KR20210039748A - A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole - Google Patents

A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole Download PDF

Info

Publication number
KR20210039748A
KR20210039748A KR1020190122363A KR20190122363A KR20210039748A KR 20210039748 A KR20210039748 A KR 20210039748A KR 1020190122363 A KR1020190122363 A KR 1020190122363A KR 20190122363 A KR20190122363 A KR 20190122363A KR 20210039748 A KR20210039748 A KR 20210039748A
Authority
KR
South Korea
Prior art keywords
nuclear fuel
fuel assembly
flow path
flow hole
aircraft
Prior art date
Application number
KR1020190122363A
Other languages
Korean (ko)
Other versions
KR102268275B1 (en
Inventor
천주홍
김성수
김바름
박남규
Original Assignee
한전원자력연료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한전원자력연료 주식회사 filed Critical 한전원자력연료 주식회사
Priority to KR1020190122363A priority Critical patent/KR102268275B1/en
Publication of KR20210039748A publication Critical patent/KR20210039748A/en
Application granted granted Critical
Publication of KR102268275B1 publication Critical patent/KR102268275B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/33Supporting or hanging of elements in the bundle; Means forming part of the bundle for inserting it into, or removing it from, the core; Means for coupling adjacent bundles
    • G21C3/3305Lower nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/356Spacer grids being provided with fuel element supporting members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

The present invention relates to a bottom fixture of a nuclear fuel assembly forming a flow hole using an airfoil structure of an aircraft, and more specifically, to a bottom fixture of a nuclear fuel assembly forming a flow hole using an airfoil structure of an aircraft, which increases the efficiency of filtering foreign substances by configuring the shape of the flow hole in a grid pattern and minimizing the size of the flow hole and prevents the flow rate of cooling water from being lowered by forming a side cross-sectional shape of a grid frame constituting the grid pattern in an aircraft airfoil and preventing cooling water pressure drop. To this end, in a bottom fixture of a nuclear fuel assembly forming a plurality of passage holes, provided is a bottom fixture of a nuclear fuel assembly forming a flow hole using an airfoil structure of an aircraft, wherein the flow hole is formed in the grid pattern, and the side cross-sectional shape of the main grid frame constituting the grid pattern is a streamlined shape of an aircraft airfoil type, that is curved from the direction in which the cooling water is introduced and then formed sharply.

Description

항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체{A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole}{A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole}

본 발명은 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체에 관한 것으로서, 더욱 상세하게는 이물질 필터링 효율성을 높이면서도 냉각수 압력 강하 방지를 통해 냉각수 유속이 저하되는 것을 방지한 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체에 관한 것이다.The present invention relates to a lower end fixture of a nuclear fuel assembly in which a passage hole is formed using an aircraft airfoil structure, and more particularly, an aircraft airfoil that prevents a decrease in the flow rate of cooling water by preventing a drop in cooling water pressure while increasing foreign matter filtering efficiency. It relates to a lower end fixture of a nuclear fuel assembly using a structure to form a channel hole.

원자로는 핵분열 물질의 연쇄 핵분열반응을 인공적으로 제어하여 핵분열에서 발생되는 열에너지를 동력으로 사용하기 위한 장치이다.A nuclear reactor is a device for using thermal energy generated from nuclear fission as power by artificially controlling the chain fission reaction of fission materials.

원자로에서 사용되는 핵연료는 농축된 우라늄을 일정한 크기의 원통형 펠렛(pellet)으로 성형된 후에 다수의 펠렛들이 연료봉 내에 장입되어 제조되며, 이러한 다수의 연료봉들이 핵연료 집합체를 구성하여 원자로의 노심에 장전된 후에 핵반응을 통해 연소가 이루어진다.Nuclear fuel used in a nuclear reactor is manufactured by molding enriched uranium into cylindrical pellets of a certain size, and then loading a number of pellets into a fuel rod, and after these multiple fuel rods form a nuclear fuel assembly and are loaded into the core of the nuclear reactor. Combustion takes place through nuclear reactions.

도 1을 참고하면, 일반적으로 핵연료 집합체는 축방향으로 배치되는 다수의 연료봉과, 이 연료봉의 횡방향으로 마련되어 연료봉을 지지하게 되는 다수의 지지격자(30)와, 이 지지격자(30)와 고정되어 집합체의 골격을 구성하는 다수의 안내관(10) 및 지지격자(30)의 중심에 삽입되는 계측관(20)과, 안내관(10) 및 계측관(20)의 상하단을 각각 지지하게 되는 상단고정체(40) 및 하단고정체(50)로 이루어진다.Referring to FIG. 1, in general, a nuclear fuel assembly includes a plurality of fuel rods arranged in the axial direction, a plurality of support grids 30 provided in the transverse direction of the fuel rods to support the fuel rods, and the support grids 30 and fixed. To support the upper and lower ends of the guide tube 10 and the measurement tube 20 inserted in the center of the plurality of guide tubes 10 and the support grid 30 constituting the skeleton of the assembly, and the upper and lower ends of the guide tube 10 and the measurement tube 20, respectively. It consists of an upper fixing body 40 and a lower fixing body 50.

핵연료 집합체를 구성하는 연료봉은 대략 200개 이상으로 이루어지며, 각 연료봉에는 농축된 우라늄이 일정 크기의 펠렛으로 성형되어 장입된다.The fuel rods constituting the nuclear fuel assembly are made up of approximately 200 or more, and each fuel rod is charged by molding enriched uranium into pellets of a certain size.

상단고정체(40)와 하단고정체(50)는 안내관(10)의 상단과 하단을 각각 지지하기 위한 것으로, 상단고정체(40)는 핵연료 집합체의 하부를 통해 상부를 흐르는 냉각수의 수압에 의해 핵연료 집합체의 들림이 발생하는 것을 방지하도록 다수의 탄성체가 마련되어 핵연료 집합체의 상단부를 눌려서 고정하는 기능을 한다.The upper fixing body 40 and the lower fixing body 50 are for supporting the upper and lower ends of the guide pipe 10, respectively, and the upper fixing body 40 is applied to the water pressure of the coolant flowing through the upper part through the lower part of the nuclear fuel assembly. As a result, a plurality of elastic bodies are provided to prevent the nuclear fuel assembly from being lifted, and function to press and fix the upper end of the nuclear fuel assembly.

하단고정체(50)는 안내관(10)의 하단부를 고정 지지하고, 안내관(10)과 계측관(20)이 삽입되는 홀 및 냉각수가 공급되는 다수의 유로홀을 형성한다.The lower end fixture 50 fixes the lower end of the guide tube 10 and forms a hole into which the guide tube 10 and the measurement tube 20 are inserted, and a plurality of flow path holes through which cooling water is supplied.

도 2a 및 도 2b를 참조하여 상기 하단고정체(50)에 대하여 상세하게 살펴보도록 한다.The lower fixing body 50 will be described in detail with reference to FIGS. 2A and 2B.

하단고정체(50)에는 안내관(10) 및 계측관(20)이 각각 연결되는 안내홀(51) 및 계측홀(52)과 냉각수 통과 구멍인 유로홀(53)이 형성된다.A guide hole 51 and a measurement hole 52 to which the guide tube 10 and the measurement tube 20 are connected, respectively, and a flow path hole 53 that is a cooling water passage hole are formed in the lower fixing body 50.

이와 같은 구성에 의해 냉각수는 상기 유로홀(53)을 통해 연료봉 영역으로 유입되어 연료봉들 사이를 통과하면서 연료봉에서 발생되는 열을 냉각시킨다.With this configuration, the coolant flows into the fuel rod region through the flow path hole 53 and cools the heat generated from the fuel rod while passing between the fuel rods.

이때, 냉각수가 유로홀(53)을 통해 연료봉 영역으로 유입될 때, 냉각수 중에 잔존하는 이물질들 역시 냉각수와 동일한 경로로 연료봉 영역으로 함께 들어오게 된다.At this time, when the coolant flows into the fuel rod region through the passage hole 53, foreign substances remaining in the cooling water also enter the fuel rod region through the same path as the coolant.

즉, 원자로 가동 중에 냉각수와 함께 흐르는 여러 형태의 이물질은 유로홀(53)을 통과하여 핵연료집합체의 연료봉이 위치한 영역으로 유입되고, 연료봉과 연료봉 사이 또는 핵연료집합체 최하부 지지격자와 연료봉 사이에 끼일 수 있는 것이다.That is, various types of foreign matter flowing with the coolant during the operation of the reactor pass through the flow path hole 53 and flow into the area where the fuel rod of the nuclear fuel assembly is located, and can be caught between the fuel rod and the fuel rod or between the lowermost supporting grid of the nuclear fuel assembly and the fuel rod. will be.

크기가 비교적 큰 이물질이 유로홀(53)을 통해 냉각수와 같이 연료봉 사이로 유입되면, 이물질은 인접한 핵연료봉 피복관에 진동접촉하고, 그로 인해 핵연료봉 피복관을 기계적으로 마모시켜 상기 피복관을 손상시키게 된다.When a relatively large-sized foreign material flows into the fuel rods like coolant through the flow path hole 53, the foreign matter vibrates to the adjacent nuclear fuel rod cladding tube, thereby mechanically abrasions the nuclear fuel rod cladding tube, thereby damaging the cladding tube.

이와 같이 핵연료봉에 손상을 입힐 수 있는 이물질의 종류는 절삭가공 후의 금속조각, 용접시 발생되는 찌꺼기, 볼트, 넛트, 못, 쇠톱조각 등 매우 다양하다.As such, the types of foreign substances that can damage the nuclear fuel rod are very diverse, such as metal pieces after cutting, debris generated during welding, bolts, nuts, nails, hacksaw pieces, and so on.

핵연료봉의 피복관이 손상되면 연료봉내 핵물질의 핵반응으로 인하여 생성된 핵반응 생성물질들이 연료봉 피복관의 밖으로 유출되어 냉각수를 방사능 물질들로 오염시키고, 오염된 냉각수는 원자력 발전소의 일차 냉각 계통을 순환하면서 일차냉각수 전체를 오염시킨다.If the cladding tube of the nuclear fuel rod is damaged, the nuclear reaction-generated material generated by the nuclear reaction of the nuclear material in the fuel rod leaks out of the fuel rod cladding tube and contaminates the cooling water with radioactive materials, and the contaminated coolant circulates through the primary cooling system of the nuclear power plant. Contaminates the whole.

이러한 문제점을 방지하기 위해 유로홀(53)은 원자로에서 발생하는 이물질을 여과하기 위해 그물망 형태 등 다양한 모양으로 설계가 되고 있는 실정이다.In order to prevent this problem, the flow path 53 is designed in various shapes such as a mesh shape to filter foreign substances generated in the nuclear reactor.

하지만, 종래에는 이물질 필터링 효율을 높이기 위한 유로홀(53) 설계는 냉각수의 압력이 강하되어 냉각수 흐름이 원활하게 이루어지지 않고, 냉각수의 압력강하를 방지하기 위한 유로홀(53) 설계는 이물질 필터링 효율이 떨어지는 문제가 있다.However, conventionally, the design of the flow path hole 53 to increase the foreign matter filtering efficiency does not facilitate the flow of the cooling water due to a drop in the pressure of the cooling water, and the design of the flow path hole 53 to prevent the pressure drop of the cooling water is effective for filtering foreign matter. There is a problem with this falling.

대한민국 공개번호 특2000-0061665호Republic of Korea Publication No. 2000-0061665

본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유로홀의 크기를 최소화하여 이물질 필터링에 대한 효율성을 극대화하면서도, 하단고정체의 유로홀을 통한 냉각수의 압력 강하를 방지하여 냉각수 흐름이 원활하게 이루어지도록 한 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체를 제공하고자 한 것이다, The present invention was conceived to solve the above problems, and an object of the present invention is to minimize the size of the flow path hole to maximize the efficiency of filtering foreign substances, while preventing the pressure drop of the cooling water through the flow path hole of the lower stationary body. It is intended to provide a lower end fixture of a nuclear fuel assembly that forms a channel hole by utilizing an aircraft airfoil structure that allows the flow to flow smoothly.

본 발명은 상기한 목적을 달성하기 위하여, 복수의 유로홀을 형성하는 핵연료집합체의 하단고정체에 있어서, 상기 유로홀은 격자무늬로 구성되며, 상기 격자무늬를 구성하는 메인격자프레임의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 갖는 핵연료 집합체의 하단고정체를 제공한다.In order to achieve the above object, the present invention is a lower end fixture of a nuclear fuel assembly forming a plurality of flow path holes, wherein the flow path hole is composed of a grid pattern, the side cross-sectional shape of the main grid frame constituting the grid pattern. Provides a lower end fixture of a nuclear fuel assembly having an aircraft airfoil structure, characterized in that it is formed in a curved shape from the direction in which the cooling water flows and is a sharply formed aircraft airfoil type streamlined.

이때, 상기 메인격자프레임을 통해 구성된 유로홀은 서브격자프레임을 통해 격자무늬로 분할구성되고, 상기 서브격자프레임의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형 타입의 유선형(流線型)인 것이 바람직하다.At this time, the channel hole formed through the main grid frame is divided into a grid pattern through the sub grid frame, and the side cross-sectional shape of the sub grid frame is formed in a curved shape from the direction in which the coolant flows, and then a sharply formed aircraft airfoil. It is preferably a streamlined type.

이때, 상기 서브격자프레임이 교차되는 지점에는 이물질필터링부재가 추가로 구성되며, 상기 이물질필터링부재의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형 타입의 유선형(流線型)인 것이 바람직하다.At this time, a foreign matter filtering member is additionally configured at a point where the sub-grid frame intersects, and the side cross-sectional shape of the foreign matter filtering member is a streamlined aircraft airfoil type that is formed in a sharp shape while being curved from the direction in which the coolant is introduced ( It is preferable that it is a flow line type).

본 발명에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체는 다음과 같은 효과가 있다.The lower end fixture of the nuclear fuel assembly in which the flow path hole is formed using the aircraft airfoil structure according to the present invention has the following effects.

첫째, 유로홀을 격자로 설계하여 유로홀 크기를 최소화하되, 그 격자를 구성하는 격자 프레임의 측단면은 항공기 익형의 단면을 적용하였다.First, the size of the passage hole was minimized by designing the passage hole as a grid, and the cross-section of an aircraft airfoil was applied as the side cross-section of the grid frame constituting the grid.

이에 따라, 격자 프레임이 구성하는 유로홀을 통과하는 냉각수의 압력이 강하되는 일은 발생하지 않으므로 냉각수 흐름이 원활하게 이루어질 수 있으며, 격자 형태로 구성된 유로홀로 인해 이물질 필터링 효율을 높일 수 있는 효과가 있다.Accordingly, since the pressure of the cooling water passing through the flow path hole constituting the lattice frame does not drop, the cooling water flow can be smoothly performed, and there is an effect of increasing the efficiency of filtering foreign substances due to the flow path hole formed in the grid shape.

둘째, 유로홀을 교차하여 구획하는 내부 격자 프레임의 교차 지점에, 항공기 익형의 단면을 갖는 이물질필터링부재를 추가로 구성함으로써, 냉각수 압력 강하 방지는 그대로 유지하면서도 이물질 필터링 효율을 더욱 극대화할 수 있는 효과가 있다. Second, by additionally configuring a foreign matter filtering member having a cross section of an aircraft airfoil at the intersection of the internal lattice frame that intersects the flow path hole, it is possible to further maximize the foreign matter filtering efficiency while maintaining the cooling water pressure drop as it is. There is.

도 1은 일반적인 핵연료집합체를 나타낸 도면
도 2a는 종래 기술에 따른 핵연료집합체의 하단고정체를 나타낸 사시도
도 2b는 종래 기술에 따른 핵연료집합체의 하단고정체를 나타낸 평면도
도 3은 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체를 나타낸 평면도
도 4는 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체의 요부를 나타낸 사시도
도 5는 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체의 요부를 나타낸 저면사시도
도 6은 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체를 나타낸 저면도
도 7은 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체를 나타낸 요부단면도.
1 is a view showing a general nuclear fuel assembly
Figure 2a is a perspective view showing a lower end fixture of a nuclear fuel assembly according to the prior art
2B is a plan view showing the lower end of the nuclear fuel assembly according to the prior art.
3 is a plan view showing the lower end of the nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure according to a preferred embodiment of the present invention.
4 is a perspective view showing a main part of a lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure according to a preferred embodiment of the present invention.
5 is a bottom perspective view showing the main part of the lower end fixture of the nuclear fuel assembly in which the flow path hole is formed using the aircraft airfoil structure according to a preferred embodiment of the present invention
6 is a bottom view showing the lower end of the nuclear fuel assembly in which the flow path hole is formed using the aircraft airfoil structure according to a preferred embodiment of the present invention
7 is a cross-sectional view of a main part showing a lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure according to a preferred embodiment of the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms and words used in the present specification and claims are not limited to the usual or dictionary meanings, and the inventor is based on the principle that the concept of terms can be appropriately defined in order to describe his or her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention.

이하, 첨부된 도 3 내지 도 7을 참조하여 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체(이하, '하단고정체'라 함)에 대하여 설명하도록 한다.Hereinafter, with reference to the accompanying Figures 3 to 7 with respect to the lower end fixture (hereinafter referred to as'lower fixture') of the nuclear fuel assembly in which the flow path hole is formed using the aircraft airfoil structure according to a preferred embodiment of the present invention. Let me explain.

하단고정체(100)는 유로홀(200)의 크기를 최소화하여 이물질 필터링 효율을 높이면서도, 냉각수 통과시 냉각수 압력이 강하되는 것을 방지하여 냉각수 흐름이 원활하게 이루어질 수 있도록 하였다.The lower fixing body 100 minimizes the size of the flow path hole 200 to increase the efficiency of filtering foreign substances, and prevents a drop in the cooling water pressure when the cooling water passes, so that the cooling water flows smoothly.

이에 따라, 냉각수 흐름 및 이물질 필터링 효율성을 모두 높일 수 있다.Accordingly, both cooling water flow and foreign matter filtering efficiency can be improved.

하단고정체(100)는 냉각수가 흘러 통과하는 유로홀(200)을 형성한다.The lower fixed body 100 forms a flow path hole 200 through which cooling water flows.

이때, 유로홀(200)은 도 3에 도시된 바와 같이 격자무늬로 형성된다.At this time, the flow path hole 200 is formed in a grid pattern as shown in FIG. 3.

즉, 유로판 상에 메인격자프레임(300)이 격자로 구성되어 사각 형태의 유로홀(200)을 형성하는 것이다.That is, the main grid frame 300 is formed in a grid on the flow path plate to form a rectangular flow path hole 200.

이와 같이 유로홀(200)이 격자무늬 형태로 구성됨에 따라, 메인격자프레임(300)의 두께를 크게 하여 냉각수가 통과되는 유로홀(200)의 크기를 최소화할 수 있으며, 이로 인해, 이물질 필터링 효율을 극대화할 수 있다.As the flow path hole 200 is configured in a grid pattern as described above, the size of the flow path hole 200 through which the cooling water passes can be minimized by increasing the thickness of the main grid frame 300, and thus, foreign matter filtering efficiency Can be maximized.

한편, 유로홀(200)은 이물질 필터링을 극대화해야함은 물론, 유로홀(200)을 통과하는 냉각수 흐름시 압력이 강하되는 것을 방지해야하는바, 상기 유로홀(200)을 형성하는 메인격자프레임(300)은 항공기 날개 형태의 유선형(流線型)으로 형성된다.On the other hand, the flow path hole 200 should not only maximize filtering of foreign matter, but also prevent the pressure from dropping when the coolant flows through the flow path hole 200, the main grid frame 300 forming the flow path hole 200 ) Is formed in a streamlined shape in the form of an aircraft wing.

정확하게는, 상기 메인격자프레임(300)의 측단면 형태는 도 4 및 도 7에 도시된 바와 같이, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기의 익형(翼型)으로 형성된 것이다.To be precise, the side cross-sectional shape of the main grid frame 300 is formed in a curved shape from the direction in which the coolant flows, and then formed into a sharply shaped airfoil of an aircraft, as shown in FIGS. 4 and 7. .

즉, 하단고정체(100)가 격자무늬 구성으로 인해 유로홀(200)의 크기가 작게 형성되더라도, 냉각수는 유로홀(200) 통과시 메인격자프레임(300)을 기준으로 양측에서 각각 유입되다가 메인격자프레임(300)의 곡선형을 따라 가이드되면서 메인격자프레임(300)의 뾰족한 부위에서 만나 연료봉으로 유입되므로, 냉각수 유입시 압력이 강하되는 현상은 발생하지 않는다.That is, even if the size of the flow path hole 200 is small due to the grid pattern configuration of the lower fixing body 100, the cooling water flows in from both sides of the main grid frame 300 when passing through the flow path hole 200, and then the main While being guided along the curved shape of the grid frame 300, it meets at the pointed portion of the main grid frame 300 and flows into the fuel rod, so that a pressure drop does not occur when the coolant is introduced.

이에 따라, 냉각수는 유로홀(200)을 통해 유속 저하 없이 원활하게 유입이 되므로, 냉각수 압력 강하방지 효율과 이물질 필터링 효율성을 모두 높일 수 있다.Accordingly, since the coolant flows smoothly through the flow path 200 without lowering the flow rate, both the coolant pressure drop prevention efficiency and the foreign matter filtering efficiency can be improved.

한편, 상기 유로홀(200)의 크기를 더욱 최소화하여 이물질 필터링 효율성을 더욱 극대화시킬 수 있다.On the other hand, by further minimizing the size of the flow path hole 200, it is possible to further maximize the efficiency of filtering foreign substances.

이를 위해, 도 3에 도시된 바와 같이, 메인격자프레임(300)에 의해 형성된 유로홀(200)에 격자무늬를 추가로 구성하는 것이다.To this end, as shown in FIG. 3, a grid pattern is additionally configured in the flow path hole 200 formed by the main grid frame 300.

즉, 유로홀(200)을 가로질러 교차하는 서브격자프레임(400)을 통해 유로홀(200)을 분할 시키는 것이다.That is, the flow path hole 200 is divided through the sub-grid frame 400 crossing the flow path hole 200.

이에 따라 유로홀(200)의 크기는 더욱 작아져, 이물질 필터링 효율을 극대화시킬 수 있다.Accordingly, the size of the flow path hole 200 is further reduced, thereby maximizing the efficiency of filtering foreign substances.

이때, 유로홀(200)의 크기가 작아지더라도, 냉각수의 압력이 강하되는 것을 방지해야하는바, 상기 서브격자프레임(400)의 형태 역시 항공기 익형으로 형성된다.At this time, even if the size of the flow path hole 200 is reduced, the pressure of the cooling water should be prevented from dropping, and the shape of the sub-grid frame 400 is also formed in an aircraft airfoil shape.

즉, 유로홀(200)을 십자(十字)로 가로지르는 서브격자프레임(400)의 측단면 형태 역시, 도 7에 도시된 바와 같이, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기의 익형(翼型)으로 형성된 것이다. That is, the shape of the side cross-sectional shape of the sub-grid frame 400 crossing the flow path hole 200 with a cross is also formed in a curved shape from the direction in which the cooling water flows, and then formed sharply, as shown in FIG. It is formed by the airfoil of

이에 따라, 서브격자프레임(400)을 통해 유로홀(200)이 추가로 분할 구성되도라도, 냉각수는 분할된 유로홀(200) 통과시 서브격자프레임(400)을 기준으로 양측에서 각각 유입되다가 서브격자프레임(400)의 곡선형을 따라 가이드되면서 서브격자프레임(400)의 뾰족한 부위에서 만나 연료봉으로 유입되므로, 냉각수 유입시 압력이 강하되는 현상은 발생하지 않는다.Accordingly, even if the flow path hole 200 is additionally divided through the sub-grid frame 400, the cooling water flows in from both sides of the sub-grid frame 400 when passing through the divided flow path hole 200, and then sub- While being guided along the curved shape of the grid frame 400, it meets at the pointed portion of the sub-grid frame 400 and flows into the fuel rod, so that a pressure drop does not occur when the coolant is introduced.

이에 따라, 냉각수는 유로홀(200)을 통해 유속 저하 없이 원활하게 유입이 되므로, 냉각수 압력 강하방지 효율과 이물질 필터링 효율성을 모두 높일 수 있다.Accordingly, since the coolant flows smoothly through the flow path 200 without lowering the flow rate, both the coolant pressure drop prevention efficiency and the foreign matter filtering efficiency can be improved.

또한, 상기 서브격자프레임(400)이 교차되는 지점에는 이물질필터링부재(500)가 추가로 구성될 수 있다.In addition, a foreign matter filtering member 500 may be additionally configured at a point where the sub-grid frame 400 intersects.

이물질필터링부재(500) 역시 유로홀(200)의 크기를 줄여, 이물질 필터링 효율을 높이기 위한 구성이다.The foreign matter filtering member 500 is also configured to increase the foreign matter filtering efficiency by reducing the size of the flow path hole 200.

이때, 이물질필터링부재(500)는 서브격자프레임(400)이 교차되는 지점에 설치되되, 그의 크기는 가변될 수 있도록 설계될 수 있다.At this time, the foreign matter filtering member 500 is installed at a point where the sub-grid frame 400 intersects, and the size thereof may be designed to be variable.

상기 이물질필터링부재(500)의 구성으로 인해, 유로홀(200)의 크기가 줄더라도 냉각수 흐름시 압력 강하가 발생하지 않도록 해야하는바, 상기 이물질필터링부재(500)의 측단면 형태는 항공기의 익형으로 형성된다.Due to the configuration of the foreign matter filtering member 500, even if the size of the flow path hole 200 is reduced, a pressure drop should not occur when the coolant flows. The side cross-sectional shape of the foreign matter filtering member 500 is an airfoil shape of an aircraft. Is formed.

즉, 이물질필터링부재(500)의 측단면 형태는 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기의 익형(翼型)으로 형성된 것이다.That is, the side cross-sectional shape of the foreign matter filtering member 500 is formed in a curved shape from the direction in which the coolant flows in, and then formed into a sharply shaped airfoil shape of an aircraft.

이때, 상기 이물질필터링부재(500)는 서브격자프레임(400)의 교차 지점에 설치되므로, 사방을 향해 유선형으로 제공된다.At this time, since the foreign matter filtering member 500 is installed at the intersection of the sub-grid frame 400, it is provided in a streamlined shape toward all directions.

이에 따라, 이물질필터링부재(500)의 곡선부위는 도 5 및 도 6에 도시된 바와 같이 저면에서 봤을 때 원형으로 형성된다.Accordingly, the curved portion of the foreign matter filtering member 500 is formed in a circular shape when viewed from the bottom as shown in FIGS. 5 and 6.

이와 같은 이물질필터링부재(500)의 전체적인 형상은 흡사 미사일과 같은 유선형으로 제공된다.The overall shape of the foreign matter filtering member 500 is provided in a streamlined shape similar to that of a missile.

이와 같이 구성된 유로홀(200)은 이중(二重)의 격자무늬와 이물질필터링부재(500)의 구성으로 인해 크기가 최소화될 수 있다.The size of the flow path hole 200 configured as described above may be minimized due to the configuration of the double grid pattern and the foreign matter filtering member 500.

또한, 격자무늬를 형성하는 프레임(300,400)의 측단면 형태는 냉각수 유입방향으로 유선형으로 형성됨에 따라, 냉각수 유입시 압력이 강하되는 것을 방지할 수 있다.In addition, since the side cross-sectional shape of the frames 300 and 400 forming the grid pattern is formed in a streamlined shape in the cooling water inflow direction, it is possible to prevent a drop in pressure when the cooling water is introduced.

이러한 구성으로 인해, 유로홀(200)을 통해 유입되는 냉각수는 도 7에 도시된 바와 같이 격자프레임(300,400)의 곡선부위를 따라 유입된 후 격자프레임(300,400)의 뾰족한 부위에서 만나 연료봉으로 흘러나가는 유체 흐름을 통해, 항공기 날개의 기체가 압력 강하 없이 지나가는 것과 동일하게 압력 강하가 방지되므로 냉각수 유속은 저하되지 않으며, 촘촘한 유로홀(200) 구성으로 인해 이물질 필터링 효율을 극대화시킬 수 있다.Due to this configuration, the coolant flowing through the flow path 200 is introduced along the curved portions of the grid frames 300 and 400 as shown in FIG. 7 and then meets at the pointed portions of the grid frames 300 and 400 and flows out to the fuel rod. Through the fluid flow, the pressure drop is prevented in the same way that the gas of the aircraft wing passes without the pressure drop, so the coolant flow rate is not lowered, and the foreign matter filtering efficiency can be maximized due to the structure of the dense flow path hole 200.

지금까지 설명한 바와 같이, 본 발명에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체는 유로홀을 격자무늬로 구성하되 격자무늬를 구성하는 프레임의 측단면 형태를 항공기의 날개 형태로 적용하였다.As described so far, the lower stationary body of the nuclear fuel assembly in which the flow path hole is formed using the airfoil structure of the aircraft according to the present invention comprises the flow path hole in a grid pattern, but the side cross-sectional shape of the frame constituting the grid pattern is used as the wing of the aircraft. It was applied in the form.

이에 따라, 냉각수 유속은 그대로 유지하면서도 이물질 필터링 효율을 극대화할 수 있다.Accordingly, it is possible to maximize the efficiency of filtering foreign matter while maintaining the cooling water flow rate as it is.

이상에서 본 발명은 기재된 구체예에 대하여 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정은 첨부된 특허 청구범위에 속함은 당연한 것이다.In the above, the present invention has been described in detail with respect to the described embodiments, but it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention, and it is natural that such modifications and modifications belong to the appended claims.

100 : 하단고정체 200 : 유로홀
300 : 메인격자프레임 400 : 서브격자프레임
500 : 이물질필터링부재
100: lower fixed body 200: euro hole
300: main grid frame 400: sub grid frame
500: foreign matter filtering member

Claims (3)

복수의 유로홀을 형성하는 핵연료집합체의 하단고정체에 있어서,
상기 유로홀은 격자무늬로 구성되며,
상기 격자무늬를 구성하는 메인격자프레임의 측단면 형태는,
냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체.
In the lower end fixture of the nuclear fuel assembly forming a plurality of flow path holes,
The channel hole is composed of a grid pattern,
The side cross-sectional shape of the main grid frame constituting the grid pattern,
The lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure, characterized in that it is curved from the direction in which the coolant flows in and is a sharply formed aircraft airfoil type.
제 1항에 있어서,
상기 메인격자프레임을 통해 구성된 유로홀은 서브격자프레임을 통해 격자무늬로 분할구성되고,
상기 서브격자프레임의 측단면 형태는,
냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체.
The method of claim 1,
The channel hole configured through the main grid frame is divided into a grid pattern through the sub grid frame,
The side cross-sectional shape of the sub-grid frame,
The lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure, characterized in that it is a streamlined airfoil type that is formed in a curved shape from the direction in which the coolant flows in.
제 2항에 있어서,
상기 서브격자프레임이 교차되는 지점에는 이물질필터링부재가 추가로 구성되며, 상기 이물질필터링부재의 측단면 형태는,
냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체.



The method of claim 2,
A foreign matter filtering member is additionally configured at a point where the sub-grid frame intersects, and a side cross-sectional shape of the foreign matter filtering member,
The lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure, characterized in that it is a streamlined airfoil type that is formed in a curved shape from the direction in which the coolant flows in.



KR1020190122363A 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole KR102268275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190122363A KR102268275B1 (en) 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190122363A KR102268275B1 (en) 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole

Publications (2)

Publication Number Publication Date
KR20210039748A true KR20210039748A (en) 2021-04-12
KR102268275B1 KR102268275B1 (en) 2021-06-22

Family

ID=75440131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190122363A KR102268275B1 (en) 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole

Country Status (1)

Country Link
KR (1) KR102268275B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295177A (en) * 2022-07-07 2022-11-04 中国核动力研究设计院 Nuclear fuel assembly lower pipe seat based on filter rod structure, filter assembly and application
EP4155520A1 (en) * 2021-09-24 2023-03-29 Hamilton Sundstrand Corporation Last chance screen for aircraft fuel system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218673A (en) * 1994-01-31 1995-08-18 Toshiba Corp Fuel spacer
KR20000061665A (en) 1999-03-30 2000-10-25 임창생 Piled Filter for Protecting Debris in Nuclear Fuel Assembly Lower End Fitting
KR101851181B1 (en) * 2017-01-16 2018-06-05 한전원자력연료 주식회사 Bottom nozzle including filtering device for nuclear fuel assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218673A (en) * 1994-01-31 1995-08-18 Toshiba Corp Fuel spacer
KR20000061665A (en) 1999-03-30 2000-10-25 임창생 Piled Filter for Protecting Debris in Nuclear Fuel Assembly Lower End Fitting
KR101851181B1 (en) * 2017-01-16 2018-06-05 한전원자력연료 주식회사 Bottom nozzle including filtering device for nuclear fuel assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155520A1 (en) * 2021-09-24 2023-03-29 Hamilton Sundstrand Corporation Last chance screen for aircraft fuel system
US11702989B2 (en) 2021-09-24 2023-07-18 Hamilton Sundstrand Corporation Last chance screen for aircraft fuel system
CN115295177A (en) * 2022-07-07 2022-11-04 中国核动力研究设计院 Nuclear fuel assembly lower pipe seat based on filter rod structure, filter assembly and application
CN115295177B (en) * 2022-07-07 2024-03-19 中国核动力研究设计院 Nuclear fuel assembly lower tube seat based on filter rod structure, filter assembly and application

Also Published As

Publication number Publication date
KR102268275B1 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
KR100887054B1 (en) Reduced Pressure Drop Debris Filter Bottom Nozzle For A Fuel Assembly Of A Nuclear Reactor
KR940004770B1 (en) Nuclear fuel assemlby including a debris trap
SE510816C2 (en) Sprayer and fuel cartridge for a nuclear reactor
JPH02287290A (en) Lower end nozzle of fuel assembly with particle holder and fuel assembly with the same end nozzle
KR20210039748A (en) A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole
KR100285032B1 (en) Low Pressure Drop spacers used in fuel assemblies
KR102413698B1 (en) A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole
KR102162012B1 (en) A bottom nozzle of Nuclear Fuel Assembly formed flow hole by utilizing a layered Aircraft Airfoil Structure
US11075014B2 (en) Filter zones with different filtering efficiencies for a fuel assembly of a nuclear water reactor
KR101851181B1 (en) Bottom nozzle including filtering device for nuclear fuel assembly
KR101851184B1 (en) Bottom nozzle providing improved filtering capability for nuclear fuel assembly
KR102162013B1 (en) A bottom nozzle of Nuclear Fuel Assembly formed spiral type flow hole
KR100927133B1 (en) Spacer Grid with Tubular Dimple for The Debris Filtering
KR100314578B1 (en) Insertion Filter for Protecting Debris in Nuclear Fuel Assembly Lower End Fitting
KR102656311B1 (en) fuel assembly
WO2017160179A1 (en) Nuclear reactor fuel assembly
CN109863564B (en) Fuel assembly
KR20140019924A (en) Spacer grid of a nuclear fuel assembly to prevent flow-induced vibration
KR100918486B1 (en) Spacer Grid with Tubular Dimple for The Debris Filtering
JP2001141866A (en) Fuel assembly
EP1551034B1 (en) Axially segregated part-length fuel rods in a reactor fuel bundle
KR101453396B1 (en) Protective grid of a nuclear fuel assembly to prevent resonant vibration by flow-induced vibration in high frequencies
KR102656310B1 (en) fuel assembly
KR101141295B1 (en) Nuclear fuel rod having support structure
JP2003121579A (en) Fuel support metal fittings

Legal Events

Date Code Title Description
GRNT Written decision to grant