KR20210042551A - 자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치 - Google Patents

자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR20210042551A
KR20210042551A KR1020190125245A KR20190125245A KR20210042551A KR 20210042551 A KR20210042551 A KR 20210042551A KR 1020190125245 A KR1020190125245 A KR 1020190125245A KR 20190125245 A KR20190125245 A KR 20190125245A KR 20210042551 A KR20210042551 A KR 20210042551A
Authority
KR
South Korea
Prior art keywords
vehicle
coordinate value
sensor
indoor environment
ultrasonic sensor
Prior art date
Application number
KR1020190125245A
Other languages
English (en)
Inventor
김현규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020190125245A priority Critical patent/KR20210042551A/ko
Publication of KR20210042551A publication Critical patent/KR20210042551A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • B60R21/01536Passenger detection systems using field detection presence sensors using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/42Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/302Temperature sensors

Abstract

본 명세서는 자율주행시스템에서 3D 초음파 센서를 이용하여 특징점의 제1 좌표값을 획득하는 단계; 차량의 실내환경을 모니터링하기 위한 카메라 센서의 초점거리를 획득하는 단계; 상기 초점거리에 근거하여, 상기 제1 좌표값을 제2 좌표값으로 변환하는 단계; 및 상기 카메라 센서의 내부 파라미터를 획득하고, 상기 카메라 센서의 내부 파라미터에 근거하여, 상기 제2 좌표값을 제3 좌표값으로 변환하는 단계; 를 포함하며, 상기 제1 좌표값은 3차원 좌표계에 위치하고, 상기 제2 좌표값 및 상기 제3 좌표값은 2차원 좌표계에 위치할 수 있다. 이를 통해, 차량은 3D 초음파 센서를 통해, 차량에 기설치된 실내환경 모니터링 시스템에 호환되는 3D Depth 이미지를 생성할 수 있다.
본 명세서의 자율 주행 차량, 사용자 단말기 및 서버 중 하나 이상이 인공지능(Artificial Intelligence) 모듈, 드론 (Unmmanned Aerial Vehicle, UAV) 로봇, 증강 현실 (Augmented Reality, AR) 장치, 가상 현실(Virtual reality, VR) 장치, 5G 서비스와 관련된 장치 등과 연계될 수 있다.

Description

자율주행시스템에서 3D 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치{METHOD AND APPARATUS FOR MONITORING INDOOR ENVIRONMENT OF VEHICLE THROUGH 3D ULTRASONIC SENSOR IN AUTONOMOUS DRIVING SYSTEM}
본 명세서는 자율주행시스템에 관한 것으로서 차량이 3D 초음파 센서를 이용하여 실내환경을 모니터링하기 위한 방법 및 이를 위한 장치이다.
자동차는 사용되는 원동기의 종류에 따라, 내연기관(internal combustion engine) 자동차, 외연기관(external combustion engine) 자동차, 가스터빈(gas turbine) 자동차 또는 전기자동차(electric vehicle) 등으로 분류될 수 있다.
자율주행자동차(Autonomous Vehicle)란 운전자 또는 승객의 조작 없이 자동차 스스로 운행이 가능한 자동차를 말하며, 자율주행시스템(Automated Vehicle & Highway Systems)은 이러한 자율주행자동차가 스스로 운행될 수 있도록 모니터링하고 제어하는 시스템을 말한다.
초음파 센서란, 높은 주파수의 사운드 펄스를 통하여, 일정한 간격으로 짧게 소리를 발사하고, 만약 소리가 객체와 충돌한다면, 반사되어 돌아오는 에코 신호를 이용하여, 객체까지의 거리를 산정한다. 3D 초음파 센서는 객체의 3차원 좌표값을 획득할 수 있다.
본 명세서의 목적은, 자율주행시스템에서 차량이 3D 초음파 센서를 통해 렌즈왜곡 보정없이 실내환경을 모니터링하는 방법 및 이를 위한 장치를 제안한다.
또한, 본 명세서의 목적은, 차량이 3D 초음파 센서를 통해 차량에 기설치된 실내 모니터링을 위한 장치에 호환될 수 있는 3D Depth 이미지를 생성하는 방법을 제안한다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 명세서에 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서의 일 양상은, 3D 초음파 센서를 이용하여 특징점의 제1 좌표값을 획득하는 단계; 차량의 실내환경을 모니터링하기 위한 카메라 센서의 초점거리를 획득하는 단계; 상기 초점거리에 근거하여, 상기 제1 좌표값을 제2 좌표값으로 변환하는 단계; 및 상기 카메라 센서의 내부 파라미터를 획득하고, 상기 카메라 센서의 내부 파라미터에 근거하여, 상기 제2 좌표값을 제3 좌표값으로 변환하는 단계; 를 포함하며, 상기 제1 좌표값은 3차원 좌표계에 위치하고, 상기 제2 좌표값 및 상기 제3 좌표값은 2차원 좌표계에 위치할 수 있다.
또한, 상기 제3 좌표값에 근거하여, 3D Depth를 생성하는 단계; 및 상기 3D Depth를 이용하여, 3D Depth 이미지를 생성하는 단계; 를 더 포함할 수 있다.
또한, 상기 3D Depth 이미지는 상기 차량에 기설치된 실내환경을 모니터링하기 위한 장치에 호환될 수 있다.
또한, 상기 3D Depth는 상기 차량에 기설치된 실내환경을 모니터링하기 위한 장치의 요구사항에 근거하여, 생성될 수 있다.
또한, 상기 제2 좌표값은 이미지 좌표계(Image Coordinate System) 또는 정규 이미지 좌표계(Normalized Image Coordinate System)와 연관될 수 있다.
또한, 상기 제3 좌표값은 픽셀 좌표계(Pixel Image Coordinate System)와 연관될 수 있다.
또한, 상기 3D 초음파 센서의 권장 온도범위를 획득하는 단계; 온도센서를 통해, 상기 차량의 실내온도 측정값을 획득하는 단계; 및 상기 차량의 실내온도 측정값이 상기 3D 초음파 센서의 권장 온도범위를 초과하는 경우, 상기 차량의 실내온도를 상기 3D 초음파 센서의 권장 온도범위로 조절하기 위한, 제어동작을 수행하는 단계; 를 더 포함할 수 있다.
또한, 상기 3D 초음파 센서가 복수개인 경우, 상기 3D 초음파 센서의 그룹을 순차적으로 활성화(Enable)하며, 동일한 방향을 센싱하는 단계; 를 더 포함할 수 있다.
또한, 상기 3D 초음파 센서가 복수개인 경우, 상기 3D 초음파 센서의 그룹을 사용자의 위치를 탐색하기 위해, 순차적으로 활성화(Enable)하고, 상기 사용자의 위치에 근거하여 상기 사용자를 센싱할 수 없는 3D 초음파 센서를 비활성화(Disable)로 설정하는 단계; 를 더 포함할 수 있다.
또한, 도어의 열림동작 이후, 닫힘동작이 수행되었는지 여부를 인식하는 단계; 를 더 포함하며, 상기 도어의 열림동작 이후, 닫힘동작이 수행되는 경우, 상기 3D 초음파 센서를 활성화(Enable)할 수 있다.
본 발명의 또 다른 일 양상은, 자율주행시스템에서 3D 초음파 센서를 통한 실내환경 모니터링 방법을 수행하는 차량에 있어서, 3D 초음파 센서; 카메라 센서; 온도센서; 메모리; 및 상기 3D 초음파 센서, 상기 카메라 센서, 상기 온도센서 및 상기 메모리를 제어하는 프로세서; 를 포함하고, 상기 프로세서는 상기 3D 초음파 센서를 이용하여 특징점의 제1 좌표값을 획득하고, 상기 차량의 실내환경을 모니터링하기 위한 상기 카메라 센서의 초점거리를 획득하며, 상기 초점거리에 근거하여, 상기 제1 좌표값을 제2 좌표값으로 변환하고, 상기 카메라 센서의 내부 파라미터를 획득하고, 상기 카메라 센서의 내부 파라미터에 근거하여, 상기 제2 좌표값을 제3 좌표값으로 변환하며, 상기 제1 좌표값은 3차원 좌표계에 위치하고, 상기 제2 좌표값 및 상기 제3 좌표값은 2차원 좌표계에 위치할 수 있다.
본 명세서의 일 실시예에 따르면, 자율주행시스템에서 차량이 3D 초음파 센서를 통해 렌즈왜곡 보정없이 실내환경을 모니터링하는 방법 및 이를 위한 장치를 제공할 수 있다.
또한, 본 명세서의 일 실시예에 따르면, 차량이 3D 초음파 센서를 통해 차량에 기설치된 실내 모니터링을 위한 장치에 호환될 수 있는 3D Depth 이미지를 생성하는 방법을 제공할 수 있다.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 명세서에 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸다.
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
도 4는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 나타낸다.
도 5는 본 명세서의 실시예에 따른 차량을 도시한 도면이다.
도 6은 본 명세서의 실시예에 따른 차량의 제어 블럭도이다.
도 7은 본 명세서의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 8은 본 명세서의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
도 9는 본 명세서의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 10은 본 명세서의 실시예에 따른 차량용 캐빈 시스템을 설명하는데 참조되는 블럭도이다.
도 11은 본 명세서의 실시예에 따라 사용자의 이용 시나리오를 설명하는데 참조되는 도면이다.
도 12는 본 명세서에 적용될 수 있는 좌표계의 예시이다.
도 13은 본 명세서에 적용될 수 있는 카메라 좌표계의 예시이다.
도 14는 본 명세서에 적용될 수 있는 초점거리를 설명하기 위한 도면이다.
도 15는 본 명세서에 적용될 수 있는 카메라 투영 모델의 예시이다.
도 16은 본 명세서에 적용될 수 있는 비대칭 계수의 예시이다.
도 17은 본 명세서에 적용될 수 있는 월드 좌표계의 특징점 좌표값이 픽셀 좌표계의 특징점 좌표값으로 투영되는 과정을 예시하는 순서도이다.
도 18 및 도 19는 본 명세서에 적용될 수 있는 3D 초음파 센서의 차량의 설치위치의 예시이다.
도 20은 본 명세서에 적용될 수 있는 차량의 복수개 3D 초음파 센서의 제어방법의 예시이다.
도 21은 본 명세서에 적용될 수 있는 3D 초음파 센서를 위한 차량의 실내온도 유지 방법의 예시이다.
도 22는 본 명세서에 적용될 수 있는 일 실시예이다.
본 명세서에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 명세서에 대한 실시예를 제공하고, 상세한 설명과 함께 본 명세서의 기술적 특징을 설명한다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 명세서의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
A. UE 및 5G 네트워크 블록도 예시
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 1을 참조하면, 자율 주행 모듈을 포함하는 장치(자율 주행 장치)를 제1 통신 장치로 정의(도 1의 910)하고, 프로세서(170)가 자율 주행 상세 동작을 수행할 수 있다.
자율 주행 장치와 통신하는 다른 차량을 포함하는 5G 네트워크를 제2 통신 장치로 정의(도 1의 920)하고, 프로세서(921)가 자율 주행 상세 동작을 수행할 수 있다.
5G 네트워크가 제 1 통신 장치로, 자율 주행 장치가 제 2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제 1 통신 장치 또는 상기 제 2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 자율 주행 장치 등일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 차량(vehicle), 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 도 1을 참고하면, 제 1 통신 장치(910)와 제 2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
B. 무선 통신 시스템에서 신호 송/수신 방법
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 2를 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 검출했다고 판단하고, 상기 검출된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 2를 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 2를 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
C. 5G 통신 시스템의 빔 관리(Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고을 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, ??}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
D. URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
E. mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 구동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제 1 주파수 자원에서 제 2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
F. 5G 통신을 이용한 자율 주행 차량 간 기본 동작
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
자율 주행 차량(Autonomous Vehicle)은 특정 정보 전송을 5G 네트워크로 전송한다(S1). 상기 특정 정보는 자율 주행 관련 정보를 포함할 수 있다. 그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정할 수 있다(S2). 여기서, 상기 5G 네트워크는 자율 주행 관련 원격 제어를 수행하는 서버 또는 모듈을 포함할 수 있다. 그리고, 상기 5G 네트워크는 원격 제어와 관련된 정보(또는 신호)를 상기 자율 주행 차량으로 전송할 수 있다(S3).
G. 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크 간의 응용 동작
이하, 도 1 및 도 2와 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 자율 주행 차량의 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 명세서에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 S1 단계 및 S3 단계와 같이, 자율 주행 차량이 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, 자율 주행 차량은 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, 자율 주행 차량이 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다.그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 자율 주행 차량은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 자율 주행 차량으로 원격 제어와 관련된 정보(또는 신호)를 전송할 수 있다.
다음으로, 후술할 본 명세서에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, 자율 주행 차량은 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, 자율 주행 차량은 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, 자율 주행 차량은 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, 자율 주행 차량은 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, 자율 주행 차량은 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 명세서에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 3의 S1 단계에서, 자율 주행 차량은 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
H. 5G 통신을 이용한 차량 대 차량 간의 자율 주행 동작
도 4는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 예시한다.
제1 차량은 특정 정보를 제2 차량으로 전송한다(S61). 제2 차량은 특정 정보에 대한 응답을 제1 차량으로 전송한다(S62).
한편, 5G 네트워크가 상기 특정 정보, 상기 특정 정보에 대한 응답의 자원 할당에 직접적(사이드 링크 통신 전송 모드 3) 또는 간접적으로(사이드링크 통신 전송 모드 4) 관여하는지에 따라 차량 대 차량 간 응용 동작의 구성이 달라질 수 있다.
다음으로, 5G 통신을 이용한 차량 대 차량 간의 응용 동작에 대해 살펴본다.
먼저, 5G 네트워크가 차량 대 차량 간의 신호 전송/수신의 자원 할당에 직접적으로 관여하는 방법을 설명한다.
5G 네트워크는, 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 제1 차량에 전송할 수 있다. 여기서, PSCCH(physical sidelink control channel)는 특정 정보 전송의 스케줄링을 위한 5G 물리 채널이고, PSSCH(physical sidelink shared channel)는 특정 정보를 전송하는 5G 물리 채널이다. 그리고, 제1 차량은 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다. 그리고, 제1 차량이 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다.
다음으로, 5G 네트워크가 신호 전송/수신의 자원 할당에 간접적으로 관여하는 방법에 대해 살펴본다.
제1 차량은 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱한다. 그리고, 제1 차량은, 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택한다. 여기서, 제1 윈도우는 센싱 윈도우(sensing window)를 의미하고, 제2 윈도우는 선택 윈도우(selection window)를 의미한다. 제1 차량은 상기 선택된 자원을 기초로 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다. 그리고, 제1 차량은 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다.
앞서 살핀 5G 통신 기술은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
주행
(1) 차량 외관
도 5는 본 명세서의 실시예에 따른 차량을 도시한 도면이다.
도 5를 참조하면, 본 명세서의 실시예에 따른 차량(10)은, 도로나 선로 위를 주행하는 수송 수단으로 정의된다. 차량(10)은, 자동차, 기차, 오토바이를 포함하는 개념이다. 차량(10)은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량등을 모두 포함하는 개념일 수 있다. 차량(10)은 개인이 소유한 차량일 수 있다. 차량(10)은, 공유형 차량일 수 있다. 차량(10)은 자율 주행 차량일 수 있다.
(2) 차량의 구성 요소
도 6은 본 명세서의 실시예에 따른 차량의 제어 블럭도이다.
도 6을 참조하면, 차량(10)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)를 포함할 수 있다. 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)는 각각이 전기적 신호를 생성하고, 상호간에 전기적 신호를 교환하는 전자 장치로 구현될 수 있다.
1) 사용자 인터페이스 장치
사용자 인터페이스 장치(200)는, 차량(10)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(10)에서 생성된 정보를 제공할 수 있다. 차량(10)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interface) 또는 UX(User Experience)를 구현할 수 있다. 사용자 인터페이스 장치(200)는, 입력 장치, 출력 장치 및 사용자 모니터링 장치를 포함할 수 있다.
2) 오브젝트 검출 장치
오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 오브젝트에 대한 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(10)과 오브젝트와의 거리 정보 및 차량(10)과 오브젝트와의 상대 속도 정보 중 적어도 어느 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있는 적어도 하나의 센서를 포함할 수 있다. 오브젝트 검출 장치(210)는, 카메라, 레이다, 라이다, 초음파 센서 및 적외선 센서 중 적어도 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 센서에서 생성되는 센싱 신호에 기초하여 생성된 오브젝트에 대한 데이터를 차량에 포함된 적어도 하나의 전자 장치에 제공할 수 있다.
2.1) 카메라
카메라는 영상을 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 카메라는 적어도 하나의 렌즈, 적어도 하나의 이미지 센서 및 이미지 센서와 전기적으로 연결되어 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
카메라는, 모노 카메라, 스테레오 카메라, AVM(Around View Monitoring) 카메라 중 적어도 어느 하나일 수 있다. 카메라는, 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 스테레오 카메라에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
카메라는, 차량 외부를 촬영하기 위해 차량에서 FOV(field of view) 확보가 가능한 위치에 장착될 수 있다. 카메라는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 카메라는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다. 카메라는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 카메라는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다. 카메라는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
2.2) 레이다
레이다는 전파를 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 레이다는, 전자파 송신부, 전자파 수신부 및 전자파 송신부 및 전자파 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 레이다는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keyong) 방식으로 구현될 수 있다. 레이다는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 레이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
2.3) 라이다
라이다는, 레이저 광을 이용하여, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 라이다는, 광 송신부, 광 수신부 및 광 송신부 및 광 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리된 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 라이다는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다. 라이다는, 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다는, 모터에 의해 회전되며, 차량(10) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다는, 광 스티어링에 의해, 차량을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(100)은 복수의 비구동식 라이다를 포함할 수 있다. 라이다는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 라이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
3) 통신 장치
통신 장치(220)는, 차량(10) 외부에 위치하는 디바이스와 신호를 교환할 수 있다. 통신 장치(220)는, 인프라(예를 들면, 서버, 방송국), 타 차량, 단말기 중 적어도 어느 하나와 신호를 교환할 수 있다. 통신 장치(220)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 명세서의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 명세서의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
4) 운전 조작 장치
운전 조작 장치(230)는, 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(10)은, 운전 조작 장치(230)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(230)는, 조향 입력 장치(예를 들면, 스티어링 휠), 가속 입력 장치(예를 들면, 가속 페달) 및 브레이크 입력 장치(예를 들면, 브레이크 페달)를 포함할 수 있다.
5) 메인 ECU
메인 ECU(240)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치의 전반적인 동작을 제어할 수 있다.
6) 구동 제어 장치
구동 제어 장치(250)는, 차량(10)내 각종 차량 구동 장치를 전기적으로 제어하는 장치이다. 구동 제어 장치(250)는, 파워 트레인 구동 제어 장치, 샤시 구동 제어 장치, 도어/윈도우 구동 제어 장치, 안전 장치 구동 제어 장치, 램프 구동 제어 장치 및 공조 구동 제어 장치를 포함할 수 있다. 파워 트레인 구동 제어 장치는, 동력원 구동 제어 장치 및 변속기 구동 제어 장치를 포함할 수 있다. 샤시 구동 제어 장치는, 조향 구동 제어 장치, 브레이크 구동 제어 장치 및 서스펜션 구동 제어 장치를 포함할 수 있다. 한편, 안전 장치 구동 제어 장치는, 안전 벨트 제어를 위한 안전 벨트 구동 제어 장치를 포함할 수 있다.
구동 제어 장치(250)는, 적어도 하나의 전자적 제어 장치(예를 들면, 제어 ECU(Electronic Control Unit))를 포함한다.
구종 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 차량 구동 장치를 제어할 수 있다. 예를 들면, 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 파워 트레인, 조향 장치 및 브레이크 장치를 제어할 수 있다.
7) 자율 주행 장치
자율 주행 장치(260)는, 획득된 데이터에 기초하여, 자율 주행을 위한 패스를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 경로를 따라 주행하기 위한 드라이빙 플랜을 생성 할 수 있다. 자율 주행 장치(260)는, 드라이빙 플랜에 따른 차량의 움직임을 제어하기 위한 신호를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 신호를 구동 제어 장치(250)에 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 ADAS(Advanced Driver Assistance System) 기능을 구현할 수 있다. ADAS는, 적응형 크루즈 컨트롤 시스템(ACC : Adaptive Cruise Control), 자동 비상 제동 시스템(AEB : Autonomous Emergency Braking), 전방 충돌 알림 시스템(FCW : Foward Collision Warning), 차선 유지 보조 시스템(LKA : Lane Keeping Assist), 차선 변경 보조 시스템(LCA : Lane Change Assist), 타겟 추종 보조 시스템(TFA : Target Following Assist), 사각 지대 감시 시스템(BSD : Blind Spot Detection), 적응형 하이빔 제어 시스템(HBA : High Beam Assist), 자동 주차 시스템(APS : Auto Parking System), 보행자 충돌 알림 시스템(PD collision warning system), 교통 신호 검출 시스템(TSR : Traffic Sign Recognition), 교통 신호 보조 시스템(TSA : Trafffic Sign Assist), 나이트 비전 시스템(NV : Night Vision), 운전자 상태 모니터링 시스템(DSM : Driver Status Monitoring) 및 교통 정체 지원 시스템(TJA : Traffic Jam Assist) 중 적어도 어느 하나를 구현할 수 있다.
자율 주행 장치(260)는, 자율 주행 모드에서 수동 주행 모드로의 전환 동작 또는 수동 주행 모드에서 자율 주행 모드로의 전환 동작을 수행할 수 있다. 예를 들면, 자율 주행 장치(260)는, 사용자 인터페이스 장치(200)로부터 수신되는 신호에 기초하여, 차량(10)의 모드를 자율 주행 모드에서 수동 주행 모드로 전환하거나 수동 주행 모드에서 자율 주행 모드로 전환할 수 있다.
8) 센싱부
센싱부(270)는, 차량의 상태를 센싱할 수 있다. 센싱부(270)는, IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 중 적어도 어느 하나를 포함할 수 있다. 한편, IMU(inertial measurement unit) 센서는, 가속도 센서, 자이로 센서, 자기 센서 중 하나 이상을 포함할 수 있다.
센싱부(270)는, 적어도 하나의 센서에서 생성되는 신호에 기초하여, 차량의 상태 데이터를 생성할 수 있다. 차량 상태 데이터는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다. 센싱부(270)는, 차량 자세 데이터, 차량 모션 데이터, 차량 요(yaw) 데이터, 차량 롤(roll) 데이터, 차량 피치(pitch) 데이터, 차량 충돌 데이터, 차량 방향 데이터, 차량 각도 데이터, 차량 속도 데이터, 차량 가속도 데이터, 차량 기울기 데이터, 차량 전진/후진 데이터, 차량의 중량 데이터, 배터리 데이터, 연료 데이터, 타이어 공기압 데이터, 차량 내부 온도 데이터, 차량 내부 습도 데이터, 스티어링 휠 회전 각도 데이터, 차량 외부 조도 데이터, 가속 페달에 가해지는 압력 데이터, 브레이크 페달에 가해지는 압력 데이터 등을 생성할 수 있다.
9) 위치 데이터 생성 장치
위치 데이터 생성 장치(280)는, 차량(10)의 위치 데이터를 생성할 수 있다. 위치 데이터 생성 장치(280)는, GPS(Global Positioning System) 및 DGPS(Differential Global Positioning System) 중 적어도 어느 하나를 포함할 수 있다. 위치 데이터 생성 장치(280)는, GPS 및 DGPS 중 적어도 어느 하나에서 생성되는 신호에 기초하여 차량(10)의 위치 데이터를 생성할 수 있다. 실시예에 따라, 위치 데이터 생성 장치(280)는, 센싱부(270)의 IMU(Inertial Measurement Unit) 및 오브젝트 검출 장치(210)의 카메라 중 적어도 어느 하나에 기초하여 위치 데이터를 보정할 수 있다. 위치 데이터 생성 장치(280)는, GNSS(Global Navigation Satellite System)로 명명될 수 있다.
차량(10)은, 내부 통신 시스템(50)을 포함할 수 있다. 차량(10)에 포함되는 복수의 전자 장치는 내부 통신 시스템(50)을 매개로 신호를 교환할 수 있다. 신호에는 데이터가 포함될 수 있다. 내부 통신 시스템(50)은, 적어도 하나의 통신 프로토콜(예를 들면, CAN, LIN, FlexRay, MOST, 이더넷)을 이용할 수 있다.
(3) 자율 주행 장치의 구성 요소
도 7은 본 명세서의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 7을 참조하면, 자율 주행 장치(260)는, 메모리(140), 프로세서(170), 인터페이스부(180) 및 전원 공급부(190)를 포함할 수 있다.
메모리(140)는, 프로세서(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)에서 처리된 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(140)는 프로세서(170)의 처리 또는 제어를 위한 프로그램 등, 자율 주행 장치(260) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)와 일체형으로 구현될 수 있다. 실시예에 따라, 메모리(140)는, 프로세서(170)의 하위 구성으로 분류될 수 있다.
인터페이스부(180)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(280)는, 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(280)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(190)는, 자율 주행 장치(260)에 전원을 공급할 수 있다. 전원 공급부(190)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 자율 주행 장치(260)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(190)는, 메인 ECU(240)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 전원 공급부(190)는, SMPS(switched-mode power supply)를 포함할 수 있다.
프로세서(170)는, 메모리(140), 인터페이스부(280), 전원 공급부(190)와 전기적으로 연결되어 신호를 교환할 수 있다. 프로세서(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
프로세서(170)는, 전원 공급부(190)로부터 제공되는 전원에 의해 구동될 수 있다. 프로세서(170)는, 전원 공급부(190)에 의해 전원이 공급되는 상태에서 데이터를 수신하고, 데이터를 처리하고, 신호를 생성하고, 신호를 제공할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로부터 정보를 수신할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로 제어 신호를 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메모리(140), 인터페이스부(180), 전원 공급부(190) 및 프로세서(170)는, 인쇄 회로 기판에 전기적으로 연결될 수 있다.
(4) 자율 주행 장치의 동작
도 8은 본 명세서의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
1) 수신 동작
도 8을 참조하면, 프로세서(170)는, 수신 동작을 수행할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 오브젝트 검출 장치(210), 통신 장치(220), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나로부터, 데이터를 수신할 수 있다. 프로세서(170)는, 오브젝트 검출 장치(210)로부터, 오브젝트 데이터를 수신할 수 있다. 프로세서(170)는, 통신 장치(220)로부터, HD 맵 데이터를 수신할 수 있다. 프로세서(170)는, 센싱부(270)로부터, 차량 상태 데이터를 수신할 수 있다. 프로세서(170)는, 위치 데이터 생성 장치(280)로부터 위치 데이터를 수신할 수 있다.
2) 처리/판단 동작
프로세서(170)는, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 주행 상황 정보에 기초하여, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 오브젝트 데이터, HD 맵 데이터, 차량 상태 데이터 및 위치 데이터 중 적어도 어느 하나에 기초하여, 처리/판단 동작을 수행할 수 있다.
2.1) 드라이빙 플랜 데이터 생성 동작
프로세서(170)는, 드라이빙 플랜 데이터(driving plan data)를 생성할 수 있다. 예를 들면, 프로세서(1700는, 일렉트로닉 호라이즌 데이터(Electronic Horizon Data)를 생성할 수 있다. 일렉트로닉 호라이즌 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌(horizon)까지 범위 내에서의 드라이빙 플랜 데이터로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 기준으로, 차량(10)이 위치한 지점에서 기설정된 거리 앞의 지점으로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 따라 차량(10)이 위치한 지점에서부터 차량(10)이 소정 시간 이후에 도달할 수 있는 지점을 의미할 수 있다.
일렉트로닉 호라이즌 데이터는, 호라이즌 맵 데이터 및 호라이즌 패스 데이터를 포함할 수 있다.
2.1.1) 호라이즌 맵 데이터
호라이즌 맵 데이터는, 토폴로지 데이터(topology data), 도로 데이터, HD 맵 데이터 및 다이나믹 데이터(dynamic data) 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 호라이즌 맵 데이터는, 복수의 레이어를 포함할 수 있다. 예를 들면, 호라이즌 맵 데이터는, 토폴로지 데이터에 매칭되는 1 레이어, 도로 데이터에 매칭되는 제2 레이어, HD 맵 데이터에 매칭되는 제3 레이어 및 다이나믹 데이터에 매칭되는 제4 레이어를 포함할 수 있다. 호라이즌 맵 데이터는, 스태이틱 오브젝트(static object) 데이터를 더 포함할 수 있다.
토폴로지 데이터는, 도로 중심을 연결해 만든 지도로 설명될 수 있다. 토폴로지 데이터는, 차량의 위치를 대략적으로 표시하기에 알맞으며, 주로 운전자를 위한 내비게이션에서 사용하는 데이터의 형태일 수 있다. 토폴로지 데이터는, 차로에 대한 정보가 제외된 도로 정보에 대한 데이터로 이해될 수 있다. 토폴로지 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초하여 생성될 수 있다. 토폴로지 데이터는, 차량(10)에 구비된 적어도 하나의 메모리에 저장된 데이터에 기초할 수 있다.
도로 데이터는, 도로의 경사 데이터, 도로의 곡률 데이터, 도로의 제한 속도 데이터 중 적어도 어느 하나를 포함할 수 있다. 도로 데이터는, 추월 금지 구간 데이터를 더 포함할 수 있다. 도로 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 도로 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
HD 맵 데이터는, 도로의 상세한 차선 단위의 토폴로지 정보, 각 차선의 연결 정보, 차량의 로컬라이제이션(localization)을 위한 특징 정보(예를 들면, 교통 표지판, Lane Marking/속성, Road furniture 등)를 포함할 수 있다. HD 맵 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다.
다이나믹 데이터는, 도로상에서 발생될 수 있는 다양한 동적 정보를 포함할 수 있다. 예를 들면, 다이나믹 데이터는, 공사 정보, 가변 속도 차로 정보, 노면 상태 정보, 트래픽 정보, 무빙 오브젝트 정보 등을 포함할 수 있다. 다이나믹 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 다이나믹 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
프로세서(170)는, 차량(10)이 위치한 지점에서부터 호라이즌까지 범위 내에서의 맵 데이터를 제공할 수 있다.
2.1.2) 호라이즌 패스 데이터
호라이즌 패스 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌까지의 범위 내에서 차량(10)이 취할 수 있는 궤도로 설명될 수 있다. 호라이즌 패스 데이터는, 디시전 포인트(decision point)(예를 들면, 갈림길, 분기점, 교차로 등)에서 어느 하나의 도로를 선택할 상대 확률을 나타내는 데이터를 포함할 수 있다. 상대 확률은, 최종 목적지까지 도착하는데 걸리는 시간에 기초하여 계산될 수 있다. 예를 들면, 디시전 포인트에서, 제1 도로를 선택하는 경우 제2 도로를 선택하는 경우보다 최종 목적지에 도착하는데 걸리는 시간이 더 작은 경우, 제1 도로를 선택할 확률은 제2 도로를 선택할 확률보다 더 높게 계산될 수 있다.
호라이즌 패스 데이터는, 메인 패스와 서브 패스를 포함할 수 있다. 메인 패스는, 선택될 상대적 확률이 높은 도로들을 연결한 궤도로 이해될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 분기될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 선택될 상대적 확률이 낮은 적어도 어느 하나의 도로를 연결한 궤도로 이해될 수 있다.
3) 제어 신호 생성 동작
프로세서(170)는, 제어 신호 생성 동작을 수행할 수 있다. 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 제어 신호를 생성할 수 있다. 예를 들면, 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 파워트레인 제어 신호, 브라이크 장치 제어 신호 및 스티어링 장치 제어 신호 중 적어도 어느 하나를 생성할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 생성된 제어 신호를 구동 제어 장치(250)에 전송할 수 있다. 구동 제어 장치(250)는, 파워 트레인(251), 브레이크 장치(252) 및 스티어링 장치(253) 중 적어도 어느 하나에 제어 신호를 전송할 수 있다.
캐빈
도 9는 본 명세서의 실시예에 따른 차량의 내부를 도시한 도면이다. 도 10은 본 명세서의 실시예에 따른 차량용 캐빈 시스템을 설명하는데 참조되는 블럭도이다.
(1) 캐빈의 구성 요소
도 9 내지 도 10을 참조하면, 차량용 캐빈 시스템(300)(이하, 캐빈 시스템)은 차량(10)을 이용하는 사용자를 위한 편의 시스템으로 정의될 수 있다. 캐빈 시스템(300)은, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이 먼트 시스템(365)을 포함하는 최상위 시스템으로 설명될 수 있다. 캐빈 시스템(300)은, 메인 컨트롤러(370), 메모리(340), 인터페이스부(380), 전원 공급부(390), 입력 장치(310), 영상 장치(320), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)을 포함할 수 있다. 실시예에 따라, 캐빈 시스템(300)은, 본 명세서에서 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
1) 메인 컨트롤러
메인 컨트롤러(370)는, 입력 장치(310), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)과 전기적으로 연결되어 신호를 교환할 수 있다. 메인 컨트롤러(370)는, 입력 장치(310), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)을 제어할 수 있다. 메인 컨트롤러(370)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
메인 컨트롤러(370)는, 적어도 하나의 서브 컨트롤러로 구성될 수 있다. 실시예에 따라, 메인 컨트롤러(370)는, 복수의 서브 컨트롤러를 포함할 수 있다. 복수의 서브 컨트롤러는 각각이, 그루핑된 캐빈 시스템(300)에 포함된 장치 및 시스템을 개별적으로 제어할 수 있다. 캐빈 시스템(300)에 포함된 장치 및 시스템은, 기능별로 그루핑되거나, 착좌 가능한 시트를 기준으로 그루핑될 수 있다.
메인 컨트롤러(370)는, 적어도 하나의 프로세서(371)를 포함할 수 있다. 도 6에는 메인 컨트롤러(370)가 하나의 프로세서(371)를 포함하는 것으로 예시되나, 메인 컨트롤러(371)는, 복수의 프로세서를 포함할 수도 있다. 프로세서(371)는, 상술한 서브 컨트롤러 중 어느 하나로 분류될 수도 있다.
프로세서(371)는, 통신 장치(330)를 통해, 사용자 단말기로부터 신호, 정보 또는 데이터를 수신할 수 있다. 사용자 단말기는, 캐빈 시스템(300)에 신호, 정보 또는 데이터를 전송할 수 있다.
프로세서(371)는, 영상 장치에 포함된 내부 카메라 및 외부 카메 중 적어도 어느 하나에서 수신되는 영상 데이터에 기초하여, 사용자를 특정할 수 있다. 프로세서(371)는, 영상 데이터에 영상 처리 알고리즘을 적용하여 사용자를 특정할 수 있다. 예를 들면, 프로세서(371)는, 사용자 단말기로부터 수신되는 정보와 영상 데이터를 비교하여 사용자를 특정할 수 있다. 예를 들면, 정보는, 사용자의 경로 정보, 신체 정보, 동승자 정보, 짐 정보, 위치 정보, 선호하는 컨텐츠 정보, 선호하는 음식 정보, 장애 여부 정보 및 이용 이력 정보 중 적어도 어느 하나를 포함할 수 있다.
메인 컨트롤러(370)는, 인공지능 에이전트(artificial intelligence agent)(372)를 포함할 수 있다. 인공지능 에이전트(372)는, 입력 장치(310)를 통해 획득된 데이터를 기초로 기계 학습(machine learning)을 수행할 수 있다. 인공지능 에이전트(372)는, 기계 학습된 결과에 기초하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나를 제어할 수 있다.
2) 필수 구성 요소
메모리(340)는, 메인 컨트롤러(370)와 전기적으로 연결된다. 메모리(340)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(340)는, 메인 컨트롤러(370)에서 처리된 데이터를 저장할 수 있다. 메모리(340)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(340)는 메인 컨트롤러(370)의 처리 또는 제어를 위한 프로그램 등, 캐빈 시스템(300) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(340)는, 메인 컨트롤러(370)와 일체형으로 구현될 수 있다.
인터페이스부(380)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(380)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(390)는, 캐빈 시스템(300)에 전원을 공급할 수 있다. 전원 공급부(390)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 캐빈 시스템(300)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(390)는, 메인 컨트롤러(370)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 예를 들면, 전원 공급부(390)는, SMPS(switched-mode power supply)로 구현될 수 있다.
캐빈 시스템(300)은, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메인 컨트롤러(370), 메모리(340), 인터페이스부(380) 및 전원 공급부(390)는, 적어도 하나의 인쇄 회로 기판에 실장될 수 있다.
3) 입력 장치
입력 장치(310)는, 사용자 입력을 수신할 수 있다. 입력 장치(310)는, 사용자 입력을 전기적 신호로 전환할 수 있다. 입력 장치(310)에 의해 전환된 전기적 신호는 제어 신호로 전환되어 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공될 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 입력 장치(310)로부터 수신되는 전기적 신호에 기초한 제어 신호를 생성할 수 있다.
입력 장치(310)는, 터치 입력부, 제스쳐 입력부, 기계식 입력부 및 음성 입력부 중 적어도 어느 하나를 포함할 수 있다. 터치 입력부는, 사용자의 터치 입력을 전기적 신호로 전환할 수 있다. 터치 입력부는, 사용자의 터치 입력을 감지하기 위해 적어도 하나의 터치 센서를 포함할 수 있다. 실시예에 따라, 터치 입력부는 디스플레이 시스템(350)에 포함되는 적어도 하나의 디스플레이 와 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한, 터치 스크린은, 캐빈 시스템(300)과 사용자 사이의 입력 인터페이스 및 출력 인터페이스를 함께 제공할 수 있다. 제스쳐 입력부는, 사용자의 제스쳐 입력을 전기적 신호로 전환할 수 있다. 제스쳐 입력부는, 사용자의 제스쳐 입력을 감지하기 위한 적외선 센서 및 이미지 센서 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 제스쳐 입력부는, 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 이를 위해, 제스쳐 입력부는, 복수의 적외선 광을 출력하는 광출력부 또는 복수의 이미지 센서를 포함할 수 있다. 제스쳐 입력부는, TOF(Time of Flight) 방식, 구조광(Structured light) 방식 또는 디스패러티(Disparity) 방식을 통해 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 기계식 입력부는, 기계식 장치를 통한 사용자의 물리적인 입력(예를 들면, 누름 또는 회전)을 전기적 신호로 전환할 수 있다. 기계식 입력부는, 버튼, 돔 스위치(dome switch), 조그 휠 및 조그 스위치 중 적어도 어느 하나를 포함할 수 있다. 한편, 제스쳐 입력부와 기계식 입력부는 일체형으로 형성될 수 있다. 예를 들면, 입력 장치(310)는, 제스쳐 센서가 포함되고, 주변 구조물(예를 들면, 시트, 암레스트 및 도어 중 적어도 어느 하나)의 일부분에서 출납 가능하게 형성된 조그 다이얼 장치를 포함할 수 있다. 조그 다이얼 장치가 주변 구조물과 평평한 상태를 이룬 경우, 조그 다이얼 장치는 제스쳐 입력부로 기능할 수 있다. 조그 다이얼 장치가 주변 구조물에 비해 돌출된 상태의 경우, 조그 다이얼 장치는 기계식 입력부로 기능할 수 있다. 음성 입력부는, 사용자의 음성 입력을 전기적 신호로 전환할 수 있다. 음성 입력부는, 적어도 하나의 마이크로 폰을 포함할 수 있다. 음성 입력부는, 빔 포밍 마이크(Beam foaming MIC)를 포함할 수 있다.
4) 영상 장치
영상 장치(320)는, 적어도 하나의 카메라를 포함할 수 있다. 영상 장치(320)는, 내부 카메라 및 외부 카메라 중 적어도 어느 하나를 포함할 수 있다. 내부 카메라는, 캐빈 내의 영상을 촬영할 수 있다. 외부 카메라는, 차량 외부 영상을 촬영할 수 있다. 내부 카메라는, 캐빈 내의 영상을 획득할 수 있다. 영상 장치(320)는, 적어도 하나의 내부 카메라를 포함할 수 있다. 영상 장치(320)는, 탑승 가능 인원에 대응되는 갯수의 카메라를 포함하는 것이 바람직하다. 영상 장치(320)는, 내부 카메라에 의해 획득된 영상을 제공할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 내부 카메라에 의해 획득된 영상에 기초하여 사용자의 모션을 검출하고, 검출된 모션에 기초하여 신호를 생성하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공할 수 있다. 외부 카메라는, 차량 외부 영상을 획득할 수 있다. 영상 장치(320)는, 적어도 하나의 외부 카메라를 포함할 수 있다. 영상 장치(320)는, 탑승 도어에 대응되는 갯수의 카메라를 포함하는 것이 바람직하다. 영상 장치(320)는, 외부 카메라에 의해 획득된 영상을 제공할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 외부 카메라에 의해 획득된 영상에 기초하여 사용자 정보를 획득할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 사용자 정보에 기초하여, 사용자를 인증하거나, 사용자의 신체 정보(예를 들면, 신장 정보, 체중 정보 등), 사용자의 동승자 정보, 사용자의 짐 정보 등을 획득할 수 있다.
5) 통신 장치
통신 장치(330)는, 외부 디바이스와 무선으로 신호를 교환할 수 있다. 통신 장치(330)는, 네트워크 망을 통해 외부 디바이스와 신호를 교환하거나, 직접 외부 디바이스와 신호를 교환할 수 있다. 외부 디바이스는, 서버, 이동 단말기 및 타 차량 중 적어도 어느 하나를 포함할 수 있다. 통신 장치(330)는, 적어도 하나의 사용자 단말기와 신호를 교환할 수 있다. 통신 장치(330)는, 통신을 수행하기 위해 안테나, 적어도 하나의 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 통신 장치(330)는, 복수의 통신 프로토콜을 이용할 수도 있다. 통신 장치(330)는, 이동 단말기와의 거리에 따라 통신 프로토콜을 전환할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 명세서의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 명세서의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
6) 디스플레이 시스템
디스플레이 시스템(350)은, 그래픽 객체를 표시할 수 있다. 디스플레이 시스템(350)은, 적어도 하나의 디스플레이 장치를 포함할 수 있다. 예를 들면, 디스플레이 시스템(350)은, 공용으로 이용 가능한 제1 디스플레이 장치(410)와 개별 이용 가능한 제2 디스플레이 장치(420)를 포함할 수 있다.
6.1) 공용 디스플레이 장치
제1 디스플레이 장치(410)는, 시각적 컨텐츠를 출력하는 적어도 하나의 디스플레이(411)를 포함할 수 있다. 제1 디스플레이 장치(410)에 포함되는 디스플레이(411)는, 평면 디스플레이. 곡면 디스플레이, 롤러블 디스플레이 및 플렉서블 디스플레이 중 적어도 어느 하나로 구현될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 시트 후방에 위치하고, 캐빈 내로 출납 가능하게 형성된 제1 디스플레이(411) 및 상기 제1 디스플레이(411)를 이동시키기 위한 제1 메카니즘를 포함할 수 있다. 제1 디스플레이(411)는, 시트 메인 프레임에 형성된 슬롯에 출납 가능하게 배치될 수 있다. 실시예에 따라, 제1 디스플레이 장치(410)는, 플렉서블 영역 조절 메카니즘을 더 포함할 수 있다. 제1 디스플레이는, 플렉서블하게 형성될 수 있고, 사용자의 위치에 따라, 제1 디스플레이의 플렉서블 영역이 조절될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 캐빈내 천장에 위치하고, 롤러블(rollable)하게 형성된 제2 디스플레이 및 상기 제2 디스플레이를 감거나 풀기 위한 제2 메카니즘을 포함할 수 있다. 제2 디스플레이는, 양면에 화면 출력이 가능하게 형성될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 캐빈내 천장에 위치하고, 플렉서블(flexible)하게 형성된 제3 디스플레이 및 상기 제3 디스플레이를 휘거나 펴기위한 제3 메카니즘을 포함할 수 있다. 실시예에 따라, 디스플레이 시스템(350)은, 제1 디스플레이 장치(410) 및 제2 디스플레이 장치(420) 중 적어도 어느 하나에 제어 신호를 제공하는 적어도 하나의 프로세서를 더 포함할 수 있다. 디스플레이 시스템(350)에 포함되는 프로세서는, 메인 컨트롤러(370), 입력 장치(310), 영상 장치(320) 및 통신 장치(330) 중 적어도 어느 하나로부터 수신되는 신호에 기초하여 제어 신호를 생성할 수 있다.
제1 디스플레이 장치(410)에 포함되는 디스플레이의 표시 영역은, 제1 영역(411a) 및 제2 영역(411b)으로 구분될 수 있다. 제1 영역(411a)은, 컨텐츠를 표시 영역으로 정의될 수 있다. 예를 들면, 제 1영역(411)은, 엔터테인먼트 컨텐츠(예를 들면, 영화, 스포츠, 쇼핑, 음악 등), 화상 회의, 음식 메뉴 및 증강 현실 화면에 대응하는 그래픽 객체 중 적어도 어느 하나를 표시할 수 있다. 제1 영역(411a)은, 차량(10)의 주행 상황 정보에 대응하는 그래픽 객체를 표시할 수 있다. 주행 상황 정보는, 주행 상황 정보는, 차량 외부의 오브젝트 정보, 내비게이션 정보 및 차량 상태 정보 중 적어도 어느 하나를 포함할 수 있다. 차량 외부의 오브젝트 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(300)과 오브젝트와의 거리 정보 및 차량(300)과 오브젝트와의 상대 속도 정보를 포함할 수 있다. 내비게이션 정보는, 맵(map) 정보, 설정된 목적지 정보, 상기 목적지 설정 따른 경로 정보, 경로 상의 다양한 오브젝트에 대한 정보, 차선 정보 및 차량의 현재 위치 정보 중 적어도 어느 하나를 포함할 수 있다. 차량 상태 정보는, 차량의 자세 정보, 차량의 속도 정보, 차량의 기울기 정보, 차량의 중량 정보, 차량의 방향 정보, 차량의 배터리 정보, 차량의 연료 정보, 차량의 타이어 공기압 정보, 차량의 스티어링 정보, 차량 실내 온도 정보, 차량 실내 습도 정보, 페달 포지션 정보 및 차량 엔진 온도 정보 등을 포함할 수 있다. 제2 영역(411b)은, 사용자 인터페이스 영역으로 정의될 수 있다. 예를 들면, 제2 영역(411b)은, 인공 지능 에이전트 화면을 출력할 수 있다. 실시예에 따라, 제2 영역(411b)은, 시트 프레임으로 구분되는 영역에 위치할 수 있다. 이경우, 사용자는, 복수의 시트 사이로 제2 영역(411b)에 표시되는 컨텐츠를 바라볼 수 있다. 실시예에 따라, 제1 디스플레이 장치(410)는, 홀로그램 컨텐츠를 제공할 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 복수의 사용자별로 홀로그램 컨텐츠를 제공하여 컨텐츠를 요청한 사용자만 해당 컨텐츠를 시청하게 할 수 있다.
6.2) 개인용 디스플레이 장치
제2 디스플레이 장치(420)는, 적어도 하나의 디스플레이(421)을 포함할 수 있다. 제2 디스플레이 장치(420)는, 개개의 탑승자만 디스플레이 내용을 확인할 수 있는 위치에 디스플레이(421)을 제공할 수 있다. 예를 들면, 디스플레이(421)은, 시트의 암 레스트에 배치될 수 있다. 제2 디스플레이 장치(420)는, 사용자의 개인 정보에 대응되는 그래픽 객체를 표시할 수 있다. 제2 디스플레이 장치(420)는, 탑승 가능 인원에 대응되는 갯수의 디스플레이(421)을 포함할 수 있다. 제2 디스플레이 장치(420)는, 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 제2 디스플레이 장치(420)는, 시트 조정 또는 실내 온도 조정의 사용자 입력을 수신하기 위한 그래픽 객체를 표시할 수 있다.
7) 카고 시스템
카고 시스템(355)은, 사용자의 요청에 따라 상품을 사용자에게 제공할 수 있다. 카고 시스템(355)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 카고 시스템(355)은, 카고 박스를 포함할 수 있다. 카고 박스는, 상품들이 적재된 상태로 시트 하단의 일 부분에 은닉될 수 있다. 사용자 입력에 기초한 전기적 신호가 수신되는 경우, 카고 박스는, 캐빈으로 노출될 수 있다. 사용자는 노출된 카고 박스에 적재된 물품 중 필요한 상품을 선택할 수 있다. 카고 시스템(355)은, 사용자 입력에 따른 카고 박스의 노출을 위해, 슬라이딩 무빙 메카니즘, 상품 팝업 메카니즘을 포함할 수 있다. 카고 시스템은(355)은, 다양한 종류의 상품을 제공하기 위해 복수의 카고 박스를 포함할 수 있다. 카고 박스에는, 상품별로 제공 여부를 판단하기 위한 무게 센서가 내장될 수 있다.
8) 시트 시스템
시트 시스템(360)은, 사용자에 맞춤형 시트를 사용자에게 제공할 수 있다. 시트 시스템(360)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 시트 시스템(360)은, 획득된 사용자 신체 데이터에 기초하여, 시트의 적어도 하나의 요소를 조정할 수 있다. 시트 시스템(360)은 사용자의 착좌 여부를 판단하기 위한 사용자 감지 센서(예를 들면, 압력 센서)를 포함할 수 있다. 시트 시스템(360)은, 복수의 사용자가 각각 착좌할 수 있는 복수의 시트를 포함할 수 있다. 복수의 시트 중 어느 하나는 적어도 다른 하나와 마주보게 배치될 수 있다. 캐빈 내부의 적어도 두명의 사용자는 서로 마주보고 앉을 수 있다.
9) 페이먼트 시스템
페이먼트 시스템(365)은, 결제 서비스를 사용자에게 제공할 수 있다. 페이먼트 시스템(365)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 페이먼트 시스템(365)은, 사용자가 이용한 적어도 하나의 서비스에 대한 가격을 산정하고, 산정된 가격이 지불되도록 요청할 수 있다.
(2) 자율 주행 차량 이용 시나리오
도 11은 본 명세서의 실시예에 따라 사용자의 이용 시나리오를 설명하는데 참조되는 도면이다.
1) 목적지 예측 시나리오
제1 시나리오(S111)는, 사용자의 목적지 예측 시나리오이다. 사용자 단말기는 캐빈 시스템(300)과 연동 가능한 애플리케이션을 설치할 수 있다. 사용자 단말기는, 애플리케이션을 통해, 사용자의 컨텍스트추얼 정보(user's contextual information)를 기초로, 사용자의 목적지를 예측할 수 있다. 사용자 단말기는, 애플리케이션을 통해, 캐빈 내의 빈자리 정보를 제공할 수 있다.
2) 캐빈 인테리어 레이아웃 준비 시나리오
제2 시나리오(S112)는, 캐빈 인테리어 레이아웃 준비 시나리오이다. 캐빈 시스템(300)은, 차량(300) 외부에 위치하는 사용자에 대한 데이터를 획득하기 위한 스캐닝 장치를 더 포함할 수 있다. 스캐닝 장치는, 사용자를 스캐닝하여, 사용자의 신체 데이터 및 수하물 데이터를 획득할 수 있다. 사용자의 신체 데이터 및 수하물 데이터는, 레이아웃을 설정하는데 이용될 수 있다. 사용자의 신체 데이터는, 사용자 인증에 이용될 수 있다. 스캐닝 장치는, 적어도 하나의 이미지 센서를 포함할 수 있다. 이미지 센서는, 가시광 대역 또는 적외선 대역의 광을 이용하여 사용자 이미지를 획득할 수 있다.
시트 시스템(360)은, 사용자의 신체 데이터 및 수하물 데이터 중 적어도 어느 하나에 기초하여, 캐빈 내 레이아웃을 설정할 수 있다. 예를 들면, 시트 시스템(360)은, 수하물 적재 공간 또는 카시트 설치 공간을 마련할 수 있다.
3) 사용자 환영 시나리오
제3 시나리오(S113)는, 사용자 환영 시나리오이다. 캐빈 시스템(300)은, 적어도 하나의 가이드 라이트를 더 포함할 수 있다. 가이드 라이트는, 캐빈 내 바닥에 배치될 수 있다. 캐빈 시스템(300)은, 사용자의 탑승이 감지되는 경우, 복수의 시트 중 기 설정된 시트에 사용자가 착석하도록 가이드 라이트를 출력할 수 있다. 예를 들면, 메인 컨트롤러(370)는, 오픈된 도어에서부터 기 설정된 사용자 시트까지 시간에 따른 복수의 광원에 대한 순차 점등을 통해, 무빙 라이트를 구현할 수 있다.
4) 시트 조절 서비스 시나리오
제4 시나리오(S114)는, 시트 조절 서비스 시나리오이다. 시트 시스템(360)은, 획득된 신체 정보에 기초하여, 사용자와 매칭되는 시트의 적어도 하나의 요소를 조절할 수 있다.
5) 개인 컨텐츠 제공 시나리오
제5 시나리오(S115)는, 개인 컨텐츠 제공 시나리오이다. 디스플레이 시스템(350)은, 입력 장치(310) 또는 통신 장치(330)를 통해, 사용자 개인 데이터를 수신할 수 있다. 디스플레이 시스템(350)은, 사용자 개인 데이터에 대응되는 컨텐츠를 제공할 수 있다.
6) 상품 제공 시나리오
제6 시나리오(S116)는, 상품 제공 시나리오이다. 카고 시스템(355)은, 입력 장치(310) 또는 통신 장치(330)를 통해, 사용자 데이터를 수신할 수 있다. 사용자 데이터는, 사용자의 선호도 데이터 및 사용자의 목적지 데이터 등을 포함할 수 있다. 카고 시스템(355)은, 사용자 데이터에 기초하여, 상품을 제공할 수 있다.
7) 페이먼트 시나리오
제7 시나리오(S117)는, 페이먼트 시나리오이다. 페이먼트 시스템(365)은, 입력 장치(310), 통신 장치(330) 및 카고 시스템(355) 중 적어도 어느 하나로부터 가격 산정을 위한 데이터를 수신할 수 있다. 페이먼트 시스템(365)은, 수신된 데이터에 기초하여, 사용자의 차량 이용 가격을 산정할 수 있다. 페이먼트 시스템(365)은, 산정된 가격으로 사용자(예를 들면, 사용자의 이동 단말기)에 요금 지불을 요청할 수 있다.
8) 사용자의 디스플레이 시스템 제어 시나리오
제8 시나리오(S118)는, 사용자의 디스플레이 시스템 제어 시나리오이다. 입력 장치(310)는, 적어도 어느 하나의 형태로 이루어진 사용자 입력을 수신하여, 전기적 신호로 전환할 수 있다. 디스플레이 시스템(350)은, 전기적 신호에 기초하여, 표시되는 컨텐츠를 제어할 수 있다.
9) AI 에이전트 시나리오
제9 시나리오(S119)는, 복수의 사용자를 위한 멀티 채널 인공지능(artificial intelligence, AI) 에이전트 시나리오이다. 인공 지능 에이전트(372)는, 복수의 사용자 별로 사용자 입력을 구분할 수 있다. 인공 지능 에이전트(372)는, 복수의 사용자 개별 사용자 입력이 전환된 전기적 신호에 기초하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나를 제어할 수 있다.
10) 복수 사용자를 위한 멀티미디어 컨텐츠 제공 시나리오
제10 시나리오(S120)는, 복수의 사용자를 대상으로 하는 멀티미디어 컨텐츠 제공 시나리오이다. 디스플레이 시스템(350)은, 모든 사용자가 함께 시청할 수 있는 컨텐츠를 제공할 수 있다. 이경우, 디스플레이 시스템(350)은, 시트별로 구비된 스피커를 통해, 동일한 사운드를 복수의 사용자 개별적으로 제공할 수 있다. 디스플레이 시스템(350)은, 복수의 사용자가 개별적으로 시청할 수 있는 컨텐츠를 제공할 수 있다. 이경우, 디스플레이 시스템(350)는, 시트별로 구비된 스피커를 통해, 개별적 사운드를 제공할 수 있다.
11) 사용자 안전 확보 시나리오
제11 시나리오(S121)는, 사용자 안전 확보 시나리오이다. 사용자에게 위협이되는 차량 주변 오브젝트 정보를 획득하는 경우, 메인 컨트롤러(370)는, 디스플레이 시스템(350)을 통해, 차량 주변 오브젝트에 대한 알람이 출력되도록 제어할 수 있다.
12) 소지품 분실 예방 시나리오
제12 시나리오(S122)는, 사용자의 소지품 분실 예방 시나리오이다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 소지품에 대한 데이터를 획득할 수 있다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 움직임 데이터를 획득할 수 있다. 메인 컨트롤러(370)는, 소지품에 대한 데이터 및 움직임 데이터에 기초하여, 사용자가 소지품을 두고 하차 하는지 여부를 판단할 수 있다. 메인 컨트롤러(370)는, 디스플레이 시스템(350)을 통해, 소지품에 관한 알람이 출력되도록 제어할 수 있다.
13) 하차 리포트 시나리오
제13 시나리오(S123)는, 하차 리포트 시나리오이다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 하차 데이터를 수신할 수 있다. 사용자 하차 이후, 메인 컨트롤러(370)는, 통신 장치(330)를 통해, 사용자의 이동 단말기에 하차에 따른 리포트 데이터를 제공할 수 있다. 리포트 데이터는, 차량(10) 전체 이용 요금 데이터를 포함할 수 있다.
앞서 살핀 5G 통신 기술은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서의 다양한 실시 예들을 상세히 설명한다.
차량 실내환경 모니터링 시스템은 일반적으로 RGB/IR 기반의 Stereo 카메라, ToF 3D Depth 센서를 사용한다. 카메라는 저렴하지만 빛에 매우 민감하고 렌즈 굴절로 인한 영상 왜곡이 발생된다는 단점이 있다. 이를 해결하고 정확한 특징점에 대한 3D 크기 정보(X,Y,Z) 추출을 위해 복잡한 캘리브레이션(Calibration) 과정이 추가적으로 필요하다는 단점이 있다.
또한, ToF 3D Depth 센서는 특징점에 대한 3D 크기 정보(X,Y,Z) 추출이 간단하지만 고가이며 오클루젼(Occlusion) 현상이 자주 발생된다는 단점이 있다.
본 명세서는 위와 같은 단점을 보완하기 위해, 3D 초음파 센서를 통해 생성된 정보를 이용하여, 기존의 차량 실내환경 모니터링의 영상 포맷에 맞는 3D Depth, Grey level의 3D Depth Image를 직관적으로 생성하는 기술을 제안한다. 이를 통해, 영상 왜곡, 캘리브레이션 과정, 오클루젼 현상과 같은 기존의 문제점을 해결 할 수 있다.
좌표계(Coordinate System)
도 12는 본 명세서에 적용될 수 있는 좌표계의 예시이다.
도 12를 참고하면, 영상 기하학(geometry)에서는 월드 좌표계(World Coordinate System), 카메라 좌표계(Camera Coordinate System) ,픽셀 좌표계(Pixel Image Coordinate System) 및 정규 이미지 좌표계(Normalized Image Coordinate System)가 존재할 수 있다.
월드 좌표계와 카메라 좌표계는 3차원 좌표계이고, 픽셀좌표계와 정규 이미지 좌표계는 2D 좌표계이다. 이들 좌표계에 대한 명칭이나 기호, 좌표축 방향 등은  정의되는 방식에 따라, 유사한 범위내에서 변경될 수 있다.
월드 좌표계는 사물(물체)의 위치를 표현할 때 기준으로 삼는 좌표계이다. 월드좌표계는 임의의 기준점을 정의하여 사용할 수 있는 좌표계이다. 따라서, 월드 좌표계는 일종의 약속(protocol)이기 때문에, 이 점이 어떤 위치인지 그 문제 내에서 만큼은 유일하게 결정될 수 있으면 유효하다.
카메라 좌표계는 카메라를 기준으로 한 좌표계이다. 카메라 좌표계는 카메라의 초점(렌즈의 중심)을 원점으로 하여, 카메라의 정면 광학축 방향을 Z축, 카메라 아래쪽 방향을 Y축, 오른쪽 방향을 X축으로 정의 할 수 있다. 카메라 좌표계의 단위는 월드 좌표계와 동일해야 한다. 즉, 월드 좌표계에서 meter 단위를 사용한다면 카메라 좌표계도 meter 단위를 사용한다. 도 12에서 카메라 좌표계를 기준으로 한 점의 좌표는 아랫첨자 c를 사용한 대문자로 표기한다.
픽셀 좌표계는 영상 좌표계(Image Coordinate System)로 치환될 수 있다. 픽셀 좌표계는 실제 눈으로 보는 영상에 대한 좌표계로서 이미지의 왼쪽상단(left-top) 모서리를 원점, 오른쪽 방향을 x축 증가방향, 아래쪽 방향을 y축 증가방향으로 정의할 수 있다. 또한, 픽셀 좌표계의 x축, y축에 의해 결정되는 평면을 이미지 평면 (image plane)이라 정의한다.
도 12를 참조하면, 3D 공간상의 한 점 P = (X,Y,Z)는 카메라의 초점 (또는 렌즈의 초점)을 지나서 이미지 평면의 한 점 pimg=(x,y)에 투영(projection)된다. P와 점 pimg 를 연결하는 선(ray) 상에 있는 모든 3D 점들은 모두 pimg로 투영될 수 있다. 따라서 3D상의 점 P로부터 pimg는 유일하게 결정될 수 있지만, 반대로 영상 픽셀 pimg로부터 점 P를 구하는 것은 부가적인 정보 없이는 불가능하다.
정규 이미지 좌표계는 카메라의 내부 파라미터(intrinsic parameter)의 영향을 제거한 이미지 좌표계이다. 또한 정규 이미지 좌표계는 좌표계의 단위를 없앤(정규화된) 좌표계이며, 카메라 초점과의 거리가 1인 가상의 이미지 평면을 정의하는 좌표계이다. 즉, 원래의 이미지 평면을 평행이동을 통해, 카메라 초점과의 거리가 1인 지점으로 옮겨놓은 이미지 평면을 의미할 수 있다. 따라서, 정규 이미지 좌표계의 원점은 정규 이미지 평면의 중점(광학축 Zc와의 교점)이며, 카메라 내부 파라미터를 알면, 픽셀 좌표와 정규 이미지 좌표 사이의 변환이 가능하다.
카메라 캘리브레이션(Calibration)
3차원의 세상을 카메라로 찍으면 2차원의 이미지로 변하게 되며, 3차원의 점들이 이미지 상에서 어디에 맺히는지는, 영상을 찍을 당시의 카메라의 위치 및 방향에 의해 결정된다. 하지만 실제 이미지는 사용된 렌즈, 렌즈와 이미지 센서와의 거리, 렌즈와 이미지 센서가 이루는 각 등 카메라 내부의 기구적인 부분에 의해서 영향을 받는다. 따라서, 3차원 점들이 영상에 투영된 위치를 구하거나, 역으로 영상좌표로부터 3차원 공간좌표를 복원할 때에는 이러한 내부 요인을 제거해야만 정확한 계산이 가능하다. 이러한 내부 요인의 파라미터 값을 구하는 과정을 카메라 캘리브레이션이라 한다.
카메라 영상은 3차원 공간상의 점들을 2차원 이미지 평면에 투사(perspective projection)함으로써 얻어질 수 있다. 핀홀(pinhole) 카메라 모델에서 이러한 변환 관계는 예를 들어, 다음의 수학식 1을 이용하여 모델링 될 수 있다.
Figure pat00001
여기서, (X,Y,Z)는 월드 좌표계(world coordinate system) 상의 3D 점의 좌표, [R|t]는 월드 좌표계를 카메라 좌표계로 변환시키기 위한 회전/이동변환 행렬이며 A는 intrinsic camera matrix이다.
도 13은 본 명세서에 적용될 수 있는 카메라 좌표계의 예시이다.
도 13을 참고하면, 카메라 캘리브레이션(camera calibration)은 3D 공간좌표와 2D 영상좌표 사이의 변환관계 또는 이 변환관계를 설명하는 파라미터를 찾는 과정이다.
수학식 1에서 [R|t]는 카메라 외부 파라미터(extrinsic parameter), A는 내부 파라미터(intrinsic parameter)로 치환될 수 있으며, A와 [R|t]를 합쳐서 camera matrix 또는 projection matrix로 치환될 수 있다.
여기서 카메라 외부 파라미터는 카메라의 설치 높이, 방향(팬, 틸트) 등 카메라와 외부 공간과의 기하학적 관계에 관련된 파라미터이며, 내부 파라미터는 카메라의 초점 거리, aspect ratio, 중심점 등 카메라 자체의 내부적인 파라미터를 의미할 수 있다.
카메라 내부 파라미터는 예를 들어, 다음을 포함할 수 있다.
A. 초점거리(focal length): fx, fy
B. 주점(principal point): cx, cy
C. 비대칭계수(skew coefficient): skew_c = tanα
도 14는 본 명세서에 적용될 수 있는 초점거리를 설명하기 위한 도면이다.
도 14를 참고하면, 디지털 카메라 등에서 초점거리는 mm 단위로 표현되지만 카메라 모델에서 말하는 초점거리(f)는 픽셀(pixel) 단위로 표현될 수 있다. 이미지의 픽셀(pixel)은 이미지 센서의 셀(cell)에 대응되기 때문에, 초점거리(f)가 픽셀(pixel) 단위라는 의미는 초점거리가 이미지 센서의 셀(cell) 크기에 대한 상대적인 값으로 표현될 수 있다는 의미이다.
카메라 모델에서 초점거리를 하나의 값으로 f라 표현하지 않고 fx, fy로 구분하여 표현하는 경우, (일반적으로 카메라 캘리브레이션을 수행하면 fx, fy를 구분하여 반환함) 이는 이미지 센서의 물리적인 셀 간격이 가로 방향과 세로 방향이 서로 다를 수 있음을 모델링하기 위함이다. 이 경우 fx는 초점거리(렌즈중심에서 이미지 센서까지의 거리)가 가로 방향 셀 크기(간격)의 몇 배인지를 나타내고, fy는 초점거리가 세로 방향 센서 셀 크기(간격)의 몇 배인지를 나타낸다. fx와 fy 모두 단위는 픽셀(pixel)이며 일반적으로 카메라는 가로방향 셀 간격과 세로방향 셀 간격의 차이가 없기 때문에 f = fx = fy 로 계산될 수 있다.
카메라 모델의 렌즈중심(초점)은 핀홀 카메라 모델에서 핀홀(pinhole)에 해당될 수 있다. 핀홀 카메라 모델은 모든 빛은 한 점(초점)을 직선으로 통과하여 이미지 평면(센서)에 투영되는 모델이다.
도 15는 본 명세서에 적용될 수 있는 카메라 투영 모델의 예시이다.
초점으로부터 거리가 1(unit distance)인 평면은 정규 이미지 평면(normalized image plane)이라고 호칭될 수 있으며, 이 평면상의 좌표는 정규 이미지 좌표계(normalized image coordinate)라고 호칭될 수 있다. 카메라 좌표계 상의 한 점 (Xc, Yc, Zc)을 픽셀 좌표계로 변환하기 위해, 먼저 Xc, Yc를 Zc(카메라 초점에서의 거리)로 나누는 것은 이 정규 이미지 평면 상의 좌표로 변환하는 것이며, 여기에 다시 초점거리 f를 곱하면 이미지 평면에서의 픽셀 좌표(pixel)를 구할 수 있다. 그런데, 이미지에서 픽셀좌표는 이미지의 중심이 아닌 이미지의 좌상단 모서리를 기준(원점)으로 하기 때문에 실제 최종적인 영상좌표는 여기에 (cx, cy)를 더한 값이 된다. 즉, x = fxXc/Zc +cx, y = fyYc/Zc+cy 로 계산될 수 있다.
주점 cx, cy는 카메라 렌즈의 중심 즉, 핀홀에서 이미지 센서에 내린 수선의 발의 영상좌표(단위는 픽셀)로서 일반적으로 말하는 영상 중심점(image center)과는 다른 의미이다. 예를 들어, 카메라 조립과정에서 오차로 인해 렌즈와 이미지 센서가 수평이 어긋나면 주점과 영상중심은 다른 값을 가질 수 있다.
도 16은 본 명세서에 적용될 수 있는 비대칭 계수의 예시이다.
도 16을 참조하면, 비대칭 계수 skew_c는 이미지 센서의 cell array의 y축이 기울어진 정도를 나타낸다 (skew_c = tanα).
카메라 외부 파라미터는 카메라 좌표계와 월드 좌표계 사이의 변환 관계를 설명하는 파라미터로서, 두 좌표계 사이의 회전(rotation) 및 평행이동(translation) 변환으로 표현될 수 있다.
카메라 외부 파라미터는 카메라 고유의 파라미터가 아니기 때문에 카메라를 어떤 위치에 어떤 방향으로 설치했는지에 따라 달라지고 또한 월드 좌표계를 어떻게 정의했느냐에 따라서 달라질 수 있다.
이러한 카메라 외부 파라미터는 캘리브레이션 툴 등을 이용하여 카메라 고유의 내부 파라미터들을 구하고, 미리 알고 있는 또는 샘플로 뽑은 3D 월드좌표 - 2D 영상좌표 매칭쌍들을 이용하여, 상기 수학식 1을 통해, 변환행렬을 구함으로써 획득될 수 있다.
본 명세서에서는 이와 동일한 목적을 가진 다양한 캘리브레이션 알고리즘의 사용도 포함할 수 있으며, 이러한 캘리브레이션을 위해 사용되는 특정한 tool에 한정되지 않는다.
도 17은 본 명세서에 적용될 수 있는 월드 좌표계의 특징점 좌표값이 픽셀 좌표계의 특징점 좌표값으로 투영되는 과정을 예시하는 순서도이다.
렌즈 왜곡에는 크게 방사왜곡(radial distortion)과 접선왜곡(tangential distortion)이 있다. 방사왜곡은 볼록렌즈의 굴절률에 의한 것으로서 영상의 왜곡 정도가 중심에서의 거리에 의해 결정되는 왜곡이다. 반면, 접선왜곡(tangential distortion)은 카메라 제조(조립) 과정에서 카메라 렌즈와 이미지센서(CCD, CMOS)의 수평이 맞지 않거나 또는 렌즈 자체의 centering이 맞지 않아서 발생하는 왜곡이다. 이러한 렌즈 왜곡을 보정하기 위한, 다양한 알고리즘들이 공개되어 있으며, 본 명세서는 특정 알고리즘에 한정되지 않는다. 이러한, 알고리즘들의 기본적인 아이디어는 왜곡된 영상을 Id, 보정된 영상을 Iu라 할 때, Iu의 각 픽셀값을 해당 픽셀 좌표를 왜곡시켰을 때의 Id의 대응되는 픽셀값으로 채우는 것이다.
프로세서(170)는 카메라 센서를 통해, 획득한 영상정보에서 월드 좌표계의 특징점 좌표값을 획득한다(S1710).
프로세서(170)는 월드 좌표계의 특징점 좌표값을 카메라 좌표계의 특징점 좌표값으로 변환한다(S1720).
프로세서(170)는 카메라 렌즈의 초점거리값을 획득한다(S1730). 이러한 초점거리값은 상기 카메라 렌즈의 제조사로부터 제공받거나, 사용자로부터 입력받은 입력값을 통해 획득할 수 있다.
프로세서(170)는 획득한 카메라 좌표계의 특징점 좌표값을 초점거리값을 이용하여, 이미지 좌표계의 특징점 좌표값으로 변환한다(S1740). 또는, 정규 이미지 좌표계의 특징점 좌표값으로 변환할 수 있다. 그러나, 이렇게 획득된 이미지 좌표계 또는 정규 이미지 좌표계의 특징점 좌표값은 렌즈 왜곡의 영향을 받은 좌표값으로 보정이 필요할 수 있다.
프로세서(170)는 카메라 센서의 내부 파라미터를 획득한다(S1750).
프로세서(170)는 획득된 카메라 센서의 내부 파라미터를 이용하여, 렌즈 왜곡이 보정된 픽셀 좌표계의 특징점 좌표값을 획득한다(S1760).
따라서 일반적인 카메라 센서를 통한 이미지 획득에는 추가적인 캘리브레이션 과정이 요구되며, 렌즈 왜곡 보정작업이 부가되어야 하고, 오클루전 현상에 따른 이미지 손실의 위험이 있으며, 빛의 영향에 따라 획득되는 이미지의 품질이 달라질 수 있다는 문제점이 있다.
이를 해결하기 위해, 본 명세서는 3D 초음파 센서를 이용하여, 3D Depth 이미지를 생성하는 기술을 제안한다. 이를 이용하면, 직관적인 3D 초음파 센서를 통해 획득될 수 있는 정보를 통하여, 추가적인 캘리브레이션 작업이 필요 없고, 오클루션 현상에 의한 이미지 손실을 최소화 할 수 있으며, 3D 초음파 센서는 직진성있는 초음파를 이용하므로, 기존 카메라의 렌즈 왜곡과 오클루션 현상으로 인한 영상 범짐현상의 영향 없는 3D Depth, 3D Depth 이미지의 생성이 가능하다. 또한, 조명의 영향도 최소화할 수 있으며, 빛의 영향을 받지 않으며 낮과 밤 모두 안정적인 차량 실내환경 모니터링이 가능해진다.
더불어, 기존의 차량 실내환경 모니터링 시스템과 호환될 수 있는 3D Depth, 3D Depth 이미지의 생성이 가능하여 기존 차량 실내환경 모니터링 알고리즘의 변경이 필요없다. 또한, 다양한 해상도의 3D Depth, 3D Depth 이미지를 생성할 수 있으며, 3D 초음파 센서는 저렴하면서 RGB/IR 기반의 stereo 카메라, ToF 3D Depth 센서보다 외부 환경의 영향을 덜 받으므로 안정적인 로우(Raw) 데이터를 획득할 수 있다.
도 18 및 도 19는 본 명세서에 적용될 수 있는 3D 초음파 센서의 차량의 설치위치의 예시이다.
도 18를 참조하면, 3D 초음파 센서는 차량의 실내환경을 모니터링하기 위해, 대쉬보드(dashboard) 중앙에 위치될 수 있다. 또는, 도 19를 참조하면, 보다 정확도 높은 모니터링 결과값을 획득하기 위해, 복수개의 3D 초음파 센서가 차량의 내부에 위치될 수도 있다. 다만, 복수개의 3D 초음파 센서가 차량의 내부에 설치되는 경우, 음파간섭 현상이 발생할 수 있다는 문제점이 있다.
도 20은 본 명세서에 적용될 수 있는 차량의 복수개 3D 초음파 센서의 제어방법의 예시이다. 도 20(a)는 도19(a)와 같이, 3D 초음파 센서가 동일한 방향을 센싱하고, 하나의 열로 위치하는 경우의 제어방법의 예시이고, 도 20(b)는 도 19(b)와 같이, 3D 초음파 센서가 마주보고 위치하는 경우의 제어방법의 예시이다. 복수개의 3D 초음파 센서는 음파영역이 중첩되지 않도록 제어되어야 한다.
도 20(a)를 참조하면, 프로세서(170)가, 나란히 설치된 3D 초음파 센서를 가장 외곽에 위치한 3D 초음파 센서부터 순서대로 번호를 지정한 경우, 최초 1번 3D 초음파 센서를 활성화 시키기고, 나머지 3D 초음파 센서는 비활성화 시킨다(S2010).
프로세서(170)는 2번 3D 초음파 센서를 활성화 시키고, 나머지 3D 초음파 센서를 비활성화 시킨다(S2011).
프로세서(170)는 3번 3D 초음파 센서를 활성화 시키고, 나머지 3D 초음파 센서를 비활성화 시킨다(S2012).
프로세서(170)는 4번 3D 초음파 센서를 활성화 시키고, 나머지 3D 초음파 센서를 비활성화 시킨다(S2012).
프로세서(170)는 도 20(a)의 방법과 유사하게 3D 초음파 센서를 제어할 수 있다면, 최초로 활성화되는 3D 초음파 센서의 번호는 달라질 수 있다.
도 20(b)를 참조하면, 프로세서(170)는 차량의 도어가 열림 동작 이후, 닫힘 동작이 발생했음을 인식한다(S2020). 상기 동작을 인식한 경우, 프로세서(170)는 차량에 사용자가 탑승했다고 판단할 수 있다.
프로세서(170)는 사용자가 위치한 좌석을 탐색하기 위해, 도 20(a)와 유사한 방식으로, 순차적으로 3D 초음파 센서를 활성화한다(S2021). 프로세서(170)는 이를 통해, 사용자가 위치한 좌석을 탐색할 수 있다. 예를 들어, 도 19(b)를 참조하면, 프로세서(170)는 사용자가 1번 및 4번 좌석에 위치한다고 판단할 수 있다.
프로세서(170)는 사용자가 위치한 좌석에 근거하여, 사용자를 센싱할 수 없는 3D 초음파 센서를 비활성화로 설정한다(S2022). 예를 들어, 도 19(b)를 참조하면, 프로세서(170)는 1번 및 4번 좌석을 센싱하기에 적합하지 않은 1번 및 3번 3D 초음파 센서를 비활성화로 설정할 수 있다.
프로세서(170)는 비활성화로 설정된 3D 초음파 센서를 제외한 나머지 3D 초음파 센서를 도 20(a)와 유사한 방식으로, 순차적으로 활성화한다(S2023). 예를 들어, 도 19(b)를 참조하면, 프로세서(170)는 2번 3D 초음파 센서를 활성화하고, 3번 3D 초음파 센서를 비활성화 할 수 있고, 이후, 3번 3D 초음파 센서를 활성화하고, 2번 3D 초음파 센서를 비활성화 할 수 있다.
도 21은 본 명세서에 적용될 수 있는 3D 초음파 센서를 위한 차량의 실내온도 유지 방법의 예시이다.
초음파 센서는 환경 온도에 따라, 음속이 변화하고, 이에 따라 측정되는 좌표값이 부정확해질 수 있다. 따라서, 초음파 센서의 정확도를 위해서 차량은 적합한 실내온도를 유지할 수 있어야 한다(일반적으로 권장되는 온도는 -25 °C에서 + 70°C이다).
프로세서(170)는 온도센서를 이용하여, 차량의 실내온도 측정값을 획득한다(S2110).
프로세서(170)는 차량에 설치된, 3D 초음파 센서의 권장 온도범위를 획득한다(S2120). 상기 권장 온도범위는 프로세서(170)에 기설정된 값을 통해, 획득되거나, 사용자로부터 입력받거나, 또는 3D 초음파 센서의 제조사로부터 제공받을 수 있다.
프로세서(170)는 실내온도 측정값이 권장 온도범위 내인지 여부를 판단한다(S2130).
만일, 실내온도 측정값이 권장 온도범위 내라면, 프로세서(170)는 차량의 실내온도와 관련하여, 현재 상태를 유지한다(S2140).
만일, 실내온도 측정값이 권장 온도범위를 벗어난다면, 프로세서(170)는 차량의 실내온도를 제어하기 위한 동작을 수행한다(S2150). 이러한 제어동작은 실내온도를 권장 온도범위 내로 맞추기 위한 제어동작으로, 프로세서(170)는 에어컨 ECU를 통해, 수행할 수 있다.
도 22는 본 명세서에 적용될 수 있는 일 실시예이다.
프로세서(170)는 3D 초음파 센서를 통해, 특징점의 좌표값을 획득한다(S2210). 3D 초음파 센서를 통해, 획득되는 좌표값은 3D 좌표값으로 (X, Y, Z) 형식으로 획득될 수 있다.
프로세서(170)는 차량의 실내 모니터링을 위한, 카메라 렌즈의 초점거리값을 획득한다(S2220). 이러한 초점거리값은 상기 카메라 렌즈의 제조사로부터 제공받거나, 사용자로부터 입력받은 입력값을 통해 획득할 수 있다.
프로세서(170)는 3D 초음파 센서를 통해, 획득된 특징점 좌표값을 초점거리값을 이용하여, 이미지 좌표계의 특징점 좌표값으로 변환한다(S2230). 또는, 정규 이미지 좌표계의 특징점 좌표값으로 변환할 수 있다. 여기서 정규 이미지 좌표계의 특징점 좌표값은, 도 17과 달리, 3D 초음파 센서를 이용하였으므로, 렌즈 왜곡으로 인한 좌표값 보정이 불필요하다는 효과가 있다.
프로세서(170)는 차량의 실내 모니터링을 위한, 카메라 센서의 내부 파라미터를 획득한다(S2240).
프로세서(170)는 획득된 카메라 센서의 내부 파라미터를 이용하여, 픽셀 좌표계의 특징점 좌표값을 획득한다(S2250).
프로세서(170)는 픽셀 좌표계의 특징점 좌표값을 이용하여, 3D Depth를 생성한다(S2260). 프로세서(170)는 차량에 기설치된 실내 모니터링을 위한 장치에서 요구하는 3D Depth 이미지 해상도에 적합한 3D Depth를 생성할 수 있다. 3D Depth의 픽셀좌표는 3D 초음파 센서를 통해, 획득된 특징점 좌표값을 통해 생성되므로, 프로세서(170)는 이를 역으로 연산하여, 3D Depth의 픽셀좌표로부터 3D 초음파 센서를 통해, 획득된 특징점 좌표값을 알 수 있다.
프로세서(170)는 3D Depth에서의 픽셀좌표와 대응되는 3D 초음파 센서를 통해, 획득된 특징점 좌표값을 이용하여, 3D Depth 이미지를 생성한다(S2270). 상기 3D Depth 이미지는 Grey level을 가질 수 있다. 또한, 상기 3D Depth 이미지는 차량에 기설치된 실내 모니터링을 위한 장치와 호환될 수 있다.
전술한 본 명세서는, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 명세서의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 명세서의 등가적 범위 내에서의 모든 변경은 본 명세서의 범위에 포함된다.
또한, 이상에서 실시 예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 명세서를 한정하는 것이 아니며, 본 명세서에 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 명세서의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 3D 초음파 센서를 이용하여 특징점의 제1 좌표값을 획득하는 단계;
    차량의 실내환경을 모니터링하기 위한 카메라 센서의 초점거리를 획득하는 단계;
    상기 초점거리에 근거하여, 상기 제1 좌표값을 제2 좌표값으로 변환하는 단계; 및
    상기 카메라 센서의 내부 파라미터를 획득하고, 상기 카메라 센서의 내부 파라미터에 근거하여, 상기 제2 좌표값을 제3 좌표값으로 변환하는 단계;
    를 포함하며,
    상기 제1 좌표값은 3차원 좌표계에 위치하고, 상기 제2 좌표값 및 상기 제3 좌표값은 2차원 좌표계에 위치하는 차량의 실내환경 모니터링 방법.
  2. 제1항에 있어서,
    상기 제3 좌표값에 근거하여, 3D Depth를 생성하는 단계; 및
    상기 3D Depth를 이용하여, 3D Depth 이미지를 생성하는 단계;
    를 더 포함하는 차량의 실내환경 모니터링 방법.
  3. 제2항에 있어서,
    상기 3D Depth 이미지는
    상기 차량에 기설치된 실내환경을 모니터링하기 위한 장치에 호환되는 차량의 실내환경 모니터링 방법.
  4. 제2항에 있어서,
    상기 3D Depth는
    상기 차량에 기설치된 실내환경을 모니터링하기 위한 장치의 요구사항에 근거하여, 생성되는 차량의 실내환경 모니터링 방법.
  5. 제1항에 있어서,
    상기 제2 좌표값은
    이미지 좌표계(Image Coordinate System) 또는 정규 이미지 좌표계(Normalized Image Coordinate System)와 연관되는, 차량의 실내환경 모니터링 방법.
  6. 제1항에 있어서,
    상기 제3 좌표값은
    픽셀 좌표계(Pixel Image Coordinate System)와 연관되는, 차량의 실내환경 모니터링 방법.
  7. 제1항에 있어서,
    상기 3D 초음파 센서의 권장 온도범위를 획득하는 단계;
    온도센서를 통해, 상기 차량의 실내온도 측정값을 획득하는 단계; 및
    상기 차량의 실내온도 측정값이 상기 3D 초음파 센서의 권장 온도범위를 초과하는 경우, 상기 차량의 실내온도를 상기 3D 초음파 센서의 권장 온도범위로 조절하기 위한, 제어동작을 수행하는 단계;
    를 더 포함하는 차량의 실내환경 모니터링 방법.
  8. 제1항에 있어서,
    상기 3D 초음파 센서가 복수개인 경우, 상기 3D 초음파 센서의 그룹을 순차적으로 활성화(Enable)하며, 동일한 방향을 센싱하는 단계;
    를 더 포함하는 차량의 실내환경 모니터링 방법.
  9. 제1항에 있어서,
    상기 3D 초음파 센서가 복수개인 경우, 상기 3D 초음파 센서의 그룹을 사용자의 위치를 탐색하기 위해, 순차적으로 활성화(Enable)하고, 상기 사용자의 위치에 근거하여 상기 사용자를 센싱할 수 없는 3D 초음파 센서를 비활성화(Disable)로 설정하는 단계;
    를 더 포함하는 차량의 실내환경 모니터링 방법.
  10. 제9항에 있어서,
    도어의 열림동작 이후, 닫힘동작이 수행되었는지 여부를 인식하는 단계;
    를 더 포함하며,
    상기 도어의 열림동작 이후, 닫힘동작이 수행되는 경우, 상기 3D 초음파 센서를 활성화(Enable)하는 차량의 실내환경 모니터링 방법.
  11. 자율주행시스템에서 3D 초음파 센서를 통한 실내환경 모니터링 방법을 수행하는 차량에 있어서,
    3D 초음파 센서;
    카메라 센서;
    온도센서;
    메모리; 및
    상기 3D 초음파 센서, 상기 카메라 센서, 상기 온도센서 및 상기 메모리를 제어하는 프로세서; 를 포함하고,
    상기 프로세서는
    상기 3D 초음파 센서를 이용하여 특징점의 제1 좌표값을 획득하고,
    상기 차량의 실내환경을 모니터링하기 위한 상기 카메라 센서의 초점거리를 획득하며,
    상기 초점거리에 근거하여, 상기 제1 좌표값을 제2 좌표값으로 변환하고,
    상기 카메라 센서의 내부 파라미터를 획득하고, 상기 카메라 센서의 내부 파라미터에 근거하여, 상기 제2 좌표값을 제3 좌표값으로 변환하며,
    상기 제1 좌표값은 3차원 좌표계에 위치하고, 상기 제2 좌표값 및 상기 제3 좌표값은 2차원 좌표계에 위치하는 차량.
  12. 제11항에 있어서,
    상기 프로세서는
    상기 제3 좌표값에 근거하여, 3D Depth를 생성하고,
    상기 3D Depth를 이용하여, 3D Depth 이미지를 생성하는 차량.
  13. 제12항에 있어서,
    상기 3D Depth 이미지는
    상기 차량에 기설치된 실내환경을 모니터링하기 위한 장치와 호환되는 차량.
  14. 제12항에 있어서,
    상기 3D Depth는
    상기 차량에 기설치된 실내환경을 모니터링하기 위한 장치의 요구사항에 근거하여 생성되는 차량.
  15. 제11항에 있어서,
    상기 제2 좌표값은
    이미지 좌표계(Image Coordinate System) 또는 정규 이미지 좌표계(Normalized Image Coordinate System)와 연관되는, 차량.
  16. 제11항에 있어서,
    상기 제3 좌표값은
    픽셀 좌표계(Pixel Image Coordinate System)와 연관되는, 차량.
  17. 제11항에 있어서,
    상기 프로세서는
    상기 3D 초음파 센서의 권장 온도범위를 획득하고,
    상기 온도센서를 통해, 상기 차량의 실내온도 측정값을 획득하며,
    상기 차량의 실내온도 측정값이 상기 3D 초음파 센서의 권장 온도범위를 초과하는 경우, 상기 차량의 실내온도를 상기 3D 초음파 센서의 권장 온도범위로 조절하기 위한, 제어동작을 수행하는 차량.
  18. 제11항에 있어서,
    상기 프로세서는
    상기 3D 초음파 센서가 복수개인 경우, 상기 3D 초음파 센서의 그룹을 순차적으로 활성화(Enable)하며, 동일한 방향을 센싱하는 차량.
  19. 제11항에 있어서,
    상기 프로세서는
    상기 3D 초음파 센서가 복수개인 경우, 상기 3D 초음파 센서의 그룹을 사용자의 위치를 탐색하기 위해, 순차적으로 활성화(Enable)하고, 상기 사용자의 위치에 근거하여 상기 사용자를 센싱할 수 없는 3D 초음파 센서를 비활성화(Disable)로 설정하는 차량.
  20. 제19항에 있어서,
    상기 프로세서는
    도어의 열림동작 이후, 닫힘동작이 수행되었는지 여부를 인식하며,
    상기 도어의 열림동작 이후, 닫힘동작이 수행되는 경우, 상기 3D 초음파 센서를 활성화(Enable)하는 차량.
KR1020190125245A 2019-10-10 2019-10-10 자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치 KR20210042551A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190125245A KR20210042551A (ko) 2019-10-10 2019-10-10 자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190125245A KR20210042551A (ko) 2019-10-10 2019-10-10 자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
KR20210042551A true KR20210042551A (ko) 2021-04-20

Family

ID=75743346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190125245A KR20210042551A (ko) 2019-10-10 2019-10-10 자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치

Country Status (1)

Country Link
KR (1) KR20210042551A (ko)

Similar Documents

Publication Publication Date Title
KR102223135B1 (ko) 자율주행시스템에서 차량의 오류 판단방법 및 이를 위한 장치
KR102220950B1 (ko) 자율 주행 시스템에서 차량을 제어하기 위한 방법 및 장치
US20210331712A1 (en) Method and apparatus for responding to hacking on autonomous vehicle
US11364932B2 (en) Method for transmitting sensing information for remote driving in automated vehicle and highway system and apparatus therefor
KR102192142B1 (ko) 자율 주행 차량 제어 방법
US20210403051A1 (en) Method for controlling autonomous vehicle
US20200357285A1 (en) Apparatus and method for preventing incorrect boarding of autonomous driving vehicle
US20190392256A1 (en) Monitoring method and apparatus in the vehicle, and a 3d modeling unit for generating an object detection model therefor
US11435196B2 (en) Method and apparatus for managing lost property in shared autonomous vehicle
US20220118996A1 (en) Method and apparatus for controlling a vehicle in autonomous driving system
KR102213095B1 (ko) 자율 주행 차량 제어 방법
KR102112684B1 (ko) 자율주행시스템에서 원격운전을 위한 제어 정보를 전송하는 방법 및 이를 위한 장치
US11409403B2 (en) Control method and control device for in-vehicle infotainment
US20210331699A1 (en) Method for managing resources of vehicle in automated vehicle & highway systems and apparaus therefor
US11403942B2 (en) Remote driving method using another autonomous vehicle in automated vehicle and high systems
US20210331678A1 (en) Method of providing vehicle refuge information in disaster situation and apparatus therefor
US11532232B2 (en) Vehicle having dangerous situation notification function and control method thereof
KR20190096863A (ko) 차량용 네트워크 보안 방법, 이를 위한 방화벽 및 이를 기록한 컴퓨터 판독 가능한 기록매체
KR102135254B1 (ko) 차량 내 사용자 모니터링을 위한 배경 이미지 생성 방법 및 이를 위한 장치
US20200019170A1 (en) Method for controlling autonomous driving operation depending on noise and autonomous vehicle therefor
KR102179051B1 (ko) 자율 주행 차량과 그 인증 대행 방법
KR102183064B1 (ko) 자율 주행 시스템에서 차량을 제어하기 위한 방법 및 장치
KR20210050763A (ko) 자율주행시스템에서 센싱정보 동기화 방법
KR20210089469A (ko) 자율주행시스템에서 객체의 행동을 예측하여 차량을 제어하기 위한 방법 및 이를 위한 장치
KR20210042551A (ko) 자율주행시스템에서 3d 초음파 센서를 통한 차량의 실내환경 모니터링 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal