KR20210043860A - Manufacturing method of graphite for Lithium ion battery anode with improved stability by introduction of semi-covalent C-F functional group - Google Patents
Manufacturing method of graphite for Lithium ion battery anode with improved stability by introduction of semi-covalent C-F functional group Download PDFInfo
- Publication number
- KR20210043860A KR20210043860A KR1020190126706A KR20190126706A KR20210043860A KR 20210043860 A KR20210043860 A KR 20210043860A KR 1020190126706 A KR1020190126706 A KR 1020190126706A KR 20190126706 A KR20190126706 A KR 20190126706A KR 20210043860 A KR20210043860 A KR 20210043860A
- Authority
- KR
- South Korea
- Prior art keywords
- fluorine
- graphite
- negative electrode
- electrode material
- carbon
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
본 발명은 반공유성 탄소-불소 관능기가 도입되어 안정성이 향상된 리튬이온배터리 음극재용 흑연의 제조방법에 관한 것이다. The present invention relates to a method of manufacturing graphite for a lithium ion battery negative electrode material with improved stability by introducing a semi-covalent carbon-fluorine functional group.
보다 상세하게는 흑연에 전자선을 조사하여 표면의 활성부위를 증가시킨 후 저농도의 불소 가스와 반응시킴으로써 반공유성 탄소-불소 관능기를 도입할 수 있는 리튬이온배터리 음극재용 흑연의 제조방법에 관한 것이다.More specifically, it relates to a method for producing graphite for a lithium ion battery negative electrode material capable of introducing a semi-covalent carbon-fluorine functional group by irradiating the graphite with an electron beam to increase the active site on the surface and then reacting with a low concentration of fluorine gas.
또한, 본 발명은 반공유성 탄소-불소 관능기의 함량을 증가시켜 초기 충전 후 리튬플루오라이드 막을 주로 형성시켜 리튬 이차전지의 사이클 안정성을 향상시킬 수 있도록 하는 리튬이온배터리 음극재용 흑연의 제조방법을 제공하는 것이다.In addition, the present invention provides a method of manufacturing graphite for a lithium ion battery negative electrode material, which increases the content of the semi-covalent carbon-fluorine functional group to form a lithium fluoride film mainly after initial charging, thereby improving the cycle stability of a lithium secondary battery. will be.
리튬 이차전지는 양극재인 리튬계 금속 산화물로부터 리튬 이온이 음극재인 흑연의 층간에 삽입 및 탈리되는 과정을 반복하면서 충방전이 진행된다. In the lithium secondary battery, charging and discharging proceeds by repeating the process of intercalating and desorbing lithium ions from the lithium-based metal oxide as a cathode material between the layers of graphite as the anode material.
충방전 시 전해액은 음극재인 흑연과 반응하여 흑연 표면에 SEI(Solid Electrolyte Interface, 이하 SEI)라 불리는 얇은 막을 형성하게 되는데, 이는 최초 충전 시 형성되고 이후 반복 충방전 시 리튬이온과 음극 또는 다른 물질과의 반응을 막아주게 되며, 전해액과 음극사이에서 리튬 이온만 통과시키는 이온 채널로써 작용하게 된다. During charging and discharging, the electrolyte reacts with graphite, which is a negative electrode material, to form a thin film called SEI (Solid Electrolyte Interface, hereinafter SEI) on the graphite surface. It prevents the reaction of and acts as an ion channel through which only lithium ions pass between the electrolyte and the cathode.
SEI 막은 여러 성분의 조합으로 이루어져있으나 이 중 리튬플루오라이드(LiF)는 타성분에 비하여 안정성이 높기 때문에 수십회 충방전 사이클 후에도 높은 용량 유지율을 갖을 수 있다는 장점이 있다. 따라서, 음극재용 흑연 표면 리튬플루오라이드 막을 형성하기 위한 방법 중 불소 가스를 이용하여 충방전 시에 리튬 플루오라이드 형성을 유도하는 방법이 있다. The SEI film is composed of a combination of several components, but lithium fluoride (LiF) has the advantage of having a high capacity retention rate even after several tens of charge/discharge cycles because lithium fluoride (LiF) has high stability compared to other components. Accordingly, among methods for forming a graphite surface lithium fluoride film for an anode material, there is a method of inducing formation of lithium fluoride during charging and discharging using fluorine gas.
이때, 반공유성 불소-탄소 관능기가 리튬 플루오라이드 형성에 주된 영향을 미치며, 공유성 불소-탄소 관능기는 큰 영향을 미치지 않은 것으로 알려져 있다.At this time, it is known that the semicovalent fluorine-carbon functional group has a major effect on the formation of lithium fluoride, and the covalent fluorine-carbon functional group has no significant effect.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 간단한 공정에 의하여 높은 함량의 반공유성 탄소-불소 관능기를 갖는 리튬이온배터리 음극재용 흑연의 제조방법을 제공하는 것을 그 목적으로 한다.The present invention has been devised to solve the above-described problems, and an object thereof is to provide a method of manufacturing graphite for a lithium ion battery negative electrode material having a high content of semi-covalent carbon-fluorine functional groups by a simple process.
또한 도입된 반공유성 탄소-불소 관능기가 초기 충전 후 음극재 표면에 리튬플루오라이드 막을 주로 형성해 리튬 이차전지의 안정성을 향상 시킬 수 있는 리튬이온배터리 음극재용 흑연을 제공하고자 한다.In addition, the introduced semi-covalent carbon-fluorine functional group mainly forms a lithium fluoride film on the surface of the negative electrode material after initial charging to provide graphite for a lithium ion battery negative electrode material that can improve the stability of a lithium secondary battery.
본 발명의 목적은 상술한 것에 한정되지 않으며, 언급되지 아니한 다른 목적들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the above, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 양태는 흑연 입자에 전자선 조사하여 표면 활성화 흑연입자를 제조하는 단계,An aspect of the present invention is a step of preparing surface activated graphite particles by irradiating electron beams to graphite particles,
상기 활성화 흑연입자를 불소가스와 반응시켜 흑연입자에 반공유성 탄소-불소 관응기를 도입하는 단계,Reacting the activated graphite particles with fluorine gas to introduce a semicovalent carbon-fluorine tube condenser to the graphite particles,
를 포함하는 음극재의 제조방법을 제공한다.It provides a method of manufacturing a negative electrode material comprising a.
본 발명의 일 양태에서, 상기 관능기 도입단계는 비활성분위기에서 불소가스와 반응시켜 제조하는 것일 수 있다.In one aspect of the present invention, the step of introducing the functional group may be prepared by reacting with fluorine gas in an inert atmosphere.
본 발명의 일 양태에서, 상기 전자선 조사는 1회 또는 2회 이상 반복하여 조사하는 것일 수 있다.In one aspect of the present invention, the electron beam irradiation may be irradiated once or twice or more repeatedly.
본 발명의 일 양태에서, 상기 전자선은 1회 조사 시 10 내지 100 kGy로 조사할 수 있고, 총 전자선 흡수량이 30 내지 800 kGy인 것일 수 있다.In one aspect of the present invention, the electron beam may be irradiated at a rate of 10 to 100 kGy per irradiation, and a total electron beam absorption amount may be 30 to 800 kGy.
본 발명의 일 양태에서, 상기 관능기 도입단계는 저농도 불소가스 비활성 분위기에서 수행하는 것일 수 있다.In one aspect of the present invention, the step of introducing the functional group may be performed in an inert atmosphere of low concentration fluorine gas.
본 발명의 일 양태에서, 상기 저농도 불소가스는 부분압이 0.05 내지 0.25 bar인 것일 수 있다.In one aspect of the present invention, the low concentration fluorine gas may have a partial pressure of 0.05 to 0.25 bar.
본 발명의 또 다른 양태는 (1) 불소 원소가 흑연 표면에 도입된 함량이 8 내지 13%이며,Another aspect of the present invention is (1) the amount of fluorine element introduced into the graphite surface is 8 to 13%,
(2) 탄소-불소 관능기 중 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 비율이 40% 이상이고,(2) the proportion of semi-covalent carbon-fluorine functional groups among the carbon-fluorine functional groups introduced into the graphite surface is 40% or more,
(3) 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 함량이 6 내지 13%인 반공유성 탄소-불소 관능기를 가지는 이차전지용 음극재를 제공한다.(3) It provides a negative electrode material for a secondary battery having a semi-covalent carbon-fluorine functional group having a content of 6 to 13% of the semicovalent carbon-fluorine functional group introduced into the graphite surface.
본 발명의 일 양태에서, 상기 반공유성 및 공유성 탄소-불소 관능기 전체에 대하여 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 비율이 80% 이상인 것일 수 있다.In one aspect of the present invention, the ratio of the semicovalent and covalent carbon-fluorine functional groups to the whole of the semicovalent and covalent carbon-fluorine functional groups may be 80% or more.
본 발명의 일 양태에서, 상기 음극재는 컷오프 전압을 0.005에서 2.5 V로 고정하고, 0.2 C의 율속으로 충전 및 방전을 100회 까지 수행한 코인형 리튬이온배터리의 용량 유지율이 90%이상인 것일 수 있다.In one aspect of the present invention, the negative electrode material may have a capacity retention rate of 90% or more of a coin-type lithium-ion battery in which the cut-off voltage is fixed from 0.005 to 2.5 V, and charging and discharging are performed 100 times at a rate of 0.2 C. .
본 발명의 또 다른 양태는 상기 일 양태에 따른 음극재를 채택한 리튬이차전지를 제공한다.Another aspect of the present invention provides a lithium secondary battery employing the negative electrode material according to the above aspect.
본 발명에 의할 경우, 전자선 조사단계를 도입하여 흑연 분말의 표면 활성부위를 증가시킨 후, 불수가스와 반응시키는 단계를 채택함으로서, 종래의 저농도의 불소 가스와의 반응으로부터 도입되는 반공유성 탄소-불소 관능기 함량보다 더 많은 함량을 도입할 수 있는 효과를 얻을 수 있다.In the case of the present invention, by introducing an electron beam irradiation step to increase the surface active portion of the graphite powder, and then by adopting a step of reacting with insoluble gas, semi-covalent carbon introduced from the reaction with a conventional low concentration fluorine gas- It is possible to obtain an effect of introducing a higher content than the fluorine functional group content.
또한 본 발명에 의해 초기 충전 시 음극재용 흑연 표면에 리튬플루오라이드 층을 조기에 형성하여 더욱 우수한 리튬이온 배터리의 안정성을 갖게 된다. In addition, according to the present invention, a lithium fluoride layer is formed on the surface of the graphite for an anode material at an early stage during initial charging, thereby having more excellent stability of a lithium ion battery.
본 발명에 의하면, 흑연에 전자선을 조사하여 활성부위를 증가시키고, 저농도의 불소 가스와 반응시켜 표면에 반공유성 탄소-불소 관능기를 도입해 불소 원소가 흑연 표면에 도입된 함량이 9 내지 13%일 있고, 탄소-불소 관능기 중 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 비율이 85% 이상일 수 있으며, 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 함량이 8 내지 13%인 리튬이온 배터리 음극재용 흑연을 제공할 수 있다.According to the present invention, the active site is increased by irradiating the graphite with electron beams, reacting with a low concentration of fluorine gas to introduce a semi-covalent carbon-fluorine functional group to the surface, so that the amount of fluorine element introduced to the graphite surface is 9 to 13%. And, among the carbon-fluorine functional groups, the ratio of the semicovalent carbon-fluorine functional groups introduced to the graphite surface may be 85% or more, and the content of the semicovalent carbon-fluorine functional groups introduced to the graphite surface is 8 to 13%. Reuse graphite can be provided.
본 발명의 효과는 상술한 것에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to those described above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
이하 첨부된 도면들을 포함한 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. Hereinafter, the present invention will be described in more detail through specific examples or examples including the accompanying drawings. However, the following specific examples or examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. In addition, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. The terms used in the description in the present invention are merely for effectively describing specific embodiments and are not intended to limit the present invention.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. In addition, the singular form used in the specification and the appended claims may be intended to include the plural form unless otherwise indicated in the context.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. In addition, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
본 발명은 반공유성 탄소-불소 관능기가 도입되어 안정성이 향상된 리튬이온배터리 음극재용 흑연의 제조방법을 제공한다.The present invention provides a method of manufacturing graphite for a lithium ion battery negative electrode material with improved stability by introducing a semi-covalent carbon-fluorine functional group.
본 발명에 의한 리튬이온배터리 음극재용 흑연의 제조방법은, The method for producing graphite for a lithium ion battery negative electrode material according to the present invention,
흑연 입자에 전자선을 조사하여 표면 활성부위를 증가시키는 제1단계; A first step of increasing the surface active portion by irradiating the graphite particles with electron beams;
상기 표면 활성부위가 증가된 흑연에 저농도의 불소가스를 반응시켜 반공유성 탄소-불소 관능기를 주로 도입하는 제2단계;A second step of mainly introducing a semicovalent carbon-fluorine functional group by reacting a low-concentration fluorine gas with the graphite having an increased surface active site;
를 포함하는 음극재 흑연 입자의 제조방법을 제공한다.It provides a method for producing graphite particles of a negative electrode material comprising a.
본 발명에 따른 흑연분말은 불소 원소가 흑연 표면에 도입된 함량이 9 내지 13%일 수 있고, 탄소-불소 관능기 중 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 비율이 85% 이상일 수 있으며, 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 함량이 8 내지 13%인 리튬이온배터리 음극재용 흑연에 관한 것이다.In the graphite powder according to the present invention, the amount of fluorine element introduced into the graphite surface may be 9 to 13%, and the ratio of the semicovalent carbon-fluorine functional group among the carbon-fluorine functional groups introduced to the graphite surface may be 85% or more, It relates to graphite for a lithium ion battery negative electrode material in which the content of semi-covalent carbon-fluorine functional groups introduced into the graphite surface is 8 to 13%.
본 발명의 원료로 사용하는 리튬이온배터리 음극재용으로 사용되는 흑연입자는 이차 전지용으로 사용할 수 있는 흑연이라면 특별히 제한하는 것은 아니며, 예를 들면, 비제한적으로, 천연흑연, 인조흑연, 구상흑연, 판상흑연 및 이들의 혼합물 등으로 이루어진 군으로부터 선택될 수 있다. 다만, 상대적으로 관능기의 도입이 용이하고, 안정성이 우수한 구상의 인조흑연을 사용하는 것이 바람직하나 반드시 이에 한정되는 것은 아니다.The graphite particles used for the anode material of the lithium ion battery used as the raw material of the present invention are not particularly limited as long as it is graphite that can be used for secondary batteries, and examples include, but are not limited to, natural graphite, artificial graphite, spheroidal graphite, plate shape. It may be selected from the group consisting of graphite and mixtures thereof. However, it is preferable to use spherical artificial graphite with relatively easy introduction of functional groups and excellent stability, but is not limited thereto.
다음은 상기 원료인 음극활물질로서 흑연입자이 표면 개질 방법에 대하여 설명한다.Next, a method for modifying the surface of graphite particles as the negative electrode active material as the raw material will be described.
먼저, 본 발명의 제1단계인 전자선 조사단계에 대하여 설명하면, 통상의 흑연 입제에 전자선을 조사함으로써, 표면활성부위를 증가시키는 단계이다. 상기 전자서 조사에 의해서 할성화 부위를 증가시키는 것은 명화하지 않지만 이러한 조사단계에 의해 후단에서 도입하는 불소의 동입이 원활하고, 반공유성 탄소-불소 관능기의 도입량이 증가한다. 즉, 본 단계는 이후의 단계에서 흑연 표면에 반공유성 탄소-불소 관능기를 보다 효과적으로 도입하기 위하여 표면활성부위를 증가시키기 위하여 시행된다.First, the electron beam irradiation step, which is the first step of the present invention, is a step of increasing the surface active site by irradiating an electron beam to a conventional graphite granule. Increasing the activation site by irradiation with the former is not obvious, but by this irradiation step, the incorporation of fluorine introduced at the later stage is smooth, and the amount of the semicovalent carbon-fluorine functional group is increased. That is, this step is performed to increase the surface active site in order to more effectively introduce the semicovalent carbon-fluorine functional group to the graphite surface in a later step.
본 발명의 전자선 조사는 상온 및 공기분위기하에서 이루어질 수 있으며, 상기 전자선 조사는 전자선 가속기를 이용하여 1회 또는 2회 이상의 전자선을 조사하여 활성화 부위를 증가시킨다. 상기 전자선량은 특별히 본 발명의 목적을 달성하는 한에서는 특별히 한정하지 않지만, 예를 들면, 전자선가속기를 이용하여 1회 조사 시 10 내지 100 kGy로 조사할 수 있고, 예를 들면, 총 전자선 흡수량이 30 내지 800 kGy가 되도록 할 수 있다, 좋게는 50 내지 500kGy를 선호하지만 이에 한정하는 것은 아니다. 상기의 범주에서 표면에 라디칼을 발생하는 활성부위를 충분히 확보할 수있고, 이후의 단계인 불소개스와의 반응에서 반공유성 탄소-불소 관능기의 충분한 도입량을 확보할 수 있어서 선호도지만 이에 한정하는 것은 아니다. The electron beam irradiation of the present invention may be carried out at room temperature and in an air atmosphere, and the electron beam irradiation increases an activation site by irradiating an electron beam once or two or more times using an electron beam accelerator. The electron dose is not particularly limited as long as it achieves the object of the present invention, but for example, it may be irradiated at 10 to 100 kGy per irradiation using an electron beam accelerator, and for example, the total electron beam absorption amount is 30 To 800 kGy, preferably 50 to 500 kGy, but is not limited thereto. In the above range, the active site generating radicals on the surface can be sufficiently secured, and a sufficient amount of introduction of the semicovalent carbon-fluorine functional group can be secured in the reaction with fluorine gas, which is a subsequent step, so it is preferred, but is not limited thereto. .
상기와 같은 제1단계를 거쳐 표면 활성부위가 증가된 흑연은 제2단계에서 저농도의 불소가스와 반응하여 그 표면에 불소 관능기가 도입되며, 특히 반공유성 탄소-불소 관능기가 주로 도입된다.Graphite having an increased surface active site through the first step as described above reacts with a low concentration of fluorine gas in the second step to introduce a fluorine functional group to the surface thereof, and in particular, a semi-covalent carbon-fluorine functional group is mainly introduced.
상기 불소 가스를 도입하는 반응하는 단계에 사용하는 불소화 원료로는 불소가를 선호하지만, 또 다르게는 불소가 포함된 다양한 재료로부터 도입이 가능하며, 일례로 삼불화붕소 또는 삼불화질소 등의 불소화합물 및 이들의 혼합물 또는 이들과 불소가스의 혼합물 등이 모두 사용될 수 있다. As the fluorinated raw material used in the reaction step of introducing the fluorine gas, fluorine value is preferred, but alternatively, it can be introduced from various materials containing fluorine, for example, fluorine compounds such as boron trifluoride or nitrogen trifluoride. And a mixture thereof or a mixture of these and fluorine gas, and the like may be used.
본 발명의 불소가스 반응단계는 비활성가스 분위기에서 수행할 수도 있고, 산소를 포함하는 에어분위기에서도 실시할 수있지만, 부반응을 억제하는 한에서는 비할성분위기에서 반응을 하는 것이 더욱 선호된다. 즉, 상기 제2단계의 불소 관능기를 도입하는 과정은 원치 않는 부반응을 최소화 하기 위하여 비활성가스를 주입하고 배기하는 과정을 수회 반복한 이후에 이루어지는 것을 더욱 선호한다.The fluorine gas reaction step of the present invention may be performed in an inert gas atmosphere or in an air atmosphere containing oxygen, but as far as side reactions are suppressed, it is more preferable to perform the reaction in a non-percent atmosphere. That is, the process of introducing the fluorine functional group in the second step is more preferably performed after repeating the process of injecting and evacuating an inert gas several times in order to minimize unwanted side reactions.
상기 제2단계의 반공유성 탄소-불소 관능기를 도입하는 과정은 상온 및 상압에서 이루어지는 것이 보다 선호되지만, 상기 반응은 상온 이상의 온도 및 상압 이상의 압력에서 모두 이루어질 수 있으므로 이를 한정하지 않는다.The process of introducing the semicovalent carbon-fluorine functional group in the second step is more preferably carried out at room temperature and pressure, but the reaction is not limited because it can be carried out at both a temperature above room temperature and a pressure above atmospheric pressure.
보다 좋게는, 상기 제2단계의 반공유성 탄소-불소 관능기를 도입하는 과정은 불소가스와 비활성가스의 혼합가스를 이용하여 수행하는 것이 좋으며, 불소가스ㄹ르 도입하는 한에서는 불소 개스의 도입량을 한정할 필요는 없지만, 예를 들면, 불수가스의 부분압이 0.05 내지 0.25 bar인 저농도 불소가스 조건에서 수행되는 것이 재현성있으면서도 반공유성 탄소-불소 관능기의 선택성을 더욱 증가시킬 수 있으므로 더욱 바람직하다. 즉 상기 제2단계에서 사용된 혼합가스 내 불소가스 부분압이 저농도일 때, 반공유성 탄소-불소 관능기의 도입량이 더욱 증가하고, 또한 반응성이 큰 불소가스의 함량을 저농도로 조절하여 순간적으로 반응이 일어나서 흑연 표면에 공유성 탄소-불소 관능기의 함량이 증가하는 것을 막아주므로 선호되지만, 반드시 저 농도만을 본 발명으로 한정하는 것은 아니다.More preferably, the process of introducing the semi-covalent carbon-fluorine functional group in the second step is preferably performed using a mixed gas of fluorine gas and inert gas, and the amount of fluorine gas introduced is limited as long as fluorine gas is introduced. Although it is not necessary, for example, it is more preferable to carry out under low concentration fluorine gas conditions in which the partial pressure of the insoluble gas is 0.05 to 0.25 bar, since it is reproducible and can further increase the selectivity of the semicovalent carbon-fluorine functional group. That is, when the partial pressure of the fluorine gas in the mixed gas used in the second step is at a low concentration, the introduction amount of the semi-covalent carbon-fluorine functional group is further increased, and the reaction occurs instantaneously by adjusting the content of the highly reactive fluorine gas to a low concentration. It is preferred because it prevents the content of the covalent carbon-fluorine functional group from increasing on the surface of the graphite, but is not necessarily limited to the low concentration of the present invention.
이하 실시예 및 비교예를 바탕으로 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. However, the following Examples and Comparative Examples are only one example for describing the present invention in more detail, and the present invention is not limited by the following Examples and Comparative Examples.
[실시예 1][Example 1]
반공유성 탄소-불소 관능기가 도입된 리튬이온 배터리 음극재용 흑연의 제조Preparation of graphite for negative electrode material of lithium-ion battery with semi-covalent carbon-fluorine functional group introduced
흑연 분말(평균입경 20 ㎛)을 유리샬레에 넣은 후, 전자선 가속기를 이용하여 회당 50 kGy의 전자선을 네 번 조사하여 총 전자선 흡수량이 200 kGy가 되도록 수행하여 흑연의 표면 활성부위를 증가시켰다.After placing graphite powder (average particle diameter of 20 µm) in a glass dish, an electron beam of 50 kGy was irradiated four times using an electron beam accelerator so that the total electron beam absorption amount was 200 kGy, thereby increasing the surface active area of graphite.
이후, 반응기에 상기 표면 활성부위가 증가된 흑연을 투입하고 반응기 내부를 진공이 되도록 한 다음, 불소가스의 부분압이 0.2 bar인 아르곤가스의 혼합 가스를 반응기 내부가 상압이 되도록 투입하여 10분 동안 흑연과 반응시켜 흑연에 반공유성 탄소-불소 관능기를 도입하였다. Thereafter, the graphite with the increased surface active area was added to the reactor, and the inside of the reactor was vacuumed, and then a mixed gas of argon gas with a partial pressure of 0.2 bar of fluorine gas was added so that the inside of the reactor became atmospheric pressure, and graphite for 10 minutes Reacted with the graphite to introduce a semicovalent carbon-fluorine functional group to the graphite.
관능기 분석Functional group analysis
상기 제조된 표면개질한 흑연의 관능기를 분석하기 우하여, 즉, 반공유성 탄소-불소 관능기의 함량을 분석하기 위하여 XPS(X-ray Photoelectron Spectroscopy, Thermo Fisher Scientific Co., VG Multilab 2000) 분석을 수행하였으며, 탄소(C) 1s 영역, 산소(O) 1s 영역, 불소(F) 1s 영역의 적분 값의 비율로부터 흑연 표면의 탄소, 산소, 불소 원소비율을 하기의 표 1 및 표 2 나타내었다.To analyze the functional groups of the prepared surface-modified graphite, that is, to analyze the content of the semicovalent carbon-fluorine functional group, XPS (X-ray Photoelectron Spectroscopy, Thermo Fisher Scientific Co., VG Multilab 2000) analysis was performed. In addition, the ratios of carbon, oxygen, and fluorine elements on the graphite surface are shown in Tables 1 and 2 below from the ratio of the integral values of the 1s area of carbon (C), 1s area of oxygen (O), and 1s area of fluorine (F).
코인형 리튬이온배터리 제조Coin-type lithium-ion battery manufacturing
상기 제조된 리튬이온배터리 음극재용 흑연은 바인더(폴리비닐리덴플루오라이드)와 9:1의 중량비로 혼합한 후 N-메틸피롤리돈에 분산시켜 리튬이온배터리 음극재용 슬러리로 제조하였다. 상기 제조된 슬러리를 구리 호일 집전체에 코팅한 후, 건조 및 압연하여 전극밀도가 1.60±0.05g/cm3이 되도록 제조하였다. 상기 음극을 작동전극으로, 리튬 금속을 상대전극으로 사용하며, 작동전극과 상대전극 사이에 다공질 폴리프로필렌 필름으로 이루어진 분리막을 삽입한 다음 디에틸카보네이트(DEC)와 에틸렌카보네이트(EC)의 혼합 부피비가 1:1인 혼합 용액에 1M 농도의 LiPF6가 용해된 전해액을 첨가하여 2032 코인타입의 리튬이온 배터리를 제조하였다.The prepared graphite for a lithium ion battery negative electrode material was mixed with a binder (polyvinylidene fluoride) in a weight ratio of 9:1 and then dispersed in N-methylpyrrolidone to prepare a slurry for a lithium ion battery negative electrode material. The prepared slurry was coated on a copper foil current collector, dried and rolled to obtain an electrode density of 1.60±0.05 g/cm 3 . The negative electrode is used as a working electrode and lithium metal is used as a counter electrode, and a separator made of a porous polypropylene film is inserted between the working electrode and the counter electrode, and the mixing volume ratio of diethyl carbonate (DEC) and ethylene carbonate (EC) is A 2032 coin-type lithium ion battery was prepared by adding an electrolyte solution in which 1M concentration of LiPF 6 was dissolved in a 1:1 mixed solution.
코인형 리튬이온배터리 전기화학 특성 평가Coin-type lithium-ion battery electrochemical characteristics evaluation
상기 제작된 코인형 리튬이온배터리는 컷오프 전압을 0.005에서 2.5 V로 고정하였으며 0.2의 율속으로 충전 및 방전을 100회 까지 수행하였고, 제작된 코인형 리튬이온배터리의 1회 및 100회 방전용량과 이 때의 유지율을 표 3에 기재하였다.The manufactured coin-type lithium-ion battery fixed the cut-off voltage from 0.005 to 2.5 V, and performed charging and discharging up to 100 times at a rate of 0.2. The retention rate at the time is shown in Table 3.
[실시예 2][Example 2]
실시예 1에서 불소가스의 부분압이 0.04 bar 인 것을 제외하고는 동일하게 실시하였다. 그 결과를 표 1 내지 3에 기재하였다.In Example 1, except that the partial pressure of the fluorine gas was 0.04 bar, it was carried out in the same manner. The results are shown in Tables 1 to 3.
[실시예 3][Example 3]
실시예 1에서 불소가스의 부분압이 0.3 bar 인 것을 제외하고는 동일하게 실시하였다. 그 결과를 표 1 내지 3에 기재하였다.In Example 1, except that the partial pressure of the fluorine gas was 0.3 bar, it was carried out in the same manner. The results are shown in Tables 1 to 3.
[비교예 1][Comparative Example 1]
실시예 1에서 전자선 조사를 수행하는 과정을 제외하고, 불소가스의 부분압을 0. 2bar로 하여 탄소-불소 관능기를 도입한 것을 제외하고는 실시예1과 동일하게 실시하였다. 그 결과를 표 1 내지 3에 기재하였다.Except for the process of performing electron beam irradiation in Example 1, the procedure of Example 1 was carried out in the same manner as in Example 1, except that a carbon-fluorine functional group was introduced at a partial pressure of 0.2 bar of fluorine gas. The results are shown in Tables 1 to 3.
[비교예 2][Comparative Example 2]
비교예1에서 불소가스의 부분압이 0.04 bar인 것을 제외하는 비교예 1과 동일하게 실시하였다. 그 결과를 표 1 내지 3에 기재하였다.In Comparative Example 1, it was carried out in the same manner as in Comparative Example 1, except that the partial pressure of the fluorine gas was 0.04 bar. The results are shown in Tables 1 to 3.
[비교예 3][Comparative Example 3]
비교예1에서 불소가스의 부분압이 0.3 bar인 것을 제외하는 비교예 1과 동일하게 실시하였다. 그 결과를 표 1 내지 3에 기재하였다.Comparative Example 1 was carried out in the same manner as in Comparative Example 1 except that the partial pressure of the fluorine gas was 0.3 bar. The results are shown in Tables 1 to 3.
[비교예 4][Comparative Example 4]
상기 1단계 및 2단계 공정을 거치지 않은 실시예1의 흑연 자체를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다. 그 결과를 표 1 내지 3에 수록하였다.It was carried out in the same manner as in Example 1, except that the graphite of Example 1 itself was used, which did not go through the first and second steps. The results are listed in Tables 1 to 3.
division
상기 표 1 및 표 2 의 결과로부터 알 수 있듯이 1단계 전자선 조사 후 불소개스와 반응시킨 실시예들은 동일 조건에서 전자선 조사단계가 없는 비교예 1 내지 3에 비하여 탄소-불소 관능기의 도입이 증가하였으며, 또한 반공유성 탄소-불소 관능기의 선택도가 현저히 높은 것을 알 수 있다. As can be seen from the results of Table 1 and Table 2 above, the examples in which the reaction with fluorine gas was reacted after the first stage electron beam irradiation increased the introduction of carbon-fluorine functional groups compared to Comparative Examples 1 to 3 without the electron beam irradiation step under the same conditions, In addition, it can be seen that the selectivity of the semicovalent carbon-fluorine functional group is remarkably high.
즉, 흑연 표면에 도입된 탄소-불소 관능기의 자세한 결합 종류를 알아보기 위하여 불소원자의 S 오비탈을 분리해석(deconvolution)하여 탄소-불소 관능기의 종류에 따른 존재 비율을 계산한 결과, 반공유성 탄소-불소 관능기의 형성 선택도 및 도입비율에서 본 발명의 실시예들이 현저히 향상된 것임을 알 수 있다.That is, in order to find out the detailed bonding type of the carbon-fluorine functional group introduced on the graphite surface, the S orbital of the fluorine atom was separated and analyzed (deconvolution) to calculate the abundance ratio according to the type of carbon-fluorine functional group. It can be seen that the examples of the present invention are remarkably improved in the formation selectivity and introduction ratio of the fluorine functional group.
또한 하기 표 3에서 살피 바와 같이, 순수한 흑연으로부터 제조된 리튬이온배터리의 100회 사이클 후 용량 유지율은 비교예 4에서 보듯이 88.1%였으며, 본 발명의 실시예의 경우에는 전자선 조사를 한 실시예 1의 경우 98.1%의 용량유지율을 나타냈으며, 동일 조건에서 전자선 조사하지 않고 불소개스와 반응시킨 비교예 1의 경우인 94.6%에 비하여 현저히 상승하는 용량유지율을 가졌으며, 하기 표 3의 실시예 2 및 비교예 2 또는 실시예 3 및 비교예 3에서도 동일한 경향의 현저한 전기적 특성의 향상을 나타내었다. In addition, as shown in Table 3 below, the capacity retention rate after 100 cycles of the lithium ion battery made from pure graphite was 88.1% as shown in Comparative Example 4, and in the case of the example of the present invention, the electron beam irradiation of Example 1 The case showed a capacity retention rate of 98.1%, and had a capacity retention rate that was significantly increased compared to 94.6%, which was the case of Comparative Example 1 reacted with fluorine gas without electron beam irradiation under the same conditions, and compared to Example 2 in Table 3 below. In Example 2 or Example 3 and Comparative Example 3, the same tendency showed remarkable improvement in electrical properties.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, in the present invention, it has been described by specific matters and limited embodiments and drawings, but this is only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention is Those of ordinary skill in the relevant field can make various modifications and variations from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the described embodiments and should not be defined, and all things that are equivalent or equivalent to the claims as well as the claims to be described later fall within the scope of the spirit of the present invention. .
Claims (11)
상기 활성화 흑연입자를 불소가스와 반응시켜 흑연입자에 반공유성 탄소-불소 관응기를 도입하는 단계,
를 포함하는 음극재의 제조방법.Producing surface-activated graphite particles by irradiating the graphite particles with electron beams,
Reacting the activated graphite particles with fluorine gas to introduce a semicovalent carbon-fluorine tube condenser to the graphite particles,
Method for producing a negative electrode material comprising a.
상기 관능기 도입단계는 비활성분위기에서 불소가스와 반응시켜 제조하는 것인 음극재의 제조방법.The method of claim 1,
The step of introducing the functional group is a method for producing a negative electrode material by reacting with fluorine gas in an inert atmosphere.
상기 전자선 조사는 1회 또는 2회 이상 반복하여 조사하는 것인 음극재의 제조방법.The method of claim 1,
The electron beam irradiation is a method of manufacturing a negative electrode material that is irradiated once or twice or more.
상기 전자선은 1회 조사 시 10 내지 100 kGy로 조사할 수 있고, 총 전자선 흡수량이 30 내지 800 kGy인 음극재의 제조방법.The method of claim 3,
The electron beam may be irradiated at a rate of 10 to 100 kGy per irradiation, and a method of manufacturing a negative electrode material having a total electron beam absorption of 30 to 800 kGy.
상기 관능기 도입단계는 저농도 불소가스 비활성 분위기에서 수행하는 것인 음극재의 제조방법.The method of claim 1,
The step of introducing the functional group is a method for producing a negative electrode material to be performed in an inert atmosphere of low concentration fluorine gas.
상기 저농도 불소가스는 부분압이 0.05 내지 0.25 bar인 음극재의 제조방법.The method of claim 5,
The low-concentration fluorine gas is a method for producing a negative electrode material having a partial pressure of 0.05 to 0.25 bar.
(2) 탄소-불소 관능기 중 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 비율이 40% 이상이고,
(3) 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 함량이 6 내지 13%인 반공유성 탄소-불소 관능기를 가지는 이차전지용 음극재.(1) the amount of fluorine element introduced into the graphite surface is 8 to 13%,
(2) the proportion of the semicovalent carbon-fluorine functional groups introduced into the graphite surface among the carbon-fluorine functional groups is 40% or more,
(3) A negative electrode material for secondary batteries having a semi-covalent carbon-fluorine functional group having a semicovalent carbon-fluorine functional group having a content of 6 to 13% introduced into the graphite surface.
상기 반공유성 및 공유성 탄소-불소 관능기 전체에 대하여 반공유성 탄소-불소 관능기가 흑연 표면에 도입된 비율이 80% 이상인 이차전지용 음극재.The method of claim 7,
A negative electrode material for a secondary battery in which a ratio of the semicovalent and covalent carbon-fluorine functional groups to the whole of the semicovalent and covalent carbon-fluorine functional groups is 80% or more introduced to the graphite surface.
상기 음극재는 컷오프 전압을 0.005에서 2.5 V로 고정하고, 0.2 C의 율속으로 충전 및 방전을 100회 까지 수행한 코인형 리튬이온배터리의 용량 유지율이 90%이상인 이차전지 음극재.The method according to any one selected from claim 7 or 8,
The negative electrode material is a secondary battery negative electrode material having a capacity retention rate of 90% or more of a coin-type lithium-ion battery in which a cut-off voltage is fixed from 0.005 to 2.5 V and charging and discharging at a rate of 0.2 C is performed up to 100 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190126706A KR102283543B1 (en) | 2019-10-14 | 2019-10-14 | Manufacturing method of graphite for Lithium ion battery anode with improved stability by introduction of semi-covalent C-F functional group |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190126706A KR102283543B1 (en) | 2019-10-14 | 2019-10-14 | Manufacturing method of graphite for Lithium ion battery anode with improved stability by introduction of semi-covalent C-F functional group |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210043860A true KR20210043860A (en) | 2021-04-22 |
KR102283543B1 KR102283543B1 (en) | 2021-07-29 |
Family
ID=75731112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190126706A KR102283543B1 (en) | 2019-10-14 | 2019-10-14 | Manufacturing method of graphite for Lithium ion battery anode with improved stability by introduction of semi-covalent C-F functional group |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102283543B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116253320A (en) * | 2023-03-10 | 2023-06-13 | 内蒙古欣源石墨烯科技股份有限公司 | Long-life lithium ion battery anode material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170088173A (en) * | 2016-01-22 | 2017-08-01 | 서울대학교산학협력단 | Fabrication method of graphite anodes treated with C4F8 vacuum plasma for surface-selective introduction of carbon-fluorine functional groups and their lithium ion battery application |
KR101976252B1 (en) | 2017-02-06 | 2019-08-28 | 충남대학교산학협력단 | Manufacturing method of graphites for lithium-ion battery anode materials and Manufacturing Method lithium-ion battery electrode using graphites manufactured by the method |
-
2019
- 2019-10-14 KR KR1020190126706A patent/KR102283543B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170088173A (en) * | 2016-01-22 | 2017-08-01 | 서울대학교산학협력단 | Fabrication method of graphite anodes treated with C4F8 vacuum plasma for surface-selective introduction of carbon-fluorine functional groups and their lithium ion battery application |
KR101976252B1 (en) | 2017-02-06 | 2019-08-28 | 충남대학교산학협력단 | Manufacturing method of graphites for lithium-ion battery anode materials and Manufacturing Method lithium-ion battery electrode using graphites manufactured by the method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116253320A (en) * | 2023-03-10 | 2023-06-13 | 内蒙古欣源石墨烯科技股份有限公司 | Long-life lithium ion battery anode material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102283543B1 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5916516A (en) | Fluoridated electrode materials and associated process for fabrication | |
KR101502538B1 (en) | Positive electrode for lithium sulfur secondary battery, and method for forming same | |
US7563542B2 (en) | Subfluorinated graphite fluorides as electrode materials | |
EP3670447B1 (en) | Porous carbon, and positive electrode and lithium secondary battery comprising same | |
JP2018028998A (en) | Method for manufacturing carbonaceous material | |
KR102198785B1 (en) | Anode Material for Lithium Secondary Battery Comprising Tin-Fullerene Complex and Preparation Method Thereof | |
WO2018034155A1 (en) | Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material | |
KR102283543B1 (en) | Manufacturing method of graphite for Lithium ion battery anode with improved stability by introduction of semi-covalent C-F functional group | |
EP4394989A1 (en) | Low temperature-type lithium-ion battery electrolyte solution and preparation method therefor, and lithium-ion battery | |
CN116885121A (en) | Nickel-crosslinked sodium alginate-induced vanadium sodium phosphate composite positive electrode material, and preparation method and application thereof | |
CN114956031B (en) | Preparation method of ferrophosphorus ore type sodium iron phosphate composite material | |
KR102398381B1 (en) | Electrolyte for lithium ion battery containing silyl ether and lithium ion battery including the same | |
Diao et al. | “Three in one” 3D mixed skeleton design enables dendrite-free Li metal batteries | |
CN113363668A (en) | Graphene-loaded glass fiber membrane with excimer ultraviolet irradiation modification and preparation method thereof | |
CN112794312A (en) | Nitrogen-doped graphene material, composite cathode material, and preparation methods and applications of nitrogen-doped graphene material and composite cathode material | |
CN106450321A (en) | Cathode active material for lithium secondary battery and prepattion method thereof | |
CN116253308B (en) | Bowl-shaped carbon network anode material and preparation method thereof | |
KR20200047960A (en) | Cathode active material with coating layer formed and manufacturing method thereof | |
KR102002404B1 (en) | Electrode and method for manufacturing of the same | |
CN112341546B (en) | Preparation method of fluorinated biomass membrane material | |
CN116885158B (en) | Carbon-silicon composite anode active material and preparation method and application thereof | |
CN117699772B (en) | Preparation method and application of silane deposited porous carbon anode material | |
CN115986068B (en) | Low-polarization silicon-oxygen anode material and preparation method and application thereof | |
CN109659549B (en) | Preparation method of multi-stage structure silicon-porous carbon composite negative electrode material for lithium battery | |
KR20220126992A (en) | Separator For Lithium-sulfur Battery, Lithium-sulfur Battery Comprising The Same, And Manufacturing Methods Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |