KR20210044499A - Apparatus for providing health status information using blood metabolism and method thereof - Google Patents

Apparatus for providing health status information using blood metabolism and method thereof Download PDF

Info

Publication number
KR20210044499A
KR20210044499A KR1020190127733A KR20190127733A KR20210044499A KR 20210044499 A KR20210044499 A KR 20210044499A KR 1020190127733 A KR1020190127733 A KR 1020190127733A KR 20190127733 A KR20190127733 A KR 20190127733A KR 20210044499 A KR20210044499 A KR 20210044499A
Authority
KR
South Korea
Prior art keywords
blood
value
metabolism
health status
obesity
Prior art date
Application number
KR1020190127733A
Other languages
Korean (ko)
Other versions
KR102281793B1 (en
Inventor
허윤석
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020190127733A priority Critical patent/KR102281793B1/en
Priority to PCT/KR2020/014073 priority patent/WO2021075869A1/en
Publication of KR20210044499A publication Critical patent/KR20210044499A/en
Application granted granted Critical
Publication of KR102281793B1 publication Critical patent/KR102281793B1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Obesity (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a device for providing health state information using blood metabolism, and to a method thereof. According to the present invention, the device for providing health state information using blood metabolism comprises: a measurement unit which measures blood glucose and blood lactate values of a subject to be measured; a calculation unit which calculates a blood metabolism value by using the measured values; and a control unit which determines, by using the measured glucose value and the calculated metabolism value, a health state of the subject to be measured, and provides health state information corresponding to the determined result. According to the present invention, by calculating the blood metabolism value through measurement of the amount of glucose and lactate in blood, and by providing health state information corresponding to the calculated result, the emergence of obesity and obesity-associated diseases, such as hyperlipidemia, can be diagnosed at an early stage.

Description

혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치 및 그 방법{APPARATUS FOR PROVIDING HEALTH STATUS INFORMATION USING BLOOD METABOLISM AND METHOD THEREOF}Device and method for providing health status information using metabolism in blood {APPARATUS FOR PROVIDING HEALTH STATUS INFORMATION USING BLOOD METABOLISM AND METHOD THEREOF}

본 발명은 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치 및 그 방법에 관한 것으로서, 더욱 상세하게는 혈중 글루코오스 양과 락테이트 양을 측정하여 혈중 메타볼리즘 값을 산출하고, 산출 결과에 대응하는 건강 상태 정보를 제공하기 위한 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치 및 그 방법에 관한 것이다.The present invention relates to an apparatus and method for providing health status information using metabolism in blood, and more particularly, to calculate a blood metabolism value by measuring the amount of glucose and lactate in the blood, and a health state corresponding to the calculation result. The present invention relates to an apparatus and method for providing health status information using metabolism in blood to provide information.

최근 경제 발전에 따른 생활 수준의 향상, 바쁜 생활 환경에 따른 운동 부족, 영양의 과잉 섭취 등으로 비만 인구가 급속히 늘고 있다. 과체중 및 비만은 유전적, 대사적, 환경적, 그리고 행동학적인 복잡한 요인의 상호 작용에 의해 발생하는 생물학적 현상으로 비정상적 또는 과다한 지방의 축적으로 정의되며, 건강에 악영향을 미칠 수 있다. 의학적으로는 BMI(body mass index)가 30이상(즉, 표준체중의 30% 이상)인 경우이거나 BMI가 27 이상인 경우를 비만으로 분류한다.The obese population is rapidly increasing due to the improvement of living standards according to the recent economic development, lack of exercise due to busy living conditions, and excessive intake of nutrition. Overweight and obesity are biological phenomena caused by the interaction of genetic, metabolic, environmental, and behavioral complex factors, defined as abnormal or excess fat accumulation, and can have adverse health effects. Medically, cases with a body mass index (BMI) of 30 or more (ie, 30% or more of a standard body weight) or a BMI of 27 or more are classified as obesity.

또한, 기타 순환기계 질환인 당뇨병(특히 제2형 당뇨병), 고혈압, 고지혈증 등이 연관되어 있는 경우를 비만으로 분류하고 있다. 특히 비만은 고혈압, 제2형 당뇨병, 암, 담낭질환, 고지혈증, 동맥경화 등과 같은 각종 성인병을 일으키는 중요한 요인으로 알려져 있다. 현재까지 알려진 비만의 원인은 유전적인 소인이 70% 이상으로 알려져 있고 그 외 환경요인으로 고지방식의 섭취나 운동부족 등이 알려져 있지만 최근, 섭취한 에너지량과 소비하는 에너지량의 불균형이 비만의 원인이라는 견해가 대두되고 있다.In addition, other circulatory diseases such as diabetes (especially type 2 diabetes), hypertension, and hyperlipidemia are classified as obesity. In particular, obesity is known as an important factor causing various adult diseases such as high blood pressure, type 2 diabetes, cancer, gallbladder disease, hyperlipidemia, and arteriosclerosis. The cause of obesity known to date is genetic predisposition to more than 70%, and other environmental factors such as intake of high fat diet or lack of exercise are known, but recently, an imbalance between the amount of energy consumed and the amount of energy consumed is the cause of obesity. The opinion that it is emerging is emerging.

즉, 그동안 유전적 소인이 많이 변화하지 않았음에도 발생율은 급속히 증가한 것으로 미루어 유전적 원인으로만 보기는 어렵다는 것이며 따라서 에너지 균형을 파괴하는 유전적, 환경적 복합 요인이 비만의 중요 인자라는 인식이 확산되고 있다. 최소 2,800 만명 가량의 성인이 매년 비만에 따른 합병증으로 사망한다.In other words, even though the genetic predisposition has not changed much so far, the incidence rate has increased rapidly, so it is difficult to see it as a genetic cause.Therefore, the recognition that the genetic and environmental complex factors that destroy the energy balance are an important factor of obesity is spreading. have. At least 28 million adults die each year from complications from obesity.

이에, 비만 또는 대사성 질환 관련 건강 상태를 지속적으로 모니터링할 필요성이 계속해서 제기되어 오고 있는 실정이다. 이러한 건강 상태를 확인하기 위한 지표로서 종래에는 락테이트(Lactate)와 글루코오스(glucose)가 이용되어 왔다.Accordingly, the need to continuously monitor the health condition related to obesity or metabolic diseases has been continuously raised. Conventionally, lactate and glucose have been used as indicators for confirming such health conditions.

구체적으로, 락테이트는 중증 환자의 진단 또는 예후를 판단하는데 효과적인 지표가 되어 왔다. 또한 글루코오스와 마찬가지로, 락테이트는 제2형 당뇨병과 관련되어 있음이 알려져 있고, 비만인 당뇨병 환자의 경우 비당뇨성 비만 환자 보다 공복에서 혈중 락테이트의 농도가 높다고 알려져 있다. 아울러, 당뇨병 환자는 정상인과 대비하여 혈중 글루코오스 농도가 높다. 이처럼, 락테이트와 글루코오스는 비만, 당뇨병, 고혈당증 등의 비만관련 질환과 관련되어 있지만, 여전히 분리되어 연구되어 오고 있는 실정이다.Specifically, lactate has been an effective index in determining the diagnosis or prognosis of severely ill patients. Also, like glucose, lactate is known to be associated with type 2 diabetes, and it is known that obese diabetic patients have higher blood lactate concentrations on an empty stomach than non-diabetic obese patients. In addition, diabetic patients have a high blood glucose concentration compared to normal people. As such, lactate and glucose are associated with obesity-related diseases such as obesity, diabetes, and hyperglycemia, but they are still being separated and studied.

이에 따라 건강 상태 특히, 비만관련 질환에 있어서 글루코오스와 락테이트를 이용하여 건강 상태를 보다 용이하고 정확하게 측정할 수 있는 장치의 개발이 필요하다.Accordingly, there is a need to develop a device capable of measuring a health state more easily and accurately using glucose and lactate in a health state, particularly in obesity-related diseases.

본 발명의 배경이 되는 기술은 대한민국 등록특허공보 제10-1118555호(2012. 02. 24. 공고)에 개시되어 있다.The technology behind the present invention is disclosed in Korean Patent Publication No. 10-1118555 (announced on February 24, 2012).

본 발명이 이루고자 하는 기술적 과제는 혈중 글루코오스 양과 락테이트 양을 측정하여 혈중 메타볼리즘 값을 산출하고, 산출 결과에 대응하는 건강 상태 정보를 제공하기 위한 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치 및 그 방법을 제공하기 위한 것이다.The technical problem to be achieved by the present invention is an apparatus for providing health status information using blood metabolism to calculate a blood metabolism value by measuring the amount of glucose and lactate in the blood, and to provide health status information corresponding to the calculation result, and It is to provide a way.

이러한 기술적 과제를 이루기 위한 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치는, 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치에 있어서, 측정 대상자의 혈중 글루코오스(glucose) 및 혈중 락테이트(Lactate) 수치를 측정하는 측정부; 상기 측정된 수치를 이용하여 혈중 메타볼리즘(Metabolism) 값을 연산하는 연산부; 및 상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값을 이용하여 상기 측정 대상자의 건강 상태를 판단하고, 상기 판단 결과에 대응하는 건강 상태 정보를 제공하는 제어부를 포함한다.In the apparatus for providing health status information using blood metabolism according to an embodiment of the present invention for achieving such a technical problem, in the health status information providing device using blood metabolism, blood glucose and blood level of a measurement subject A measuring unit that measures a lactate level; An operation unit that calculates a metabolism value in blood by using the measured value; And a controller configured to determine a health state of the measurement subject using the measured glucose value and the calculated metabolism value, and provide health state information corresponding to the determination result.

또한, 상기 제어부는 혈중 글루코오스 수치가 X1 미만이고 혈중 메타볼리즘 값이 Y2를 초과하는 범위에 속하면 '정상', 혈중 글루코오스 수치가 X2를 초과하고 혈중 메타볼리즘 값이 Y1 미만인 범위에 속하면 '이상', 혈중 글루코오스 수치 및 혈중 메타볼리즘 값이 상기 '정상' 또는 '이상'에 속하지 않으면 '주의'인 것으로 건강 상태를 기 정의하고, 상기 기 정의된 건강 상태를 이용하여 상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값에 대응하는 상기 측정 대상자의 건강 상태 정보를 제공할 수 있다.In addition, the control unit is'normal' if the blood glucose level is less than X1 and the blood metabolism value exceeds Y2, and if the blood glucose level exceeds X2 and the blood metabolism value is less than Y1 If'abnormal', blood glucose level, and blood metabolism value do not belong to the'normal' or'abnormal', the health status is pre-defined as'caution', and the measured glucose using the predefined health status It is possible to provide health status information of the measurement subject corresponding to the numerical value and the calculated metabolism value.

또한, 상기 연산부는 다음의 수학식에 의해 상기 메타볼리즘 값을 연산할 수 있다.In addition, the calculation unit may calculate the metabolism value by the following equation.

Figure pat00001
Figure pat00001

여기서, Mx는 혈중 메타볼리즘 값, Ga는 혈중 글루코오스 수치, Lb는 혈중 락테이트 수치이다.Here, M x is the blood metabolism value, G a is the blood glucose level, and L b is the blood lactate level.

또한, 상기 측정부는 엠플렉스 레드시약(Amplex red reagent)을 이용하거나 전기화학적인 방법으로 상기 측정 대상자의 혈중 글루코오스 수치와 혈중 락테이트 수치를 동시에 측정할 수 있다.In addition, the measurement unit may simultaneously measure the blood glucose level and the blood lactate level of the measurement subject by using an Amplex red reagent or by an electrochemical method.

또한, 글루코오스 수치를 x축, 혈중 메타볼리즘 값을 y축으로 하는 선도에 상기 측정된 글루코오스 수치와 상기 연산된 혈중 메타볼리즘 값을 각각 표시하고, 상기 제어부로부터 판단된 판단 결과에 대응하는 건강 상태 정보를'건강', '이상' 및 '주의' 중 어느 하나로 표시하여 출력하는 출력부를 더 포함할 수 있다.In addition, the measured glucose value and the calculated blood metabolism value are respectively displayed on a diagram in which the glucose level is the x-axis and the blood metabolism is the y-axis, and the health corresponding to the determination result determined by the control unit An output unit for displaying and outputting the status information as one of'health','abnormal' and'caution' may be further included.

또한, 다수 피검자들의 성별, 나이, 키, 체중, 신체질량지수(body mass index; BMI) 및 비만 관련 질환 유무, 혈중 글루코오스 수치 및 혈중 메타볼리즘 값 중 어느 하나 이상을 입력 값으로 하여 현재 건강 상태를 출력하는 비만 진단 모델을 학습시키는 학습부를 더 포함하고, 상기 제어부는 기 학습된 비만 진단 모델을 이용하여 상기 측정 대상자로부터 입력되는 정보와 해당 측정 대상자의 혈중 글루코오스 수치 및 혈중 메타볼리즘 값에 대응하는 상기 측정 대상자의 건강 상태를 판단할 수 있다.In addition, the current health status by inputting at least one of the sex, age, height, weight, body mass index (BMI) and obesity-related disease, blood glucose level, and blood metabolism value of a number of subjects as input values. Further comprising a learning unit for learning an obesity diagnosis model that outputs, and the control unit corresponds to the information input from the measurement subject and the blood glucose level and blood metabolism value of the measurement subject by using the previously learned obesity diagnosis model. It is possible to determine the health status of the measurement subject.

또한, 상기 건강 상태 정보는 비만, 당뇨병, 고지혈증, 동맥경화, 협심증, 심근경색증, 고혈압, 지방간, 대사 증후군, 과콜레스테롤혈증 및 비알콜성 지방간염을 포함하는 비만 관련 질환 중에서 선택되는 어느 하나일 수 있다.In addition, the health status information may be any one selected from obesity-related diseases including obesity, diabetes, hyperlipidemia, arteriosclerosis, angina, myocardial infarction, hypertension, fatty liver, metabolic syndrome, hypercholesterolemia, and non-alcoholic steatohepatitis. have.

또한, 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법은, 측정 대상자의 혈중 글루코오스(glucose) 및 혈중 락테이트(Lactate) 수치를 측정하는 단계; 상기 측정된 수치를 이용하여 혈중 메타볼리즘(Metabolism) 값을 연산하는 단계; 및 상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값을 이용하여 상기 측정 대상자의 건강 상태를 판단하고, 상기 판단 결과에 대응하는 건강 상태 정보를 제공하는 단계를 포함할 수 있다.In addition, a method of providing health status information using metabolism in blood according to an embodiment of the present invention includes: measuring blood glucose and lactate levels in the blood of a subject to be measured; Calculating a blood metabolism value using the measured value; And determining a health state of the measurement subject using the measured glucose value and the calculated metabolism value, and providing health state information corresponding to the determination result.

이와 같이 본 발명에 따르면, 혈중 글루코오스 양과 락테이트 양을 측정하여 혈중 메타볼리즘 값을 산출하고, 산출 결과에 대응하는 건강 상태 정보를 제공함으로써 비만, 고지혈증 등의 비만 관련 질환에 발병 여부를 조기에 진단할 수 있다.As described above, according to the present invention, by measuring the amount of glucose and lactate in the blood, the metabolism value in the blood is calculated, and health status information corresponding to the result of the calculation is provided, so that the onset of obesity-related diseases such as obesity and hyperlipidemia is determined at an early stage. Can be diagnosed.

또한 본 발명에 따르면, 스마트폰이나 소형 기기와 연동하여 건강 상태 정보를 제공받음으로써 주기적으로 간편하게 건강 상태 이상 여부를 확인할 수 있다.In addition, according to the present invention, by interlocking with a smart phone or a small device to receive health status information, it is possible to check whether the health status is abnormal periodically.

또한 본 발명에 따르면, 건강 상태 정보를 제공받은 과거 피검자들의 데이터를 학습하고, 학습된 모델을 이용하여 측정 대상자의 혈중 메타볼리즘 값에 대응하는 건강 상태 정보를 보다 정확하게 제공할 수 있는 효과가 있다.In addition, according to the present invention, there is an effect of learning data of past subjects who were provided with health status information, and using the learned model to more accurately provide health status information corresponding to a blood metabolic value of a measurement subject. .

도 1은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치를 나타낸 블록구성도이다.
도 2는 본 발명의 실시예에 따른 글루코오스 양 측정 시 반응 과정과 락데이트 양 측정 시 반응 과정을 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치에서 제공되는 건강 상태를 나타낸 그래프이다.
도 4는 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법의 동작 흐름을 도시한 순서도이다.
도 5는 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에서 S410 단계를 설명하기 위한 실험쥐의 실험 과정을 나타낸 모식도이다.
도 6은 고지방 식이요법 실험쥐와 정상 식이요법 실험쥐의 체중 변화를 나타낸 그래프이다.
도 7은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에서 혈중 글루코오스 수치와 혈중 락테이트 수치를 분석한 그래프이다.
도 8은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에서 혈중 글루코오스 표준 곡선 및 혈중 락테이트 표준 곡선을 나타낸 그래프이다.
도 9는 실험쥐의 체중에 따른 혈중 글루코오스 수치와 혈중 락테이트 수치를 나타낸 그래프이다.
도 10은 도 9에 따른 혈중 글루코오스 수치와 혈중 메타볼리즘 값을 나타낸 그래프이다.
1 is a block diagram showing an apparatus for providing health status information using metabolism in blood according to an embodiment of the present invention.
2 is a diagram showing a reaction process when measuring the amount of glucose and a reaction process when measuring the amount of lactate according to an embodiment of the present invention.
3 is a graph showing a health state provided by an apparatus for providing health state information using metabolism in blood according to an exemplary embodiment of the present invention.
4 is a flowchart illustrating an operation flow of a method for providing health status information using metabolism in blood according to an embodiment of the present invention.
5 is a schematic diagram showing an experimental process of an experimental mouse for explaining step S410 in the method of providing health status information using metabolism in blood according to an embodiment of the present invention.
6 is a graph showing the change in body weight of the high-fat diet mice and the normal diet mice.
7 is a graph analyzing blood glucose levels and blood lactate levels in a method for providing health status information using blood metabolism according to an embodiment of the present invention.
8 is a graph showing a blood glucose standard curve and a blood lactate standard curve in a method of providing health status information using blood metabolism according to an embodiment of the present invention.
9 is a graph showing blood glucose levels and blood lactate levels according to the body weight of experimental mice.
10 is a graph showing blood glucose levels and blood metabolism values according to FIG. 9.

이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this process, the thickness of the lines or the size of components shown in the drawings may be exaggerated for clarity and convenience of description.

또한 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of users or operators. Therefore, definitions of these terms should be made based on the contents throughout the present specification.

먼저, 도 1 내지 도 3을 통해 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치에 대하여 설명한다.First, an apparatus for providing health status information using metabolism in blood according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

도 1은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치를 나타낸 블록구성도이다.1 is a block diagram showing an apparatus for providing health status information using metabolism in blood according to an embodiment of the present invention.

도 1에서와 같이 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치(100)는, 측정부(110), 연산부(120), 제어부(130), 학습부(140) 및 출력부(150)를 포함한다.As shown in FIG. 1, the apparatus 100 for providing health status information using metabolism in blood according to an embodiment of the present invention includes a measurement unit 110, an operation unit 120, a control unit 130, a learning unit 140, and Includes an output unit 150.

먼저 측정부(110)는 측정 대상자의 혈중 글루코오스(glucose) 및 혈중 락테이트(Lactate) 수치를 측정한다.First, the measurement unit 110 measures blood glucose and lactate levels in the blood of a person to be measured.

이때, 측정부(110)는 엠플렉스 레드시약(Amplex red reagent)을 이용하여 측정 대상자의 혈중 글루코오스 수치와 혈중 락테이트 수치를 동시에 측정하는 것이 바람직하다.At this time, it is preferable that the measurement unit 110 simultaneously measure the blood glucose level and the blood lactate level of the person to be measured using an Amplex red reagent.

여기서, 엠플렉스 레드시약은 효소(enzyme)와 퍼옥시다아제 활성(peroxidase activity) 즉, 과산화수소(H2O2)가 있을 때 반응하여 빨간색(red)을 나타낸다. 대표적인 효소에는 호스라디쉬퍼옥시다아제(Horseradish peroxidase; HRP)가 있다.Here, the emplex red reagent reacts when there is an enzyme and peroxidase activity, that is, hydrogen peroxide (H2O2), and displays red. A representative enzyme is Horseradish peroxidase (HRP).

호스라디쉬퍼옥시다아제는 약한 신호를 증폭하고 표적 분자의 검출 능력을 증가시키는 능력이 있고, 과산화수소(H2O2) 양이 많을수록 높은 값이 나온다. 레조루핀(Resorufin)은 형광 최대값이 약 571nm이고 방출 최대값이 약 585nm이다. Horseradish peroxidase has the ability to amplify a weak signal and increase the detection ability of a target molecule, and the higher the amount of hydrogen peroxide (H2O2) is, the higher the value comes out. Resorufin has a fluorescence maximum of about 571 nm and an emission maximum of about 585 nm.

또한, 측정부(110)는 혈당 측정 스트립의 원리에 따라, 글루코오스 옥시데이지를 이용하여 전기화학적으로 혈중 글루코오스 수치를 검출할 수 있고, 락테이트 옥시데이지를 이용하여 전기화학적으로 혈중 락테이트 수치를 검출할 수 있다.In addition, according to the principle of the blood glucose measurement strip, the measurement unit 110 may electrochemically detect the blood glucose level using glucose oxidase, and electrochemically detect the lactate level in the blood using lactate oxide. can do.

도 2는 본 발명의 실시예에 따른 글루코오스 양 측정 시 반응 과정과 락데이트 양 측정 시 반응 과정을 나타낸 도면이다.2 is a diagram showing a reaction process when measuring the amount of glucose and a reaction process when measuring the amount of lactate according to an embodiment of the present invention.

자세하게는 왼쪽은 혈중 글루코오스 수치 측정 시 반응 과정을 나타낸 것이고, 오른쪽은 혈중 락데이트 수치 측정 시 반응 과정을 나타낸 것이다.In detail, the left side shows the reaction process when measuring the blood glucose level, and the right side shows the reaction process when the blood lactate level is measured.

도 2에서와 같이 혈중 글루코오스의 양은 하기 반응식 1을 통해 진행되며, 글루코오스 어세이(Glucose assay)를 형광 분석하여 측정될 수 있다.As shown in FIG. 2, the amount of glucose in blood proceeds through Reaction Scheme 1 below, and can be measured by fluorescence analysis of a glucose assay.

[반응식 1][Scheme 1]

(1) Glucose oxidase+ D-glucose --------> D-Gluconolactone + H2O2 (1) Glucose oxidase+ D-glucose --------> D-Gluconolactone + H 2 O 2

(2) Amplex red + H2O2 -----HRP-----> Resorufin (2) Amplex red + H 2 O 2 -----HRP-----> Resorufin

또한, 혈중 락테이트의 수치는 각각 하기 반응식 2를 통해 진행되며, 락테이트 어세이(Lactate assay)를 형광 분석하여 측정될 수 있다.In addition, the level of lactate in the blood proceeds through the following Scheme 2, respectively, and may be measured by fluorescent analysis of a lactate assay.

[반응식 2)[Reaction Scheme 2)

(1) Lactate + O2 -----LOX-----> Pyruvate + H2O2 (1) Lactate + O 2 -----LOX-----> Pyruvate + H 2 O 2

(2) Amplex Red + H2O2 -----HRP-----> Resorufin(2) Amplex Red + H 2 O 2 -----HRP-----> Resorufin

그리고 연산부(120)는 측정부(110)에서 측정된 수치를 이용하여 혈중 메타볼리즘 값을 연산한다.In addition, the calculation unit 120 calculates a metabolism value in blood by using the value measured by the measurement unit 110.

자세히는 다음의 수학식 1에 의해 메타볼리즘 값을 연산한다.In detail, the metabolism value is calculated according to Equation 1 below.

Figure pat00002
Figure pat00002

여기서, Mx는 혈중 메타볼리즘 값, Ga는 혈중 글루코오스 수치, Lb는 혈중 락테이트 수치이다.Here, M x is the blood metabolism value, G a is the blood glucose level, and L b is the blood lactate level.

그리고 제어부(130)는 측정부(110)에서 측정된 글루코오스 수치와 연산부(120)에서 연산된 메타볼리즘 값을 이용하여 측정 대상자의 건강 상태를 판단하고, 판단 결과에 대응하는 건강 상태 정보를 제공한다.And the control unit 130 determines the health status of the person to be measured using the glucose value measured by the measurement unit 110 and the metabolism value calculated by the calculation unit 120, and provides health status information corresponding to the determination result. do.

이때, 건강 상태 정보는 비만, 당뇨병, 고지혈증, 동맥경화, 협심증, 심근경색증, 고혈압, 지방간, 대사 증후군, 과콜레스테롤혈증 및 비알콜성 지방간염을 포함하는 비만 관련 질환 중에서 선택되는 어느 하나의 정보일 수 있다.At this time, the health status information is any one selected from obesity-related diseases including obesity, diabetes, hyperlipidemia, arteriosclerosis, angina pectoris, myocardial infarction, hypertension, fatty liver, metabolic syndrome, hypercholesterolemia, and non-alcoholic steatohepatitis. I can.

바람직하게는, 비만, 당뇨병, 및 고지혈증으로 이루어진 군에서 선택되는 어느 하나에 관한 정보일 수 있다.Preferably, it may be information on any one selected from the group consisting of obesity, diabetes, and hyperlipidemia.

이때, 비만 관련 질환의 진단을 위한 임상지표정보들에는 체중(BW), 신장(HT), 신체질량지수(body mass index; BMI), 근육량(LBM%), 체지방량(BF%), 허리 둘레(WC), 엉덩이 둘레(HC), 허리, 엉덩이 둘레 비율(WHR) 등이 있다. 특히, 신체질량지수를 기준으로 판단할 수 있는데, 구체적으로 체질량지수가 18.5미만인 경우 저체중, 18.5 내지 22.9인 경우 정상, 23 내지 24.9인 경우 과체중, 25 내지 30인 경우 경도 비만(1단계 비만), 30 내지 35인 경우 중등도 비만(2단계 비만), 35 이상인 경우 고도 비만으로 정의할 수 있다.At this time, the clinical indicator information for the diagnosis of obesity-related diseases include weight (BW), height (HT), body mass index (BMI), muscle mass (LBM%), body fat mass (BF%), waist circumference ( WC), hip circumference (HC), waist and hip circumference ratio (WHR). In particular, it can be determined based on the body mass index. Specifically, if the body mass index is less than 18.5, underweight, if it is 18.5 to 22.9, it is normal, if it is 23 to 24.9, it is overweight, and if it is 25 to 30, mild obesity (stage 1 obesity), In the case of 30 to 35, it can be defined as moderate obesity (second stage obesity), and in the case of 35 or more, it can be defined as severe obesity.

또한, 제어부(130)는 혈중 글루코오스 수치가 X1 미만이고 혈중 메타볼리즘 값이 Y2를 초과하는 범위에 속하면 '정상', 혈중 글루코오스 수치가 X2를 초과하고 혈중 메타볼리즘 값이 Y1 미만인 범위에 속하면 '이상', 혈중 글루코오스 수치 및 혈중 메타볼리즘 값이 '정상' 또는 '이상'에 속하지 않으면 '주의'인 것으로 건강 상태를 기 정의하되, X1은 X2보다 작고, Y1은 Y2보다 작은 값으로 설정되는 것이 바람직하다.In addition, the control unit 130 is'normal' if the blood glucose level is less than X1 and the blood metabolism value exceeds Y2, and the blood glucose level exceeds X2 and the blood metabolism value is less than Y1. If it belongs to'abnormal', blood glucose level and blood metabolism value is'normal' or'abnormal', the health status is pre-defined as'caution', but X1 is less than X2, and Y1 is less than Y2. It is preferably set to.

자세히는 선택되는 정보에 대해 이상이 없는 경우 즉, 건강한 경우에 해당하는 수치를 '정상'으로 정의하고, 이상이 있는 경우 즉, 건강하지 않은 경우에 해당하는 수치를 '이상'으로 정의하며, 특별한 문제는 없으나 과도기에 해당하는 수치를 '주의'로 정의한다.In detail, when there is no abnormality in the selected information, that is, the value corresponding to the healthy case is defined as'normal', the value corresponding to the case where there is an abnormality, that is, is not healthy, is defined as'abnormal'. There is no problem, but the figure corresponding to the transition period is defined as'caution'.

따라서, 제어부(130)는 상기와 같이 기 정의된 건강 상태를 이용하여 측정부(110)에서 측정된 글루코오스 수치와 연산부(120)에서 연산된 메타볼리즘 값에 대응하는 측정 대상자의 건강 상태 정보를 제공한다.Therefore, the control unit 130 uses the health state previously defined as described above to store the glucose value measured by the measurement unit 110 and the health state information of the measurement subject corresponding to the metabolism value calculated by the calculation unit 120. to provide.

이때 혈중 글루코오스 수치 및 혈중 메타볼리즘 값이 '주의'에 해당하는 경우 측정 대상자의 건강 상태 정보를 제공하지 않을 수도 있다.In this case, if the blood glucose level and the blood metabolism value correspond to'caution', information on the health status of the person to be measured may not be provided.

그리고 학습부(140)는 다수 피검자들의 성별, 나이, 키, 체중, 신체질량지수 및 비만 관련 질환 유무, 혈중 글루코오스 수치 및 혈중 메타볼리즘 값 중 적어도 어느 하나 이상을 입력 값으로 하여 현재 건강 상태를 출력하는 비만 진단 모델을 학습시킨다.In addition, the learning unit 140 inputs at least one or more of the sex, age, height, weight, body mass index, and obesity-related disease, blood glucose level, and blood metabolism value of the plurality of subjects as input values to determine the current health status. It trains the output obesity diagnosis model.

이때, 제어부(130)는 학습부(140)를 통해 기 학습된 비만 진단 모델을 이용하여 측정 대상자로부터 입력되는 정보와 해당 측정 대상자의 혈중 글루코오스 수치 및 혈중 메타볼리즘 값에 대응하는 측정 대상자의 건강 상태를 판단할 수도 있다.At this time, the control unit 130 uses the obesity diagnosis model previously learned through the learning unit 140 to input information from the measurement subject, and the health of the measurement subject corresponding to the blood glucose level and blood metabolism value of the measurement subject. You can also judge the status.

즉, 본 발명의 실시예에서는 측정 대상자가 비만 진단 모델에 성별, 나이, 키, 체중, 신체질량지수 및 비만 관련 질환 유무 중 적어도 어느 하나 이상의 개인 정보를 입력하고, 측정부(110)에서 측정된 글루코오스 수치와 연산부(120)에서 연산된 혈중 메타볼리즘 값이 입력되면, 측정 대상자의 건강 상태와 가장 유사한 패턴의 케이스를 추출하여 측정 대상자의 건강 상태를 출력함으로써 측정 대상자의 건강 상태를 보다 정확하게 판단하여 측정 대상자에게 제공할 수도 있다.That is, in the embodiment of the present invention, the object to be measured inputs at least one of personal information of sex, age, height, weight, body mass index, and the presence or absence of obesity-related diseases in the obesity diagnosis model, and measured by the measurement unit 110 When the glucose level and the blood metabolism value calculated by the calculation unit 120 are input, the health status of the measurement subject is more accurately determined by extracting the case of the pattern most similar to the health status of the measurement subject and outputting the health status of the measurement subject. It can also be provided to the person to be measured.

마지막으로 출력부(150)는 글루코오스 수치를 x축, 혈중 메타볼리즘 값을 y축으로 하는 선도에, 측정부(110)에서 측정된 글루코오스 수치와 연산부(120)에서 연산된 혈중 메타볼리즘 값을 각각 표시하고, 제어부(130)로부터 판단된 판단 결과에 대응하는 건강 상태 정보를'건강', '이상' 및 '주의' 중 어느 하나로 표시하여 출력한다.Finally, the output unit 150 is a diagram in which the glucose value is the x-axis and the blood metabolism is the y-axis, the glucose value measured by the measuring unit 110 and the blood metabolism value calculated by the calculating unit 120 Is displayed, and health state information corresponding to the determination result determined by the controller 130 is displayed as one of'health','abnormal', and'caution' and output.

즉, 출력부(150)는 제어부(130)로부터 측정부(110)에서 측정된 글루코오스 수치와 연산부(120)에서 연산된 혈중 메타볼리즘 값을 기초로 하여 혈중 글루코오스 수치(x축)에 따른 혈중 메타볼리즘 값(y축)의 변화를 표시하여 제공할 수도 있다. That is, the output unit 150 is based on the glucose value measured by the measurement unit 110 from the control unit 130 and the blood metabolism value calculated by the calculation unit 120, and the blood level according to the blood glucose level (x-axis). Metabolism values (y-axis) can also be displayed and provided.

도 3은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치에서 제공되는 건강 상태를 나타낸 그래프이다. 3 is a graph showing a health state provided by an apparatus for providing health state information using metabolism in blood according to an exemplary embodiment of the present invention.

도 3에서와 같이, 메타볼리즘 선도는, X축 방향으로 원점과 X1 사이의 부분과 Y축 방향으로 Y2 이후의 부분을 포함하는 '정상'영역과, X축 방향으로 X2 이후의 부분과 Y축 방향으로 원점과 Y1 사이의 부분을 포함하는 '이상'영역, '정상'영역과 '이상' 영역을 제외한 나머지 모든 부분을 포함하는 '주의'영역으로 구분될 수 있다.As shown in FIG. 3, the metabolism diagram includes a'normal' region including a portion between the origin and X1 in the X-axis direction and a portion after Y2 in the Y-axis direction, and a portion after X2 and Y in the X-axis direction. It can be divided into a'abnormal' area including a part between the origin and Y1 in the axial direction, and a'caution' area including all other parts except for the'normal' area and the'abnormal' area.

이때, '정상'영역은 신체질량지수 측정 시 18.5 내지 22.9 값으로 정상 체중 상태를 표시하는 영역이고, '이상'영역은 신체질량지수 측정 시 30 초과 값으로 중증도 비만 또는 고도 비만 상태를 표시하는 영역일 수 있다.At this time, the'normal' area is an area that displays a normal weight status with a value of 18.5 to 22.9 when measuring the body mass index, and the'abnormal' area is an area that displays a severe obesity or severe obesity status with a value exceeding 30 when measuring the body mass index Can be

상세하게는'정상'영역은 혈중 글루코오스 수치가 5(X1) 미만이고 혈중 메타볼리즘 값이 3.17(Y2)을 초과하는 범위로 설정되고, '이상'영역은 혈중 글루코오스 수치가 7.5(X2)를 초과하고 혈중 메타볼리즘 값이 2.155(Y1) 미만인 범위로 설정될 수 있다. In detail, the'normal' area is set in a range where the blood glucose level is less than 5 (X1) and the blood metabolism value exceeds 3.17 (Y2), and the'abnormal' area has a blood glucose level of 7.5 (X2). It may be set to a range that exceeds and the blood metabolism value is less than 2.155 (Y1).

구체적으로, 출력부(150)는 제어부(130)의 판단 결과 혈중 메타볼리즘 값이 3.17을 초과하고 신체질량지수가 18.5 내지 22.9 범위 내인 경우 건강 상태가 정상(양호)이며, 정상 체중 상태인 것으로 출력할 수 있다.Specifically, the output unit 150 is determined by the control unit 130 as a result of the determination that the blood metabolism value exceeds 3.17 and the body mass index is within the range of 18.5 to 22.9, the health state is normal (good), and the normal weight state. Can be printed.

또한, 혈중 메타볼리즘 값이 2.155 이상 3.17 이하이고 신체질량지수가 23 내지 30 범위 내인 경우 건강 상태가 주의(과도기)이며, 과체중 또는 경도 비만인 것으로 출력할 수 있다.In addition, when the blood metabolic value is 2.155 or more and 3.17 or less and the body mass index is in the range of 23 to 30, the health status is caution (transitional), and it may be output as being overweight or mild obesity.

마지막으로 혈중 메타볼리즘 값이 2.155 미만이고 신체질량지수가 30을 초과하는 경우 건강 상태가 이상(위험)이며, 중증도 비만 또는 고도 비만인 것으로 출력할 수 있다.Finally, if the blood metabolic value is less than 2.155 and the body mass index exceeds 30, the health status is abnormal (risk), and it can be output as severe obesity or severe obesity.

따라서, 본 발명의 실시예에 따르면 비만, 고지혈증 등의 비만관련 질환에 발병 여부를 조기에 진단 또는 위험성을 예측이 가능하여, 이러한 건강 상태 정보를 바탕으로 꾸준히 건강 관리를 할 수 있다는 이점이 있다.Therefore, according to an embodiment of the present invention, it is possible to diagnose or predict the risk of an onset of obesity-related diseases such as obesity and hyperlipidemia at an early stage, and there is an advantage in that health management can be continuously performed based on such health status information.

이하에서는 도 4 내지 도 10을 통해 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에 대하여 설명한다.Hereinafter, a method of providing health status information using metabolism in blood according to an embodiment of the present invention will be described with reference to FIGS. 4 to 10.

도 4는 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법의 동작 흐름을 도시한 순서도로서, 이를 참조하여 본 발명의 구체적인 동작을 설명한다.4 is a flow chart showing an operation flow of a method for providing health status information using metabolism in blood according to an embodiment of the present invention, and a specific operation of the present invention will be described with reference to this.

본 발명의 실시예에 따르면, 먼저 측정부(110)가 측정 대상자의 혈중 글루코오스 및 혈중 락테이트 수치를 측정한다(S410).According to an embodiment of the present invention, first, the measurement unit 110 measures the blood glucose and lactate levels in the blood of the person to be measured (S410).

이때, S410 단계는 엠플렉스 레드시약(Amplex red reagent)을 이용하여 측정 대상자의 혈중 글루코오스 수치와 혈중 락테이트 수치를 동시에 측정할 수 있다.In this case, step S410 may simultaneously measure the blood glucose level and the blood lactate level of the subject to be measured using an Amplex red reagent.

그 다음 연산부(120)가 S410 단계에서 측정된 수치를 이용하여 혈중 메타볼리즘 값을 연산한다(S420).Then, the calculation unit 120 calculates a metabolism value in blood by using the value measured in step S410 (S420).

이때, 메타볼리즘 값은 수학식 1에 의해 연산된다.At this time, the metabolism value is calculated by Equation 1.

그 다음 제어부(130)가 S410 단계에서 측정된 글루코오스 수치와 S420 단계에서 연산된 메타볼리즘 값을 이용하여 측정 대상자의 건강 상태를 판단한다(S430).Then, the controller 130 determines the health status of the measurement target using the glucose value measured in step S410 and the metabolism value calculated in step S420 (S430).

S430 단계의 판단 결과, 혈중 글루코오스 수치가 X1 미만이고 혈중 메타볼리즘 값이 Y2를 초과하는 범위에 속하면(S440), 건강 상태를'정상'으로 판단한다(S450).As a result of the determination in step S430, if the blood glucose level is less than X1 and the blood metabolism value exceeds Y2 (S440), the health status is determined as'normal' (S450).

만약, S430 단계의 판단 결과, 혈중 글루코오스 수치가 X2를 초과하고 혈중 메타볼리즘 값이 Y1 미만인 범위에 속하면(S441), 건강 상태를 '이상'으로 판단한다(S451).If, as a result of the determination in step S430, the blood glucose level exceeds X2 and the blood metabolism value falls within the range of less than Y1 (S441), the health status is determined as'abnormal' (S451).

또한, S430 단계의 판단 결과, 혈중 글루코오스 수치 및 혈중 메타볼리즘 값이 '정상' 또는 '이상'에 속하지 않으면 건강 상태가 '주의'인 것으로 판단할 수도 있다(S452).In addition, as a result of the determination in step S430, if the blood glucose level and the blood metabolism value do not belong to'normal' or'abnormal', it may be determined that the health status is'caution' (S452).

그리고 제어부(130)는 S450, S451 및 S452 단계에서 판단된 결과에 따른 건강 상태 정보를 제공한다(S460).In addition, the controller 130 provides health status information according to the result determined in steps S450, S451, and S452 (S460).

이때, 제공되는 건강 상태 정보는 비만, 당뇨병, 고지혈증, 동맥경화, 협심증, 심근경색증, 고혈압, 지방간, 대사 증후군, 과콜레스테롤혈증 및 비알콜성 지방간염을 포함하는 비만 관련 질환 중에서 선택되는 어느 하나일 수 있다.At this time, the provided health status information is any one selected from obesity-related diseases including obesity, diabetes, hyperlipidemia, arteriosclerosis, angina, myocardial infarction, hypertension, fatty liver, metabolic syndrome, hypercholesterolemia, and nonalcoholic steatohepatitis. I can.

그리고 학습부(140)는 다수 피검자들의 성별, 나이, 키, 체중, 신체질량지수 및 비만 관련 질환 유무, 혈중 글루코오스 수치 및 혈중 메타볼리즘 값 중 어느 하나 이상을 입력 값으로 하여 현재 건강 상태를 출력하는 비만 진단 모델을 학습시킬 수도 있다.In addition, the learning unit 140 outputs the current health status by inputting at least one of the sex, age, height, weight, body mass index, and obesity-related disease, blood glucose level, and blood metabolism value of the plurality of subjects as input values. It is also possible to train an obesity diagnosis model.

따라서, S460 단계는 기 학습된 비만 진단 모델을 이용하여 측정 대상자로부터 입력되는 정보와 해당 측정 대상자의 혈중 글루코오스 수치 및 혈중 메타볼리즘 값에 대응하는 측정 대상자의 건강 상태를 판단하여 제공할 수도 있다.Accordingly, in step S460, information input from the measurement subject, the blood glucose level of the measurement subject, and the health state of the measurement subject corresponding to the blood metabolism value may be determined and provided using the previously learned obesity diagnosis model.

출력부(150)는 글루코오스 수치를 x축, 혈중 메타볼리즘 값을 y축으로 하는 선도에 S410 단계에서 측정된 글루코오스 수치와 S420 단계에서 연산된 혈중 메타볼리즘 값을 각각 표시하고, S460 단계에서 제공되는 건강 상태 정보를'건강', '이상' 및 '주의' 중 어느 하나로 표시하여 단말(미도시)로 출력할 수도 있다.The output unit 150 displays the glucose level measured in step S410 and the blood metabolism value calculated in step S420, respectively, on a diagram in which the glucose level is the x-axis and the blood metabolism value is the y-axis, and in step S460 The provided health status information may be displayed as one of'health','abnormal', and'caution' and output to a terminal (not shown).

이때, 단말은, 측정 대상자의 스마트폰이나 소형 기기를 포함할 수 있으며, 와 연동하여 건강 상태 정보를 제공받음으로써 주기적으로 간편하게 건강 상태 이상 여부를 확인할 수 있다.In this case, the terminal may include a smartphone or a small device of the person to be measured, and by interlocking with the health state information is provided, it is possible to conveniently check whether or not the health state is abnormal.

이하에서는 실험쥐를 이용한 실험 및 실시예를 통해 혈중 글루코오스 및 혈중 락테이트 수치가 비만 여부 판단에 미치는 상관 관계를 입증하고, 이로부터 산출된 혈중 메타볼리즘 값을 이용하여 건강 상태 정보를 제공하는 방법에 대해 설명하기로 한다.Hereinafter, through experiments and examples using mice, the correlation between blood glucose and lactate levels in the blood on the determination of obesity is demonstrated, and a method of providing health status information using the blood metabolism values calculated therefrom Let's explain.

도 5는 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에서 S410 단계를 설명하기 위한 실험쥐의 실험 과정을 나타낸 모식도이다.5 is a schematic diagram showing an experimental process of an experimental mouse for explaining step S410 in a method of providing health status information using metabolism in blood according to an embodiment of the present invention.

도 5에서와 같이 다음의 실험 과정에 걸쳐 실험쥐의 혈중 글루코오스 및 혈중 락테이트 수치를 측정할 수 있다.As shown in FIG. 5, the blood glucose and blood lactate levels of the mice can be measured over the following experimental process.

실험예 1. 실험쥐의 식이 조절Experimental Example 1. Diet control in mice

C57BL/6J 근친 교배 수컷 실험쥐를 12 시간의 명암 사이클(21 내지 23℃)을 유지하면서 물을 자유롭게 섭취할 수 있는 통제된 환경에 두었다. 두 그룹의 실험쥐 중 한 그룹의 실험쥐는 정상적인 사료를 먹이고 다른 그룹의 실험쥐에게는 고지방 사료를 먹였다. 모든 실험은 6주 내지 8주에 이르는 연령대의 실험쥐를 대상으로 진행했으며, 1개월간 각각 정상적인 식이요법(normal chow diet)을 한 실험쥐와 고지방 식이요법(high fat diet; HFD)을 한 실험쥐를 15 내지 16 시간동안 단식시킨 후 실험을 수행하였다. 수행된 모든 실험은 계명대학교 의과대학 동물 실험 윤리위원회의 승인을 받아 진행하였다.C57BL/6J inbred male mice were placed in a controlled environment with free water intake while maintaining a 12-hour light and dark cycle (21-23°C). Of the two groups of mice, one group of mice was fed a normal diet and the other group of mice was fed a high-fat diet. All experiments were conducted with mice in the age range of 6 to 8 weeks, and mice fed a normal chow diet and mice fed a high fat diet (HFD) for 1 month. After fasting for 15 to 16 hours, the experiment was performed. All experiments performed were conducted with the approval of the Animal Experimental Ethics Committee, Keimyung University School of Medicine.

실험예 2. 혈액 준비Experimental Example 2. Blood preparation

헤파린화된 튜브(heparinized tube)에서 하룻밤 동안 단식한 실험쥐의 턱밑 정맥으로부터 혈액 샘플을 수집한 후 수집된 혈액 샘플을 원심분리하여 혈장(plasma)을 분리하였다. 이렇게 얻어진 혈장 샘플을 사용하여 글루코오스 수치 및 락테이트 수치를 측정하였다.Blood samples were collected from submandibular veins of mice fasted overnight in a heparinized tube, and then the collected blood samples were centrifuged to separate plasma. Using the plasma sample thus obtained, glucose and lactate levels were measured.

실험예 3. 혈중 글루코오스 수치 측정(Glucose assay) 및 락테이트 수치 측정(Lactate assay)Experimental Example 3. Blood glucose level measurement (Glucose assay) and lactate level measurement (Lactate assay)

혈중 글루코오스 수치를 측정하기 위해, 글루코오스 어세이(Glucose assay)를 이용하여 분석하였다. 구체적으로, 실험에 사용된 엠플렉스 레드 글루코오스(Amplex Red Glucose) 및 글루코오스 옥시다아제 어세이 키트(Glucose Oxidase Assay Kit(Invitrogen))는 써모피셔사이언티픽코리아(Thermo Fisher Scientific(A22189))에서 주문하여 사용하였다. 여기에는 반응촉매 호스라디쉬퍼 옥시다아제(HRP), 엠플렉스 레드(Amplex Red), 글루코오스(Glucose), 글루코오스 옥시다아제(Glucose Oxidase) 및 포스페이트 버퍼(phosphate buffer, pH 7 내지 7.4)가 포함되어 있다. In order to measure the blood glucose level, it was analyzed using a glucose assay. Specifically, the Emplex Red Glucose and Glucose Oxidase Assay Kit (Invitrogen) used in the experiment were ordered and used from Thermo Fisher Scientific (A22189). . This includes reaction catalyst horseradishper oxidase (HRP), Amplex Red, glucose, glucose oxidase, and phosphate buffer (pH 7 to 7.4).

마찬가지로, 혈중 락테이트 수치를 분석하기 위해 락테이트 어세이(Lactate assay)를 이용하여 분석하였다. 구체적으로, 락트산 용액(lactic acid solution, Sigma-Aldrich)과 락테이트 옥시다아제(Lactate oxidase, My BioSource(MB S653757))를 사용하였다. 모든 분석은 혈장 샘플 키트에 명시된 것과 동일한 프로토콜에 따라 수행되었다. 혈중 락테이트 수치 분석을 위해, 글루코스 옥시다아제(Glucose Oxidase)는 도 2에서와 같이 락테이트 옥시다아제(Lactate oxidase)로 대체하고 분석하였다.Likewise, in order to analyze the level of lactate in blood, it was analyzed using a lactate assay. Specifically, lactic acid solution (Sigma-Aldrich) and lactate oxidase (My BioSource (MB S653757)) were used. All analyzes were performed according to the same protocol as specified in the plasma sample kit. To analyze the level of lactate in the blood, glucose oxidase was replaced with lactate oxidase and analyzed as shown in FIG. 2.

실험예 4. 형광분석(Fluorescence Assay)Experimental Example 4. Fluorescence Assay

96-웰 블랙 검정 마이크로 플레이트(96-well black assay microplate)를 사용하여 시너지Synergy) 2 마이크로 플레이트 리더(Bio Tek Instruments, 미국 버몬트 소재)로 형광을 측정하였다. 글루코오스 및 락테이트 표준은 (5,10,20,30,40,50,60,70,80,90 및 100)μM/의 50μl 체적으로 측정되었고, 표준 곡선(standard plot)이 그려졌다. 혈중 글루코오스와 및 락테이트는 샘플을 100 배로 희석하여 측정하고 농도는 이미 그려진 표준 곡선을 바탕으로 평가되었다. 5 분마다 최대 30분 동안 판독하였다. 형광은 540/35의 여기(excitation) 및 600/40의 방출(emission)로 측정되었다. 모든 검체 판독 값에서 무-포도당(no-glucose) 및 무-락테이트(no-lactate) 대조값을 뺀 값으로 보정되었다. 분석 과정은 도 5과 같다. Fluorescence was measured with a Synergy 2 microplate reader (Bio Tek Instruments, Vermont, USA) using a 96-well black assay microplate. Glucose and lactate standards were measured in 50 μl volumes of (5,10,20,30,40,50,60,70,80,90 and 100)μM/, and a standard plot was drawn. Blood glucose and lactate were measured by diluting the sample by 100 times and the concentration was evaluated based on a standard curve already drawn. Read every 5 minutes for up to 30 minutes. Fluorescence was measured with an excitation of 540/35 and an emission of 600/40. All sample readings were corrected by subtracting the no-glucose and no-lactate control values. The analysis process is shown in FIG. 5.

실험예 5. 통계분석(Statistical Analysis)Experimental Example 5. Statistical Analysis

데이터는 평균 ±SD 데이터로 표현되었다.Data were expressed as mean±SD data.

도 6은 고지방 식이요법 실험쥐와 정상 식이요법 실험쥐의 체중 변화를 나타낸 그래프이다.Figure 6 is a graph showing the weight change of the high-fat diet mice and the normal diet mice.

실시예 1. 실험쥐 체중 기록Example 1. Weight recording of mice

6주령의 실험쥐에 대하여 고지방 식이요법(high fat diet; HFD)과 정상 식이요법(normal chow diet)을 진행하였으며, 체중은 19.18 土 0.6gm이었다. 체중 변화는 27주 동안 기록되었다. 고지방 사료를 먹인 실험쥐는 정상 사료를 먹인 실험쥐 보다 체중이 월등하게 증가하였다. 고지방 사료를 1주일 섭취한 후에 해당 실험쥐의 체중은 3.1 ± 0.6g로 증가하였다. 반면, 정상 사료를 섭취한 실험쥐의 체중은 1.6 ± 0.8 gm 증가하였다. Six-week-old mice were treated with a high fat diet (HFD) and a normal chow diet, and their weight was 0.6 gm at 19.18 s. Body weight changes were recorded for 27 weeks. The mice fed the high fat diet had a significantly higher weight than the mice fed the normal diet. After ingesting the high fat feed for 1 week, the weight of the mice increased to 3.1 ± 0.6g. On the other hand, the body weight of the mice that consumed the normal diet increased by 1.6 ± 0.8 gm.

도 6을 통해 알 수 있듯이 두 그룹의 실험쥐는 약 12주까지는 유사한 패턴을 보였지만 이 후 체중 변화가 확연하게 벌어진 것을 확인할 수 있다. As can be seen from FIG. 6, the two groups of mice showed a similar pattern until about 12 weeks, but after that, it can be seen that the weight change clearly occurred.

도 7은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에서 혈중 글루코오스 수치와 혈중 락테이트 수치를 분석한 그래프이며, 도 8은 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 방법에서 혈중 글루코오스 표준 곡선 및 혈중 락테이트 표준 곡선을 나타낸 그래프이다.7 is a graph analyzing blood glucose levels and blood lactate levels in a method of providing health status information using blood metabolism according to an embodiment of the present invention, and FIG. 8 is a blood metabolism according to an embodiment of the present invention. It is a graph showing the blood glucose standard curve and the blood lactate standard curve in the method of providing health status information using.

실시예 2. 혈중 내 글루코오스 및 락테이트 양 측정을 위한 최적화Example 2. Optimization for measuring the amount of glucose and lactate in blood

락테이트에 대한 매우 민감한 엠플렉스 레드(Amplex Red) 시약 기반 형광 분석을 수행하였다. 실험쥐의 혈중 글루코스 및 락테이트 농도를 반응촉매인 HRP(horseradish peroxidase)와 함께 엠플렉스 레드(Amplex Red)를 사용하여 동시에 측정하였다. 효소 반응의 동역학은 시간 추적 측정에 의해 조사하였다. 5분 동안의 배양만으로도 락테이트의 형광은 금방 증가하였다. 아울러, 표준 곡선 플롯 농도(standard curve plotted concentration) 대 형광(fluorescence)은 측정 과정의 정확성을 입증하는 선형선(linear line)으로 나타냈다. 또한 공복 실험쥐의 혈중 락테이트 양도 동일한 방법으로 측정하여 도 7에서와 같이 선형선(linear line)으로 나타난 것을 확인할 수 있다. A highly sensitive Amplex Red reagent based fluorescence assay for lactate was performed. The concentrations of glucose and lactate in the blood of the mice were simultaneously measured using Amplex Red together with HRP (horseradish peroxidase) as a reaction catalyst. The kinetics of the enzymatic reaction was investigated by time tracking measurement. Even with incubation for 5 minutes, the fluorescence of lactate quickly increased. In addition, the standard curve plotted concentration versus fluorescence is represented by a linear line, which demonstrates the accuracy of the measurement process. In addition, it can be seen that the amount of lactate in the blood of the fasting mice was measured by the same method, and appeared as a linear line as shown in FIG. 7.

구체적으로 도 7은 글루코오스 어세이와 락테이트 어세이를 이용하여, 혈중 글루코오스 수치와 혈중 락테이트 수치를 분석한 결과로서, 도 7(a) 및 도 7(b)는 시간에 대한 형광도를 나타낸 그래프이고, 도 7(c) 및 도 7(d)는 농도에 대한 형광도를 나타낸 그래프이다.Specifically, FIG. 7 is a result of analyzing blood glucose levels and blood lactate levels using a glucose assay and a lactate assay, and FIGS. 7(a) and 7(b) show fluorescence versus time. It is a graph, and FIGS. 7(c) and 7(d) are graphs showing fluorescence versus concentration.

도 7의 그래프를 통해, 농도별 반응시간에 따른 형광도 변화와 반응시간별 농도변화에 따른 형광도변화를 확인할 수 있다.Through the graph of FIG. 7, a change in fluorescence according to a reaction time for each concentration and a change in fluorescence according to a change in concentration for each reaction time can be confirmed.

아울러, 글루코스 분석을 위한 배양 시간은 실온에서 30분으로 진행되었다. 이 경우 5분에서 30분으로 형광의 평균 변화는 2650.364 증가한 것으로 나타냈다. 반면, 락테이트 분석에서 형광의 평균 증가는 단지 58.63인 것으로 확인되었다. 도 8에서와 같이 결과에 의미가 없는 형광의 미세한 변화는 무시하였고 락테이트 분석을 위한 배양 기간으로 5분을 선택하였다. In addition, the incubation time for glucose analysis proceeded to 30 minutes at room temperature. In this case, it was shown that the average change in fluorescence increased by 2650.364 from 5 minutes to 30 minutes. On the other hand, it was found that the average increase in fluorescence was only 58.63 in lactate analysis. As shown in FIG. 8, a minute change in fluorescence that has no meaning in the result was ignored, and 5 minutes was selected as an incubation period for lactate analysis.

구체적으로 도 8은 글루코오스 표준 곡선 및 락테이트 표준 곡선(Standard plot)을 나타낸 것으로, 도 8(a)는 5분 간격으로 30분까지 농도에 따른 글루코오스의 형광도를 나타낸 그래프이고, 도 8(b)는 알려지지 않은 혈액 내 글루코오스의 농도를 알아내기 위해 30분에 측정된 글루코오스 형광의 경사 절편 형태(Slope intercept form)를 나타낸 그래프이며, 도 8(c)는 농도에 따른 락테이트의 형광도를 나타낸 그래프이고, 도 8(d)는 알려지지 않은 혈액 내 락테이트의 농도를 알아내기 위해, 5분에 측정된 락테이트 형광의 경사 절편 형태(Slope intercept form)를 나타낸 그래프이다.Specifically, FIG. 8 shows a glucose standard curve and a lactate standard curve (Standard plot), and FIG. 8(a) is a graph showing the fluorescence of glucose according to the concentration up to 30 minutes at 5 minute intervals, and FIG. 8(b) ) Is a graph showing the slope intercept form of glucose fluorescence measured at 30 minutes to find out the concentration of glucose in the unknown blood, and FIG. 8(c) shows the fluorescence of lactate according to the concentration. It is a graph, and FIG. 8(d) is a graph showing a slope intercept form of lactate fluorescence measured at 5 minutes in order to find out an unknown concentration of lactate in blood.

도 8의 그래프를 통해, 알려지지 않은 혈액 내 글루코스 농도 및 락테이트 농도를 알아내기 위한 표준곡선을 획득할 수 있음을 확인할 수 있다.Through the graph of FIG. 8, it can be seen that a standard curve for finding an unknown blood glucose concentration and lactate concentration can be obtained.

도 9는 실험쥐의 체중에 따른 혈중 글루코오스 수치와 혈중 락테이트 수치를 나타낸 그래프이다.9 is a graph showing blood glucose levels and blood lactate levels according to the body weight of experimental mice.

실시예 3. 혈중 내 글루코오스 및 락테이트 양 측정 결과, 및 통계학적 분석 결과Example 3. Measurement results of glucose and lactate amounts in blood, and statistical analysis results

먼저, 도 9는 실험쥐의 체중에 대한 글루코오스 및 락테이트 수치를 각각 플롯팅(plotting)하여 나타낸 도면이다. 도 9에서 알 수 있듯이, 고지방 사료를 공급한 대부분의 공복 실험쥐(도 9의 왼쪽 그래프에서 체중(Weight)이 높은 쪽)는 정상 사료를 공급한 대부분의 공복 실험쥐(도 9의 왼쪽 그래프에서 체중(Weight)이 낮은 쪽) 보다 혈중 글루코오스 수치(양)가 높음을 확인할 수 있다. 반면, 도 9의 오른쪽 그래프에서 알 수 있듯이 혈중 락테이트 수치는 체중에 따른 큰 변화가 없음을 확인할 수 있다.First, FIG. 9 is a diagram showing the glucose and lactate levels relative to the body weight of the mice, respectively, by plotting. As can be seen from Figure 9, most of the fasting mice fed a high-fat diet (the higher weight in the left graph of Figure 9) were the most fasting mice fed a normal feed (in the left graph of Figure 9). It can be seen that the blood glucose level (amount) is higher than that of the lower body weight). On the other hand, as can be seen from the graph on the right of FIG. 9, it can be seen that the lactate level in the blood does not significantly change according to the body weight.

이를 통해 비만 질환에 영향을 주는 인자는 혈중 글루코오스 수치인 것을 알 수 있다.Through this, it can be seen that the factor affecting the obesity disease is blood glucose level.

도 10은 도 9에 따른 혈중 글루코오스 수치와 혈중 메타볼리즘 값을 나타낸 그래프이다.10 is a graph showing blood glucose levels and blood metabolism values according to FIG. 9.

도 10에서와 같이 혈중 글루코오스에 대해 메타볼리즘 값(Lactate/Glucose ratio; L/G ratio)을 플롯팅한 결과, 정상 사료를 공급한 실험쥐(Normal mice) 및 고지방 사료를 공급한 실험쥐(Fat mice)의 표본 사이에 뚜렷한 전이 플롯(transitional plot)이 나타나고 있음을 확인할 수 있다. As a result of plotting metabolism values (Lactate/Glucose ratio; L/G ratio) with respect to blood glucose as shown in FIG. 10, normal mice fed with normal feed and mice fed with high fat feed ( Fat mice), it can be seen that a distinct transitional plot appears between the samples.

특히, 이러한 전이 플롯(transitional plot)은 메타볼리즘(L/G ratio) 값이 2.155 내지 3.17 사이에서 나타나고 있음을 알 수 있다.In particular, it can be seen that such a transitional plot has a metabolism (L/G ratio) value between 2.155 and 3.17.

따라서, 본 발명의 실시예에 따르면, 메타볼리즘(L/G ratio) 값이 2.155 미만인 경우, 향후 실험쥐의 건강 상태가 '이상'(위험) 상태인 것을 예측할 수 있다. 반면 메타볼리즘(L/G ratio) 값이 3.17를 초과하는 경우, 실험쥐의 건강 상태는 '정상'(양호) 상태인 것을 예측할 수 있다.Accordingly, according to an exemplary embodiment of the present invention, when the metabolism (L/G ratio) value is less than 2.155, it can be predicted that the health state of the future mice is'abnormal' (danger). On the other hand, when the metabolism (L/G ratio) value exceeds 3.17, it can be predicted that the health status of the mice is'normal' (good).

상술한 바와 같이, 본 발명의 실시예에 따른 혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치 및 그 방법은 혈중 글루코오스 양과 락테이트 양을 측정하여 혈중 메타볼리즘 값을 산출하고, 산출 결과에 대응하는 건강 상태 정보를 제공함으로써 비만, 고지혈증 등의 비만 관련 질환에 발병 여부를 조기에 진단할 수 있다.As described above, in the apparatus and method for providing health status information using metabolism in blood according to an embodiment of the present invention, the metabolism value in blood is calculated by measuring the amount of glucose and lactate in the blood, and corresponding to the calculated result. By providing health status information, the onset of obesity-related diseases such as obesity and hyperlipidemia can be diagnosed early.

또한 본 발명의 실시예에 따르면, 스마트폰이나 소형 기기와 연동하여 건강 상태 정보를 제공받음으로써 주기적으로 간편하게 건강 상태 이상 여부를 확인할 수 있다.In addition, according to an embodiment of the present invention, by interlocking with a smart phone or a small device to receive health state information, it is possible to check whether a health state is abnormal periodically.

또한 본 발명의 실시예에 따르면, 건강 상태 정보를 제공받은 과거 피검자들의 데이터를 학습하고, 학습된 모델을 이용하여 측정 대상자의 혈중 메타볼리즘 값에 대응하는 건강 상태 정보를 보다 정확하게 제공할 수 있는 효과가 있다.In addition, according to an embodiment of the present invention, it is possible to learn data of past subjects who were provided with health status information, and provide health status information corresponding to the blood metabolism value of the measurement target more accurately by using the learned model. It works.

본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are only exemplary, and those of ordinary skill in the art will understand that various modifications and other equivalent embodiments are possible therefrom. will be. Therefore, the true technical protection scope of the present invention should be determined by the technical idea of the following claims.

100 : 건강 상태 정보 제공 장치 110 : 측정부
120 : 연산부 130 : 제어부
140 : 학습부 150 : 출력부
100: health state information providing device 110: measuring unit
120: operation unit 130: control unit
140: learning unit 150: output unit

Claims (14)

혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치에 있어서,
측정 대상자의 혈중 글루코오스(glucose) 및 혈중 락테이트(Lactate) 수치를 측정하는 측정부;
상기 측정된 수치를 이용하여 혈중 메타볼리즘(Metabolism) 값을 연산하는 연산부; 및
상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값을 이용하여 상기 측정 대상자의 건강 상태를 판단하고, 상기 판단 결과에 대응하는 건강 상태 정보를 제공하는 제어부를 포함하는 건강 상태 정보 제공 장치.
In the apparatus for providing health status information using metabolism in blood,
A measuring unit for measuring blood glucose and lactate levels of a subject to be measured;
An operation unit that calculates a metabolism value in blood by using the measured value; And
And a controller configured to determine a health state of the measurement target using the measured glucose value and the calculated metabolism value, and to provide health state information corresponding to the determination result.
제1항에 있어서,
상기 제어부는,
혈중 글루코오스 수치가 X1 미만이고 혈중 메타볼리즘 값이 Y2를 초과하는 범위에 속하면 '정상', 혈중 글루코오스 수치가 X2를 초과하고 혈중 메타볼리즘 값이 Y1 미만인 범위에 속하면 '이상', 혈중 글루코오스 수치 및 혈중 메타볼리즘 값이 상기 '정상' 또는 '이상'에 속하지 않으면 '주의'인 것으로 건강 상태를 기 정의하고,
상기 기 정의된 건강 상태를 이용하여 상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값에 대응하는 상기 측정 대상자의 건강 상태 정보를 제공하는 건강 상태 정보 제공 장치.
The method of claim 1,
The control unit,
If the blood glucose level is less than X1 and the blood metabolism value exceeds Y2, it is'normal', and if the blood glucose level exceeds X2 and the blood metabolism value is less than Y1, it is'abnormal'. If the glucose level and blood metabolism value do not fall within the above'normal'or'abnormal', the health status is pre-defined as'caution',
Health state information providing apparatus for providing health state information of the measurement subject corresponding to the measured glucose value and the calculated metabolism value using the predefined health state.
제1항에 있어서,
상기 연산부는,
다음의 수학식에 의해 상기 메타볼리즘 값을 연산하는 건강 상태 정보 제공 장치:
Figure pat00003

여기서, Mx는 혈중 메타볼리즘 값, Ga는 혈중 글루코오스 수치, Lb는 혈중 락테이트 수치이다.
The method of claim 1,
The operation unit,
Health state information providing device that calculates the metabolism value by the following equation:
Figure pat00003

Here, M x is the blood metabolism value, G a is the blood glucose level, and L b is the blood lactate level.
제1항에 있어서,
상기 측정부는,
엠플렉스 레드시약(Amplex red reagent)을 이용하거나 전기화학적인 방법으로 상기 측정 대상자의 혈중 글루코오스 수치와 혈중 락테이트 수치를 동시에 측정하는 건강 상태 정보 제공 장치.
The method of claim 1,
The measuring unit,
A device for providing health status information that simultaneously measures the blood glucose level and the blood lactate level of the measurement subject using an Amplex red reagent or by an electrochemical method.
제2항에 있어서,
글루코오스 수치를 x축, 혈중 메타볼리즘 값을 y축으로 하는 선도에 상기 측정된 글루코오스 수치와 상기 연산된 혈중 메타볼리즘 값을 각각 표시하고, 상기 제어부로부터 판단된 판단 결과에 대응하는 건강 상태 정보를'건강', '이상' 및 '주의' 중 어느 하나로 표시하여 출력하는 출력부를 더 포함하는 건강 상태 정보 제공 장치.
The method of claim 2,
The measured glucose level and the calculated blood metabolism value are respectively displayed on a diagram in which the glucose level is the x-axis and the blood metabolism is the y-axis, and health status information corresponding to the determination result determined by the control unit Health state information providing device further comprising an output unit to display and output any one of'health','abnormal'and'attention'.
제1항에 있어서,
다수 피검자들의 성별, 나이, 키, 체중, 신체질량지수(body mass index; BMI) 및 비만 관련 질환 유무, 혈중 글루코오스 수치 및 혈중 메타볼리즘 값 중 어느 하나 이상을 입력 값으로 하여 현재 건강 상태를 출력하는 비만 진단 모델을 학습시키는 학습부를 더 포함하고,
상기 제어부는,
기 학습된 비만 진단 모델을 이용하여 상기 측정 대상자로부터 입력되는 정보와 해당 측정 대상자의 혈중 글루코오스 수치 및 혈중 메타볼리즘 값에 대응하는 상기 측정 대상자의 건강 상태를 판단하는 건강 상태 정보 제공 장치.
The method of claim 1,
The current health status is output by inputting at least one of the sex, age, height, weight, body mass index (BMI), obesity-related disease, blood glucose level and blood metabolism value of multiple subjects as input values. Further comprising a learning unit for training the obesity diagnosis model,
The control unit,
Health state information providing apparatus for determining a health state of the measurement subject corresponding to information input from the measurement subject, blood glucose level and blood metabolism value of the measurement subject by using a pre-learned obesity diagnosis model.
제1항에 있어서,
상기 건강 상태 정보는,
비만, 당뇨병, 고지혈증, 동맥경화, 협심증, 심근경색증, 고혈압, 지방간, 대사 증후군, 과콜레스테롤혈증 및 비알콜성 지방간염을 포함하는 비만 관련 질환 중에서 선택되는 어느 하나인 건강 상태 정보 제공 장치.
The method of claim 1,
The health status information,
Obesity, diabetes, hyperlipidemia, arteriosclerosis, angina pectoris, myocardial infarction, hypertension, fatty liver, metabolic syndrome, hypercholesterolemia, and any one selected from obesity-related diseases including non-alcoholic steatohepatitis.
혈중 메타볼리즘을 이용한 건강 상태 정보 제공 장치에 의해 수행되는 건강 상태 정보 제공 방법에 있어서,
측정 대상자의 혈중 글루코오스(glucose) 및 혈중 락테이트(Lactate) 수치를 측정하는 단계;
상기 측정된 수치를 이용하여 혈중 메타볼리즘(Metabolism) 값을 연산하는 단계; 및
상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값을 이용하여 상기 측정 대상자의 건강 상태를 판단하고, 상기 판단 결과에 대응하는 건강 상태 정보를 제공하는 단계를 포함하는 건강 상태 정보 제공 방법.
In the health state information providing method performed by a health state information providing device using blood metabolism,
Measuring blood glucose and lactate levels in the blood of the subject to be measured;
Calculating a blood metabolism value using the measured value; And
And determining a health state of the subject to be measured using the measured glucose value and the calculated metabolism value, and providing health state information corresponding to the determination result.
제8항에 있어서,
상기 건강 상태 정보 제공 장치는,
혈중 글루코오스 수치가 X1 미만이고 혈중 메타볼리즘 값이 Y2를 초과하는 범위에 속하면 '정상', 혈중 글루코오스 수치가 X2를 초과하고 혈중 메타볼리즘 값이 Y1 미만인 범위에 속하면 '이상', 혈중 글루코오스 수치 및 혈중 메타볼리즘 값이 상기 '정상' 또는 '이상'에 속하지 않으면 '주의'인 것으로 건강 상태를 기 정의하고,
상기 건강 상태 정보를 제공하는 단계는,
상기 기 정의된 건강 상태를 이용하여 상기 측정된 글루코오스 수치와 상기 연산된 메타볼리즘 값에 대응하는 상기 측정 대상자의 건강 상태 정보를 제공하는 건강 상태 정보 제공 방법.
The method of claim 8,
The health state information providing device,
If the blood glucose level is less than X1 and the blood metabolism value exceeds Y2, it is'normal', and if the blood glucose level exceeds X2 and the blood metabolism value is less than Y1, it is'abnormal'. If the glucose level and blood metabolism value do not fall within the above'normal'or'abnormal', the health status is pre-defined as'caution',
Providing the health status information,
Health state information providing method for providing health state information of the measurement subject corresponding to the measured glucose value and the calculated metabolism value using the predefined health state.
제8항에 있어서,
상기 연산하는 단계는,
다음의 수학식에 의해 상기 메타볼리즘 값을 연산하는 건강 상태 정보 제공 방법:
Figure pat00004

여기서, Mx는 혈중 메타볼리즘 값, Ga는 혈중 글루코오스 수치, Lb는 혈중 락테이트 수치이다.
The method of claim 8,
The calculating step,
A method of providing health status information for calculating the metabolic value by the following equation:
Figure pat00004

Here, M x is the blood metabolism value, G a is the blood glucose level, and L b is the blood lactate level.
제8항에 있어서,
상기 측정하는 단계는,
엠플렉스 레드시약(Amplex red reagent)을 이용하거나 전기화학적인 방법으로 상기 측정 대상자의 혈중 글루코오스 수치와 혈중 락테이트 수치를 동시에 측정하는 건강 상태 정보 제공 방법.
The method of claim 8,
The measuring step,
A method of providing health status information by simultaneously measuring the blood glucose level and the blood lactate level of the measurement subject by using an Amplex red reagent or by an electrochemical method.
제9항에 있어서,
글루코오스 수치를 x축, 혈중 메타볼리즘 값을 y축으로 하는 선도에 상기 측정된 글루코오스 수치와 상기 연산된 혈중 메타볼리즘 값을 각각 표시하고, 상기 제어부로부터 판단된 판단 결과에 대응하는 건강 상태 정보를'건강', '이상' 및 '주의' 중 어느 하나로 표시하여 출력하는 단계를 더 포함하는 건강 상태 정보 제공 방법.
The method of claim 9,
The measured glucose level and the calculated blood metabolism value are respectively displayed on a diagram in which the glucose level is the x-axis and the blood metabolism is the y-axis, and health status information corresponding to the determination result determined by the control unit The method of providing health status information further comprising the step of displaying and outputting one of'health','abnormal'and'attention'.
제8항에 있어서,
다수 피검자들의 성별, 나이, 키, 체중, 신체질량지수(body mass index; BMI) 및 비만 관련 질환 유무, 혈중 글루코오스 수치 및 혈중 메타볼리즘 값 중 어느 하나 이상을 입력 값으로 하여 현재 건강 상태를 출력하는 비만 진단 모델을 학습시키는 단계를 더 포함하고,
상기 상기 건강 상태 정보를 제공하는 단계는,
기 학습된 비만 진단 모델을 이용하여 상기 측정 대상자로부터 입력되는 정보와 해당 측정 대상자의 혈중 글루코오스 수치 및 혈중 메타볼리즘 값에 대응하는 상기 측정 대상자의 건강 상태를 판단하는 건강 상태 정보 제공 방법.
The method of claim 8,
The current health status is output by inputting at least one of the sex, age, height, weight, body mass index (BMI), obesity-related disease, blood glucose level and blood metabolism value of multiple subjects as input values. Further comprising the step of training an obesity diagnosis model,
Providing the health state information,
A method of providing health status information for determining a health status of the measurement subject corresponding to information input from the measurement subject, blood glucose level and blood metabolism value of the measurement subject using a previously learned obesity diagnosis model.
제8항에 있어서,
상기 건강 상태 정보는,
비만, 당뇨병, 고지혈증, 동맥경화, 협심증, 심근경색증, 고혈압, 지방간, 대사 증후군, 과콜레스테롤혈증 및 비알콜성 지방간염을 포함하는 비만 관련 질환 중에서 선택되는 어느 하나인 건강 상태 정보 제공 방법.
The method of claim 8,
The health status information,
Obesity, diabetes, hyperlipidemia, arteriosclerosis, angina pectoris, myocardial infarction, hypertension, fatty liver, metabolic syndrome, hypercholesterolemia and obesity-related diseases, including non-alcoholic steatohepatitis, any one selected from among obesity-related diseases.
KR1020190127733A 2019-10-15 2019-10-15 Apparatus for providing health status information using blood metabolism and method thereof KR102281793B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190127733A KR102281793B1 (en) 2019-10-15 2019-10-15 Apparatus for providing health status information using blood metabolism and method thereof
PCT/KR2020/014073 WO2021075869A1 (en) 2019-10-15 2020-10-15 Device for providing health state information using blood metabolism, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190127733A KR102281793B1 (en) 2019-10-15 2019-10-15 Apparatus for providing health status information using blood metabolism and method thereof

Publications (2)

Publication Number Publication Date
KR20210044499A true KR20210044499A (en) 2021-04-23
KR102281793B1 KR102281793B1 (en) 2021-07-26

Family

ID=75538814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190127733A KR102281793B1 (en) 2019-10-15 2019-10-15 Apparatus for providing health status information using blood metabolism and method thereof

Country Status (2)

Country Link
KR (1) KR102281793B1 (en)
WO (1) WO2021075869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230111820A (en) * 2022-01-19 2023-07-26 계명대학교 산학협력단 Lactate fluorescence measurement method and Fluorescence analyzer for simultaneous measurement of glucose and lactate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932414B1 (en) * 2017-03-24 2018-12-27 계명대학교 산학협력단 Metabolism measurement device and metabolism measurement method using the measurement device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025748A (en) * 2001-09-24 2003-03-29 주식회사 엘바이오 A home-medical terminal and a network home-medical diagnostic sysem using the home-medical terminal and the network home-medical diagnostic method
WO2018124831A1 (en) * 2016-12-30 2018-07-05 서울대학교 산학협력단 Device and method for predicting disease risk of metabolic disorder disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932414B1 (en) * 2017-03-24 2018-12-27 계명대학교 산학협력단 Metabolism measurement device and metabolism measurement method using the measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Alves 등, BBA Clinical, Vol.8, 페이지 1-6 (2017) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230111820A (en) * 2022-01-19 2023-07-26 계명대학교 산학협력단 Lactate fluorescence measurement method and Fluorescence analyzer for simultaneous measurement of glucose and lactate
WO2023140613A1 (en) * 2022-01-19 2023-07-27 계명대학교 산학협력단 Lactate fluorescence measurement method and fluorometric assay substrate for simultaneous measurement of glucose and lactate

Also Published As

Publication number Publication date
WO2021075869A1 (en) 2021-04-22
KR102281793B1 (en) 2021-07-26

Similar Documents

Publication Publication Date Title
Di Chiara et al. Education and hypertension: impact on global cardiovascular risk
Division IFCC recommendation on reporting results for blood glucose
Chew-Harris et al. The relative effects of fat versus muscle mass on cystatin C and estimates of renal function in healthy young men
Cayuela et al. Cartridge-based automated BCR-ABL1 mRNA quantification: solving the issues of standardization, at what cost?
US20180340927A1 (en) Systems and methods for monitoring an individual's health
Kleinpell et al. The new sepsis definitions: implications for critical care practitioners
Li et al. Prevalence of chronic kidney disease in a middle and old-aged population of Beijing
Melchionda et al. WHO and ADA criteria for the diagnosis of diabetes mellitus in relation to body mass index. Insulin sensitivity and secretion in resulting subcategories of glucose tolerance
Adamson et al. Detection of 1, 5-anhydroglucitol by electrochemical impedance spectroscopy
Zeugswetter et al. Point‐of‐care β‐hydroxybutyrate measurement for the diagnosis of feline diabetic ketoacidaemia
Lavigne-Robichaud et al. Job strain and the prevalence of uncontrolled hypertension among white-collar workers
Temiz et al. Altered kidney function induced by SARS-CoV-2 infection and acute kidney damage markers predict survival outcomes of COVID-19 patients: a prospective pilot study
Colon-Franco et al. Validation of a hand-held point of care device for lactate in adult and pediatric patients using traditional and locally-smoothed median and maximum absolute difference curves
JP2019521343A (en) Method for electrochemical analysis by using alternating output signals from two electrodes
RU2619872C1 (en) Method for estimation of individual risk of excessive body and obesity development in children consuming drinking water with increased chloroform and tetrachloromethane content
Kobayashi et al. Oxidized albumin in blood reflects the severity of multiple vascular complications in diabetes mellitus
Voora et al. An age-and sex-specific gene expression score is associated with revascularization and coronary artery disease: Insights from the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) trial
KR20210044499A (en) Apparatus for providing health status information using blood metabolism and method thereof
Trares et al. Association of F2-isoprostane levels with Alzheimer’s disease in observational studies: A systematic review and meta-analysis
Linsky et al. A continuous, fluorescent, high-throughput assay for human dimethylarginine dimethylaminohydrolase-1
Dalgård et al. Heritability of curve patterns in oral glucose tolerance test
Timerga et al. Evaluation of uric acid disorders and associated factors in essential hypertensive patients at Wolkite University specialized hospital, Southern Ethiopia
Lechner et al. Comparison of glucose concentrations in serum, plasma, and blood measured by a point-of-care glucometer with serum glucose concentration measured by an automated biochemical analyzer for canine and feline blood samples
Rutkovskiy et al. Circulating microRNA-210 concentrations in patients with acute heart failure: data from the Akershus cardiac examination 2 study
Cullen et al. Performance of risk stratification for acute coronary syndrome with two-hour sensitive troponin assay results

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant