한다.When it is determined that charging or discharging is performed by monitoring the current measured by the measurement unit 20, the remaining amount predicting unit 30 monitors the current measured by the measurement unit 20, and if it is determined that the charging or discharging is performed, the measuring step S10, the performance predicting step S20, S21, S22, and the remaining amount predicting step The circular loop for sequentially performing (S30, S31) is repeatedly performed, and if an end condition occurs in the end confirmation step (S40), the circular loop is terminated.

상기 측정 단계(S10)에서는 측정부(20)를 통해 측정되어 데이터 저장부(10)에 저장되는 전류 및 온도를

Figure pat00045
간격으로 불러들인다(S10). 물론, 측정부(20)를 통해 측정되는 전류 및 온도 값을 잔량 예측부(30)에서 직접 받아도 좋다.In the measuring step (S10), the current and temperature measured through the measuring unit 20 and stored in the data storage unit 10 are measured.
Figure pat00045
Call at intervals (S10). Of course, the current and temperature values measured through the measurement unit 20 may be directly received from the residual amount prediction unit 30.

다음으로, 상기 성능 예측단계(S20, S21, S22)에서는

Figure pat00046
간격의 측정 온도에 대응되는 온도인자를 상기 수학식 4의 온도인자 산정식에 근거하여 산정하고(S20),
Figure pat00047
간격의 측정 전류의 충전율 또는 방전율에 대응되는 전류인자를 상기 표 1의 룩업테이블에 근거하여 선정한 후(S21), 온도인자에 전류인자를 곱셈하여 성능 예측인자를 얻는다(S22).Next, in the performance prediction step (S20, S21, S22)
Figure pat00046
A temperature factor corresponding to the measured temperature of the interval is calculated based on the temperature factor calculation formula of Equation 4 (S20),
Figure pat00047
After selecting a current factor corresponding to the charging rate or the discharge rate of the measured current in the interval based on the lookup table in Table 1 (S21), a performance predictor is obtained by multiplying the temperature factor by the current factor (S22).

다음으로서, 상기 잔량 예측단계(S30, S31)에서는 성능 예측인자를 반영한 용량 증감분을 연산한 후(S30) 용량 증감분을 이전 잔여 용량에 가감하여

Figure pat00048
시간 동안 변동한 후의 잔여 용량을 예측한다(S31). 여기서 얻는 잔여 용량은 상기 데이터 저장부(10)에 기록함은 물론이고 현재 잔여 용량을 갱신한다.Next, in the remaining amount prediction steps (S30, S31), after calculating the capacity increase/decrease reflecting the performance predictor (S30), the capacity increase/decrease is added or subtracted to the previous remaining capacity.
Figure pat00048
The remaining capacity after fluctuations over time is predicted (S31). The remaining capacity obtained here is recorded in the data storage unit 10 as well as the current remaining capacity is updated.

디지털 데이터 처리에 의해 잔여 용량을 얻으므로, 상기 수학식 2를 변형한 아래의 수학식 5로 사용하여 잔여 용량을 얻는다.Since the remaining capacity is obtained by digital data processing, the remaining capacity is obtained by using Equation (5) below, which is modified from Equation (2).

Figure pat00049
Figure pat00049

만약,

Figure pat00050
를 샘플 주기의 2배수 이상으로 설정 사용한다면, 전류 평균치 및 온도 평균치에 따라 성능 예측인자
Figure pat00051
를 산정하여 상기 수학식 5에 적용한다.if,
Figure pat00050
If used by setting as more than twice the sample period, the performance predictor according to the current average value and the temperature average value
Figure pat00051
Is calculated and applied to Equation 5.

다음으로, 종료 확인 단계(S40)를 수행하여서, 측정 단계(S10), 성능 예측단계(S20, S21, S22) 및 잔량 예측단계(S30, S31)로 이루어지는 잔여 용량 갱신 동작을 다시 수행할 것인지 결정한다. 예를 들어, 리튬이차전지(1)가 장착 사용되는 EV(Electric Vehicle) 또는 HEV(Hybrid Electric Vehicle)의 구동 모터 정치에 따른 휴지 기간인지를 판단하여, 휴지 기간이 아니면 용량 갱신 동작을 반복하고, 휴지 기간이면 종료한다. 물론, 도면에는 표시하지 아니하였지만, 리튬이차전지(1)가 장착 사용되는 장치의 동작을 감지하기 위한 수단으로서, 해당 장치의 구동 동작에 관련된 인터럽트 신호를 입력받게 할 수 있다.Next, by performing the termination confirmation step (S40), it is determined whether to perform the residual capacity update operation again consisting of the measurement step (S10), the performance prediction steps (S20, S21, S22), and the remaining amount prediction steps (S30, S31). do. For example, it is determined whether it is a pause period according to the stationary of the driving motor of an EV (Electric Vehicle) or HEV (Hybrid Electric Vehicle) in which the lithium secondary battery 1 is mounted and used, and if it is not the suspension period, the capacity update operation is repeated, It ends if it is a rest period. Of course, although not shown in the drawings, as a means for detecting the operation of a device in which the lithium secondary battery 1 is mounted and used, an interrupt signal related to a driving operation of the corresponding device may be input.

한편, 본 발명의 변형 실시 예로서, 잔량 예측부(30)는 리튬이차전지가 0℃ 미만이면서 휴지 기간에 있을 시에도 잔여 용량 갱신 동작을 수행하게 하되, 리튬이차전지의 온도에 따라 산정한 온도인자만을 반영하여 잔여 용량을 예측하게 할 수 있다. 즉, 성능 예측인자에서 전류인자의 값을 0의 값으로 한다. 리튬이차전지(1)가 장착 사용되는 장치는 구동하지 않는 상황에서도 자기방전뿐만 아니라 저전력을 소모할 수 있고, 저온에서는 그 영향이 클 수 있으므로, 이 상황에서는 온도인자를 적용하여 변동하는 잔여 용량을 예측하는 것이다.On the other hand, as a modified embodiment of the present invention, the remaining amount prediction unit 30 performs an operation of updating the remaining capacity even when the lithium secondary battery is less than 0°C and is in the idle period, but the temperature calculated according to the temperature of the lithium secondary battery The remaining capacity can be predicted by reflecting only the factor. That is, the value of the current factor in the performance prediction factor is set to a value of 0. The device equipped with the lithium secondary battery 1 can consume low power as well as self-discharge even when it is not driven, and its effect can be large at low temperatures. In this situation, a temperature factor is applied to reduce the fluctuating residual capacity. It is to predict.

이 경우, 상기 종료 확인 단계(S40)는 전류 적산에 기반하는 잔여 용량 예측 동작의 수행 여부를 정하는 판단 기준을 별도로 마련할 수 있다. 예를 들어, 휴지 기간 중에 전압에 따라 잔여 용량을 예측하는 경우를 판단 기준으로 할 수 있다.In this case, in the termination confirmation step (S40), a determination criterion for determining whether to perform a residual capacity prediction operation based on current integration may be separately prepared. For example, the case of predicting the remaining capacity according to the voltage during the idle period may be used as a criterion.

<구체적인 실시 예 : 온도인자 산정식의 커브 피팅><Specific Example: Curve fitting of temperature factor calculation formula>

공칭전압 3.7V이고 공칭용량이 50Ah인 리튬이온 폴리머전지 단셀을 항온 챔버에 넣은 상태에서, 항온 챔버의 온도를 상온(본 발명의 실시 예에서는 25℃)으로 유지하며 만충전하고, 다음으로 시험 온도로 조절한 후 2시간 정치하고, 다음으로 0.2C 방전율로 방전종지전압까지 방전시켜 방전용량을 얻었다. 여기서, 방전용량은 시험 온도를 -30℃, -10℃, 0℃, 25℃ 및 50℃로 한 경우에 대해 각각 얻었다.In a state where a single cell of a lithium ion polymer battery with a nominal voltage of 3.7V and a nominal capacity of 50Ah is placed in a constant temperature chamber, the temperature of the constant temperature chamber is maintained at room temperature (25°C in the embodiment of the present invention) and fully charged, and then to the test temperature. After adjustment, it was allowed to stand for 2 hours, and then discharged to the discharge end voltage at a discharge rate of 0.2C to obtain a discharge capacity. Here, the discharge capacity was obtained for the case where the test temperatures were -30°C, -10°C, 0°C, 25°C, and 50°C, respectively.

또한, 방전율만 0.5C로 하여, -30℃, -10℃, 0℃, 25℃ 및 50℃ 환경 하의 방전용량을 다시 얻었다.Further, only the discharge rate was 0.5C, and the discharge capacities under the environment of -30°C, -10°C, 0°C, 25°C and 50°C were obtained again.

아래 표는 0.2C 및 0.5C 방전율로 방전하여 얻은 온도별 방전용량을 상온 방전용량에 대한 비율(즉, 온도에 따른 용량 활용률)의 값으로 정리한 결과이다.The table below is the result of arranging the discharge capacity by temperature obtained by discharging at the discharge rates of 0.2C and 0.5C as the value of the ratio to the room temperature discharge capacity (that is, the capacity utilization rate according to the temperature).

온도 [℃]Temperature [℃] (방전용량)/(상온 방전용량)(Discharge capacity)/(Room temperature discharge capacity) 방전율 0.2CDischarge rate 0.2C 방전율 0.5CDischarge rate 0.5C -30-30 0.7540.754 0.7510.751 -10-10 0.8730.873 0.8610.861 00 0.9210.921 0.9030.903 2525 1One 1One 5050 0.9950.995 0.9990.999

다음으로, 용량 활용률을 나타내는 비율

Figure pat00052
의 값을 온도인자 산정식
Figure pat00053
으로 커브 피팅한 결과, 상수 a는 -0.0807이고, b는 0.00477이고, c는 -0.0000648이었다. 여기서, 상온 방전용량은 특정 온도로 하지 아니하고 용량 활용률이 최대인 온도로 하는 것이 좋다.Next, the ratio representing the capacity utilization rate
Figure pat00052
The value of the temperature factor calculation formula
Figure pat00053
As a result of curve fitting with, the constant a was -0.0807, b was 0.00477, and c was -0.0000648. Here, it is preferable not to set the room temperature discharge capacity to a specific temperature, but to a temperature at which the capacity utilization rate is maximum.

도 3은 0.2C 및 0.5C 방전율과, -30℃, -10℃, 0℃, 25℃ 및 50℃ 온도 환경하에서 얻은 용량 활용률

Figure pat00054
과 커브 피팅한 그래프를 보여주는 그래프이다.Figure 3 shows 0.2C and 0.5C discharge rates and capacity utilization rates obtained under -30°C, -10°C, 0°C, 25°C and 50°C temperature environments.
Figure pat00054
This is a graph showing a graph with curve fitting and curve fitting.

도 3을 참조하면, 방전율의 차이에 따라 용량 할용률

Figure pat00055
의 차이가 나타남을 확인할 수 있다. 이에, 0.2C 및 0.5C 방전율을 얻은 결과에 따라 커브 피팅하여서, 어느 한 방전율에 편중되지 아니한 피팅 결과를 얻었다.Referring to Figure 3, the capacity utilization rate according to the difference in the discharge rate
Figure pat00055
It can be seen that the difference appears. Accordingly, curve fitting was performed according to the results obtained at 0.2C and 0.5C discharge rates, thereby obtaining a fitting result that was not biased against any one discharge rate.

<구체적인 실시 예 : 성능 비교><Specific Example: Performance Comparison>

온도인자 또는 전류인자를 반영하기 전후의 예측 성능을 비교하였다.The predicted performance before and after reflecting the temperature factor or the current factor was compared.

여기서, 온도인자는 커브 피팅한 결과에 따라 상수 a,b,c의 값이 정해진 온도인자 산정식으로 얻었고, 전류인자는 상기 표 1의 룩업테이블을 적용하였다.Here, the temperature factor was obtained by the temperature factor calculation equation in which the values of constants a, b, and c were determined according to the curve fitting result, and the lookup table of Table 1 was applied as the current factor.

예측 성능의 비교를 위해, 리튬이차전지를 상온에서 대략 61% SOC로 충전하고, -10℃에서 2시간 정치한 이후 1시간 동안 EV(Electric Vehicle) 평가를 수행하여 도 4의 그래프로 보여준 전지의 온도, 전압 및 전류 데이터를 얻었다.In order to compare the predicted performance, the lithium secondary battery was charged with approximately 61% SOC at room temperature, left at -10°C for 2 hours, and then EV (Electric Vehicle) was evaluated for 1 hour. Temperature, voltage and current data were obtained.

도 4의 그래프를 참조하면, 전류는 EV 전기모터의 구동에 따른 방전패턴과 정지시의 회생전류에 의한 충전패턴이 섞여 있는 패턴을 보인다. 최대 충전전류는 44A이고, 최대 방전전류는 -60A이며, 평균전류는 -3.73A이다. Referring to the graph of FIG. 4, the current shows a pattern in which a discharge pattern according to driving of the EV electric motor and a charging pattern due to a regenerative current at stop are mixed. The maximum charging current is 44A, the maximum discharge current is -60A, and the average current is -3.73A.

전압은 초기 휴지 기간에 3.85V를 유지하다가, EV 전기모터의 기동 이후에는 전류 패턴과 마찬가지로 방전패턴과 충전패턴이 섞여 있는 패턴을 보인다. 최대 충전 전류가 유입되는 구간에서는 4.14V이고, 최대 방전전류가 인가되는 구간에서는 3.45V이다.The voltage is maintained at 3.85V during the initial idle period, and after the EV electric motor is started, the discharge pattern and the charging pattern are mixed like the current pattern. It is 4.14V in the section in which the maximum charging current flows, and 3.45V in the section in which the maximum discharge current is applied.

온도는 EV의 기동 이후에 증가하다가 대략 -10.5℃를 유지하였고, 평가 진행 중에 대략 3000초를 경과할 때에 최대값 -9.5℃가 되었다. The temperature increased after starting of the EV and maintained at approximately -10.5°C, and reached a maximum value of -9.5°C when approximately 3000 seconds elapsed during the evaluation process.

EV 평가를 하기 이전에 상온에서 측정한 결과, 잔여 용량(SOC)은 대략 61.2%이었고, EV 평가로 얻은 전류 및 온도 데이터를 적용하여, 전류 적산 방법으로 잔여 용량을 예측하여 보았다.As a result of measuring at room temperature before EV evaluation, the residual capacity (SOC) was approximately 61.2%, and by applying the current and temperature data obtained by EV evaluation, the residual capacity was predicted by the current integration method.

도 5는 성능 예측인자(온도 인자 및 전류인자)를 미적용하여 예측한 잔여 용량(A 그래프), 온도 인자를 적용하되 전류인자는 1로 하여 예측한 잔여 용량(B 그래프), 온도 인자를 휴지 기간에도 적용하되 전류인자는 1로 하여 예측한 잔여 용량(C 그래프) 및 온도인자와 전류인자를 모두 적용하되 휴지 기간에는 적용하지 아니하여 예측한 잔여 용량(D 그래프)을 보여주는 도면이다.5 shows the residual capacity (A graph) predicted by not applying the performance predictor (temperature factor and current factor), the residual capacity (B graph) predicted by applying the temperature factor but the current factor as 1, and the temperature factor as the rest period. This is a diagram showing the estimated residual capacity (C graph) with the current factor as 1, and the estimated residual capacity (D graph) by applying both the temperature factor and the current factor but not during the rest period.

도 5를 살펴보면, 성능 예측인자를 적용하여 예측한 잔여 용량(B,C,D 그래프)이 성능 예측인자를 미적용하여 예측한 잔여용량(A 그래프)에 비해 낮게 나타나고, 성능 예측인자를 적용하더라도 온도인자만을 적용하여 예측한 잔여 용량(B,C 그래프)보다는 온도인자와 전류인자를 모두 적용하여 예측한 잔여 용량(D 그래프)이 낮게 나타났다. 또한, 휴지 기간에 온도인자를 적용하기 전후의 잔여 용량(B,C 그래프) 차이도 나타났다. Referring to FIG. 5, the residual capacity (B, C, D graph) predicted by applying the performance predictor is lower than the residual capacity predicted without applying the performance predictor (A graph), and even if the performance predictor is applied, the temperature The residual capacity predicted by applying both the temperature factor and the current factor (D graph) was lower than the residual capacity predicted by applying only the factor (B, C graph). In addition, there was also a difference in the remaining capacity (B,C graph) before and after applying the temperature factor during the rest period.

EV 평가를 종료한 후의 잔여 용량 SOC를 예측한 결과, 성능 예측인자의 미적용할 시에 53.8%(A 그래프)이고, 온도인자만 적용할 시에 52.7%(B 그래프)이고, 온도인자를 휴지 기간에도 적용할 시에 52.5%(C 그래프)이고, 온도인자와 전류인자를 모두 적용할 시에 51.8%(D 그래프)이었다.As a result of predicting the residual capacity SOC after completing the EV evaluation, it is 53.8% (A graph) when the performance predictor is not applied, 52.7% (B graph) when only the temperature factor is applied, and the temperature factor is paused. When applied to also, it was 52.5% (C graph), and when both temperature and current factors were applied, it was 51.8% (D graph).

EV 평가를 종료한 후의 실제 잔여 용량을 얻기 위해서, -10℃에서 EV 방전시험을 한 후 2시간동안 정치하고, 이후 방전종지전압까지 방전시켜 방전용량을 측정하여 보았다. 방전시간은 2.6시간이 소요되었고, 방전용량은 26Ah로 측정되었으며, SOC로 환산한 결과, 실제 잔여 용량은 52%이었다.In order to obtain the actual remaining capacity after the EV evaluation was completed, the EV discharge test was conducted at -10°C, allowed to stand for 2 hours, and then discharged to the discharge end voltage to measure the discharge capacity. The discharge time took 2.6 hours, the discharge capacity was measured as 26Ah, and as a result of conversion to SOC, the actual remaining capacity was 52%.

실제 잔여 용량과 예측 잔여 용량을 비교한 결과, 온도인자 및 전류인자를 모두 적용한 경우의 오차가 가장 적었다. As a result of comparing the actual residual capacity and the predicted residual capacity, the error was the least when both the temperature factor and the current factor were applied.

아울러, 온도인자만을 적용하더라도 잔여 용량의 예측 성능이 크게 향상됨을 확인할 수 있었다.In addition, it was confirmed that even when only the temperature factor was applied, the predictive performance of the remaining capacity was greatly improved.

또한, 온도인자를 휴지 기간에도 적용하면 예측 성능이 보다 향상됨을 확인할 수 있었다. In addition, it was confirmed that the prediction performance was further improved when the temperature factor was applied to the rest period as well.

여기서, 휴지 기간은 EV를 기동하기 이전 및 EV를 기동 정지한 이후(즉, 정치한 기간)를 포함하며, 의미를 확장하면, 리튬이차전지가 장착 사용되는 EV, HEV, 기기 등의 장치에서 장치를 구동 정지한 상태, 즉, 구동을 위해 사용하던 전력 공급을 차단하여 사용하지 않는 상태로 보면 된다. 예를 들어, EV에서는 구동모터를 가동시킬 시에 전류 적산법으로 잔여 용량을 예측하는 데, 가동 정지한 상태에서도 온도인자를 적용하여 잔여 용량을 예측함으로써, 휴지 기간의 잔여 용량 변화를 반영하며 잔여 용량을 실시간 예측하는 것이다.Here, the pause period includes before starting the EV and after starting and stopping the EV (i.e., the period in which the EV is stopped). To expand the meaning, devices such as EVs, HEVs, and devices in which lithium secondary batteries are mounted and used It can be viewed as a state in which the drive is stopped, that is, a state in which the power supply used for driving is cut off and not used. For example, in EV, when the driving motor is operated, the remaining capacity is predicted using the current integration method.Even when the driving motor is stopped, the remaining capacity is predicted by applying a temperature factor to reflect the change in the remaining capacity during the idle period. Is to predict in real time.

1 : 리튬이차전지
10 : 데이터 저장부
20 : 측정부
21 : 전류 센서 22 : 온도 센서 23 : 전압 센서
30 : 잔량 예측부
31 : 성능 예측인자 산정부
31a : 온도인자 선정부 31b : 전류인자 선정부
32 : 용량 증감분 연산부
33 : 잔여 용량 예측부
1: Lithium secondary battery
10: data storage unit
20: measurement unit
21: current sensor 22: temperature sensor 23: voltage sensor
30: remaining amount prediction unit
31: Calculation of performance predictors
31a: temperature factor selection unit 31b: current factor selection unit
32: capacity increase/decrease calculation unit
33: remaining capacity prediction unit

Claims (12)

전류 적산량을 가감하여 리튬이차전지의 잔여용량을 예측하는 리튬이차전지 잔량 예측방법에 있어서,
리튬이차전지의 온도 및 전류를 센서로 측정하는 측정단계;
서로 다른 온도의 환경에서 각각 방전종지전압까지 방전시켜 얻는 온도별 방전용량의 상온 방전용량 대비 비율을 커브 피팅(Curve Fitting)한 기설정 온도인자 산정식에 근거하여, 측정 온도에 대응되는 온도인자를 산정하는 성능 예측단계;
산정한 온도인자에 따라 보정한 전류 적산량을 적용하여 리튬이차전지의 잔여용량을 예측하는 잔량 예측단계;
를 포함하며,
상기 성능 예측단계에서 온도인자 산정식은
Figure pat00056

이되,
Figure pat00057
은 온도인자이고,
Figure pat00058
는 측정 온도이고, a, b 및 c는 커브 피팅(Curve Fitting)에 의해 얻은 기설정 상수로 하는
리튬이차전지 잔량 예측방법.
In the lithium secondary battery remaining amount prediction method for predicting the remaining capacity of the lithium secondary battery by adding or subtracting the accumulated current amount,
A measuring step of measuring the temperature and current of the lithium secondary battery with a sensor;
The temperature factor corresponding to the measured temperature is determined based on the preset temperature factor calculation formula that curve fitting the ratio of the discharge capacity of each temperature to the room temperature discharge capacity obtained by discharging each temperature to the discharge end voltage in different temperature environments. A performance prediction step of calculating;
A residual amount prediction step of predicting the residual capacity of the lithium secondary battery by applying the corrected current accumulated amount according to the calculated temperature factor;
Including,
In the performance prediction step, the temperature factor calculation equation is
Figure pat00056

This,
Figure pat00057
Is the temperature factor,
Figure pat00058
Is the measured temperature, and a, b, and c are the preset constants obtained by curve fitting.
Method for predicting remaining amount of lithium secondary battery.
제 1항에 있어서,
상기 성능 예측단계의 상기 온도인자 산정식은
온도별 방전용량의 상온 방전용량 대비 비율을 0.2C 및 0.5C를 포함한 방전율에 대해 각각 얻어 커브 피팅(Curve Fitting)한 것으로 하는
리튬이차전지 잔량 예측방법.
The method of claim 1,
The temperature factor calculation equation in the performance prediction step is
The ratio of the discharge capacity for each temperature to the room temperature discharge capacity is obtained for the discharge rates including 0.2C and 0.5C, respectively, and is obtained by curve fitting.
Method for predicting remaining amount of lithium secondary battery.
제 1항에 있어서,
상기 성능 예측단계의 상기 온도인자 산정식은
온도별 방전용량의 상온 방전용량 대비 비율을 서로 다른 방전율에 대해 각각 얻어 커브 피팅(Curve Fitting)한 것으로 하는
리튬이차전지 잔량 예측방법.
The method of claim 1,
The temperature factor calculation equation in the performance prediction step is
The ratio of the discharge capacity for each temperature to the room temperature discharge capacity is obtained for different discharge rates, and is obtained by curve fitting.
Method for predicting remaining amount of lithium secondary battery.
제 1항에 있어서,
상기 성능 예측단계에서, 상기 온도인자 산정식은
-30℃와 50℃를 포함한 서로 다른 온도의 환경에서 얻은 온도별 방전용량으로 얻은 것으로 하는
리튬이차전지 잔량 예측방법.
The method of claim 1,
In the performance prediction step, the temperature factor calculation equation is
It is obtained by discharging capacity by temperature obtained in different temperature environments including -30℃ and 50℃.
Method for predicting remaining amount of lithium secondary battery.
제 1항에 있어서,
상기 잔량 예측단계에서 온도인자에 따라 보정한 전류 적산량은
Figure pat00059

으로 산정하며,
Figure pat00060
는 온도인자로 하는 성능 예측인자이고,
Figure pat00061
는 성능 예측인자
Figure pat00062
에 의해 보정되어 적산하는 측정 전류로 하는
리튬이차전지 잔량 예측방법.
The method of claim 1,
The accumulated current amount corrected according to the temperature factor in the remaining amount prediction step is
Figure pat00059

Is calculated as,
Figure pat00060
Is the performance predictor as a temperature factor,
Figure pat00061
Is the performance predictor
Figure pat00062
It is corrected by and used as the measured current to be accumulated.
Method for predicting remaining amount of lithium secondary battery.
제 5항에 있어서,
상기 성능 예측인자
Figure pat00063

충방전율 구간별 용량 활용률로 정의한 전류인자를 설정하여 둔 룩업테이블에 근거하여, 측정 전류의 충방전율에 대응되는 전류인자를 선정한 후, 온도인자와 전류인자의 곱셈으로 얻는 값을 상기 성능 예측인자로 하는
리튬이차전지 잔량 예측방법.
The method of claim 5,
The performance predictor
Figure pat00063
Is
Based on a lookup table in which the current factor defined as the capacity utilization rate for each charging/discharging rate section is set, a current factor corresponding to the charging/discharging rate of the measured current is selected, and the value obtained by multiplying the temperature factor and the current factor is used as the performance predictor. doing
Method for predicting remaining amount of lithium secondary battery.
제 6항에 있어서,
상기 성능 예측단계는
리튬이차전지가 0℃ 미만이면서 휴지 기간에 있을 시에, 전류인자를 1로 하여 온도인자의 값으로 되는 성능 예측인자를 적용하는
리튬이차전지 잔량 예측방법.
The method of claim 6,
The performance prediction step
When the lithium secondary battery is below 0℃ and is in the idle period, the current factor is set to 1 and the performance predictor is applied as the value of the temperature factor.
Method for predicting remaining amount of lithium secondary battery.
서로 다른 온도의 환경에서 각각 방전종지전압까지 방전시켜 얻는 온도별 방전용량의 상온 방전용량 대비 비율을 커브 피팅(Curve Fitting)한 기설정 온도인자 산정식의 파라미터 값을 저장하여 둔 데이터 저장부(10);
리튬이차전지의 온도 및 전류를 센서로 측정하는 측정부(20); 및
측정 온도에 대응되는 온도인자를 상기 온도인자 산정식으로 얻은 후, 온도인자를 적용하여 전류 적산량을 보정하고, 보정한 전류 적산량을 적용하여 리튬이차전지의 잔여용량을 예측하는 잔량 예측부(30);
를 포함하며,
상기 온도인자 산정식은
Figure pat00064

이되,
Figure pat00065
은 온도인자이고,
Figure pat00066
는 측정 온도이고, a, b 및 c는 커브 피팅(Curve Fitting)에 의해 얻은 기설정 상수로 하는
리튬이차전지 잔량 예측장치.
A data storage unit that stores the parameter values of the preset temperature factor calculation formula that curve fitting the ratio of the discharge capacity of each temperature to the room temperature discharge capacity obtained by discharging each discharge end voltage in an environment of different temperature (10). );
A measuring unit 20 for measuring the temperature and current of the lithium secondary battery with a sensor; And
After obtaining a temperature factor corresponding to the measured temperature by the above temperature factor calculation formula, a residual amount predicting unit for predicting the remaining capacity of the lithium secondary battery by applying the temperature factor to correct the accumulated current amount and applying the corrected current accumulated amount ( 30);
Including,
The above temperature factor calculation formula is
Figure pat00064

This,
Figure pat00065
Is the temperature factor,
Figure pat00066
Is the measured temperature, and a, b, and c are the preset constants obtained by curve fitting.
A device for predicting the remaining amount of lithium secondary batteries.
제 8항에 있어서,
상기 온도인자 산정식은
온도별 방전용량의 상온 방전용량 대비 비율을 0.2C 및 0.5C를 포함한 방전율에 대해 각각 얻어 커브 피팅(Curve Fitting)한 것으로 하는
리튬이차전지 잔량 예측장치.
The method of claim 8,
The above temperature factor calculation formula is
The ratio of the discharge capacity for each temperature to the room temperature discharge capacity is obtained for the discharge rates including 0.2C and 0.5C, respectively, and is obtained by curve fitting.
A device for predicting the remaining amount of lithium secondary batteries.
제 8항에 있어서,
상기 온도인자 산정식은
-30℃와 50℃를 포함한 서로 다른 온도의 환경에서 얻은 온도별 방전용량으로 얻은 것으로 하는
리튬이차전지 잔량 예측장치.
The method of claim 8,
The above temperature factor calculation formula is
It is obtained by discharging capacity by temperature obtained in different temperature environments including -30℃ and 50℃.
A device for predicting the remaining amount of lithium secondary batteries.
제 8항에 있어서,
상기 데이터 저장부(30)에는
충방전율 구간별 용량 활용률로 정의한 전류인자를 설정하여 둔 룩업테이블을 저장하여 두고,
상기 잔량 예측부(30)는
Figure pat00067

에 따라 보정한 전류 적산량을 산정하며,
Figure pat00068
는 룩업테이블에 근거하여 측정 전류의 충방전율에 대응되는 전류인자를 선정한 후 온도인자와 전류인자의 곱셈으로 얻는 성능 예측인자로 하고,
Figure pat00069
는 성능 예측인자
Figure pat00070
에 의해 보정되어 적산하는 측정 전류로 하는
리튬이차전지 잔량 예측장치.
The method of claim 8,
In the data storage unit 30
Save the lookup table in which the current factor defined as the capacity utilization rate for each charge/discharge rate section is set,
The remaining amount prediction unit 30
Figure pat00067

Calculate the corrected current integration amount according to,
Figure pat00068
Is a performance prediction factor obtained by multiplying the temperature factor and the current factor after selecting a current factor corresponding to the charging/discharging rate of the measured current based on the lookup table,
Figure pat00069
Is the performance predictor
Figure pat00070
It is corrected by and used as the measured current to be accumulated.
A device for predicting the remaining amount of lithium secondary batteries.
제 11항에 있어서,
상기 잔량 예측부(30)는
리튬이차전지가 0℃ 미만이면서 휴지 기간에 있을 시에, 전류인자를 1로 하여 온도인자의 값으로 되는 성능 예측인자를 적용하는
리튬이차전지 잔량 예측장치.
The method of claim 11,
The remaining amount prediction unit 30
When the lithium secondary battery is below 0℃ and is in the idle period, the current factor is set to 1 and the performance predictor is applied as the value of the temperature factor.
A device for predicting the remaining amount of lithium secondary batteries.
KR1020190130031A 2019-10-18 2019-10-18 Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature KR102255914B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190130031A KR102255914B1 (en) 2019-10-18 2019-10-18 Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190130031A KR102255914B1 (en) 2019-10-18 2019-10-18 Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature

Publications (2)

Publication Number Publication Date
KR20210046902A true KR20210046902A (en) 2021-04-29
KR102255914B1 KR102255914B1 (en) 2021-05-26

Family

ID=75728190

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190130031A KR102255914B1 (en) 2019-10-18 2019-10-18 Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature

Country Status (1)

Country Link
KR (1) KR102255914B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220163122A (en) * 2021-06-02 2022-12-09 경북대학교 산학협력단 METHOD FOR ABNORMAL STATUS DIAGNOSIS OF LiFePO4 BATTERY CAPACITY RETENTION USING HIGH VOLAGE INFORMATION, RECORDING MEDIUM AND DEVICE FOR PERFORMING THE METHOD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
KR20050046395A (en) * 2003-11-14 2005-05-18 주식회사 파워로직스 Method for amounting soc of battery
KR100740099B1 (en) 2006-02-20 2007-07-16 삼성에스디아이 주식회사 Setting apparatus of the soc reset period and the method thereof
JP2011043513A (en) * 2007-07-30 2011-03-03 Mitsumi Electric Co Ltd Battery state detection method, battery state detection device, and operation expression derivation method
KR20120063681A (en) * 2010-12-08 2012-06-18 주식회사티움리서치 Method for remaing capacity prediction of battery
KR101946877B1 (en) 2012-06-26 2019-02-13 엘지이노텍 주식회사 Apparatus and method thereof for presuming state of charge of battery
JP6572448B2 (en) * 2015-02-13 2019-09-11 パナソニックIpマネジメント株式会社 Battery state estimation device and power supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
KR20050046395A (en) * 2003-11-14 2005-05-18 주식회사 파워로직스 Method for amounting soc of battery
KR100740099B1 (en) 2006-02-20 2007-07-16 삼성에스디아이 주식회사 Setting apparatus of the soc reset period and the method thereof
JP2011043513A (en) * 2007-07-30 2011-03-03 Mitsumi Electric Co Ltd Battery state detection method, battery state detection device, and operation expression derivation method
KR20120063681A (en) * 2010-12-08 2012-06-18 주식회사티움리서치 Method for remaing capacity prediction of battery
KR101946877B1 (en) 2012-06-26 2019-02-13 엘지이노텍 주식회사 Apparatus and method thereof for presuming state of charge of battery
JP6572448B2 (en) * 2015-02-13 2019-09-11 パナソニックIpマネジメント株式会社 Battery state estimation device and power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220163122A (en) * 2021-06-02 2022-12-09 경북대학교 산학협력단 METHOD FOR ABNORMAL STATUS DIAGNOSIS OF LiFePO4 BATTERY CAPACITY RETENTION USING HIGH VOLAGE INFORMATION, RECORDING MEDIUM AND DEVICE FOR PERFORMING THE METHOD

Also Published As

Publication number Publication date
KR102255914B1 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
KR102080632B1 (en) Battery management system and its operating method
KR101846690B1 (en) System and Method for Managing Battery on the basis of required time for Charging
US8004243B2 (en) Battery capacity estimating method and apparatus
TWI381182B (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
US9244132B2 (en) Systems and methods for determining battery state-of-health
US6300763B1 (en) Method of calculating dynamic state-of-charge within a battery
KR100911317B1 (en) Apparatus and method for estimating battery&#39;s state of health based on battery voltage variation pattern
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
US20080162059A1 (en) Secondary Battery Charge/Discharge Electricity Amount Estimation Method and Device, Secondary Battery Polarization Voltage Estimation Method and Device and Secondary Battery Remaining Capacity Estimation Method and Device
KR20110084633A (en) Apparatus and method for estimating the life span of battery
US20100036627A1 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
JP6430054B1 (en) Storage battery capacity grasping method and capacity monitoring device
Juang et al. Implementation of online battery state-of-power and state-of-function estimation in electric vehicle applications
US20210181263A1 (en) Method and battery management system for ascertaining a state of health of a secondary battery
KR20070069197A (en) Apparatus, method and system for present state and present parameter estimation for an elecrochemical cell and storage medium thereof
CN103797374A (en) System and method for battery monitoring
JP2009512845A (en) Method for predicting the power capacity of an electrical energy accumulator
US11575271B2 (en) SOC and SOH estimation methods of battery pack
CN111196180B (en) Vehicle control unit, vehicle and remaining driving range display method and device thereof
KR102572652B1 (en) Method for estimating state of charge of battery
CN110376536B (en) SOH detection method and device for battery system, computer equipment and storage medium
US20220326307A1 (en) Battery Power Limits Estimation Based on RC Model
US20220341997A1 (en) Apparatus and Method for Diagnosing a Battery
US9075117B2 (en) Method for calibrating an electrochemical battery
US20210190879A1 (en) Soh estimation method of battery pack

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant