KR20210038805A - Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same - Google Patents

Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same Download PDF

Info

Publication number
KR20210038805A
KR20210038805A KR1020190121127A KR20190121127A KR20210038805A KR 20210038805 A KR20210038805 A KR 20210038805A KR 1020190121127 A KR1020190121127 A KR 1020190121127A KR 20190121127 A KR20190121127 A KR 20190121127A KR 20210038805 A KR20210038805 A KR 20210038805A
Authority
KR
South Korea
Prior art keywords
nucleic acid
acid sequence
sequence encoding
methylobacterium
reductase
Prior art date
Application number
KR1020190121127A
Other languages
Korean (ko)
Other versions
KR102346757B1 (en
Inventor
김현수
서교연
조숙형
연영주
이진원
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020190121127A priority Critical patent/KR102346757B1/en
Publication of KR20210038805A publication Critical patent/KR20210038805A/en
Application granted granted Critical
Publication of KR102346757B1 publication Critical patent/KR102346757B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01029Glycerone kinase (2.7.1.29), i.e. dihydroxyacetone kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y404/00Carbon-sulfur lyases (4.4)
    • C12Y404/01Carbon-sulfur lyases (4.4.1)
    • C12Y404/01005Lactoylglutathione lyase (4.4.1.5)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to methylotrophic bacteria with enhanced 1,2-propylene glycol (propanediol; PDO) productivity and to a 1,2-PDO production method using the same. As a result of constructing a 1,2-propylene glycol (propanediol; PDO) biosynthetic pathway by introducing a foreign gene into Methylobacterium extorquens, the 1,2-PDO is produced, thereby effectively used in the production of 1,2-PDO.

Description

1,2-프로필렌글라이콜 생산성이 증강된 메틸영양세균 및 이를 이용한 1,2-프로필렌글라이콜 생산방법{Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same}Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the methylotroph with enhanced 1,2-propylene glycol productivity the same}

본 발명은 1,2-프로필렌글라이콜(propanediol; PDO) 생산성이 증강된 메틸영양세균 및 이를 이용한 1,2- PDO 생산방법에 관한 것으로서, 더욱 상세하게는 자체적으로 1,2-프로필렌글라이콜을 생산하지 못하는 메틸영양세균에 생합성 경로를 구축하여 메탄올을 탄소원으로 하여 1,2-프로필렌글라이콜을 생산하는 방법에 관한 것이다.The present invention relates to a methyl nutrient bacterium with enhanced productivity of 1,2-propylene glycol (PDO) and a method for producing 1,2-PDO using the same, and in more detail, 1,2-propylene glycol by itself The present invention relates to a method for producing 1,2-propylene glycol using methanol as a carbon source by establishing a biosynthetic pathway in methyl nutrient bacteria that cannot produce Cole.

1,2-프로필렌글라이콜(propanediol; PDO)은 동결방지, 폴리에스테르 레진(polyester resin), 약제(pharmaceuticals), 화장품(cosmetics), 세제 (detergent) 등 다양한 분야의 구성 요소(building block)로 이용되는 물질이다. 이러한 높은 활용가능성으로 인해 미국에서만 연간 1조 lb 이상 판매되며 전세계적으로 수요는 3조 lb/yr 이상으로 추정된다.1,2-Propanediol (PDO) is a building block in various fields such as antifreeze, polyester resin, pharmaceuticals, cosmetics, detergent, etc. It is the material used. Due to this high availability, over 1 trillion lbs per year are sold in the US alone, and demand is estimated at over 3 trillion lbs/yr worldwide.

한편, 대부분의 1,2-PDO는 석유화학공정을 통해서 생산된다. 수증기 분해(Steam cracking) 생산물인 프로필렌(propylene)이 프로필렌 옥사이드(propylene oxide)로 전환되고 가수분해를 거쳐 최종적으로 1,2-PDO를 생산하기까지 유해한 중간물질과 부산물이 생산된다. 이러한 공정을 보다 지속가능하고 친환경적인 바이오 공정으로 대체하기 위해 다양한 미생물을 이용한 1,2-PDO 생산 시도가 이루어졌다.Meanwhile, most 1,2-PDOs are produced through petrochemical processes. Propylene, a product of steam cracking, is converted to propylene oxide, which is hydrolyzed to produce 1,2-PDO, and harmful intermediates and by-products are produced. In order to replace this process with a more sustainable and eco-friendly bio process, attempts have been made to produce 1,2-PDO using various microorganisms.

대표적인 예로는 대장균(Escherichia coli), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 사카로아미스 세레비지애(Saccharomyces cerevisiae), 클로스트리디움 써모사카롤리티쿰(Clostridium thermosaccharolyticum) 등이 있고 대부분 글루코스(glucose), 람노스(rhamnose), 프럭토스(fructose)와 같은 당(sugar)이나 글리세롤(glycerol)을 기질로 이용하였다.Representative examples include Escherichia coli , Corynebacterium glutamicum , Saccharomyces cerevisiae , Clostridium thermosaccharolyticum , and most of them are glucose. ), rhamnose, fructose, such as sugar or glycerol was used as a substrate.

당은 그 가격이 계속 상승하고 있으며 식량문제를 야기시킨다는 단점으로 당을 대체할 수 있는 원료에 대한 요구와 연구가 활발하게 이루어지고 있다. 메탄올은 메탄이 주성분인 셰일가스나 바이오 가스에서 합성 가능한 물질로 이전부터 주목받아 왔으며 당 대비 저렴한 가격으로 경제적이고, 수용액에서 용해도는 무한대에 가까울 정도로 크다.Due to the fact that the price of sugar continues to rise and it causes food problems, research and demand for raw materials that can replace sugar are actively being conducted. Methanol has been attracting attention from the past as a material that can be synthesized from shale gas or biogas whose main component is methane, and it is economical at a lower price than sugar, and its solubility in aqueous solution is close to infinity.

또한 메탄올은 독성을 지니기 때문에 발효 공정상 발생할 수 있는 다른 미생물에 의한 오염을 줄일 수 있으며, 미네랄 배지에 공급되어 기질로 사용되기 때문에 다운스트리밍 공정에서의 비용을 줄일 수 있다. 따라서 메탄올을 탄소원으로 사용할 수 있는 메틸영양세균(methylotroph)을 이용하여 1,2-PDO를 생산하는 균주를 개발하고자 하였다.In addition, since methanol is toxic, contamination by other microorganisms that may occur during the fermentation process can be reduced, and since it is supplied to a mineral medium and used as a substrate, cost in the downstreaming process can be reduced. Therefore, an attempt was made to develop a strain that produces 1,2-PDO using methylotroph, which can use methanol as a carbon source.

이에 본 발명자들은 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens)에 외래 유전자를 도입하여 1,2-프로필렌글라이콜(propanediol; PDO) 생합성 경로를 구축한 결과 1,2- PDO가 생산되는 것을 확인하였다.Accordingly, the present inventors confirmed that 1,2-PDO was produced as a result of constructing a 1,2-propanediol (PDO) biosynthetic pathway by introducing a foreign gene into Methylobacterium extorquens. I did.

이에, 본 발명의 목적은 포몰레이즈(Formolase)를 코딩하는 핵산 서열 및 디하이드록시아세톤 카이네이즈(Dihydroxyacetone kinase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터를 제공하는 것이다.Accordingly, an object of the present invention is to provide a recombinant vector comprising at least one selected from the group consisting of a nucleic acid sequence encoding Formolase and a nucleic acid sequence encoding dihydroxyacetone kinase. .

본 발명의 다른 목적은 락토일글루타티온 라이에이즈(Lactoylglutathione lyase)를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균(Methylotroph)을 제공하는 것이다.Another object of the present invention is to provide a methylotroph containing a nucleic acid sequence encoding Lactoylglutathione lyase in an inactivated state.

본 발명의 또 다른 목적은 락토일글루타티온 라이에이즈를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균을 포함하는 1,2-프로필렌글라이콜(propanediol; PDO) 생산용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for producing 1,2-propylene glycol (propanediol; PDO) comprising methyltrophic bacteria comprising a nucleic acid sequence encoding lactoyl glutathione lyase in an inactivated state will be.

본 발명의 또 다른 목적은 락토일글루타티온 라이에이즈를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균을 배양하는 배양 단계를 포함하는 1,2-PDO의 생산방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing 1,2-PDO comprising a culturing step of culturing a methyltrophic bacterium containing a nucleic acid sequence encoding lactoyl glutathione lyase in an inactivated state.

본 발명의 또 다른 목적은 락토일글루타티온 라이에이즈를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균의 1,2-PDO 생산 용도에 관한 것이다.Another object of the present invention relates to the use of a methyltrophic bacteria for the production of 1,2-PDO comprising a nucleic acid sequence encoding lactoyl glutathione lyase in an inactivated state.

본 발명은 메틸영양세균을 이용한 1,2-프로필렌글라이콜(propanediol; PDO) 생산용 조성물 및 그의 생산 방법에 관한 것으로, 본 발명에 따른 방법은 메탄올을 탄소원으로 하여 1,2-PDO를 생산하는 방법을 나타낸다.The present invention relates to a composition for producing 1,2-propylene glycol (PDO) using methyl nutrient bacteria and a production method thereof, and the method according to the present invention produces 1,2-PDO using methanol as a carbon source. Show how to do it.

본 발명자들은 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens)에 외래 유전자를 도입하여 1,2-PDO 생합성 경로를 구축한 결과 1,2-PDO가 생산되는 것을 확인하였다.The present inventors confirmed that 1,2-PDO was produced as a result of constructing a 1,2-PDO biosynthetic pathway by introducing a foreign gene into Methylobacterium extorquens.

이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 양태는 포몰레이즈(Formolase)를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소(Dihydroxyacetone kinase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터이다.One aspect of the present invention is a recombinant vector comprising at least one selected from the group consisting of a nucleic acid sequence encoding Formolase and a nucleic acid sequence encoding dihydroxyacetone kinase.

본 명세서상의 용어 "포몰레이즈"는 포름알데히드를 디하이드록시아세톤(dihydroxyacetone; DHA)으로 전환시키는 효소를 의미하고, 서열번호 11로 표시되는 핵산 서열로 이루어진 fls 유전자에 의해 코딩되는 것일 수 있으나, 이에 한정되는 것은 아니다.The term "formolease" herein refers to an enzyme that converts formaldehyde to dihydroxyacetone (DHA), and may be encoded by the fls gene consisting of a nucleic acid sequence represented by SEQ ID NO: 11, but this It is not limited.

본 명세서상의 용어 "디하이드록시아세톤 인산화효소"는 디하이드록시아세톤(dihydroxyacetone; DHA)을 디하이드록시아세톤 포스페이트(dihydroxyacetone phosphate)로 전환시키는 효소를 의미하고, 서열번호 12로 표시되는 핵산 서열로 이루어진 사카로미세스 세레비시에(Saccharomyces cerevisiae) 유래의 dak1 유전자에 의해 코딩되는 것일 수 있으나, 이에 한정되는 것은 아니다.The term "dihydroxyacetone kinase" as used herein refers to an enzyme that converts dihydroxyacetone (DHA) to dihydroxyacetone phosphate, and consists of a nucleic acid sequence represented by SEQ ID NO: 12. It may be encoded by the dak1 gene derived from Saccharomyces cerevisiae, but is not limited thereto.

상기 재조합 벡터는 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열, 및 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것일 수 있다.The recombinant vector includes a nucleic acid sequence encoding methylglyoxal synthase, a nucleic acid sequence encoding methylglyoxal reductase or lactaldehyde reductase, and glycerol dehydrogenase. ) May additionally include one or more selected from the group consisting of a nucleic acid sequence encoding.

본 명세서상의 용어 "메틸글리옥살 합성효소"는 디하이드록시아세톤 포스페이트(dihydroxyacetone phosphate; DHAP)를 메틸글리옥살(methylglyoxal; MG)로 전환하는 효소를 의미하고, 서열번호 2로 표시되는 핵산 서열로 이루어진 mgsA 유전자에 의해 코딩되는 것일 수 있으나, 이에 한정되는 것은 아니다.The term "methylglyoxal synthase" herein refers to an enzyme that converts dihydroxyacetone phosphate (DHAP) to methylglyoxal (MG), and consists of a nucleic acid sequence represented by SEQ ID NO: 2 It may be encoded by the mgsA gene, but is not limited thereto.

본 명세서상의 용어 "글리세롤 탈수소효소"는 하이드록시아세톤을 1,2-PDO로 전환하는 효소를 의미하고, 서열번호 4로 표시되는 핵산 서열로 이루어진 gldA 유전자에 의해 코딩되는 것일 수 있으나, 이에 한정되는 것은 아니다.The term "glycerol dehydrogenase" as used herein refers to an enzyme that converts hydroxyacetone into 1,2-PDO, and may be encoded by a gldA gene consisting of a nucleic acid sequence represented by SEQ ID NO: 4, but is limited thereto. It is not.

상기 용어 "벡터(vector)"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단을 의미한다. 예를 들어, 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노연관 바이러스 벡터와 같은 바이러스 벡터를 포함한다. 상기 재조합 벡터로 사용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예를 들면, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예를 들면, λgt4λ B, λ-Charon, λβ및 M13 등) 또는 바이러스 (예를 들면, SV40 등)를 조작하여 제작될 수 있으나 이에 제한되지 않는다.The term "vector" means a means for expressing a gene of interest in a host cell. For example, plasmid vectors, cosmid vectors and bacteriophage vectors, adenovirus vectors, retroviral vectors, and viral vectors such as adeno-associated virus vectors. Vectors that can be used as the recombinant vector include plasmids often used in the art (e.g., pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14 , pGEX series, pET series, and pUC19, etc.), phage (eg, λgt4λ B, λ-Charon, λβ, and M13, etc.) or viruses (eg, SV40, etc.), but are not limited thereto. .

상기 재조합 벡터는, 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 상기 발현용 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 단백질을 발현하는 데 사용되는 통상의 것을 사용할 수 있다. 상기 재조합 벡터는 당업계에 공지된 다양한 방법을 통해 구축될 수 있다.The recombinant vector can typically be constructed as a vector for cloning or as a vector for expression. The expression vector may be a conventional one used in the art to express foreign proteins in plants, animals, or microorganisms. The recombinant vector can be constructed through various methods known in the art.

상기 재조합 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 사용되는 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예를 들어, pLλ 프로모터, CMV 프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 진핵 세포를 숙주로 하는 경우에는, 벡터에 포함되는 진핵 세포에서 작동하는 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 및 BBV 복제원점 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 포유동물 세포의 게놈으로부터 유래된 프로모터 (예를 들어, 메탈로 티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예를 들어, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.The recombinant vector can be constructed using a prokaryotic cell or a eukaryotic cell as a host. For example, when the vector used is an expression vector and a prokaryotic cell is used as a host, a strong promoter capable of promoting transcription (e.g., pLλ promoter, CMV promoter, trp promoter, lac promoter, tac promoter, T7 Promoter, etc.), a ribosome binding site for initiation of translation, and a transcription/translation termination sequence are generally included. In the case of eukaryotic cells as a host, the origin of replication operating in eukaryotic cells included in the vector includes the f1 origin of replication, SV40 origin of replication, pMB1 origin of replication, adeno origin of replication, AAV origin of replication, BBV origin of replication, etc. It is not limited. In addition, a promoter derived from the genome of a mammalian cell (e.g., metallothionine promoter) or a promoter derived from mammalian virus (e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, The cytomegalovirus promoter and the tk promoter of HSV) can be used and generally have a polyadenylation sequence as the transcription termination sequence.

본 발명의 일 예에서, 재조합 벡터를 숙주세포에 삽입함으로써 형질 전환체를 만들 수 있으며, 상기 형질전환체는 상기 재조합 벡터를 적절한 숙주 세포에 도입시킴으로써 얻어진 것일 수 있다.In an example of the present invention, a transformant may be produced by inserting a recombinant vector into a host cell, and the transformant may be obtained by introducing the recombinant vector into an appropriate host cell.

상기 숙주세포는 상기 발현벡터를 안정되면서 연속적으로 클로닝 또는 발현시킬 수 있는 세포로서 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있다.The host cell is a cell capable of stably and continuously cloning or expressing the expression vector, and any host cell known in the art may be used.

본 발명에서 사용된 숙주세포로는 대장균, 효모, 동물세포, 식물세포, 또는 곤충세포 등을 포함할 수 있으며, 원핵세포로는, 예를 들어, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있으며, 진핵 세포에 형질 전환시키는 경우에는 숙주 세포로서, 효모(Saccharomyce cerevisiae), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, Sp2/0, CHO(Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK 세포주 등이 이용될 수 있으나, 이에 제한되는 것은 아니다.Host cells used in the present invention may include E. coli, yeast, animal cells, plant cells, insect cells, and the like, and prokaryotic cells include, for example, E. coli JM109, E. coli BL21, E. strains of the genus Bacillus such as coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringensis, and Salmonella typhimurium, Serratia marsessons, and There are enterobacteriaceae strains such as various Pseudomonas species, and when transforming into eukaryotic cells, as host cells, yeast (Saccharomyce cerevisiae), insect cells, plant cells and animal cells such as Sp2/0, CHO (Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK cell lines, etc. may be used, but are not limited thereto.

상기 폴리뉴클레오타이드 또는 이를 포함하는 재조합 벡터의 숙주 세포 내로의 운반(도입)은, 당업계에 널리 알려진 운반 방법을 사용할 수 있다. 상기 운반 방법은 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 또는 전기 천공 방법 등을 사용할 수 있고, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀매개 형질감염법 및 유전자 밤바드먼 트 등을 사용할 수 있으나, 이에 한정하지는 않는다.Transport (introduction) of the polynucleotide or a recombinant vector containing the same into a host cell may use a transport method well known in the art. For example, when the host cell is a prokaryotic cell, a CaCl2 method or an electroporation method can be used, and when the host cell is a eukaryotic cell, a microinjection method, calcium phosphate precipitation method, electroporation method, liposome Mediated transfection methods and gene bombardment may be used, but are not limited thereto.

상기 형질 전환된 숙주 세포를 선별하는 방법은 선택 표지에 의해 발현되는 표현형을 이용하여, 당업계에 널리 알려진 방법에 따라 용이하게 실시할 수 있다. 예를 들어, 상기 선택 표지가 특정 항생제 내성 유전자인 경우에는, 상기 항생제가 함유된 배지에서 형질전환체를 배양함으로써 형질전환체를 용이하게 선별할 수 있다.The method of selecting the transformed host cell can be easily carried out according to a method well known in the art using a phenotype expressed by a selection label. For example, when the selection marker is a specific antibiotic resistance gene, the transformant can be easily selected by culturing the transformant in a medium containing the antibiotic.

본 발명의 다른 양태는 락토일글루타티온 분해효소(Lactoylglutathione lyase)를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균(Methylotroph)이다.Another aspect of the present invention is a methylotroph containing a nucleic acid sequence encoding a lactoylglutathione lyase in an inactivated state.

상기 핵산 서열은 서열번호 17로 표시되는 핵산 서열 및 서열번호 18로 표시되는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.The nucleic acid sequence may be one or more selected from the group consisting of a nucleic acid sequence represented by SEQ ID NO: 17 and a nucleic acid sequence represented by SEQ ID NO: 18, but is not limited thereto.

상기 메틸영양세균은 포몰레이즈를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것일 수 있다.The methylotrophic bacteria may be transformed with a recombinant vector comprising at least one selected from the group consisting of a nucleic acid sequence encoding formolease and a nucleic acid sequence encoding dihydroxyacetone kinase.

상기 재조합 벡터는 메틸글리옥살 합성효소를 코딩하는 핵산 서열, 메틸글리옥살 환원효소 또는 락트알데히드 환원효소를 코딩하는 핵산 서열, 및 글리세롤 탈수소효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The recombinant vector contains at least one selected from the group consisting of a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a methylglyoxal reductase or a lactaldehyde reductase, and a nucleic acid sequence encoding a glycerol dehydrogenase. It may be additionally included, but is not limited thereto.

상기 메틸영양세균은 메틸글리옥살 합성효소를 코딩하는 핵산 서열, 글리세롤 탈수소효소를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소 또는 락트알데히드 환원효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것일 수 있다.The methylotrophic bacteria are at least one selected from the group consisting of a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a glycerol dehydrogenase, and a nucleic acid sequence encoding a methylglyoxal reductase or lactaldehyde reductase. It may be transformed with a recombinant vector containing.

상기 메틸영양세균은 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens), 메틸로박테리움 수오미엔스(Methylobacterium suomiense), 메틸로박테리움 플래타니(Methylobacterium platani), 메틸로박테리움 어드해시붐(Methylobacterium adhaesivum), 메틸로박테리움 솔라이(Methylobacterium soli) 및 메틸로박테리움 클로로메타니쿰(Methylobacterium chloromethanicum)으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있고, 예를 들어, 메틸로박테리움 엑스토르켄스인 것일 수 있으나, 이에 한정되는 것은 아니다. The methylotrophic bacteria are Methylobacterium extorquens , Methylobacterium suomiense , Methylobacterium platani, Methylobacterium adhaesivum ), methylobacterium soli (Methylobacterium soli) and methylobacterium chloromethanicum (Methylobacterium chloromethanicum ) may be one or more selected from the group consisting of, for example, methylobacterium extorkens. However, it is not limited thereto.

본 발명의 또 다른 양태는 락토일글루타티온 분해효소를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균을 포함하는 1,2-프로필렌글라이콜(propanediol; PDO) 생산용 조성물이다.Another aspect of the present invention is a composition for the production of 1,2-propylene glycol (PDO) comprising methyltrophic bacteria comprising a nucleic acid sequence encoding a lactoyl glutathione degrading enzyme in an inactivated state.

상기 메틸영양세균은 포몰레이즈를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것일 수 있다.The methylotrophic bacteria may be transformed with a recombinant vector comprising at least one selected from the group consisting of a nucleic acid sequence encoding formolease and a nucleic acid sequence encoding dihydroxyacetone kinase.

상기 재조합 벡터는 메틸글리옥살 합성효소를 코딩하는 핵산 서열, 메틸글리옥살 환원효소 또는 락트알데히드 환원효소를 코딩하는 핵산 서열, 및 글리세롤 탈수소효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The recombinant vector contains at least one selected from the group consisting of a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a methylglyoxal reductase or a lactaldehyde reductase, and a nucleic acid sequence encoding a glycerol dehydrogenase. It may be additionally included, but is not limited thereto.

상기 메틸영양세균은 메틸글리옥살 합성효소를 코딩하는 핵산 서열, 글리세롤 탈수소효소를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소 또는 락트알데히드 환원효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것일 수 있다.The methylotrophic bacteria are at least one selected from the group consisting of a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a glycerol dehydrogenase, and a nucleic acid sequence encoding a methylglyoxal reductase or lactaldehyde reductase. It may be transformed with a recombinant vector containing.

상기 메틸영양세균은 메틸로박테리움 엑스토르켄스, 메틸로박테리움 수오미엔스, 메틸로박테리움 플래타니, 메틸로박테리움 어드해시붐, 메틸로박테리움 솔라이 및 메틸로박테리움 클로로메타니쿰으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있고, 예를 들어, 메틸로박테리움 엑스토르켄스인 것일 수 있으나, 이에 한정되는 것은 아니다.The methylotrophic bacteria are Methylobacterium extorkens, Methylobacterium suomiens, Methylobacterium platinum, Methylobacterium ad hashboom, Methylobacterium solai and Methylobacterium chloromethanicum. It may be one or more selected from the group consisting of, for example, may be methylobacterium extorcense, but is not limited thereto.

본 발명의 또 다른 양태는 락토일글루타티온 분해효소를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균을 배양하는 배양 단계를 포함하는 1,2-PDO의 생산방법이다.Another aspect of the present invention is a method for producing 1,2-PDO comprising a culturing step of culturing a methyl nutrient bacterium containing a nucleic acid sequence encoding a lactoyl glutathione degrading enzyme in an inactivated state.

상기 메틸영양세균은 포몰레이즈를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것일 수 있다.The methylotrophic bacteria may be transformed with a recombinant vector comprising at least one selected from the group consisting of a nucleic acid sequence encoding formolease and a nucleic acid sequence encoding dihydroxyacetone kinase.

상기 재조합 벡터는 메틸글리옥살 합성효소를 코딩하는 핵산 서열, 메틸글리옥살 환원효소 또는 락트알데히드 환원효소를 코딩하는 핵산 서열, 및 글리세롤 탈수소효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The recombinant vector contains at least one selected from the group consisting of a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a methylglyoxal reductase or a lactaldehyde reductase, and a nucleic acid sequence encoding a glycerol dehydrogenase. It may be additionally included, but is not limited thereto.

상기 메틸영양세균은 메틸글리옥살 합성효소를 코딩하는 핵산 서열, 글리세롤 탈수소효소를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소 또는 락트알데히드 환원효소를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것일 수 있다.The methylotrophic bacteria are at least one selected from the group consisting of a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a glycerol dehydrogenase, and a nucleic acid sequence encoding a methylglyoxal reductase or lactaldehyde reductase. It may be transformed with a recombinant vector containing.

상기 메틸영양세균은 메틸로박테리움 엑스토르켄스, 메틸로박테리움 수오미엔스, 메틸로박테리움 플래타니, 메틸로박테리움 어드해시붐, 메틸로박테리움 솔라이 및 메틸로박테리움 클로로메타니쿰으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있고, 예를 들어, 메틸로박테리움 엑스토르켄스인 것일 수 있으나, 이에 한정되는 것은 아니다.The methylotrophic bacteria are Methylobacterium extorkens, Methylobacterium suomiens, Methylobacterium platinum, Methylobacterium ad hashboom, Methylobacterium solai and Methylobacterium chloromethanicum. It may be one or more selected from the group consisting of, for example, may be methylobacterium extorcense, but is not limited thereto.

본 발명은 1,2-프로필렌글라이콜(propanediol; PDO) 생산성이 증강된 메틸영양세균 및 이를 이용한 1,2-PDO 생산방법에 관한 것으로서, 상기 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens)에 외래 유전자를 도입하여 1,2-프로필렌글라이콜(propanediol; PDO) 생합성 경로를 구축한 결과 1,2-PDO가 생산되므로, 이를 효과적으로 1,2-PDO의 생산에 이용할 수 있다.The present invention relates to a methylotrophic bacteria with enhanced productivity of 1,2-propylene glycol (PDO) and a method for producing 1,2-PDO using the same, in the methylobacterium extorquens (Methylobacterium extorquens) As a result of constructing a 1,2-propanediol (PDO) biosynthetic pathway by introducing a foreign gene, 1,2-PDO is produced, which can be effectively used for the production of 1,2-PDO.

도 1은 메틸글리옥살 합성효소(methylglyoxal synthase; mgsA) 및 글리세롤 탈수소효소(glycerol dehydrogenase; gldA)를 활성화시키고, 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase; fucO)를 활성화시킴으로써 구축한 1,2-프로필렌글라이콜(propanediol; PDO) 생합성 경로의 모식도이다.
도 2는 본 발명의 실시예에 따른 1,2-PDO 생합성 경로의 모식도이다.
도 3은 본 발명의 실시예에 따른 M. extorquens AM1::pMEV::mgsA::yqhD::gldA 균주(MPG001)의 배양 결과를 나타내는 그래프이다.
도 4는 본 발명의 실시예에 따른 M. extorquens AM1::pMEV::mgsA::yqhD::gldA::fls::dak1 균주(MPG011)의 배양 결과를 나타내는 그래프이다.
도 5는 본 발명의 실시예에 따른 M. extorquens AM1gloA::pMEV::mgsA::yqhD::gldA 균주(MPG101)의 배양 결과를 나타내는 그래프이다.
도 6은 본 발명의 실시예에 따른 M. extorquens AM1gloA::pMEV::mgsA::yqhD::gldA::fls::dak1 균주(MPG111)의 배양 결과를 나타내는 그래프이다.
FIG. 1 shows methylglyoxal synthase (mgsA) and glycerol dehydrogenase (gldA), and methylglyoxal reductase or lactaldehyde reductase (fucO). It is a schematic diagram of the 1,2-propylene glycol (propanediol; PDO) biosynthetic pathway constructed by doing so.
2 is a schematic diagram of a 1,2-PDO biosynthetic pathway according to an embodiment of the present invention.
3 is a graph showing the culture results of M. extorquens AM1::pMEV:: mgsA :: yqhD :: gldA strain (MPG001) according to an embodiment of the present invention.
4 is a graph showing the culture results of M. extorquens AM1::pMEV:: mgsA :: yqhD :: gldA :: fls :: dak1 strain (MPG011) according to an embodiment of the present invention.
5 is a graph showing the culture results of M. extorquens AM1gloA::pMEV:: mgsA :: yqhD :: gldA strain (MPG101) according to an embodiment of the present invention.
6 is a graph showing the culture results of M. extorquens AM1gloA::pMEV:: mgsA :: yqhD :: gldA :: fls :: dak1 strain (MPG111) according to an embodiment of the present invention.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)%이다.Throughout this specification, "%" used to indicate the concentration of a specific substance is (weight/weight)% for solids/solids, (weight/volume)% for solids/liquids, and Liquid/liquid is (vol/vol)%.

실시예 1: 1,2-프로필렌글라이콜 생합성 경로 구축Example 1: Construction of 1,2-propylene glycol biosynthetic pathway

재조합 호스트(Host)로는 메탄올을 탄소원으로 이용 가능하며 대사작용이 알려져 있고 유전자 조작 툴이 개발되어 있는 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens) AM1을 사용하였다. M. extorquens AM1 야생형은 1,2-PDO를 생산하지 못해 외래 유전자를 도입하여 1,2-PDO 생합성 경로를 도 1과 같이 구축하였다. 파란색으로 표시한 화살표가 도입한 경로를 나타낸다. Methylobacterium extorquens (Methylobacterium extorquens) AM1, which can use methanol as a carbon source, has a known metabolism, and has developed a genetic manipulation tool, was used as a recombinant host. M. extorquens AM1 wild type was unable to produce 1,2-PDO, so a foreign gene was introduced to construct a 1,2-PDO biosynthetic pathway as shown in FIG. 1. The blue arrow indicates the route taken.

1,2-PDO 생산경로로는 하이드록시아세톤(hydroxyacetone)을 거치는 경로와 L-락트알데히드(lactaldehyde)를 거치는 경로 두 가지 종류가 있다. 하이드록시아세톤을 또는 L- 락트알데히드를 거치는 경로를 지닌 재조합 균주를 제작하였다.There are two types of 1,2-PDO production pathways, one through hydroxyacetone and one through L-lactaldehyde. A recombinant strain having a pathway through hydroxyacetone or L-lacaldehyde was constructed.

1-1. 하이드록시아세톤 경로를 지닌 재조합 균주의 제조1-1. Preparation of a recombinant strain having a hydroxyacetone pathway

하이드록시아세톤을 거치는 경로는 바실러스 서브틸리스(Bacillus subtilis) 유래의 디하이드록시아세톤 포스페이트(dihydroxyacetone phosphate; DHAP)를 메틸글리옥살(methylglyoxal; MG)로 전환하는 효소인 메틸글리옥살 합성효소(synthase)를 코딩하는 mgsA 유전자, 대장균(Escherichia coli) 유래의 MG를 하이드록시아세톤으로 전환하는 효소인 메틸글리옥살 환원효소(reductase)를 코딩하는 yqhD 유전자, 대장균 유래의 하이드록시아세톤을 1,2-PDO로 전환하는 효소인 글리세롤 탈수소효소(dehydrogenase)를 코딩하는 gldA 유전자를 pMEV 벡터에 도입하고 이 벡터를 이용하여 과발현하였다. 개발한 균주 2종은 M. extorquens AM1::pMEV::mgsA::yqhD::gldA이다.The pathway through hydroxyacetone is methylglyoxal synthase, an enzyme that converts dihydroxyacetone phosphate (DHAP) derived from Bacillus subtilis into methylglyoxal (MG). MgsA gene encoding E. coli , yqhD gene encoding methylglyoxal reductase, an enzyme that converts MG derived from Escherichia coli to hydroxyacetone, and hydroxyacetone derived from E. coli as 1,2-PDO The gldA gene encoding the converting enzyme, glycerol dehydrogenase, was introduced into the pMEV vector and overexpressed using this vector. The two strains developed are M. extorquens AM1::pMEV:: mgsA :: yqhD :: gldA .

pMEV 벡터의 서열정보는 서열번호 1의 서열과 같다.The sequence information of the pMEV vector is the same as the sequence of SEQ ID NO: 1.

관련 유전자의 서열정보는 하기 표 1과 같다.The sequence information of related genes is shown in Table 1 below.

서열
번호
order
number
명칭designation 서열order
22 mgsA 코딩핵산 서열mgsA coding nucleic acid sequence ATGAAAATTGCTTTGATCGCGCATGACAAGAAAAAACAGGATATGGTTCAATTTACGACTGCCTATCGGGATATTTTAAAGAATCATGATCTATACGCAACCGGAACCACAGGGTTGAAAATTCATGAGGCGACAGGTCTTCAAATTGAACGTTTTCAATCCGGCCCTTTAGGGGGAGACCAGCAAATCGGTGCACTGATCGCTGCCAATGCACTCGATCTTGTCATTTTTTTGCGCGACCCGCTGACCGCGCAGCCGCATGAACCGGATGTCTCGGCATTAATCCGTTTATGTGATGTGTATTCCATTCCGCTCGCCACAAATATGGGTACTGCGGAAATTCTTGTGCGCACACTTGATGAAGGTGTTTTCGAATTCCGTGACCTTCTTCGGGGAGAAGAGCCGAATGTATAAATGAAAATTGCTTTGATCGCGCATGACAAGAAAAAACAGGATATGGTTCAATTTACGACTGCCTATCGGGATATTTTAAAGAATCATGATCTATACGCAACCGGAACCACAGGGTTGAAAATTCATGAGGCGACAGGTCTTCAAATTGAACGTTTTCAATCCGGCCCTTTAGGGGGAGACCAGCAAATCGGTGCACTGATCGCTGCCAATGCACTCGATCTTGTCATTTTTTTGCGCGACCCGCTGACCGCGCAGCCGCATGAACCGGATGTCTCGGCATTAATCCGTTTATGTGATGTGTATTCCATTCCGCTCGCCACAAATATGGGTACTGCGGAAATTCTTGTGCGCACACTTGATGAAGGTGTTTTCGAATTCCGTGACCTTCTTCGGGGAGAAGAGCCGAATGTATAA 33 yqhD 코딩핵산 서열yqhD coding nucleic acid sequence ATGAACAACTTTAATCTGCACACCCCAACCCGCATTCTGTTTGGTAAAGGCGCAATCGCTGGTTTACGCGAACAAATTCCTCACGATGCTCGCGTATTGATTACCTACGGCGGCGGCAGCGTGAAAAAAACCGGCGTTCTCGATCAAGTTCTGGATGCCCTGAAAGGCATGGACGTGCTGGAATTTGGCGGTATTGAGCCAAACCCGGCTTATGAAACGCTGATGAACGCCGTGAAACTGGTTCGCGAACAGAAAGTGACTTTCCTGCTGGCGGTTGGCGGCGGTTCTGTACTGGACGGCACCAAATTTATCGCCGCAGCGGCTAACTATCCGGAAAATATCGATCCGTGGCACATTCTGCAAACGGGCGGTAAAGAGATTAAAAGCGCCATCCCGATGGGCTGTGTGCTGACGCTGCCAGCAACCGGTTCAGAATCCAACGCAGGCGCGGTGATCTCCCGTAAAACCACAGGCGACAAGCAGGCGTTCCATTCTGCCCATGTTCAGCCGGTATTTGCCGTGCTCGATCCGGTTTATACCTACACCCTGCCGCCGCGTCAGGTGGCTAACGGCGTAGTGGACGCCTTTGTACACACCGTGGAACAGTATGTTACCAAACCGGTTGATGCCAAAATTCAGGACCGTTTCGCAGAAGGCATTTTGCTGACGCTAATCGAAGATGGTCCGAAAGCCCTGAAAGAGCCAGAAAACTACGATGTGCGCGCCAACGTCATGTGGGCGGCGACTCAGGCGCTGAACGGTTTGATTGGCGCTGGCGTACCGCAGGACTGGGCAACGCATATGCTGGGCCACGAACTGACTGCGATGCACGGTCTGGATCACGCGCAAACACTGGCTATCGTCCTGCCTGCACTGTGGAATGAAAAACGCGATACCAAGCGCGCTAAGCTGCTGCAATATGCTGAACGCGTCTGGAACATCACTGAAGGTTCCGATGATGAGCGTATTGACGCCGCGATTGCCGCAACCCGCAATTTCTTTGAGCAATTAGGCGTGCCGACCCACCTCTCCGACTACGGTCTGGACGGCAGCTCCATCCCGGCTTTGCTGAAAAAACTGGAAGAGCACGGCATGACCCAACTGGGCGAAAATCATGACATTACGTTGGATGTCAGCCGCCGTATATACGAAGCCGCCCGCTAAATGAACAACTTTAATCTGCACACCCCAACCCGCATTCTGTTTGGTAAAGGCGCAATCGCTGGTTTACGCGAACAAATTCCTCACGATGCTCGCGTATTGATTACCTACGGCGGCGGCAGCGTGAAAAAAACCGGCGTTCTCGATCAAGTTCTGGATGCCCTGAAAGGCATGGACGTGCTGGAATTTGGCGGTATTGAGCCAAACCCGGCTTATGAAACGCTGATGAACGCCGTGAAACTGGTTCGCGAACAGAAAGTGACTTTCCTGCTGGCGGTTGGCGGCGGTTCTGTACTGGACGGCACCAAATTTATCGCCGCAGCGGCTAACTATCCGGAAAATATCGATCCGTGGCACATTCTGCAAACGGGCGGTAAAGAGATTAAAAGCGCCATCCCGATGGGCTGTGTGCTGACGCTGCCAGCAACCGGTTCAGAATCCAACGCAGGCGCGGTGATCTCCCGTAAAACCACAGGCGACAAGCAGGCGTTCCATTCTGCCCATGTTCAGCCGGTATTTGCCGTGCTCGATCCGGTTTATACCTACACCCTGCCGCCGCGTCAGGTGGCTAACGGCGTAGTGGACGCCTTTGTACACACCGTGGAACAGTATGTTACCAAACCGGTTGATGCCAAAATTCAGGACCGTTTCGCAGAAGGCATTTTGCTGACGCTAATCGAAGATGGTCCGAAAGCCCTGAAAGAGCCAGAAAACTACGATGTGCGCGCCAACGTCATGTGGGCGGCGACTCAGGCGCTGAACGGTTTGATTGGCGCTGGCGTACCGCAGGACTGGGCAACGCATATGCTGGGCCACGAACTGACTGCGATGCACGGTCTGGATCACGCGCAAACACTGGCTATCGTCCTGCCTGCACTGTGGAATGAAAAACGCGATACCAAGCGCGCTAAGCTGCTGCAATATGCTGAACGCGTCTGGAACATCACTGAAGGTTCCGATGATGAGCGTATTGACGCCGCGATTGCCGCAACCCGCAATTTCT TTGAGCAATTAGGCGTGCCGACCCACCTCTCCGACTACGGTCTGGACGGCAGCTCCATCCCGGCTTTGCTGAAAAAACTGGAAGAGCACGGCATGACCCAACTGGGCGAAAATCATGACATTACGTTGGATGTCAGCCGCCGTATATACGAAGCCGCCCGCTAA 44 gldA 코딩핵산 서열gldA coding nucleic acid sequence ATGGACCGCATTATTCAATCACCGGGTAAATACATCCAGGGCGCTGATGTGATTAATCGTCTGGGCGAATACCTGAAGCCGCTGGCAGAACGCTGGTTAGTGGTGGGTGACAAATTTGTTTTAGGTTTTGCTCAATCCACTGTCGAGAAAAGCTTTAAAGATGCTGGACTGGTAGTAGAAATTGCGCCGTTTGGCGGTGAATGTTCGCAAAATGAGATCGACCGTCTGCGTGGCATCGCGGAGACTGCGCAGTGTGGCGCAATTCTCGGTATCGGTGGCGGAAAAACCCTCGATACTGCCAAAGCACTGGCACATTTCATGGGTGTTCCGGTAGCGATCGCACCGACTATCGCCTCTACCGATGCACCGTGCAGCGCATTGTCTGTTATCTACACCGATGAGGGTGAGTTTGACCGCTATCTGCTGTTGCCAAATAACCCGAATATGGTCATTGTCGACACCAAAATCGTCGCTGGCGCACCTGCACGTCTGTTAGCGGCGGGTATCGGCGATGCGCTGGCAACCTGGTTTGAAGCGCGTGCCTGCTCTCGTAGCGGCGCGACCACCATGGCGGGCGGCAAGTGCACCCAGGCTGCGCTGGCACTGGCTGAACTGTGCTACAACACCCTGCTGGAAGAAGGCGAAAAAGCGATGCTTGCTGCCGAACAGCATGTAGTGACTCCGGCGCTGGAGCGCGTGATTGAAGCGAACACCTATTTGAGCGGTGTTGGTTTTGAAAGTGGTGGTCTGGCTGCGGCGCACGCAGTGCATAACGGCCTGACCGCTATCCCGGACGCGCATCACTATTATCACGGTGAAAAAGTGGCATTCGGTACGCTGACGCAGCTGGTTCTGGAAAATGCGCCGGTGGAGGAAATCGAAACCGTAGCTGCCCTTAGCCATGCGGTAGGTTTGCCAATAACTCTCGCTCAACTGGATATTAAAGAAGATGTCCCGGCGAAAATGCGAATTGTGGCAGAAGCGGCATGTGCAGAAGGTGAAACCATTCACAACATGCCTGGCGGCGCGACGCCAGATCAGGTTTACGCCGCTCTGCTGGTAGCCGACCAGTACGGTCAGCGTTTCCTGCAAGAGTGGGAATAAATGGACCGCATTATTCAATCACCGGGTAAATACATCCAGGGCGCTGATGTGATTAATCGTCTGGGCGAATACCTGAAGCCGCTGGCAGAACGCTGGTTAGTGGTGGGTGACAAATTTGTTTTAGGTTTTGCTCAATCCACTGTCGAGAAAAGCTTTAAAGATGCTGGACTGGTAGTAGAAATTGCGCCGTTTGGCGGTGAATGTTCGCAAAATGAGATCGACCGTCTGCGTGGCATCGCGGAGACTGCGCAGTGTGGCGCAATTCTCGGTATCGGTGGCGGAAAAACCCTCGATACTGCCAAAGCACTGGCACATTTCATGGGTGTTCCGGTAGCGATCGCACCGACTATCGCCTCTACCGATGCACCGTGCAGCGCATTGTCTGTTATCTACACCGATGAGGGTGAGTTTGACCGCTATCTGCTGTTGCCAAATAACCCGAATATGGTCATTGTCGACACCAAAATCGTCGCTGGCGCACCTGCACGTCTGTTAGCGGCGGGTATCGGCGATGCGCTGGCAACCTGGTTTGAAGCGCGTGCCTGCTCTCGTAGCGGCGCGACCACCATGGCGGGCGGCAAGTGCACCCAGGCTGCGCTGGCACTGGCTGAACTGTGCTACAACACCCTGCTGGAAGAAGGCGAAAAAGCGATGCTTGCTGCCGAACAGCATGTAGTGACTCCGGCGCTGGAGCGCGTGATTGAAGCGAACACCTATTTGAGCGGTGTTGGTTTTGAAAGTGGTGGTCTGGCTGCGGCGCACGCAGTGCATAACGGCCTGACCGCTATCCCGGACGCGCATCACTATTATCACGGTGAAAAAGTGGCATTCGGTACGCTGACGCAGCTGGTTCTGGAAAATGCGCCGGTGGAGGAAATCGAAACCGTAGCTGCCCTTAGCCATGCGGTAGGTTTGCCAATAACTCTCGCTCAACTGGATATTAAAGAAGATGTCCCGGCGAAAATGCGAATTGTGGCAGAAGCGGCATGTGCAGAAGGTG AAACCATTCACAACATGCCTGGCGGCGCGACGCCAGATCAGGTTTACGCCGCTCTGCTGGTAGCCGACCAGTACGGTCAGCGTTTCCTGCAAGAGTGGGAATAA

균주 제작은 인퓨젼(Infusion) 효소를 이용하여 클로닝(Multi-insert Cloning)하였으며 제한효소로는 EcoR1과 Sac1을 이용하였다. M. extorquens AM1::pMEV::mgsA::yqhD::gldA 균주(MPG001)의 클로닝에 사용한 프라이머는 서열번호 5 내지 10으로, 하기 표 2와 같다. 밑줄 친 서열은 리보솜 결합부위(ribosome binding site; RBS)이다.The strain was produced by multi-insert cloning using an infusion enzyme, and EcoR1 and Sac1 were used as restriction enzymes. Primers used for cloning of the M. extorquens AM1::pMEV::mgsA::yqhD::gldA strain (MPG001) are SEQ ID NOs: 5 to 10, as shown in Table 2 below. The underlined sequence is the ribosome binding site (RBS).

서열
번호
order
number
명칭designation 서열order
55 정방향 프라이머 1Forward Primer 1 GAGAGACAGCGAATTCCCGCGAGGGAATTCCCAAAGGCCAGGTATTTTATGAAAATTGCTTTGATCGCGAGAGACAGCGAATTC CCGCGAGGGAATTCCCAAAGGCCAGGTATTTT ATGAAAATTGCTTTGATCGC 66 역방향 프라이머 1Reverse primer 1 TGGGTCTATTGGGAGTTATACATTCGGCTCTTCTCCCTGGGTCTATTGGGAGTTATACATTCGGCTCTTCTCCC 77 정방향 프라이머 2Forward primer 2 CTCCCAATAGACCCAAAGGCGGTAGAGAAATGAACAACTTTAATCTGCACACCC CTCCCAATAGACCCAAAGGCGGTAGAGAA ATGAACAACTTTAATCTGCACACCC 88 역방향 프라이머 2Reverse primer 2 TTGCGCTTAGTTGCCTTAGCGGGCGGCTTCGTATATATTGCGCTTAGTTGCCTTAGCGGGCGGCTTCGTATATA 99 정방향 프라이머 3Forward Primer 3 GGCAACTAAGCGCAAAGATCGAGGTAATAAATGGACCGCATTATTCAATCA GGCAACTAAGCGCAAAGATCGAGGTAATAA ATGGACCGCATTATTCAATCA 1010 역방향 프라이머 3Reverse primer 3 CGGGGCTGGCTTAAGAGCTCTTATTCCCACTCTTGCAGGAACGGGGCTGGCTTAAGAGCTCTTATTCCCACTCTTGCAGGAA

1-2. DHAP 흐름을 증가시킨 재조합 균주의 제조1-2. Preparation of recombinant strains with increased DHAP flow

DHAP는 M. extorquens AM1의 대사산물(metabolite)이자 앞서 삽입한 1,2-PDO 생합성 경로의 전구체로 메틸글리옥살(Methylglyoxal; MG) 생합성에 의해 메틸글리옥살로 전환된다. M. extorquens AM1이 탄소원인 메탄올을 DHAP로 전환시키기 위해서는 복잡한 단계를 거쳐야 한다.DHAP is a metabolite of M. extorquens AM1 and a precursor of the previously inserted 1,2-PDO biosynthetic pathway, and is converted to methylglyoxal by methylglyoxal (MG) biosynthesis. M. extorquens To convert methanol, the carbon source of AM1, to DHAP, a complicated step is required.

이에 보다 직접적인 DHAP 합성 경로를 도입하여 DHAP 흐름(flux)을 증진시켰다. M. extorquens AM1은 풍부한 포름알데히드(formaldehyde) 흐름을 지니므로 포름알데히드를 디하이드록시아세톤(dihydroxyacetone; DHA)으로 전환시키는 효소 포몰레이즈(Formolase) 및 DHA를 디하이드록시아세톤 포스페이트(phosphate)로 전환시키는 효소 디하이드록시아세톤 인산화효소(kinase)를 과발현시켰다.Accordingly, a more direct DHAP synthesis route was introduced to enhance the DHAP flux. Since M. extorquens AM1 has a rich formaldehyde flow, Formolase, an enzyme that converts formaldehyde to dihydroxyacetone (DHA), and DHA, to dihydroxyacetone phosphate. The enzyme dihydroxyacetone kinase was overexpressed.

포몰레이즈는 새로운 탄소 동화 경로(carbon assimilation pathway)를 가능케하는 관점에서는 논문이 보고되었지만 이처럼 특정 물질을 생산하는 목적으로는 보고된 바가 없으며 E. coli 이외의 균주에서 포몰레이즈를 작동시킨 전례는 없는 것으로 추정된다.Although papers have been reported in terms of enabling a new carbon assimilation pathway, formolase has not been reported for the purpose of producing such a specific substance, and there has been no precedent of operating formolase in strains other than E. coli. Is estimated.

포몰레이즈를 코딩하는 유전자 fls는 AM1에 맞춰 코돈 최적화(codon optimization)시켰다. 디하이드록시아세톤 카이네이즈를 코딩하는 유전자는 다양하며 이 연구에서는 사카로미세스 세레비시에(Saccharomyces cerevisiae) 유래의 dak1을 사용하였다. 기존에 구축한 플라스미드 pMEV::mgsA::yqhD::gldA에 fls와 dak1을 추가로 도입하여 새로운 플라스미드 pMEV::mgsA::yqhD::gldA::fls::dak1를 구축하였고 이 플라스미드를 지닌 M. extorquens AM1::pMEV::mgsA::yqhD::gldA::fls::dak1 균주(MPG011)를 개발하였다.The gene fls encoding formolase was codon-optimized for AM1. There are various genes encoding dihydroxyacetone kinase, and in this study, dak1 derived from Saccharomyces cerevisiae was used. A plasmid pMEV build on existing :: mgsA :: yqhD :: gldA new plasmids by introducing additional fls and dak1 the pMEV :: mgsA :: yqhD :: gldA :: fls :: dak1 was built with the plasmid M extorquens AM1::pMEV:: mgsA :: yqhD :: gldA :: fls :: dak1 strain (MPG011) was developed.

관련 유전자 서열은 하기 표 3과 같다.Related gene sequences are shown in Table 3 below.

서열
번호
order
number
명칭designation 서열order
1111 코돈 최적화된fls 코딩
핵산 서열
Codon optimized fls coding
Nucleic acid sequence
ATGGCCATGATCACGGGCGGCGAGCTGGTCGTGCGCACGCTGATCAAGGCGGGTGTCGAGCACCTCTTTGGTCTCCACGGTATCCACATCGACACCATCTTCCAGGCCTGCCTGGACCATGATGTCCCGATCATCGACACCCGCCACGAGGCGGCAGCCGGACATGCGGCGGAAGGCTACGCCCGCGCCGGCGCCAAGCTCGGCGTCGCGCTTGTGACGGCGGGCGGCGGCTTCACCAACGCGGTGACCCCGATCGCCAATGCCCGCACCGACCGCACGCCGGTCCTCTTCCTTACCGGCTCGGGCGCCCTCAGGGATGACGAGACGAACACCCTCCAGGCGGGGATCGACCAGGTCGCGATGGCCGCCCCTATCACCAAGTGGGCCCATCGGGTAATGGCCACCGAACACATCCCTCGGCTGGTCATGCAGGCGATTCGCGCCGCGCTGAGCGCCCCCCGCGGCCCAGTTCTGCTCGACCTCCCGTGGGACATCCTCATGAACCAGATTGACGAAGATAGCGTCATCATCCCGGACCTCGTGCTGTCTGCCCACGGCGCGCACCCCGATCCCGCGGACCTCGATCAGGCCCTGGCGCTGCTCCGCAAGGCCGAGCGTCCGGTTATCGTTCTGGGCAGTGAGGCCAGCCGCACGGCCCGAAAGACGGCCCTCTCGGCCTTCGTCGCGGCCACGGGCGTGCCGGTCTTCGCCGACTATGAAGGCCTCAGTATGCTGTCGGGGCTTCCGGACGCCATGCGGGGCGGCCTGGTCCAGAACCTGTACAGCTTCGCTAAAGCGGACGCCGCGCCCGACCTGGTGCTCATGCTGGGCGCGCGCTTCGGCCTGAACACGGGCCACGGCAGCGGCCAGCTGATCCCGCACTCGGCCCAGGTCATCCAGGTCGACCCGGACGCGTGCGAGCTGGGCCGGCTGCAGGGCATCGCGCTTGGCATCGTCGCCGACGTGGGCGGCACCATCGAGGCCCTCGCGCAGGCCACCGCCCAGGACGCGGCGTGGCCCGACCGCGGCGACTGGTGCGCCAAGGTCACCGACCTCGCCCAGGAGCGCTACGCGTCGATCGCGGCCAAGTCCTCGTCCGAGCACGCCCTGCACCCCTTCCACGCCTCGCAGGTCATCGCCAAGCACGTCGACGCGGGCGTGACGGTCGTGGCCGACGGCGGGCTGACCTATCTGTGGCTGTCCGAGGTGATGAGCCGTGTGAAGCCGGGCGGCTTCCTCTGCCACGGCTACCTGAACTCCATGGGCGTCGGCTTCGGGACCGCGCTCGGCGCCCAGGTCGCCGACCTGGAGGCCGGCCGGCGCACGATCCTCGTGACCGGCGACGGCTCGGTGGGCTACTCCATCGGCGAGTTCGACACCCTGGTCCGGAAGCAGCTGCCGCTGATCGTGATCATCATGAACAACCAGTCGTGGGGCTGGACCCTCCACTTCCAGCAGCTCGCGGTCGGCCCGAACCGCGTGACCGGCACGCGCCTCGAGAACGGCTCGTACCACGGCGTCGCCGCGGCCTTCGGCGCCGACGGCTACCACGTCGACTCGGTCGAGTCGTTCAGCGCCGCCCTCGCCCAGGCCCTGGCCCACAACCGCCCGGCCTGCATCAACGTCGCGGTCGCGCTCGACCCCATCCCGCCGGAGGAGCTCATCCTCATCGGCATGGACCCGTTCGCCGGCAGCACCGAGAACCTCTACTTCCAGTCCGGCGCCTAAATGGCCATGATCACGGGCGGCGAGCTGGTCGTGCGCACGCTGATCAAGGCGGGTGTCGAGCACCTCTTTGGTCTCCACGGTATCCACATCGACACCATCTTCCAGGCCTGCCTGGACCATGATGTCCCGATCATCGACACCCGCCACGAGGCGGCAGCCGGACATGCGGCGGAAGGCTACGCCCGCGCCGGCGCCAAGCTCGGCGTCGCGCTTGTGACGGCGGGCGGCGGCTTCACCAACGCGGTGACCCCGATCGCCAATGCCCGCACCGACCGCACGCCGGTCCTCTTCCTTACCGGCTCGGGCGCCCTCAGGGATGACGAGACGAACACCCTCCAGGCGGGGATCGACCAGGTCGCGATGGCCGCCCCTATCACCAAGTGGGCCCATCGGGTAATGGCCACCGAACACATCCCTCGGCTGGTCATGCAGGCGATTCGCGCCGCGCTGAGCGCCCCCCGCGGCCCAGTTCTGCTCGACCTCCCGTGGGACATCCTCATGAACCAGATTGACGAAGATAGCGTCATCATCCCGGACCTCGTGCTGTCTGCCCACGGCGCGCACCCCGATCCCGCGGACCTCGATCAGGCCCTGGCGCTGCTCCGCAAGGCCGAGCGTCCGGTTATCGTTCTGGGCAGTGAGGCCAGCCGCACGGCCCGAAAGACGGCCCTCTCGGCCTTCGTCGCGGCCACGGGCGTGCCGGTCTTCGCCGACTATGAAGGCCTCAGTATGCTGTCGGGGCTTCCGGACGCCATGCGGGGCGGCCTGGTCCAGAACCTGTACAGCTTCGCTAAAGCGGACGCCGCGCCCGACCTGGTGCTCATGCTGGGCGCGCGCTTCGGCCTGAACACGGGCCACGGCAGCGGCCAGCTGATCCCGCACTCGGCCCAGGTCATCCAGGTCGACCCGGACGCGTGCGAGCTGGGCCGGCTGCAGGGCATCGCGCTTGGCATCGTCGCCGACGTGGGCGGCACCATCGAGGCCCTCGCGCAGGCCACCG CCCAGGACGCGGCGTGGCCCGACCGCGGCGACTGGTGCGCCAAGGTCACCGACCTCGCCCAGGAGCGCTACGCGTCGATCGCGGCCAAGTCCTCGTCCGAGCACGCCCTGCACCCCTTCCACGCCTCGCAGGTCATCGCCAAGCACGTCGACGCGGGCGTGACGGTCGTGGCCGACGGCGGGCTGACCTATCTGTGGCTGTCCGAGGTGATGAGCCGTGTGAAGCCGGGCGGCTTCCTCTGCCACGGCTACCTGAACTCCATGGGCGTCGGCTTCGGGACCGCGCTCGGCGCCCAGGTCGCCGACCTGGAGGCCGGCCGGCGCACGATCCTCGTGACCGGCGACGGCTCGGTGGGCTACTCCATCGGCGAGTTCGACACCCTGGTCCGGAAGCAGCTGCCGCTGATCGTGATCATCATGAACAACCAGTCGTGGGGCTGGACCCTCCACTTCCAGCAGCTCGCGGTCGGCCCGAACCGCGTGACCGGCACGCGCCTCGAGAACGGCTCGTACCACGGCGTCGCCGCGGCCTTCGGCGCCGACGGCTACCACGTCGACTCGGTCGAGTCGTTCAGCGCCGCCCTCGCCCAGGCCCTGGCCCACAACCGCCCGGCCTGCATCAACGTCGCGGTCGCGCTCGACCCCATCCCGCCGGAGGAGCTCATCCTCATCGGCATGGACCCGTTCGCCGGCAGCACCGAGAACCTCTACTTCCAGTCCGGCGCCTAA
1212 Dak1 코딩핵산 서열Dak1 coding nucleic acid sequence ATGTCCGCTAAATCGTTTGAAGTCACAGATCCAGTCAATTCAAGTCTCAAAGGGTTTGCCCTTGCTAACCCCTCCATTACGCTGGTCCCTGAAGAAAAAATTCTCTTCAGAAAGACCGATTCCGACAAGATCGCATTAATTTCTGGTGGTGGTAGTGGACATGAACCTACACACGCCGGTTTCATTGGTAAGGGTATGTTGAGTGGCGCCGTGGTTGGCGAAATTTTTGCATCCCCTTCAACAAAACAGATTTTAAATGCAATCCGTTTAGTCAATGAAAATGCGTCTGGCGTTTTATTGATTGTGAAGAACTACACAGGTGATGTTTTGCATTTTGGTCTGTCCGCTGAGAGAGCAAGAGCCTTGGGTATTAACTGCCGCGTTGCTGTCATAGGTGATGATGTTGCAGTTGGCAGAGAAAAGGGTGGTATGGTTGGTAGAAGAGCATTGGCAGGTACCGTTTTGGTTCATAAGATTGTAGGTGCCTTCGCAGAAGAATATTCTAGTAAGTATGGCTTAGACGGTACAGCTAAAGTGGCTAAAATTATCAACGACAATTTGGTGACCATTGGATCTTCTTTAGACCATTGTAAAGTTCCTGGCAGGAAATTCGAAAGTGAATTAAACGAAAAACAAATGGAATTGGGTATGGGTATTCATAACGAACCTGGTGTGAAAGTTTTAGACCCTATTCCTTCTACCGAAGACTTGATCTCCAAGTATATGCTACCAAAACTATTGGATCCAAACGATAAGGATAGAGCTTTTGTAAAGTTTGATGAAGATGATGAAGTTGTCTTGTTAGTTAACAATCTCGGCGGTGTTTCTAATTTTGTTATTAGTTCTATCACTTCCAAAACTACGGATTTCTTAAAGGAAAATTACAACATAACCCCGGTTCAAACAATTGCTGGCACATTGATGACCTCCTTCAATGGTAATGGGTTCAGTATCACATTACTAAACGCCACTAAGGCTACAAAGGCTTTGCAATCTGATTTTGAGGAGATCAAATCAGTACTAGACTTGTTGAACGCATTTACGAACGCACCGGGCTGGCCAATTGCAGATTTTGAAAAGACTTCTGCCCCATCTGTTAACGATGACTTGTTACATAATGAAGTAACAGCAAAGGCCGTCGGTACCTATGACTTTGACAAGTTTGCTGAGTGGATGAAGAGTGGTGCTGAACAAGTTATCAAGAGCGAACCGCACATTACGGAACTAGACAATCAAGTTGGTGATGGTGATTGTGGTTACACTTTAGTGGCAGGAGTTAAAGGCATCACCGAAAACCTTGACAAGCTGTCGAAGGACTCATTATCTCAGGCGGTTGCCCAAATTTCAGATTTCATTGAAGGCTCAATGGGAGGTACTTCTGGTGGTTTATATTCTATTCTTTTGTCGGGTTTTTCACACGGATTAATTCAGGTTTGTAAATCAAAGGATGAACCCGTCACTAAGGAAATTGTGGCTAAGTCACTCGGAATTGCATTGGATACTTTATACAAATATACAAAGGCAAGGAAGGGATCATCCACCATGATTGATGCTTTAGAACCATTCGTTAAAGAATTTACTGCATCTAAGGATTTCAATAAGGCGGTAAAAGCTGCAGAGGAAGGTGCTAAATCCACTGCTACATTCGAGGCCAAATTTGGCAGAGCTTCGTATGTCGGCGATTCATCTCAAGTAGAAGATCCTGGTGCAGTAGGCCTATGTGAGTTTTTGAAGGGGGTTCAAAGCGCCTTGTAAATGTCCGCTAAATCGTTTGAAGTCACAGATCCAGTCAATTCAAGTCTCAAAGGGTTTGCCCTTGCTAACCCCTCCATTACGCTGGTCCCTGAAGAAAAAATTCTCTTCAGAAAGACCGATTCCGACAAGATCGCATTAATTTCTGGTGGTGGTAGTGGACATGAACCTACACACGCCGGTTTCATTGGTAAGGGTATGTTGAGTGGCGCCGTGGTTGGCGAAATTTTTGCATCCCCTTCAACAAAACAGATTTTAAATGCAATCCGTTTAGTCAATGAAAATGCGTCTGGCGTTTTATTGATTGTGAAGAACTACACAGGTGATGTTTTGCATTTTGGTCTGTCCGCTGAGAGAGCAAGAGCCTTGGGTATTAACTGCCGCGTTGCTGTCATAGGTGATGATGTTGCAGTTGGCAGAGAAAAGGGTGGTATGGTTGGTAGAAGAGCATTGGCAGGTACCGTTTTGGTTCATAAGATTGTAGGTGCCTTCGCAGAAGAATATTCTAGTAAGTATGGCTTAGACGGTACAGCTAAAGTGGCTAAAATTATCAACGACAATTTGGTGACCATTGGATCTTCTTTAGACCATTGTAAAGTTCCTGGCAGGAAATTCGAAAGTGAATTAAACGAAAAACAAATGGAATTGGGTATGGGTATTCATAACGAACCTGGTGTGAAAGTTTTAGACCCTATTCCTTCTACCGAAGACTTGATCTCCAAGTATATGCTACCAAAACTATTGGATCCAAACGATAAGGATAGAGCTTTTGTAAAGTTTGATGAAGATGATGAAGTTGTCTTGTTAGTTAACAATCTCGGCGGTGTTTCTAATTTTGTTATTAGTTCTATCACTTCCAAAACTACGGATTTCTTAAAGGAAAATTACAACATAACCCCGGTTCAAACAATTGCTGGCACATTGATGACCTCCTTCAATGGTAATGGGTTCAGTATCACATTACTAAACGCCACTAAGGCTACAAAGGCTTTGCAATCTGATT TTGAGGAGATCAAATCAGTACTAGACTTGTTGAACGCATTTACGAACGCACCGGGCTGGCCAATTGCAGATTTTGAAAAGACTTCTGCCCCATCTGTTAACGATGACTTGTTACATAATGAAGTAACAGCAAAGGCCGTCGGTACCTATGACTTTGACAAGTTTGCTGAGTGGATGAAGAGTGGTGCTGAACAAGTTATCAAGAGCGAACCGCACATTACGGAACTAGACAATCAAGTTGGTGATGGTGATTGTGGTTACACTTTAGTGGCAGGAGTTAAAGGCATCACCGAAAACCTTGACAAGCTGTCGAAGGACTCATTATCTCAGGCGGTTGCCCAAATTTCAGATTTCATTGAAGGCTCAATGGGAGGTACTTCTGGTGGTTTATATTCTATTCTTTTGTCGGGTTTTTCACACGGATTAATTCAGGTTTGTAAATCAAAGGATGAACCCGTCACTAAGGAAATTGTGGCTAAGTCACTCGGAATTGCATTGGATACTTTATACAAATATACAAAGGCAAGGAAGGGATCATCCACCATGATTGATGCTTTAGAACCATTCGTTAAAGAATTTACTGCATCTAAGGATTTCAATAAGGCGGTAAAAGCTGCAGAGGAAGGTGCTAAATCCACTGCTACATTCGAGGCCAAATTTGGCAGAGCTTCGTATGTCGGCGATTCATCTCAAGTAGAAGATCCTGGTGCAGTAGGCCTATGTGAGTTTTTGAAGGGGGTTCAAAGCGCCTTGTAA

균주 제작은 인퓨젼(Infusion) 효소를 이용하여 다중-삽입 클로닝(Multi-insert Cloning)을 하였으며 제한효소로는 Sac1을 이용하였다. 각 유전자의 앞에는 프라이머를 이용해 RBS를 삽입하였으며 클로닝에 사용한 프라이머는 하기 표 4와 같다. 밑줄 친 서열은 RBS이다.The strain was prepared by multi-insert cloning using an infusion enzyme, and Sac1 was used as a restriction enzyme. RBS was inserted in front of each gene using primers, and the primers used for cloning are shown in Table 4 below. The underlined sequence is RBS.

서열
번호
order
number
명칭designation 서열order
1313 정방향 프라이머 1Forward Primer 1 CCTGCAAGAGTGGGAATAAGAGCTCCTTAGACGAAAAAGGAGGTATTTTTATGGCCATGATCACGGGCGGCCCTGCAAGAGTGGGAATAAGAGCTC CTTAGACGAAAAAGGAGGTATTTTT ATGGCCATGATCACGGGCGGC 1414 역방향 프라이머 1Reverse primer 1 GGACATTCCTTTAGGCGCCGGACTGGAAGGGACATTCCTTTAGGCGCCGGACTGGAAG 1515 정방향 프라이머 2Forward primer 2 CGGCGCCTAAAGGAATGTCCGCTAAATCGTTTGAAGTCGGCGCCTAA AGGA ATGTCCGCTAAATCGTTTGAAGT 1616 역방향 프라이머 2Reverse primer 2 AGCAGCGGGGCTGGCTTAAGTTACAAGGCGCTTTGAACCCAGCAGCGGGGCTGGCTTAAGTTACAAGGCGCTTTGAACCC

1-3. MG로의 경쟁 경로를 결실시킨 재조합 균주의 제조1-3. Preparation of recombinant strains that have deleted the competitive pathway to MG

M. extorquens AM1은 MG에서 락토일글루타티온(Lactoylglutathione)을 거쳐 락테이트(lactate)로 흐르는 경로를 보유하고 있다. 따라서, M. extorquens AM1에서 생성된 MG는 과발현시킨 1,2-PDO 생산 경로의 하이드록시아세톤과 락테이트로 흐름이 나누어지게 된다. MG를 락토일글루타티온으로 전환시키는 효소 락토일글루타티온 분해효소(Lactoylglutathione lyase)를 코딩하는 유전자 gloA를 결실시킴으로써 락테이트로 흐름 손실이 일어나지 않는 M. extorquens AM1βgloA::pMEV::mgsA::yqhD::gldA 균주(MPG101) 및 M. extorquens AM1βgloA::pMEV::mgsA::yqhD::gldA::fls::dak1 균주(MPG111)를 개발하였다. M. extorquens AM1의 Mex_1p0359 및 Mex_1p4683 2개의 유전자가 gloA에 해당하므로 pk19mobsacB 벡터를 이용하여 Mex_1p0359 및 Mex_1p4683를 결실시켰다. M. extorquens AM1 has a path from MG through lactoylglutathione to lactate. Therefore, the flow of MG produced in M. extorquens AM1 is divided into hydroxyacetone and lactate in the overexpressed 1,2-PDO production pathway. It deleted genes gloA working enzyme for converting lactose to galacto MG as one encoding a glutathione glutathione decomposing enzyme (Lactoylglutathione lyase) by that the flow losses occur in lactate M. extorquens AM1β gloA pMEV :: :: :: mgsA yqhD :: gldA strain (MPG101) and M. extorquens AM1β gloA :: pMEV :: mgsA :: yqhD :: gldA :: fls :: dak1 strain (MPG111) were developed. Since the two genes Mex_1p0359 and Mex_1p4683 of M. extorquens AM1 correspond to gloA, Mex_1p0359 and Mex_1p4683 were deleted using the pk19mobsacB vector.

pk19mobsacB 벡터의 서열은 서열번호 19의 서열과 같고, 관련 유전자의 서열은 하기 표 5와 같다.The sequence of the pk19mobsacB vector is the same as the sequence of SEQ ID NO: 19, and the sequence of the related gene is shown in Table 5 below.

서열
번호
order
number
명칭designation 서열order
1717 Mex_1p0359
코딩 핵산 서열
Mex_1p0359
Coding nucleic acid sequence
ATGGTTCGCGTGGCGGACCTCGACCGCGCGCTCGCCTTCTACGTCGATGCCTTCGGGCTCAAGGAGGTCCGGCGCGTCGAGAATGAGAAGGGCCGCTTCACCCTCGTCTTCCTCGCCGCTCCGGGGGATGTCGAGCGGGCCGAGGCGACGAAATCGCCGCTGATCGAGCTGACCTACAATTGGGATCCCGAGACCTATTCCGGCGGGCGCAACTTCGGGCACCTCGCCTATCAGGTCGATGACATCTACGCCTTCTGCCAGCGGCTGAAGATGCGGGCGTGACCATCAACCGGCCGCCGCGCGACGGGTACATGGCCTTCGTGCGCTCGCCCGACGGCATTTCCATCGAGATCCTGCAGAAGGGCGGGGCGAAGCCCCCGCAGGAGCCGTGGGCCTCCATGGAGAACACCGGAACCTGGTAGATGGTTCGCGTGGCGGACCTCGACCGCGCGCTCGCCTTCTACGTCGATGCCTTCGGGCTCAAGGAGGTCCGGCGCGTCGAGAATGAGAAGGGCCGCTTCACCCTCGTCTTCCTCGCCGCTCCGGGGGATGTCGAGCGGGCCGAGGCGACGAAATCGCCGCTGATCGAGCTGACCTACAATTGGGATCCCGAGACCTATTCCGGCGGGCGCAACTTCGGGCACCTCGCCTATCAGGTCGATGACATCTACGCCTTCTGCCAGCGGCTGAAGATGCGGGCGTGACCATCAACCGGCCGCCGCGCGACGGGTACATGGCCTTCGTGCGCTCGCCCGACGGCATTTCCATCGAGATCCTGCAGAAGGGCGGGGCGAAGCCCCCGCAGGAGCCGTGGGCCTCCATGGAGAACACCGGAACCTGGTAG
1818 Mex_1p4683
코딩 핵산 서열
Mex_1p4683
Coding nucleic acid sequence
ATGGCCAAGCCCGTCCACACCATGATCCGCGTCCGCGACGAGGCGCGCTCGCGGGACTACTATGCCCGCGCCTTCGGCCTGGAGCCGGCCGACCGGTTCGACTTTCCGGACTTCACGCTGCTCTACCTGCGCGACCCATCCTCGCCGTTCGAACTCGAACTGACGGTCAACAAGGACCGCGCCGAGCCCTACAATCTCGGCGACGGCTACGGTCACCTCGCCTTCGTGGTGGAGGATGCCGAGGCCGAGCATGCCCGCTTCGAGCGCGAGGGGCTTCCGGTCACGCCGGTCAAAACCCTCAAGCACGGCGACACCGCGCTCGCGACCTTCTTTTTCGCCACCGACCCGGACGGCTACAAGATCGAGGTGATCCAGAAGGGCGGCCGTTTCGCCTGAATGGCCAAGCCCGTCCACACCATGATCCGCGTCCGCGACGAGGCGCGCTCGCGGGACTACTATGCCCGCGCCTTCGGCCTGGAGCCGGCCGACCGGTTCGACTTTCCGGACTTCACGCTGCTCTACCTGCGCGACCCATCCTCGCCGTTCGAACTCGAACTGACGGTCAACAAGGACCGCGCCGAGCCCTACAATCTCGGCGACGGCTACGGTCACCTCGCCTTCGTGGTGGAGGATGCCGAGGCCGAGCATGCCCGCTTCGAGCGCGAGGGGCTTCCGGTCACGCCGGTCAAAACCCTCAAGCACGGCGACACCGCGCTCGCGACCTTCTTTTTCGCCACCGACCCGGACGGCTACAAGATCGAGGTGATCCAGAAGGGCGGCCGTTTCGCCTGA

균주 제작은 Infusion 효소를 이용하여 다중-삽입 클로닝(Multi-insert Cloning)하였다. Mex_1p0359 결실 시, 제한효소로는 Hind²및 EcoRI을 이용하였고 업스트림(upstream)과 다운스트림(downstream)은 하기 표 6과 같이 지정하였다.The strain was prepared by multi-insert cloning using Infusion enzyme. When Mex_1p0359 was deleted, Hind² and EcoRI were used as restriction enzymes, and upstream and downstream were designated as shown in Table 6 below.

서열
번호
order
number
명칭designation 서열order
2020 Mex_1p0359_업스트림Mex_1p0359_upstream ATGAACACGGACGATTTCGCCTACGATTTCGACGCGCCCGATTCGGACTGGAACTACGAGCCGTCGCGGGCCGATCTGTTCCGGCAGATCGACGCGCCACTCTATACCACTGATTCCAACGGCTGGCTGACCTACTACAACGAAGCCGCCGCACAGCTTTGGGGATTCCGCCCCGTGATCGGCAAGGCGCGCTGGTGCGGCGCTTGGCGGCTGTTCGAGGCGGACGGCGCGCCGCTGCCGCACGACCTGTCGCCGATGGCGCTCACCCTCAAAGGCGCGCGCCCAGTGCGCGGCGTCCAGATCGGCCTCGAACGGCCGGACGGAAGCCGGATGGCGTTCCTGCCTTACCCGACGGCGTTGCGCGACGGGACGGGCGCCGTGGTGGGGGGATGCAACATCCTCCTCGCCGTCGAGCGCTCAAGCCTGCGCGTTCCGCTCCGCGGGGCGCTCCAGGGCCGGCCGACGCTTCGGGCCGCCCAACTTGCGAGCATGCACAGATGTTCGGCGTGAGCTTGCCGCGTCTGCCTCGGCGATCCACCTCGTTCGAGCGAAGCGATCCGCGGGATGTCTCCCCGGATCGCCTTGCCGCCTGAGGAACGTGCCGCCTGAAAAACAGGAGGAAGCCATGTCGGTCGATACCAACTGGAGCCTCGACGCCGTCCAGAGCCTGCGCAGCATGGCCCGCGAGGGCATACCCCTCTCCGTCATCAGCCTGCGGCTCAAGCGGCCGGTCGATGCGGTCTGCGCCAAGCTCGCCGAACTCGGCATCACGCCCAAGCTCGAGCTTTGACCGGACGGGCGCCGGGGCATCGCGCCCGGGCGCCCACCCGCCGGACATGAACACGGACGATTTCGCCTACGATTTCGACGCGCCCGATTCGGACTGGAACTACGAGCCGTCGCGGGCCGATCTGTTCCGGCAGATCGACGCGCCACTCTATACCACTGATTCCAACGGCTGGCTGACCTACTACAACGAAGCCGCCGCACAGCTTTGGGGATTCCGCCCCGTGATCGGCAAGGCGCGCTGGTGCGGCGCTTGGCGGCTGTTCGAGGCGGACGGCGCGCCGCTGCCGCACGACCTGTCGCCGATGGCGCTCACCCTCAAAGGCGCGCGCCCAGTGCGCGGCGTCCAGATCGGCCTCGAACGGCCGGACGGAAGCCGGATGGCGTTCCTGCCTTACCCGACGGCGTTGCGCGACGGGACGGGCGCCGTGGTGGGGGGATGCAACATCCTCCTCGCCGTCGAGCGCTCAAGCCTGCGCGTTCCGCTCCGCGGGGCGCTCCAGGGCCGGCCGACGCTTCGGGCCGCCCAACTTGCGAGCATGCACAGATGTTCGGCGTGAGCTTGCCGCGTCTGCCTCGGCGATCCACCTCGTTCGAGCGAAGCGATCCGCGGGATGTCTCCCCGGATCGCCTTGCCGCCTGAGGAACGTGCCGCCTGAAAAACAGGAGGAAGCCATGTCGGTCGATACCAACTGGAGCCTCGACGCCGTCCAGAGCCTGCGCAGCATGGCCCGCGAGGGCATACCCCTCTCCGTCATCAGCCTGCGGCTCAAGCGGCCGGTCGATGCGGTCTGCGCCAAGCTCGCCGAACTCGGCATCACGCCCAAGCTCGAGCTTTGACCGGACGGGCGCCGGGGCATCGCGCCCGGGCGCCCACCCGCCGGAC 2121 Mex_1p0359 _다운스트림Mex_1p0359 _downstream CGTGTGCAAGTATTCCATGGCCACACCGGATGATGACAGGGATGTCCGGCTATCTGGCCCGGCACGCAAACCCGTCAACGGGGCGACCGATCAGGCTCCCGCGCGGCCAGTCAGCCAGCGGCGGCCAAACGGCCGTTCGACCGGCGGCGCCCGCCGGATTCGACCGGACTGCCGGTGAATAACATCCATTTGAAAAAAGCTTCTCTTGTGGCAATTGCTTGATCCAATTACGATCACTATCGCGTCTCGCAAGCTTTCCGTTAAATTATAGTGACATGGCATTGAAAAATAGAAGGCATTCCTTCGCAACTGACTTGGCGTCGATGCATATTATAGCATTTAAGAGCTTTTGTTTCCCGAAATGGCAACAGCTAAGATTCGCCGCGTCCCGGCCTGCGATGATCGTCGAATCGGGCATGCCGCGACCGGGAGACGGCGCCGTGTGCAAGTATTCCATGGCCACACCGGATGATGACAGGGATGTCCGGCTATCTGGCCCGGCACGCAAACCCGTCAACGGGGCGACCGATCAGGCTCCCGCGCGGCCAGTCAGCCAGCGGCGGCCAAACGGCCGTTCGACCGGCGGCGCCCGCCGGATTCGACCGGACTGCCGGTGAATAACATCCATTTGAAAAAAGCTTCTCTTGTGGCAATTGCTTGATCCAATTACGATCACTATCGCGTCTCGCAAGCTTTCCGTTAAATTATAGTGACATGGCATTGAAAAATAGAAGGCATTCCTTCGCAACTGACTTGGCGTCGATGCATATTATAGCATTTAAGAGCTTTTGTTTCCCGAAATGGCAACAGCTAAGATTCGCCGCGTCCCGGCCTGCGATGATCGTCGAATCGGGCATGCCGCGACCGGGAGACGGCGC

pK19mobsacB에 업스트림과 다운스트림을 삽입하기 위해 사용한 프라이머(서열번호 22 내지 25), 업스트림과 다운스트림에서 각각 단일 재조합(Single Recombinant)이 일어난 콜로니(colony)를 선별하기 위해 사용한 프라이머(서열번호 26 내지 29) 및 돌연변이(Mutant)와 야생형(wild)을 구별하기 위하여 수행된 PCR에 사용된 프라이머(서열번호 30 및 31)는 하기 표 7과 같다.Primers used to insert upstream and downstream into pK19mobsacB (SEQ ID NOs: 22 to 25), primers used to select colonies in which a single recombinant has occurred in the upstream and downstream, respectively (SEQ ID NOs: 26 to 29 ) And primers (SEQ ID NOs: 30 and 31) used in PCR performed to distinguish between mutant and wild type are shown in Table 7 below.

서열
번호
order
number
명칭designation 서열order
2222 정방향 프라이머 1Forward Primer 1 GACCATGATTACGCCAAGCTTATGAACACGGACGATTTCGCCGACCATGATTACGCCAAGCTTATGAACACGGACGATTTCGCC 2323 역방향 프라이머 1Reverse primer 1 CTTGCACACGGTCCGGCGGGTGGGCGCCCTTGCACACGGTCCGGCGGGTGGGCGCC 2424 정방향 프라이머 2Forward primer 2 CCCGCCGGACCGTGTGCAAGTATTCCATGGCCCCCGCCGGACCGTGTGCAAGTATTCCATGGCC 2525 역방향 프라이머 2Reverse primer 2 AAAACGACGGCCAGTGAATTCGCGCCGTCTCCCGGTCGCAAAACGACGGCCAGTGAATTCGCGCCGTCTCCCGGTCGC 2626 정방향 프라이머 3Forward Primer 3 AACCCGCAGAAACACGCTTTAACCCGCAGAAACACGCTTT 2727 역방향 프라이머 3Reverse primer 3 GAAGCTAGCTTATCGCGCCAGAAGCTAGCTTATCGCGCCA 2828 정방향 프라이머 4Forward Primer 4 TTTCTGCGCGTAATCTGCTGTTTCTGCGCGTAATCTGCTG 2929 역방향 프라이머 4Reverse primer 4 ACGATGATGGCGAGGGTGACGATGATGGCGAGGGTG 3030 정방향 프라이머 5Forward Primer 5 GGAGCCTGATGAACACGGACGGAGCCTGATGAACACGGAC 3131 역방향 프라이머 5Reverse primer 5 GCAATCATGCGCCGTCTCGCAATCATGCGCCGTCTC

단일 재조합 콜로니에 대하여 수크로즈 선택(sucrose selection)과 카나마이신 선택(kanamycin selection)을 거쳐 PCR을 통해 원하는 돌연변이를 최종적으로 선택하였다.Mex_1p4683 결실 시, 제한효소로는 Hind²EcoRⅠ을 이용하였고 업스트림과 다운스트림은 하기 표 8과 같이 지정하였다.For a single recombinant colony, the desired mutation was finally selected through PCR through sucrose selection and kanamycin selection. When Mex_1p4683 was deleted, Hind²EcoRI was used as a restriction enzyme, and the upstream and downstream were as follows: It was designated as in Table 8.

서열
번호
order
number
명칭designation 서열order
3232 Mex_1p0359_업스트림Mex_1p0359_upstream GCTGGTATCTGCCGCCGCGCTGCCGGCAGAACCTCCGGAAAGACCCATTGTCGCCCCCTGTCGTTTCCGGCTTGACCGTGGACGAGATTCGCTCCCGAGAGCGTGAGGGAACGCACGCGACCTGTCGCGTCCGGCGCGATCGCCGGATCGGGCGGGATGCGGTGCCGTTCTGAAGTGCTGTGAGGGAGAACATTCGATGCGCTCAGGGGCCGCTTCCGTCTTCTTCCCCCTGTTCGGGCTCGTGCTCACGGTCGGCGCGGCCGATGCGCAGACGCCGCCCGAGCCAGGCGCTGCCCGGCCGCTGGTGATCCCCCAGGTCGAGGGCGAGCGCCAGGGCAAGGTGCTGGGCCGGGCGCTCGCCTGCGGCGCGGAGCGCGAGCGGGTCGATCGGGTGCTGAGAGCCGGCCGCGAGCGCATGATGGCGGCGGTCGGCCGGGCGCTCACGGAGGAGCGCTACGCCCTGGCGCTCGACGACGCGATGCGTCTGGAGACGAGCCTGCCTGCGCCCTCTTCGATCGCGTGCGAGAAGGCGCTGGCCGGGCTCGAACGCCTGGAGAAGGCGCCGTAGACACCCAAACGAGCTGGTATCTGCCGCCGCGCTGCCGGCAGAACCTCCGGAAAGACCCATTGTCGCCCCCTGTCGTTTCCGGCTTGACCGTGGACGAGATTCGCTCCCGAGAGCGTGAGGGAACGCACGCGACCTGTCGCGTCCGGCGCGATCGCCGGATCGGGCGGGATGCGGTGCCGTTCTGAAGTGCTGTGAGGGAGAACATTCGATGCGCTCAGGGGCCGCTTCCGTCTTCTTCCCCCTGTTCGGGCTCGTGCTCACGGTCGGCGCGGCCGATGCGCAGACGCCGCCCGAGCCAGGCGCTGCCCGGCCGCTGGTGATCCCCCAGGTCGAGGGCGAGCGCCAGGGCAAGGTGCTGGGCCGGGCGCTCGCCTGCGGCGCGGAGCGCGAGCGGGTCGATCGGGTGCTGAGAGCCGGCCGCGAGCGCATGATGGCGGCGGTCGGCCGGGCGCTCACGGAGGAGCGCTACGCCCTGGCGCTCGACGACGCGATGCGTCTGGAGACGAGCCTGCCTGCGCCCTCTTCGATCGCGTGCGAGAAGGCGCTGGCCGGGCTCGAACGCCTGGAGAAGGCGCCGTAGACACCCAAACGA 3333 Mex_1p0359_다운스트림Mex_1p0359_downstream CGGCCCTCTCTCCCCGGTACGGATGTTGTGTGGATGAGCGCCCATCTGGCGCAGTCCGGCCGGGCGGAAAGGGTTTTTGCCGTTTACCCTTCGTCAACCTTACCGGGTGCTTGCTGCCGGCAATGATGCGCACCGCGTCCCTCACCGCCGTCGATCCCGAAGCCCTGCTGCCGCCGGGCGACGCCGCCCTGCGCGCGGCGATGCGGGGCTGGCGCGAGGCGCTGGCGCGGGAGCGGCGCATGGCCGCCAACACGGTCGAGGCCTACGAGCGTGACCTGCGCCAGTTTCTGATCCATCGCGCCGCCCGCTCCGGCACGCCCACCATCGCCGGGCTGATCGCCCTGAAGCCCCGCGACCTGCGCGCCTTCATGGCCGCGCGCCGGGCCGAGGGGATCGGTGGGCGCTCCCTGATGCGGATGCTGGCGGGTCTGCGCTCCTTCGCCCGCTTCCTCGAACGGGAGGGACACGGCAGCGTCGCGGCGCTCGGCGCGGTGCGCTCCCCCAAGGTCGAGCGCCGCCTGCCGCGCCCGCTTCCCATTTCCGCCGCGCTGGCGATGACCGCGCCCGAGACCCGCCCCGACGACGACCGCGCCCCGTGGGTGCTCGCCCGCGACGCGGCGGTGATCGCCCTCCTCTACGGCTCGGGCCTGCGCATCTCGGAAGCCTTAGGGCTCACCGCCCGCGACGCGCCGATGCCGGGCATCGACGAGGTGCGGGTGACGGGCAAGGGTGGGAAGGTCCGCGCCGTGCCGGTGCTGCCGGCGGTGGCCGAGGCGGTGGCCGCCTACCTGTCGCTGTGCCCGCACCCCCTCGATCCGGAGGGGCCGCTCTTCGTCGGCGTGAAGGGCGGGCCGCTCTCGCCGCGAGTGGTCCAGTACGCGGTTTCCGCGCTCCGCGGCGCGCTCGGCCTGCCCGAGAGCGCGACCCCGCACGCCCTGCGACACTCCTTCGCAACCCATCTGCTCGCCCGCCGGGGCGAGCTGCGGGCGATCCAGGAATTGCTCGGCCACGCCTCGCTCTCGACCACGCAAATCTACACCAAGGTCGATGCCGCCCGCCTGATGAGCGCCTTCGAGGACGCCCATCCCCGCGCCCGGCGGCTGCCGCCCTCGGAACCGCCGTCACCGCGTTCCGAAACCGTTGATGCAGAGCAAGGCACGAGCGCCCGATCCGGCTATGCTGTCCGGCAGGACAGGCCGGTGGAGCGTAGAAATGCGTGACGGCCCTCTCTCCCCGGTACGGATGTTGTGTGGATGAGCGCCCATCTGGCGCAGTCCGGCCGGGCGGAAAGGGTTTTTGCCGTTTACCCTTCGTCAACCTTACCGGGTGCTTGCTGCCGGCAATGATGCGCACCGCGTCCCTCACCGCCGTCGATCCCGAAGCCCTGCTGCCGCCGGGCGACGCCGCCCTGCGCGCGGCGATGCGGGGCTGGCGCGAGGCGCTGGCGCGGGAGCGGCGCATGGCCGCCAACACGGTCGAGGCCTACGAGCGTGACCTGCGCCAGTTTCTGATCCATCGCGCCGCCCGCTCCGGCACGCCCACCATCGCCGGGCTGATCGCCCTGAAGCCCCGCGACCTGCGCGCCTTCATGGCCGCGCGCCGGGCCGAGGGGATCGGTGGGCGCTCCCTGATGCGGATGCTGGCGGGTCTGCGCTCCTTCGCCCGCTTCCTCGAACGGGAGGGACACGGCAGCGTCGCGGCGCTCGGCGCGGTGCGCTCCCCCAAGGTCGAGCGCCGCCTGCCGCGCCCGCTTCCCATTTCCGCCGCGCTGGCGATGACCGCGCCCGAGACCCGCCCCGACGACGACCGCGCCCCGTGGGTGCTCGCCCGCGACGCGGCGGTGATCGCCCTCCTCTACGGCTCGGGCCTGCGCATCTCGGAAGCCTTAGGGCTCACCGCCCGCGACGCGCCGATGCCGGGCATCGACGAGGTGCGGGTGACGGGCAAGGGTGGGAAGGTCCGCGCCGTGCCGGTGCTGCCGGCGGTGGCCGAGGCGGTGGCCGCCTACCTGTCGCTGTGCCCGCACCCCCTCGATCCGGAGGGGCCGCTCTTCGTCGGCGTGAAGGGCGGGCCGCTCTCGCCGCGAGTGGTCCAGTACGCGGTTTCCGCGCTCCGCGGCGCGCTCGGCCTGCCCGAGAGCGCGACCCCGCACGCCCTGCGACACTCCTTCGCAACCCATCTGCTCGCCCGCCGGGGCGAGCTGCGGGCGATCCAGGAATT GCTCGGCCACGCCTCGCTCTCGACCACGCAAATCTACACCAAGGTCGATGCCGCCCGCCTGATGAGCGCCTTCGAGGACGCCCATCCCCGCGCCCGGCGGCTGCCGCCCTCGGAACCGCCGTCACCGCGTTCCGAAACCGTTGATGCAGAGAGCAAGGCACGAGCGCCCCCGATCCGGCTAGGCGCGCGAGGCCGGCTAGGCAGGT

pK19mobsacB에 업스트림과 다운스트림을 삽입하기 위해 사용한 프라이머, 업스트림과 다운스트림에서 각각 단일 재조합이 일어난 콜로니를 선별하기 위해 사용한 프라이머 및 돌연변이와 야생형을 구별하는 PCR에 사용된 프라이머는 하기 표 9와 같다.The primers used to insert upstream and downstream into pK19mobsacB, the primers used to select colonies in which single recombination has occurred in each of the upstream and downstream, and the primers used in PCR to distinguish between mutant and wild type are shown in Table 9 below.

서열
번호
order
number
명칭designation 서열order
3434 정방향 프라이머 1Forward Primer 1 GACCATGATTACGCCAAGCTTGCTGGTATCTGCCGCCGCGACCATGATTACGCCAAGCTTGCTGGTATCTGCCGCCGC 3535 역방향 프라이머 1Reverse primer 1 GAGAGGGCCGTCGTTTGGGTGTCTACGGCGGAGAGGGCCGTCGTTTGGGTGTCTACGGCG 3636 정방향 프라이머 2Forward primer 2 ACCCAAACGACGGCCCTCTCTCCCCGGTACACCCAAACGACGGCCCTCTCTCCCCGGTAC 3737 역방향 프라이머 2Reverse primer 2 AAAACGACGGCCAGTGAATTCTCACGCATTTCTACGCTCCACCAAAACGACGGCCAGTGAATTCTCACGCATTTCTACGCTCCACC 3838 정방향 프라이머 3Forward Primer 3 AGATCGAGACGAGAAGCGAGATCGAGACGAGAAGCG 3939 역방향 프라이머 3Reverse primer 3 CCACACAACATCCGTACCCCACACAACATCCGTACC 4040 정방향 프라이머 4Forward Primer 4 GACCATGATTACGCCAAGCGACCATGATTACGCCAAGC 4141 역방향 프라이머 4Reverse primer 4 CCACACAACATCCGTACCCCACACAACATCCGTACC 4242 정방향 프라이머 5Forward Primer 5 CAGAACCTCCGGAAAGACCCCAGAACCTCCGGAAAGACCC 4343 역방향 프라이머 5Reverse primer 5 TCCACACAACATCCGTACCGTCCACACAACATCCGTACCG

실시예 2: 재조합 균주로부터의 생산량 확인Example 2: Confirmation of production amount from recombinant strain

실시예 1에서 제조한 균주들(MPG001, MPG011, MPG101 및 MPG111)은 500 ml 배플 플라스크에 100 ml의 NMS 배지를 포함하고 30℃ rpm 200의 조건으로 배양하였다. 배지의 조성은 하기 표 10과 같다.The strains prepared in Example 1 (MPG001, MPG011, MPG101 and MPG111) contained 100 ml of NMS medium in a 500 ml baffle flask and were cultured at 30° C. rpm 200. The composition of the medium is shown in Table 10 below.

NMS stock solution recipeNMS stock solution recipe Adding amount for 1LAdding amount for 1L MeOHMeOH 125mM125mM MgSO4·7H2O StockMgSO 4 7H 2 O Stock 1g1g KNO3 StockKNO 3 Stock 1g1g CaCl2·2H2O StockCaCl 2 2H 2 O Stock 0.228g0.228g 3.8% (w/v) solution Fe-EDTA3.8% (w/v) solution Fe-EDTA 0.0038g0.0038g 0.1% (w/v) NaMo·H2O0.1% (w/v) NaMo H 2 O 0.0006g0.0006g FeSO4·H2OFeSO4·H2O 0.0005g0.0005g ZnSO4·H2OZnSO4·H2O 0.0004g0.0004g MnCl2·H2OMnCl2·H2O 0.00002g0.00002g CoCl2·H2OCoCl2·H2O 0.00005g0.00005g NiCl2·H2ONiCl2·H2O 0.00001g0.00001g H3BO3 (boric acid)H3BO3 (boric acid) 0.000015g0.000015g EDTAEDTA 0.00025g0.00025g KH2PO4KH2PO4 0.26g0.26g Na2HPO4·(H2O)Na2HPO4·(H2O) 0.62g0.62g BiotinBiotin 0.02mg0.02mg Folic acidFolic acid 0.02mg0.02mg Thiamine HClThiamine HCl 0.05mg0.05mg Ca pantothenateCa pantothenate 0.05mg0.05mg Vitamin B12Vitamin B12 0.001mg0.001mg RiboflavinRiboflavin 0.05mg0.05mg NicotiamideNicotiamide 0.05mg0.05mg CuSO4 5H2OCuSO4 5H2O 2.5mg2.5mg

메틸로박테리움 엑스토르켄스 AM1은 자라며 무리(clump)를 형성하여 일정 OD이상에서는 정확한 OD의 측정이 어렵다. 따라서, OD 데이터는 유의미한 일부 데이터만 표기하였다. 플라스크 발효 결과로부터 생산된 1,2-PDO를 확인하여 도 3 내지 6 및 표 11로 나타내었다.Methylobacterium extorkens AM1 grows and forms a clump, making it difficult to accurately measure OD above a certain OD. Therefore, only some significant data were indicated for OD data. The 1,2-PDO produced from the flask fermentation result was confirmed and shown in FIGS. 3 to 6 and Table 11.

MPG001MPG001 MPG011MPG011 MPG101MPG101 MPG111MPG111 Average(mg/L)Average(mg/L) 8.68.6 9.89.8 41.141.1 58.858.8 Max(mg/L)Max(mg/L) 10.110.1 14.214.2 52.952.9 61.661.6

도 3 내지 6 및 표 12에서 확인할 수 있듯이, 1,2-PDO 생산 균주 MPG001에 대하여 DHAP 흐름을 증진시키고 MG에서 경쟁적 경로인 락테이트로 향하는 흐름을 막아준 균주 MPG111은 약 6.8배 향상된 1,2-PDO의 생산량을 보였다.포몰레이즈 및 디하이드록시아세톤 인산화효소의 과발현으로 인한 1,2-PDO의 생산량이 증가하는 정도와 비교하였을 때, gloA 코딩 유전자 결실에 의한 1,2-PDO의 생산량이 증가하는 정도가 현저하게 높은 것으로 판단할 수 있었다.As can be seen in FIGS. 3 to 6 and Table 12, strain MPG111, which improved DHAP flow for 1,2-PDO-producing strain MPG001 and prevented the flow from MG to lactate, a competitive pathway, improved about 6.8 times. -PDO production was shown. Compared with the increase in the production of 1,2-PDO due to overexpression of formolease and dihydroxyacetone kinase, the production of 1,2-PDO due to deletion of the gloA coding gene It could be determined that the degree of increase was remarkably high.

<110> Industry-University Cooperation Foundation Sogang University <120> Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same <130> PN190334 <160> 43 <170> KoPatentIn 3.0 <210> 1 <211> 5730 <212> DNA <213> Artificial Sequence <220> <223> pMEV vector <400> 1 gaccctttcc gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg 60 gccctgcaaa cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc 120 gttgtggata cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca 180 cttgaggggc cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc 240 cggcgacgtg gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt 300 tcccacagat gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg 360 gcgcgactac tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca 420 gatgaggggc gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt 480 gcaagggttt ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac 540 caatatttat aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc 600 cgaagggggg tgccccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc 660 ccccaggggc tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agccaagctg 720 accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg 780 tgagcgtggg tctcgcggta tcattgcagc accagtactg accccgtaga aaagatcaaa 840 ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca 900 ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta 960 actggcttca gcagagcgca gataccaaat actgtccttc tagtgtagcc gtagttaggc 1020 caccacttca agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca 1080 gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta 1140 ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag 1200 cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag cgccacgctt 1260 cccgaaggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac aggagagcgc 1320 acgagggagc ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac 1380 ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac 1440 gccagcaacg cggccttttt acggttcctg gccttttgct ggccttttgc tcacatgttc 1500 tttcctgcgt tatcccctga ttctgtggat aaccgtagca tgcgttgacg acaacggtgc 1560 gatgggtccc ggccccggtc aagacgatgc caatacgttg cgacactacg ccttggcact 1620 tttagaattg ccttatcgtc ctgataagaa atgtccgacc agctaaagac atcgcgtcca 1680 atcaaagcct agaaaatata ggcgaaggga cgctaatggg cccttcacac agaggagaga 1740 cagcgaattc tggtaccttc tagactatcg actagttggt acctctgcag aagcttccgg 1800 agctcttaag ccagccccgc tgctcccggc atccgcttac agataaaacg aaaggctcag 1860 tcgaaagact gggcctttcg ttttatacaa gccctccagg ggagatgcgt ggatccttag 1920 atctaggcct gaatcgcccc atcatccagc cagaaagtga gggagccacg gttgatgaga 1980 gctttgttgt aggtggacca gttggtgatt ttgaactttt gctttgccac ggaacggtct 2040 gcgttgtcgg gaagatgcgt gatctgatcc ttcaactcag caaaagttcg atttattcaa 2100 caaagccgcc gtcccgtcaa gtcagcgtaa tgctctgcca gtgttacaac caattaacca 2160 attctgatta gaaaaactca tcgagcatca aatgaaactg caatttattc atatcaggat 2220 tatcaatacc atatttttga aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc 2280 agttccatag gatggcaaga tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa 2340 tacaacctat taatttcccc tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag 2400 tgacgactga atccggtgag aatggcaaaa gcttatgcat ttctttccag acttgttcaa 2460 caggccagcc attacgctcg tcatcaaaat cactcgcatc aaccaaaccg ttattcattc 2520 gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag 2580 gaatcgaatg caaccggcgc aggaacactg ccagcgcatc aacaatattt tcacctgaat 2640 caggatattc ttctaatacc tggaatgctg ttttcccggg gatcgcagtg gtgagtaacc 2700 atgcatcatc aggagtacgg ataaaatgct tgatggtcgg aagaggcata aattccgtca 2760 gccagtttag tctgaccatc tcatctgtaa catcattggc aacgctacct ttgccatgtt 2820 tcagaaacaa ctctggcgca tcgggcttcc catacaatcg atagattgtc gcacctgatt 2880 gcccgacatt atcgcgagcc catttatacc catataaatc agcatccatg ttggaattta 2940 atcgcggcct cgagcaagac gtttcccgtt gaatatggct cataacaccc cttgtattac 3000 tgtttatgta agcagacagt tttattgttc atgatgatat atttttatct tgtgcaatgt 3060 aacatcagag attttgagac acaacgtggc tttccccccc ccccctgcag gtccgacacg 3120 gggatggatg gcgttcccga tcatggtcct gcttgcttcg ggtggcatcg gaatgccggc 3180 gctgcaagca atgttgtcca ggcaggtgga tgaggaacgt caggggcagc tgcaaggctc 3240 actggcggcg ctcaccagcc tgacctcgat cgtcggaccc ctcctcttca cggcgatcta 3300 tgcggcttct ataacaacgt ggaacgggtg ggcatggatt gcaggcgctg ccctctactt 3360 gctctgcctg ccggcgctgc gtcgcgggct ttggagcggc gcagggcaac gagccgatcg 3420 ctgatcgtgg aaacgatagg cctatgccat gcgggtcaag gcgacttccg gcaagctata 3480 cgcgccctag aattgtcaat tttaatcctc tgtttatcgg cagttcgtag agcgcgccgt 3540 gcgtcccgag cgatactgag cgaagcaagt gcgtcgagca gtgcccgctt gttcctgaaa 3600 tgccagtaaa gcgctggctg ctgaaccccc agccggaact gaccccacaa ggccctagcg 3660 tttgcaatgc accaggtcat cattgaccca ggcgtgttcc accaggccgc tgcctcgcaa 3720 ctcttcgcag gcttcgccga cctgctcgcg ccacttcttc acgcgggtgg aatccgatcc 3780 gcacatgagg cggaaggttt ccagcttgag cgggtacggc tcccggtgcg agctgaaata 3840 gtcgaacatc cgtcgggccg tcggcgacag cttgcggtac ttctcccata tgaatttcgt 3900 gtagtggtcg ccagcaaaca gcacgacgat ttcctcgtcg atcaggacct ggcaacggga 3960 cgttttcttg ccacggtcca ggacgcggaa gcggtgcagc agcgacaccg attccaggtg 4020 cccaacgcgg tcggacgtga agcccatcgc cgtcgcctgt aggcgcgaca ggcattcctc 4080 ggccttcgtg taataccggc cattgatcga ccagcccagg tcctggcaaa gctcgtagaa 4140 cgtgaaggtg atcggctcgc cgataggggt gcgcttcgcg tactccaaca cctgctgcca 4200 caccagttcg tcatcgtcgg cccgcagctc gacgccggtg taggtgatct tcacgtcctt 4260 gttgacgtgg aaaatgacct tgttttgcag cgcctcgcgc gggattttct tgttgcgcgt 4320 ggtgaacagg gcagagcggg ccgtgtcgtt tggcatcgct cgcatcgtgt ccggccacgg 4380 cgcaatatcg aacaaggaaa gctgcatttc cttgatctgc tgcttcgtgt gtttcagcaa 4440 cgcggcctgc ttggcctcgc tgacctgttt tgccaggtcc tcgccggcgg tttttcgctt 4500 cttggtcgtc atagttcctc gcgtgtcgat ggtcatcgac ttcgccaaac ctgccgcctc 4560 ctgttcgaga cgacgcgaac gctccacggc ggccgatggc gcgggcaggg cagggggagc 4620 cagttgcacg ctgtcgcgct cgatcttggc cgtagcttgc tggaccatcg agccgacgga 4680 ctggaaggtt tcgcggggcg cacgcatgac ggtgcggctt gcgatggttt cggcatcctc 4740 ggcggaaaac cccgcgtcga tcagttcttg cctgtatgcc ttccggtcaa acgtccgatt 4800 cattcaccct ccttgcggga ttgccccgac tcacgccggg gcaatgtgcc cttattcctg 4860 atttgacccg cctggtgcct tggtgtccag ataatccacc ttatcggcaa tgaagtcggt 4920 cccgtagacc gtctggccgt ccttctcgta cttggtattc cgaatcttgc cctgcacgaa 4980 taccagctcc gcgaagtcgc tcttcttgat ggagcgcatg gggacgtgct tggcaatcac 5040 gcgcaccccc cggccgtttt agcggctaaa aaagtcatgg ctctgccctc gggcggacca 5100 cgcccatcat gaccttgcca agctcgtcct gcttctcttc gatcttcgcc agcagggcga 5160 ggatcgtggc atcaccgaac cgcgccgtgc gcgggtcgtc ggtgagccag agtttcagca 5220 ggccgcccag gcggcccagg tcgccattga tgcgggccag ctcgcggacg tgctcatagt 5280 ccacgacgcc cgtgattttg tagccctggc cgacggccag caggtaggcc tacaggctca 5340 tgccggccgc cgccgccttt tcctcaatcg ctcttcgttc gtctggaagg cagtacacct 5400 tgataggtgg gctgcccttc ctggttggct tggtttcatc agccatccgc ttgccctcat 5460 ctgttacgcc ggcggtagcc ggccagcctc gcagagcagg attcccgttg agcaccgcca 5520 ggtgcgaata agggacagtg aagaaggaac acccgctcgc gggtgggcct acttcaccta 5580 tcctgcccgg ctgacgccgt tggatacacc aaggaaagtc tacacgaacc ctttggcaaa 5640 atcctgtata tcgtgcgaaa aaggatggat ataccgaaaa aatcgctata atgaccccga 5700 agcagggtta tgcagcggaa aagatccgtc 5730 <210> 2 <211> 414 <212> DNA <213> Bacillus subtilis <400> 2 atgaaaattg ctttgatcgc gcatgacaag aaaaaacagg atatggttca atttacgact 60 gcctatcggg atattttaaa gaatcatgat ctatacgcaa ccggaaccac agggttgaaa 120 attcatgagg cgacaggtct tcaaattgaa cgttttcaat ccggcccttt agggggagac 180 cagcaaatcg gtgcactgat cgctgccaat gcactcgatc ttgtcatttt tttgcgcgac 240 ccgctgaccg cgcagccgca tgaaccggat gtctcggcat taatccgttt atgtgatgtg 300 tattccattc cgctcgccac aaatatgggt actgcggaaa ttcttgtgcg cacacttgat 360 gaaggtgttt tcgaattccg tgaccttctt cggggagaag agccgaatgt ataa 414 <210> 3 <211> 1164 <212> DNA <213> Escherichia coli <400> 3 atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60 ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc 120 gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180 gaatttggcg gtattgagcc aaacccggct tatgaaacgc tgatgaacgc cgtgaaactg 240 gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300 accaaattta tcgccgcagc ggctaactat ccggaaaata tcgatccgtg gcacattctg 360 caaacgggcg gtaaagagat taaaagcgcc atcccgatgg gctgtgtgct gacgctgcca 420 gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480 caggcgttcc attctgccca tgttcagccg gtatttgccg tgctcgatcc ggtttatacc 540 tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600 gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660 ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720 cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780 ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840 cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900 cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat 960 gagcgtattg acgccgcgat tgccgcaacc cgcaatttct ttgagcaatt aggcgtgccg 1020 acccacctct ccgactacgg tctggacggc agctccatcc cggctttgct gaaaaaactg 1080 gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140 cgtatatacg aagccgcccg ctaa 1164 <210> 4 <211> 1104 <212> DNA <213> Escherichia coli <400> 4 atggaccgca ttattcaatc accgggtaaa tacatccagg gcgctgatgt gattaatcgt 60 ctgggcgaat acctgaagcc gctggcagaa cgctggttag tggtgggtga caaatttgtt 120 ttaggttttg ctcaatccac tgtcgagaaa agctttaaag atgctggact ggtagtagaa 180 attgcgccgt ttggcggtga atgttcgcaa aatgagatcg accgtctgcg tggcatcgcg 240 gagactgcgc agtgtggcgc aattctcggt atcggtggcg gaaaaaccct cgatactgcc 300 aaagcactgg cacatttcat gggtgttccg gtagcgatcg caccgactat cgcctctacc 360 gatgcaccgt gcagcgcatt gtctgttatc tacaccgatg agggtgagtt tgaccgctat 420 ctgctgttgc caaataaccc gaatatggtc attgtcgaca ccaaaatcgt cgctggcgca 480 cctgcacgtc tgttagcggc gggtatcggc gatgcgctgg caacctggtt tgaagcgcgt 540 gcctgctctc gtagcggcgc gaccaccatg gcgggcggca agtgcaccca ggctgcgctg 600 gcactggctg aactgtgcta caacaccctg ctggaagaag gcgaaaaagc gatgcttgct 660 gccgaacagc atgtagtgac tccggcgctg gagcgcgtga ttgaagcgaa cacctatttg 720 agcggtgttg gttttgaaag tggtggtctg gctgcggcgc acgcagtgca taacggcctg 780 accgctatcc cggacgcgca tcactattat cacggtgaaa aagtggcatt cggtacgctg 840 acgcagctgg ttctggaaaa tgcgccggtg gaggaaatcg aaaccgtagc tgcccttagc 900 catgcggtag gtttgccaat aactctcgct caactggata ttaaagaaga tgtcccggcg 960 aaaatgcgaa ttgtggcaga agcggcatgt gcagaaggtg aaaccattca caacatgcct 1020 ggcggcgcga cgccagatca ggtttacgcc gctctgctgg tagccgacca gtacggtcag 1080 cgtttcctgc aagagtggga ataa 1104 <210> 5 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 5 gagagacagc gaattcccgc gagggaattc ccaaaggcca ggtattttat gaaaattgct 60 ttgatcgc 68 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 6 tgggtctatt gggagttata cattcggctc ttctccc 37 <210> 7 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 7 ctcccaatag acccaaaggc ggtagagaaa tgaacaactt taatctgcac accc 54 <210> 8 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 8 ttgcgcttag ttgccttagc gggcggcttc gtatata 37 <210> 9 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 9 ggcaactaag cgcaaagatc gaggtaataa atggaccgca ttattcaatc a 51 <210> 10 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 10 cggggctggc ttaagagctc ttattcccac tcttgcagga a 41 <210> 11 <211> 1728 <212> DNA <213> Artificial Sequence <220> <223> fls coding sequences <400> 11 atggccatga tcacgggcgg cgagctggtc gtgcgcacgc tgatcaaggc gggtgtcgag 60 cacctctttg gtctccacgg tatccacatc gacaccatct tccaggcctg cctggaccat 120 gatgtcccga tcatcgacac ccgccacgag gcggcagccg gacatgcggc ggaaggctac 180 gcccgcgccg gcgccaagct cggcgtcgcg cttgtgacgg cgggcggcgg cttcaccaac 240 gcggtgaccc cgatcgccaa tgcccgcacc gaccgcacgc cggtcctctt ccttaccggc 300 tcgggcgccc tcagggatga cgagacgaac accctccagg cggggatcga ccaggtcgcg 360 atggccgccc ctatcaccaa gtgggcccat cgggtaatgg ccaccgaaca catccctcgg 420 ctggtcatgc aggcgattcg cgccgcgctg agcgcccccc gcggcccagt tctgctcgac 480 ctcccgtggg acatcctcat gaaccagatt gacgaagata gcgtcatcat cccggacctc 540 gtgctgtctg cccacggcgc gcaccccgat cccgcggacc tcgatcaggc cctggcgctg 600 ctccgcaagg ccgagcgtcc ggttatcgtt ctgggcagtg aggccagccg cacggcccga 660 aagacggccc tctcggcctt cgtcgcggcc acgggcgtgc cggtcttcgc cgactatgaa 720 ggcctcagta tgctgtcggg gcttccggac gccatgcggg gcggcctggt ccagaacctg 780 tacagcttcg ctaaagcgga cgccgcgccc gacctggtgc tcatgctggg cgcgcgcttc 840 ggcctgaaca cgggccacgg cagcggccag ctgatcccgc actcggccca ggtcatccag 900 gtcgacccgg acgcgtgcga gctgggccgg ctgcagggca tcgcgcttgg catcgtcgcc 960 gacgtgggcg gcaccatcga ggccctcgcg caggccaccg cccaggacgc ggcgtggccc 1020 gaccgcggcg actggtgcgc caaggtcacc gacctcgccc aggagcgcta cgcgtcgatc 1080 gcggccaagt cctcgtccga gcacgccctg caccccttcc acgcctcgca ggtcatcgcc 1140 aagcacgtcg acgcgggcgt gacggtcgtg gccgacggcg ggctgaccta tctgtggctg 1200 tccgaggtga tgagccgtgt gaagccgggc ggcttcctct gccacggcta cctgaactcc 1260 atgggcgtcg gcttcgggac cgcgctcggc gcccaggtcg ccgacctgga ggccggccgg 1320 cgcacgatcc tcgtgaccgg cgacggctcg gtgggctact ccatcggcga gttcgacacc 1380 ctggtccgga agcagctgcc gctgatcgtg atcatcatga acaaccagtc gtggggctgg 1440 accctccact tccagcagct cgcggtcggc ccgaaccgcg tgaccggcac gcgcctcgag 1500 aacggctcgt accacggcgt cgccgcggcc ttcggcgccg acggctacca cgtcgactcg 1560 gtcgagtcgt tcagcgccgc cctcgcccag gccctggccc acaaccgccc ggcctgcatc 1620 aacgtcgcgg tcgcgctcga ccccatcccg ccggaggagc tcatcctcat cggcatggac 1680 ccgttcgccg gcagcaccga gaacctctac ttccagtccg gcgcctaa 1728 <210> 12 <211> 1755 <212> DNA <213> Artificial Sequence <220> <223> dak1 coding sequences <400> 12 atgtccgcta aatcgtttga agtcacagat ccagtcaatt caagtctcaa agggtttgcc 60 cttgctaacc cctccattac gctggtccct gaagaaaaaa ttctcttcag aaagaccgat 120 tccgacaaga tcgcattaat ttctggtggt ggtagtggac atgaacctac acacgccggt 180 ttcattggta agggtatgtt gagtggcgcc gtggttggcg aaatttttgc atccccttca 240 acaaaacaga ttttaaatgc aatccgttta gtcaatgaaa atgcgtctgg cgttttattg 300 attgtgaaga actacacagg tgatgttttg cattttggtc tgtccgctga gagagcaaga 360 gccttgggta ttaactgccg cgttgctgtc ataggtgatg atgttgcagt tggcagagaa 420 aagggtggta tggttggtag aagagcattg gcaggtaccg ttttggttca taagattgta 480 ggtgccttcg cagaagaata ttctagtaag tatggcttag acggtacagc taaagtggct 540 aaaattatca acgacaattt ggtgaccatt ggatcttctt tagaccattg taaagttcct 600 ggcaggaaat tcgaaagtga attaaacgaa aaacaaatgg aattgggtat gggtattcat 660 aacgaacctg gtgtgaaagt tttagaccct attccttcta ccgaagactt gatctccaag 720 tatatgctac caaaactatt ggatccaaac gataaggata gagcttttgt aaagtttgat 780 gaagatgatg aagttgtctt gttagttaac aatctcggcg gtgtttctaa ttttgttatt 840 agttctatca cttccaaaac tacggatttc ttaaaggaaa attacaacat aaccccggtt 900 caaacaattg ctggcacatt gatgacctcc ttcaatggta atgggttcag tatcacatta 960 ctaaacgcca ctaaggctac aaaggctttg caatctgatt ttgaggagat caaatcagta 1020 ctagacttgt tgaacgcatt tacgaacgca ccgggctggc caattgcaga ttttgaaaag 1080 acttctgccc catctgttaa cgatgacttg ttacataatg aagtaacagc aaaggccgtc 1140 ggtacctatg actttgacaa gtttgctgag tggatgaaga gtggtgctga acaagttatc 1200 aagagcgaac cgcacattac ggaactagac aatcaagttg gtgatggtga ttgtggttac 1260 actttagtgg caggagttaa aggcatcacc gaaaaccttg acaagctgtc gaaggactca 1320 ttatctcagg cggttgccca aatttcagat ttcattgaag gctcaatggg aggtacttct 1380 ggtggtttat attctattct tttgtcgggt ttttcacacg gattaattca ggtttgtaaa 1440 tcaaaggatg aacccgtcac taaggaaatt gtggctaagt cactcggaat tgcattggat 1500 actttataca aatatacaaa ggcaaggaag ggatcatcca ccatgattga tgctttagaa 1560 ccattcgtta aagaatttac tgcatctaag gatttcaata aggcggtaaa agctgcagag 1620 gaaggtgcta aatccactgc tacattcgag gccaaatttg gcagagcttc gtatgtcggc 1680 gattcatctc aagtagaaga tcctggtgca gtaggcctat gtgagttttt gaagggggtt 1740 caaagcgcct tgtaa 1755 <210> 13 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 13 cctgcaagag tgggaataag agctccttag acgaaaaagg aggtattttt atggccatga 60 tcacgggcgg c 71 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 14 ggacattcct ttaggcgccg gactggaag 29 <210> 15 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 15 cggcgcctaa aggaatgtcc gctaaatcgt ttgaagt 37 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 16 agcagcgggg ctggcttaag ttacaaggcg ctttgaaccc 40 <210> 17 <211> 422 <212> DNA <213> Methylobacterium extorquens <400> 17 atggttcgcg tggcggacct cgaccgcgcg ctcgccttct acgtcgatgc cttcgggctc 60 aaggaggtcc ggcgcgtcga gaatgagaag ggccgcttca ccctcgtctt cctcgccgct 120 ccgggggatg tcgagcgggc cgaggcgacg aaatcgccgc tgatcgagct gacctacaat 180 tgggatcccg agacctattc cggcgggcgc aacttcgggc acctcgccta tcaggtcgat 240 gacatctacg ccttctgcca gcggctgaag atgcgggcgt gaccatcaac cggccgccgc 300 gcgacgggta catggccttc gtgcgctcgc ccgacggcat ttccatcgag atcctgcaga 360 agggcggggc gaagcccccg caggagccgt gggcctccat ggagaacacc ggaacctggt 420 ag 422 <210> 18 <211> 396 <212> DNA <213> Methylobacterium extorquens <400> 18 atggccaagc ccgtccacac catgatccgc gtccgcgacg aggcgcgctc gcgggactac 60 tatgcccgcg ccttcggcct ggagccggcc gaccggttcg actttccgga cttcacgctg 120 ctctacctgc gcgacccatc ctcgccgttc gaactcgaac tgacggtcaa caaggaccgc 180 gccgagccct acaatctcgg cgacggctac ggtcacctcg ccttcgtggt ggaggatgcc 240 gaggccgagc atgcccgctt cgagcgcgag gggcttccgg tcacgccggt caaaaccctc 300 aagcacggcg acaccgcgct cgcgaccttc tttttcgcca ccgacccgga cggctacaag 360 atcgaggtga tccagaaggg cggccgtttc gcctga 396 <210> 19 <211> 5722 <212> DNA <213> Artificial Sequence <220> <223> pk19mobsacB vector <400> 19 tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc 60 aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 120 gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca 180 ttaggcaccc caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag 240 cggataacaa tttcacacag gaaacagcta tgaccatgat tacgccaagc ttgcatgcct 300 gcaggtcgac tctagaggat ccccgggtac cgagctcgaa ttcactggcc gtcgttttac 360 aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc 420 ctttcgccag ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc 480 gcagcctgaa tggcgaatgg cgcgataagc tagcttcacg ctgccgcaag cactcagggc 540 gcaagggctg ctaaaggaag cggaacacgt agaaagccag tccgcagaaa cggtgctgac 600 cccggatgaa tgtcagctac tgggctatct ggacaaggga aaacgcaagc gcaaagagaa 660 agcaggtagc ttgcagtggg cttacatggc gatagctaga ctgggcggtt ttatggacag 720 caagcgaacc ggaattgcca gctggggcgc cctctggtaa ggttgggaag ccctgcaaag 780 taaactggat ggctttcttg ccgccaagga tctgatggcg caggggatca agatctgatc 840 aagagacagg atgaggatcg tttcgcatga ttgaacaaga tggattgcac gcaggttctc 900 cggccgcttg ggtggagagg ctattcggct atgactgggc acaacagaca atcggctgct 960 ctgatgccgc cgtgttccgg ctgtcagcgc aggggcgccc ggttcttttt gtcaagaccg 1020 acctgtccgg tgccctgaat gaactccaag acgaggcagc gcggctatcg tggctggcca 1080 cgacgggcgt tccttgcgca gctgtgctcg acgttgtcac tgaagcggga agggactggc 1140 tgctattggg cgaagtgccg gggcaggatc tcctgtcatc tcaccttgct cctgccgaga 1200 aagtatccat catggctgat gcaatgcggc ggctgcatac gcttgatccg gctacctgcc 1260 cattcgacca ccaagcgaaa catcgcatcg agcgagcacg tactcggatg gaagccggtc 1320 ttgtcgatca ggatgatctg gacgaagagc atcaggggct cgcgccagcc gaactgttcg 1380 ccaggctcaa ggcgcggatg cccgacggcg aggatctcgt cgtgacccat ggcgatgcct 1440 gcttgccgaa tatcatggtg gaaaatggcc gcttttctgg attcatcgac tgtggccggc 1500 tgggtgtggc ggaccgctat caggacatag cgttggctac ccgtgatatt gctgaagagc 1560 ttggcggcga atgggctgac cgcttcctcg tgctttacgg tatcgccgct cccgattcgc 1620 agcgcatcgc cttctatcgc cttcttgacg agttcttctg agcgggactc tggggttcgc 1680 tagaggatcg atccttttta acccatcaca tatacctgcc gttcactatt atttagtgaa 1740 atgagatatt atgatatttt ctgaattgtg attaaaaagg caactttatg cccatgcaac 1800 agaaactata aaaaatacag agaatgaaaa gaaacagata gattttttag ttctttaggc 1860 ccgtagtctg caaatccttt tatgattttc tatcaaacaa aagaggaaaa tagaccagtt 1920 gcaatccaaa cgagagtcta atagaatgag gtcgaaaagt aaatcgcgcg ggtttgttac 1980 tgataaagca ggcaagacct aaaatgtgta aagggcaaag tgtatacttt ggcgtcaccc 2040 cttacatatt ttaggtcttt ttttattgtg cgtaactaac ttgccatctt caaacaggag 2100 ggctggaaga agcagaccgc taacacagta cataaaaaag gagacatgaa cgatgaacat 2160 caaaaagttt gcaaaacaag caacagtatt aacctttact accgcactgc tggcaggagg 2220 cgcaactcaa gcgtttgcga aagaaacgaa ccaaaagcca tataaggaaa catacggcat 2280 ttcccatatt acacgccatg atatgctgca aatccctgaa cagcaaaaaa atgaaaaata 2340 tcaagtttct gaatttgatt cgtccacaat taaaaatatc tcttctgcaa aaggcctgga 2400 cgtttgggac agctggccat tacaaaacgc tgacggcact gtcgcaaact atcacggcta 2460 ccacatcgtc tttgcattag ccggagatcc taaaaatgcg gatgacacat cgatttacat 2520 gttctatcaa aaagtcggcg aaacttctat tgacagctgg aaaaacgctg gccgcgtctt 2580 taaagacagc gacaaattcg atgcaaatga ttctatccta aaagaccaaa cacaagaatg 2640 gtcaggttca gccacattta catctgacgg aaaaatccgt ttattctaca ctgatttctc 2700 cggtaaacat tacggcaaac aaacactgac aactgcacaa gttaacgtat cagcatcaga 2760 cagctctttg aacatcaacg gtgtagagga ttataaatca atctttgacg gtgacggaaa 2820 aacgtatcaa aatgtacagc agttcatcga tgaaggcaac tacagctcag gcgacaacca 2880 tacgctgaga gatcctcact acgtagaaga taaaggccac aaatacttag tatttgaagc 2940 aaacactgga actgaagatg gctaccaagg cgaagaatct ttatttaaca aagcatacta 3000 tggcaaaagc acatcattct tccgtcaaga aagtcaaaaa cttctgcaaa gcgataaaaa 3060 acgcacggct gagttagcaa acggcgctct cggtatgatt gagctaaacg atgattacac 3120 actgaaaaaa gtgatgaaac cgctgattgc atctaacaca gtaacagatg aaattgaacg 3180 cgcgaacgtc tttaaaatga acggcaaatg gtacctgttc actgactccc gcggatcaaa 3240 aatgacgatt gacggcatta cgtctaacga tatttacatg cttggttatg tttctaattc 3300 tttaactggc ccatacaagc cgctgaacaa aactggcctt gtgttaaaaa tggatcttga 3360 tcctaacgat gtaaccttta cttactcaca cttcgctgta cctcaagcga aaggaaacaa 3420 tgtcgtgatt acaagctata tgacaaacag aggattctac gcagacaaac aatcaacgtt 3480 tgcgccgagc ttcctgctga acatcaaagg caagaaaaca tctgttgtca aagacagcat 3540 ccttgaacaa ggacaattaa cagttaacaa ataaaaacgc aaaagaaaat gccgatgggt 3600 accgagcgaa atgaccgacc aagcgacgcc caacctgcca tcacgagatt tcgattccac 3660 cgccgccttc tatgaaaggt tgggcttcgg aatcgttttc cgggacgccc tcgcggacgt 3720 gctcatagtc cacgacgccc gtgattttgt agccctggcc gacggccagc aggtaggccg 3780 acaggctcat gccggccgcc gccgcctttt cctcaatcgc tcttcgttcg tctggaaggc 3840 agtacacctt gataggtggg ctgcccttcc tggttggctt ggtttcatca gccatccgct 3900 tgccctcatc tgttacgccg gcggtagccg gccagcctcg cagagcagga ttcccgttga 3960 gcaccgccag gtgcgaataa gggacagtga agaaggaaca cccgctcgcg ggtgggccta 4020 cttcacctat cctgccccgc tgacgccgtt ggatacacca aggaaagtct acacgaaccc 4080 tttggcaaaa tcctgtatat cgtgcgaaaa aggatggata taccgaaaaa atcgctataa 4140 tgaccccgaa gcagggttat gcagcggaaa agcgctgctt ccctgctgtt ttgtggaata 4200 tctaccgact ggaaacaggc aaatgcagga aattactgaa ctgaggggac aggcgagaga 4260 cgatgccaaa gagctcctga aaatctcgat aactcaaaaa atacgcccgg tagtgatctt 4320 atttcattat ggtgaaagtt ggaacctctt acgtgccgat caacgtctca ttttcgccaa 4380 aagttggccc agggcttccc ggtatcaaca gggacaccag gatttattta ttctgcgaag 4440 tgatcttccg tcacaggtat ttattcggcg caaagtgcgt cgggtgatgc tgccaactta 4500 ctgatttagt gtatgatggt gtttttgagg tgctccagtg gcttctgttt ctatcagctc 4560 ctgaaaatct cgataactca aaaaatacgc ccggtagtga tcttatttca ttatggtgaa 4620 agttggaacc tcttacgtgc cgatcaacgt ctcattttcg ccaaaagttg gcccagggct 4680 tcccggtatc aacagggaca ccaggattta tttattctgc gaagtgatct tccgtcacag 4740 gtatttattc ggcgcaaagt gcgtcgggtg atgctgccaa cttactgatt tagtgtatga 4800 tggtgttttt gaggtgctcc agtggcttct gtttctatca gggctggatg atcctccagc 4860 gcggggatct catgctggag ttcttcgccc accccaaaag gatctaggtg aagatccttt 4920 ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc 4980 ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct 5040 tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa 5100 ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag 5160 tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc 5220 tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg 5280 actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca 5340 cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag cgtgagcatt 5400 gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 5460 tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc 5520 ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc 5580 ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc 5640 cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg 5700 cctttgagtg agctgatacc gc 5722 <210> 20 <211> 836 <212> DNA <213> Methylobacterium extorquens <400> 20 atgaacacgg acgatttcgc ctacgatttc gacgcgcccg attcggactg gaactacgag 60 ccgtcgcggg ccgatctgtt ccggcagatc gacgcgccac tctataccac tgattccaac 120 ggctggctga cctactacaa cgaagccgcc gcacagcttt ggggattccg ccccgtgatc 180 ggcaaggcgc gctggtgcgg cgcttggcgg ctgttcgagg cggacggcgc gccgctgccg 240 cacgacctgt cgccgatggc gctcaccctc aaaggcgcgc gcccagtgcg cggcgtccag 300 atcggcctcg aacggccgga cggaagccgg atggcgttcc tgccttaccc gacggcgttg 360 cgcgacggga cgggcgccgt ggtgggggga tgcaacatcc tcctcgccgt cgagcgctca 420 agcctgcgcg ttccgctccg cggggcgctc cagggccggc cgacgcttcg ggccgcccaa 480 cttgcgagca tgcacagatg ttcggcgtga gcttgccgcg tctgcctcgg cgatccacct 540 cgttcgagcg aagcgatccg cgggatgtct ccccggatcg ccttgccgcc tgaggaacgt 600 gccgcctgaa aaacaggagg aagccatgtc ggtcgatacc aactggagcc tcgacgccgt 660 ccagagcctg cgcagcatgg cccgcgaggg catacccctc tccgtcatca gcctgcggct 720 caagcggccg gtcgatgcgg tctgcgccaa gctcgccgaa ctcggcatca cgcccaagct 780 cgagctttga ccggacgggc gccggggcat cgcgcccggg cgcccacccg ccggac 836 <210> 21 <211> 439 <212> DNA <213> Methylobacterium extorquens <400> 21 cgtgtgcaag tattccatgg ccacaccgga tgatgacagg gatgtccggc tatctggccc 60 ggcacgcaaa cccgtcaacg gggcgaccga tcaggctccc gcgcggccag tcagccagcg 120 gcggccaaac ggccgttcga ccggcggcgc ccgccggatt cgaccggact gccggtgaat 180 aacatccatt tgaaaaaagc ttctcttgtg gcaattgctt gatccaatta cgatcactat 240 cgcgtctcgc aagctttccg ttaaattata gtgacatggc attgaaaaat agaaggcatt 300 ccttcgcaac tgacttggcg tcgatgcata ttatagcatt taagagcttt tgtttcccga 360 aatggcaaca gctaagattc gccgcgtccc ggcctgcgat gatcgtcgaa tcgggcatgc 420 cgcgaccggg agacggcgc 439 <210> 22 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 22 gaccatgatt acgccaagct tatgaacacg gacgatttcg cc 42 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 23 cttgcacacg gtccggcggg tgggcgcc 28 <210> 24 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 24 cccgccggac cgtgtgcaag tattccatgg cc 32 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 25 aaaacgacgg ccagtgaatt cgcgccgtct cccggtcgc 39 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 26 aacccgcaga aacacgcttt 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 27 gaagctagct tatcgcgcca 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 28 tttctgcgcg taatctgctg 20 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 29 acgatgatgg cgagggtg 18 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 30 ggagcctgat gaacacggac 20 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 31 gcaatcatgc gccgtctc 18 <210> 32 <211> 580 <212> DNA <213> Methylobacterium extorquens <400> 32 gctggtatct gccgccgcgc tgccggcaga acctccggaa agacccattg tcgccccctg 60 tcgtttccgg cttgaccgtg gacgagattc gctcccgaga gcgtgaggga acgcacgcga 120 cctgtcgcgt ccggcgcgat cgccggatcg ggcgggatgc ggtgccgttc tgaagtgctg 180 tgagggagaa cattcgatgc gctcaggggc cgcttccgtc ttcttccccc tgttcgggct 240 cgtgctcacg gtcggcgcgg ccgatgcgca gacgccgccc gagccaggcg ctgcccggcc 300 gctggtgatc ccccaggtcg agggcgagcg ccagggcaag gtgctgggcc gggcgctcgc 360 ctgcggcgcg gagcgcgagc gggtcgatcg ggtgctgaga gccggccgcg agcgcatgat 420 ggcggcggtc ggccgggcgc tcacggagga gcgctacgcc ctggcgctcg acgacgcgat 480 gcgtctggag acgagcctgc ctgcgccctc ttcgatcgcg tgcgagaagg cgctggccgg 540 gctcgaacgc ctggagaagg cgccgtagac acccaaacga 580 <210> 33 <211> 1220 <212> DNA <213> Methylobacterium extorquens <400> 33 cggccctctc tccccggtac ggatgttgtg tggatgagcg cccatctggc gcagtccggc 60 cgggcggaaa gggtttttgc cgtttaccct tcgtcaacct taccgggtgc ttgctgccgg 120 caatgatgcg caccgcgtcc ctcaccgccg tcgatcccga agccctgctg ccgccgggcg 180 acgccgccct gcgcgcggcg atgcggggct ggcgcgaggc gctggcgcgg gagcggcgca 240 tggccgccaa cacggtcgag gcctacgagc gtgacctgcg ccagtttctg atccatcgcg 300 ccgcccgctc cggcacgccc accatcgccg ggctgatcgc cctgaagccc cgcgacctgc 360 gcgccttcat ggccgcgcgc cgggccgagg ggatcggtgg gcgctccctg atgcggatgc 420 tggcgggtct gcgctccttc gcccgcttcc tcgaacggga gggacacggc agcgtcgcgg 480 cgctcggcgc ggtgcgctcc cccaaggtcg agcgccgcct gccgcgcccg cttcccattt 540 ccgccgcgct ggcgatgacc gcgcccgaga cccgccccga cgacgaccgc gccccgtggg 600 tgctcgcccg cgacgcggcg gtgatcgccc tcctctacgg ctcgggcctg cgcatctcgg 660 aagccttagg gctcaccgcc cgcgacgcgc cgatgccggg catcgacgag gtgcgggtga 720 cgggcaaggg tgggaaggtc cgcgccgtgc cggtgctgcc ggcggtggcc gaggcggtgg 780 ccgcctacct gtcgctgtgc ccgcaccccc tcgatccgga ggggccgctc ttcgtcggcg 840 tgaagggcgg gccgctctcg ccgcgagtgg tccagtacgc ggtttccgcg ctccgcggcg 900 cgctcggcct gcccgagagc gcgaccccgc acgccctgcg acactccttc gcaacccatc 960 tgctcgcccg ccggggcgag ctgcgggcga tccaggaatt gctcggccac gcctcgctct 1020 cgaccacgca aatctacacc aaggtcgatg ccgcccgcct gatgagcgcc ttcgaggacg 1080 cccatccccg cgcccggcgg ctgccgccct cggaaccgcc gtcaccgcgt tccgaaaccg 1140 ttgatgcaga gcaaggcacg agcgcccgat ccggctatgc tgtccggcag gacaggccgg 1200 tggagcgtag aaatgcgtga 1220 <210> 34 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 34 gaccatgatt acgccaagct tgctggtatc tgccgccgc 39 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 35 gagagggccg tcgtttgggt gtctacggcg 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 36 acccaaacga cggccctctc tccccggtac 30 <210> 37 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 37 aaaacgacgg ccagtgaatt ctcacgcatt tctacgctcc acc 43 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 38 agatcgagac gagaagcg 18 <210> 39 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 39 ccacacaaca tccgtacc 18 <210> 40 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 40 gaccatgatt acgccaagc 19 <210> 41 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 41 ccacacaaca tccgtacc 18 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 42 cagaacctcc ggaaagaccc 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 43 tccacacaac atccgtaccg 20 <110> Industry-University Cooperation Foundation Sogang University <120> Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same <130> PN190334 <160> 43 <170> KoPatentIn 3.0 <210> 1 <211> 5730 <212> DNA <213> Artificial Sequence <220> <223> pMEV vector <400> 1 gaccctttcc gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg 60 gccctgcaaa cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc 120 gttgtggata cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca 180 cttgaggggc cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc 240 cggcgacgtg gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt 300 tcccacagat gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg 360 gcgcgactac tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca 420 gatgaggggc gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt 480 gcaagggttt ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac 540 caatatttat aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc 600 cgaagggggg tgccccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc 660 ccccaggggc tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agccaagctg 720 accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg 780 tgagcgtggg tctcgcggta tcattgcagc accagtactg accccgtaga aaagatcaaa 840 ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca 900 ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta 960 actggcttca gcagagcgca gataccaaat actgtccttc tagtgtagcc gtagttaggc 1020 caccacttca agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca 1080 gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta 1140 ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag 1200 cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag cgccacgctt 1260 cccgaaggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac aggagagcgc 1320 acgagggagc ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac 1380 ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac 1440 gccagcaacg cggccttttt acggttcctg gccttttgct ggccttttgc tcacatgttc 1500 tttcctgcgt tatcccctga ttctgtggat aaccgtagca tgcgttgacg acaacggtgc 1560 gatgggtccc ggccccggtc aagacgatgc caatacgttg cgacactacg ccttggcact 1620 tttagaattg ccttatcgtc ctgataagaa atgtccgacc agctaaagac atcgcgtcca 1680 atcaaagcct agaaaatata ggcgaaggga cgctaatggg cccttcacac agaggagaga 1740 cagcgaattc tggtaccttc tagactatcg actagttggt acctctgcag aagcttccgg 1800 agctcttaag ccagccccgc tgctcccggc atccgcttac agataaaacg aaaggctcag 1860 tcgaaagact gggcctttcg ttttatacaa gccctccagg ggagatgcgt ggatccttag 1920 atctaggcct gaatcgcccc atcatccagc cagaaagtga gggagccacg gttgatgaga 1980 gctttgttgt aggtggacca gttggtgatt ttgaactttt gctttgccac ggaacggtct 2040 gcgttgtcgg gaagatgcgt gatctgatcc ttcaactcag caaaagttcg atttattcaa 2100 caaagccgcc gtcccgtcaa gtcagcgtaa tgctctgcca gtgttacaac caattaacca 2160 attctgatta gaaaaactca tcgagcatca aatgaaactg caatttattc atatcaggat 2220 tatcaatacc atatttttga aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc 2280 agttccatag gatggcaaga tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa 2340 tacaacctat taatttcccc tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag 2400 tgacgactga atccggtgag aatggcaaaa gcttatgcat ttctttccag acttgttcaa 2460 caggccagcc attacgctcg tcatcaaaat cactcgcatc aaccaaaccg ttattcattc 2520 gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag 2580 gaatcgaatg caaccggcgc aggaacactg ccagcgcatc aacaatattt tcacctgaat 2640 caggatattc ttctaatacc tggaatgctg ttttcccggg gatcgcagtg gtgagtaacc 2700 atgcatcatc aggagtacgg ataaaatgct tgatggtcgg aagaggcata aattccgtca 2760 gccagtttag tctgaccatc tcatctgtaa catcattggc aacgctacct ttgccatgtt 2820 tcagaaacaa ctctggcgca tcgggcttcc catacaatcg atagattgtc gcacctgatt 2880 gcccgacatt atcgcgagcc catttatacc catataaatc agcatccatg ttggaattta 2940 atcgcggcct cgagcaagac gtttcccgtt gaatatggct cataacaccc cttgtattac 3000 tgtttatgta agcagacagt tttattgttc atgatgatat atttttatct tgtgcaatgt 3060 aacatcagag attttgagac acaacgtggc tttccccccc ccccctgcag gtccgacacg 3120 gggatggatg gcgttcccga tcatggtcct gcttgcttcg ggtggcatcg gaatgccggc 3180 gctgcaagca atgttgtcca ggcaggtgga tgaggaacgt caggggcagc tgcaaggctc 3240 actggcggcg ctcaccagcc tgacctcgat cgtcggaccc ctcctcttca cggcgatcta 3300 tgcggcttct ataacaacgt ggaacgggtg ggcatggatt gcaggcgctg ccctctactt 3360 gctctgcctg ccggcgctgc gtcgcgggct ttggagcggc gcagggcaac gagccgatcg 3420 ctgatcgtgg aaacgatagg cctatgccat gcgggtcaag gcgacttccg gcaagctata 3480 cgcgccctag aattgtcaat tttaatcctc tgtttatcgg cagttcgtag agcgcgccgt 3540 gcgtcccgag cgatactgag cgaagcaagt gcgtcgagca gtgcccgctt gttcctgaaa 3600 tgccagtaaa gcgctggctg ctgaaccccc agccggaact gaccccacaa ggccctagcg 3660 tttgcaatgc accaggtcat cattgaccca ggcgtgttcc accaggccgc tgcctcgcaa 3720 ctcttcgcag gcttcgccga cctgctcgcg ccacttcttc acgcgggtgg aatccgatcc 3780 gcacatgagg cggaaggttt ccagcttgag cgggtacggc tcccggtgcg agctgaaata 3840 gtcgaacatc cgtcgggccg tcggcgacag cttgcggtac ttctcccata tgaatttcgt 3900 gtagtggtcg ccagcaaaca gcacgacgat ttcctcgtcg atcaggacct ggcaacggga 3960 cgttttcttg ccacggtcca ggacgcggaa gcggtgcagc agcgacaccg attccaggtg 4020 cccaacgcgg tcggacgtga agcccatcgc cgtcgcctgt aggcgcgaca ggcattcctc 4080 ggccttcgtg taataccggc cattgatcga ccagcccagg tcctggcaaa gctcgtagaa 4140 cgtgaaggtg atcggctcgc cgataggggt gcgcttcgcg tactccaaca cctgctgcca 4200 caccagttcg tcatcgtcgg cccgcagctc gacgccggtg taggtgatct tcacgtcctt 4260 gttgacgtgg aaaatgacct tgttttgcag cgcctcgcgc gggattttct tgttgcgcgt 4320 ggtgaacagg gcagagcggg ccgtgtcgtt tggcatcgct cgcatcgtgt ccggccacgg 4380 cgcaatatcg aacaaggaaa gctgcatttc cttgatctgc tgcttcgtgt gtttcagcaa 4440 cgcggcctgc ttggcctcgc tgacctgttt tgccaggtcc tcgccggcgg tttttcgctt 4500 cttggtcgtc atagttcctc gcgtgtcgat ggtcatcgac ttcgccaaac ctgccgcctc 4560 ctgttcgaga cgacgcgaac gctccacggc ggccgatggc gcgggcaggg cagggggagc 4620 cagttgcacg ctgtcgcgct cgatcttggc cgtagcttgc tggaccatcg agccgacgga 4680 ctggaaggtt tcgcggggcg cacgcatgac ggtgcggctt gcgatggttt cggcatcctc 4740 ggcggaaaac cccgcgtcga tcagttcttg cctgtatgcc ttccggtcaa acgtccgatt 4800 cattcaccct ccttgcggga ttgccccgac tcacgccggg gcaatgtgcc cttattcctg 4860 atttgacccg cctggtgcct tggtgtccag ataatccacc ttatcggcaa tgaagtcggt 4920 cccgtagacc gtctggccgt ccttctcgta cttggtattc cgaatcttgc cctgcacgaa 4980 taccagctcc gcgaagtcgc tcttcttgat ggagcgcatg gggacgtgct tggcaatcac 5040 gcgcaccccc cggccgtttt agcggctaaa aaagtcatgg ctctgccctc gggcggacca 5100 cgcccatcat gaccttgcca agctcgtcct gcttctcttc gatcttcgcc agcagggcga 5160 ggatcgtggc atcaccgaac cgcgccgtgc gcgggtcgtc ggtgagccag agtttcagca 5220 ggccgcccag gcggcccagg tcgccattga tgcgggccag ctcgcggacg tgctcatagt 5280 ccacgacgcc cgtgattttg tagccctggc cgacggccag caggtaggcc tacaggctca 5340 tgccggccgc cgccgccttt tcctcaatcg ctcttcgttc gtctggaagg cagtacacct 5400 tgataggtgg gctgcccttc ctggttggct tggtttcatc agccatccgc ttgccctcat 5460 ctgttacgcc ggcggtagcc ggccagcctc gcagagcagg attcccgttg agcaccgcca 5520 ggtgcgaata agggacagtg aagaaggaac acccgctcgc gggtgggcct acttcaccta 5580 tcctgcccgg ctgacgccgt tggatacacc aaggaaagtc tacacgaacc ctttggcaaa 5640 atcctgtata tcgtgcgaaa aaggatggat ataccgaaaa aatcgctata atgaccccga 5700 agcagggtta tgcagcggaa aagatccgtc 5730 <210> 2 <211> 414 <212> DNA <213> Bacillus subtilis <400> 2 atgaaaattg ctttgatcgc gcatgacaag aaaaaacagg atatggttca atttacgact 60 gcctatcggg atattttaaa gaatcatgat ctatacgcaa ccggaaccac agggttgaaa 120 attcatgagg cgacaggtct tcaaattgaa cgttttcaat ccggcccttt agggggagac 180 cagcaaatcg gtgcactgat cgctgccaat gcactcgatc ttgtcatttt tttgcgcgac 240 ccgctgaccg cgcagccgca tgaaccggat gtctcggcat taatccgttt atgtgatgtg 300 tattccattc cgctcgccac aaatatgggt actgcggaaa ttcttgtgcg cacacttgat 360 gaaggtgttt tcgaattccg tgaccttctt cggggagaag agccgaatgt ataa 414 <210> 3 <211> 1164 <212> DNA <213> Escherichia coli <400> 3 atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60 ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc 120 gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180 gaatttggcg gtattgagcc aaacccggct tatgaaacgc tgatgaacgc cgtgaaactg 240 gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300 accaaattta tcgccgcagc ggctaactat ccggaaaata tcgatccgtg gcacattctg 360 caaacgggcg gtaaagagat taaaagcgcc atcccgatgg gctgtgtgct gacgctgcca 420 gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480 caggcgttcc attctgccca tgttcagccg gtatttgccg tgctcgatcc ggtttatacc 540 tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600 gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660 ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720 cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780 ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840 cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900 cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat 960 gagcgtattg acgccgcgat tgccgcaacc cgcaatttct ttgagcaatt aggcgtgccg 1020 acccacctct ccgactacgg tctggacggc agctccatcc cggctttgct gaaaaaactg 1080 gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140 cgtatatacg aagccgcccg ctaa 1164 <210> 4 <211> 1104 <212> DNA <213> Escherichia coli <400> 4 atggaccgca ttattcaatc accgggtaaa tacatccagg gcgctgatgt gattaatcgt 60 ctgggcgaat acctgaagcc gctggcagaa cgctggttag tggtgggtga caaatttgtt 120 ttaggttttg ctcaatccac tgtcgagaaa agctttaaag atgctggact ggtagtagaa 180 attgcgccgt ttggcggtga atgttcgcaa aatgagatcg accgtctgcg tggcatcgcg 240 gagactgcgc agtgtggcgc aattctcggt atcggtggcg gaaaaaccct cgatactgcc 300 aaagcactgg cacatttcat gggtgttccg gtagcgatcg caccgactat cgcctctacc 360 gatgcaccgt gcagcgcatt gtctgttatc tacaccgatg agggtgagtt tgaccgctat 420 ctgctgttgc caaataaccc gaatatggtc attgtcgaca ccaaaatcgt cgctggcgca 480 cctgcacgtc tgttagcggc gggtatcggc gatgcgctgg caacctggtt tgaagcgcgt 540 gcctgctctc gtagcggcgc gaccaccatg gcgggcggca agtgcaccca ggctgcgctg 600 gcactggctg aactgtgcta caacaccctg ctggaagaag gcgaaaaagc gatgcttgct 660 gccgaacagc atgtagtgac tccggcgctg gagcgcgtga ttgaagcgaa cacctatttg 720 agcggtgttg gttttgaaag tggtggtctg gctgcggcgc acgcagtgca taacggcctg 780 accgctatcc cggacgcgca tcactattat cacggtgaaa aagtggcatt cggtacgctg 840 acgcagctgg ttctggaaaa tgcgccggtg gaggaaatcg aaaccgtagc tgcccttagc 900 catgcggtag gtttgccaat aactctcgct caactggata ttaaagaaga tgtcccggcg 960 aaaatgcgaa ttgtggcaga agcggcatgt gcagaaggtg aaaccattca caacatgcct 1020 ggcggcgcga cgccagatca ggtttacgcc gctctgctgg tagccgacca gtacggtcag 1080 cgtttcctgc aagagtggga ataa 1104 <210> 5 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 5 gagagacagc gaattcccgc gagggaattc ccaaaggcca ggtattttat gaaaattgct 60 ttgatcgc 68 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 6 tgggtctatt gggagttata cattcggctc ttctccc 37 <210> 7 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 7 ctcccaatag acccaaaggc ggtagagaaa tgaacaactt taatctgcac accc 54 <210> 8 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 8 ttgcgcttag ttgccttagc gggcggcttc gtatata 37 <210> 9 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 9 ggcaactaag cgcaaagatc gaggtaataa atggaccgca ttattcaatc a 51 <210> 10 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 10 cggggctggc ttaagagctc ttattcccac tcttgcagga a 41 <210> 11 <211> 1728 <212> DNA <213> Artificial Sequence <220> <223> fls coding sequences <400> 11 atggccatga tcacgggcgg cgagctggtc gtgcgcacgc tgatcaaggc gggtgtcgag 60 cacctctttg gtctccacgg tatccacatc gacaccatct tccaggcctg cctggaccat 120 gatgtcccga tcatcgacac ccgccacgag gcggcagccg gacatgcggc ggaaggctac 180 gcccgcgccg gcgccaagct cggcgtcgcg cttgtgacgg cgggcggcgg cttcaccaac 240 gcggtgaccc cgatcgccaa tgcccgcacc gaccgcacgc cggtcctctt ccttaccggc 300 tcgggcgccc tcagggatga cgagacgaac accctccagg cggggatcga ccaggtcgcg 360 atggccgccc ctatcaccaa gtgggcccat cgggtaatgg ccaccgaaca catccctcgg 420 ctggtcatgc aggcgattcg cgccgcgctg agcgcccccc gcggcccagt tctgctcgac 480 ctcccgtggg acatcctcat gaaccagatt gacgaagata gcgtcatcat cccggacctc 540 gtgctgtctg cccacggcgc gcaccccgat cccgcggacc tcgatcaggc cctggcgctg 600 ctccgcaagg ccgagcgtcc ggttatcgtt ctgggcagtg aggccagccg cacggcccga 660 aagacggccc tctcggcctt cgtcgcggcc acgggcgtgc cggtcttcgc cgactatgaa 720 ggcctcagta tgctgtcggg gcttccggac gccatgcggg gcggcctggt ccagaacctg 780 tacagcttcg ctaaagcgga cgccgcgccc gacctggtgc tcatgctggg cgcgcgcttc 840 ggcctgaaca cgggccacgg cagcggccag ctgatcccgc actcggccca ggtcatccag 900 gtcgacccgg acgcgtgcga gctgggccgg ctgcagggca tcgcgcttgg catcgtcgcc 960 gacgtgggcg gcaccatcga ggccctcgcg caggccaccg cccaggacgc ggcgtggccc 1020 gaccgcggcg actggtgcgc caaggtcacc gacctcgccc aggagcgcta cgcgtcgatc 1080 gcggccaagt cctcgtccga gcacgccctg caccccttcc acgcctcgca ggtcatcgcc 1140 aagcacgtcg acgcgggcgt gacggtcgtg gccgacggcg ggctgaccta tctgtggctg 1200 tccgaggtga tgagccgtgt gaagccgggc ggcttcctct gccacggcta cctgaactcc 1260 atgggcgtcg gcttcgggac cgcgctcggc gcccaggtcg ccgacctgga ggccggccgg 1320 cgcacgatcc tcgtgaccgg cgacggctcg gtgggctact ccatcggcga gttcgacacc 1380 ctggtccgga agcagctgcc gctgatcgtg atcatcatga acaaccagtc gtggggctgg 1440 accctccact tccagcagct cgcggtcggc ccgaaccgcg tgaccggcac gcgcctcgag 1500 aacggctcgt accacggcgt cgccgcggcc ttcggcgccg acggctacca cgtcgactcg 1560 gtcgagtcgt tcagcgccgc cctcgcccag gccctggccc acaaccgccc ggcctgcatc 1620 aacgtcgcgg tcgcgctcga ccccatcccg ccggaggagc tcatcctcat cggcatggac 1680 ccgttcgccg gcagcaccga gaacctctac ttccagtccg gcgcctaa 1728 <210> 12 <211> 1755 <212> DNA <213> Artificial Sequence <220> <223> dak1 coding sequences <400> 12 atgtccgcta aatcgtttga agtcacagat ccagtcaatt caagtctcaa agggtttgcc 60 cttgctaacc cctccattac gctggtccct gaagaaaaaa ttctcttcag aaagaccgat 120 tccgacaaga tcgcattaat ttctggtggt ggtagtggac atgaacctac acacgccggt 180 ttcattggta agggtatgtt gagtggcgcc gtggttggcg aaatttttgc atccccttca 240 acaaaacaga ttttaaatgc aatccgttta gtcaatgaaa atgcgtctgg cgttttattg 300 attgtgaaga actacacagg tgatgttttg cattttggtc tgtccgctga gagagcaaga 360 gccttgggta ttaactgccg cgttgctgtc ataggtgatg atgttgcagt tggcagagaa 420 aagggtggta tggttggtag aagagcattg gcaggtaccg ttttggttca taagattgta 480 ggtgccttcg cagaagaata ttctagtaag tatggcttag acggtacagc taaagtggct 540 aaaattatca acgacaattt ggtgaccatt ggatcttctt tagaccattg taaagttcct 600 ggcaggaaat tcgaaagtga attaaacgaa aaacaaatgg aattgggtat gggtattcat 660 aacgaacctg gtgtgaaagt tttagaccct attccttcta ccgaagactt gatctccaag 720 tatatgctac caaaactatt ggatccaaac gataaggata gagcttttgt aaagtttgat 780 gaagatgatg aagttgtctt gttagttaac aatctcggcg gtgtttctaa ttttgttatt 840 agttctatca cttccaaaac tacggatttc ttaaaggaaa attacaacat aaccccggtt 900 caaacaattg ctggcacatt gatgacctcc ttcaatggta atgggttcag tatcacatta 960 ctaaacgcca ctaaggctac aaaggctttg caatctgatt ttgaggagat caaatcagta 1020 ctagacttgt tgaacgcatt tacgaacgca ccgggctggc caattgcaga ttttgaaaag 1080 acttctgccc catctgttaa cgatgacttg ttacataatg aagtaacagc aaaggccgtc 1140 ggtacctatg actttgacaa gtttgctgag tggatgaaga gtggtgctga acaagttatc 1200 aagagcgaac cgcacattac ggaactagac aatcaagttg gtgatggtga ttgtggttac 1260 actttagtgg caggagttaa aggcatcacc gaaaaccttg acaagctgtc gaaggactca 1320 ttatctcagg cggttgccca aatttcagat ttcattgaag gctcaatggg aggtacttct 1380 ggtggtttat attctattct tttgtcgggt ttttcacacg gattaattca ggtttgtaaa 1440 tcaaaggatg aacccgtcac taaggaaatt gtggctaagt cactcggaat tgcattggat 1500 actttataca aatatacaaa ggcaaggaag ggatcatcca ccatgattga tgctttagaa 1560 ccattcgtta aagaatttac tgcatctaag gatttcaata aggcggtaaa agctgcagag 1620 gaaggtgcta aatccactgc tacattcgag gccaaatttg gcagagcttc gtatgtcggc 1680 gattcatctc aagtagaaga tcctggtgca gtaggcctat gtgagttttt gaagggggtt 1740 caaagcgcct tgtaa 1755 <210> 13 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 13 cctgcaagag tgggaataag agctccttag acgaaaaagg aggtattttt atggccatga 60 tcacgggcgg c 71 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 14 ggacattcct ttaggcgccg gactggaag 29 <210> 15 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 15 cggcgcctaa aggaatgtcc gctaaatcgt ttgaagt 37 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 16 agcagcgggg ctggcttaag ttacaaggcg ctttgaaccc 40 <210> 17 <211> 422 <212> DNA <213> Methylobacterium extorquens <400> 17 atggttcgcg tggcggacct cgaccgcgcg ctcgccttct acgtcgatgc cttcgggctc 60 aaggaggtcc ggcgcgtcga gaatgagaag ggccgcttca ccctcgtctt cctcgccgct 120 ccgggggatg tcgagcgggc cgaggcgacg aaatcgccgc tgatcgagct gacctacaat 180 tgggatcccg agacctattc cggcgggcgc aacttcgggc acctcgccta tcaggtcgat 240 gacatctacg ccttctgcca gcggctgaag atgcgggcgt gaccatcaac cggccgccgc 300 gcgacgggta catggccttc gtgcgctcgc ccgacggcat ttccatcgag atcctgcaga 360 agggcggggc gaagcccccg caggagccgt gggcctccat ggagaacacc ggaacctggt 420 ag 422 <210> 18 <211> 396 <212> DNA <213> Methylobacterium extorquens <400> 18 atggccaagc ccgtccacac catgatccgc gtccgcgacg aggcgcgctc gcgggactac 60 tatgcccgcg ccttcggcct ggagccggcc gaccggttcg actttccgga cttcacgctg 120 ctctacctgc gcgacccatc ctcgccgttc gaactcgaac tgacggtcaa caaggaccgc 180 gccgagccct acaatctcgg cgacggctac ggtcacctcg ccttcgtggt ggaggatgcc 240 gaggccgagc atgcccgctt cgagcgcgag gggcttccgg tcacgccggt caaaaccctc 300 aagcacggcg acaccgcgct cgcgaccttc tttttcgcca ccgacccgga cggctacaag 360 atcgaggtga tccagaaggg cggccgtttc gcctga 396 <210> 19 <211> 5722 <212> DNA <213> Artificial Sequence <220> <223> pk19mobsacB vector <400> 19 tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc 60 aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 120 gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca 180 ttaggcaccc caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag 240 cggataacaa tttcacacag gaaacagcta tgaccatgat tacgccaagc ttgcatgcct 300 gcaggtcgac tctagaggat ccccgggtac cgagctcgaa ttcactggcc gtcgttttac 360 aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc 420 ctttcgccag ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc 480 gcagcctgaa tggcgaatgg cgcgataagc tagcttcacg ctgccgcaag cactcagggc 540 gcaagggctg ctaaaggaag cggaacacgt agaaagccag tccgcagaaa cggtgctgac 600 cccggatgaa tgtcagctac tgggctatct ggacaaggga aaacgcaagc gcaaagagaa 660 agcaggtagc ttgcagtggg cttacatggc gatagctaga ctgggcggtt ttatggacag 720 caagcgaacc ggaattgcca gctggggcgc cctctggtaa ggttgggaag ccctgcaaag 780 taaactggat ggctttcttg ccgccaagga tctgatggcg caggggatca agatctgatc 840 aagagacagg atgaggatcg tttcgcatga ttgaacaaga tggattgcac gcaggttctc 900 cggccgcttg ggtggagagg ctattcggct atgactgggc acaacagaca atcggctgct 960 ctgatgccgc cgtgttccgg ctgtcagcgc aggggcgccc ggttcttttt gtcaagaccg 1020 acctgtccgg tgccctgaat gaactccaag acgaggcagc gcggctatcg tggctggcca 1080 cgacgggcgt tccttgcgca gctgtgctcg acgttgtcac tgaagcggga agggactggc 1140 tgctattggg cgaagtgccg gggcaggatc tcctgtcatc tcaccttgct cctgccgaga 1200 aagtatccat catggctgat gcaatgcggc ggctgcatac gcttgatccg gctacctgcc 1260 cattcgacca ccaagcgaaa catcgcatcg agcgagcacg tactcggatg gaagccggtc 1320 ttgtcgatca ggatgatctg gacgaagagc atcaggggct cgcgccagcc gaactgttcg 1380 ccaggctcaa ggcgcggatg cccgacggcg aggatctcgt cgtgacccat ggcgatgcct 1440 gcttgccgaa tatcatggtg gaaaatggcc gcttttctgg attcatcgac tgtggccggc 1500 tgggtgtggc ggaccgctat caggacatag cgttggctac ccgtgatatt gctgaagagc 1560 ttggcggcga atgggctgac cgcttcctcg tgctttacgg tatcgccgct cccgattcgc 1620 agcgcatcgc cttctatcgc cttcttgacg agttcttctg agcgggactc tggggttcgc 1680 tagaggatcg atccttttta acccatcaca tatacctgcc gttcactatt atttagtgaa 1740 atgagatatt atgatatttt ctgaattgtg attaaaaagg caactttatg cccatgcaac 1800 agaaactata aaaaatacag agaatgaaaa gaaacagata gattttttag ttctttaggc 1860 ccgtagtctg caaatccttt tatgattttc tatcaaacaa aagaggaaaa tagaccagtt 1920 gcaatccaaa cgagagtcta atagaatgag gtcgaaaagt aaatcgcgcg ggtttgttac 1980 tgataaagca ggcaagacct aaaatgtgta aagggcaaag tgtatacttt ggcgtcaccc 2040 cttacatatt ttaggtcttt ttttattgtg cgtaactaac ttgccatctt caaacaggag 2100 ggctggaaga agcagaccgc taacacagta cataaaaaag gagacatgaa cgatgaacat 2160 caaaaagttt gcaaaacaag caacagtatt aacctttact accgcactgc tggcaggagg 2220 cgcaactcaa gcgtttgcga aagaaacgaa ccaaaagcca tataaggaaa catacggcat 2280 ttcccatatt acacgccatg atatgctgca aatccctgaa cagcaaaaaa atgaaaaata 2340 tcaagtttct gaatttgatt cgtccacaat taaaaatatc tcttctgcaa aaggcctgga 2400 cgtttgggac agctggccat tacaaaacgc tgacggcact gtcgcaaact atcacggcta 2460 ccacatcgtc tttgcattag ccggagatcc taaaaatgcg gatgacacat cgatttacat 2520 gttctatcaa aaagtcggcg aaacttctat tgacagctgg aaaaacgctg gccgcgtctt 2580 taaagacagc gacaaattcg atgcaaatga ttctatccta aaagaccaaa cacaagaatg 2640 gtcaggttca gccacattta catctgacgg aaaaatccgt ttattctaca ctgatttctc 2700 cggtaaacat tacggcaaac aaacactgac aactgcacaa gttaacgtat cagcatcaga 2760 cagctctttg aacatcaacg gtgtagagga ttataaatca atctttgacg gtgacggaaa 2820 aacgtatcaa aatgtacagc agttcatcga tgaaggcaac tacagctcag gcgacaacca 2880 tacgctgaga gatcctcact acgtagaaga taaaggccac aaatacttag tatttgaagc 2940 aaacactgga actgaagatg gctaccaagg cgaagaatct ttatttaaca aagcatacta 3000 tggcaaaagc acatcattct tccgtcaaga aagtcaaaaa cttctgcaaa gcgataaaaa 3060 acgcacggct gagttagcaa acggcgctct cggtatgatt gagctaaacg atgattacac 3120 actgaaaaaa gtgatgaaac cgctgattgc atctaacaca gtaacagatg aaattgaacg 3180 cgcgaacgtc tttaaaatga acggcaaatg gtacctgttc actgactccc gcggatcaaa 3240 aatgacgatt gacggcatta cgtctaacga tatttacatg cttggttatg tttctaattc 3300 tttaactggc ccatacaagc cgctgaacaa aactggcctt gtgttaaaaa tggatcttga 3360 tcctaacgat gtaaccttta cttactcaca cttcgctgta cctcaagcga aaggaaacaa 3420 tgtcgtgatt acaagctata tgacaaacag aggattctac gcagacaaac aatcaacgtt 3480 tgcgccgagc ttcctgctga acatcaaagg caagaaaaca tctgttgtca aagacagcat 3540 ccttgaacaa ggacaattaa cagttaacaa ataaaaacgc aaaagaaaat gccgatgggt 3600 accgagcgaa atgaccgacc aagcgacgcc caacctgcca tcacgagatt tcgattccac 3660 cgccgccttc tatgaaaggt tgggcttcgg aatcgttttc cgggacgccc tcgcggacgt 3720 gctcatagtc cacgacgccc gtgattttgt agccctggcc gacggccagc aggtaggccg 3780 acaggctcat gccggccgcc gccgcctttt cctcaatcgc tcttcgttcg tctggaaggc 3840 agtacacctt gataggtggg ctgcccttcc tggttggctt ggtttcatca gccatccgct 3900 tgccctcatc tgttacgccg gcggtagccg gccagcctcg cagagcagga ttcccgttga 3960 gcaccgccag gtgcgaataa gggacagtga agaaggaaca cccgctcgcg ggtgggccta 4020 cttcacctat cctgccccgc tgacgccgtt ggatacacca aggaaagtct acacgaaccc 4080 tttggcaaaa tcctgtatat cgtgcgaaaa aggatggata taccgaaaaa atcgctataa 4140 tgaccccgaa gcagggttat gcagcggaaa agcgctgctt ccctgctgtt ttgtggaata 4200 tctaccgact ggaaacaggc aaatgcagga aattactgaa ctgaggggac aggcgagaga 4260 cgatgccaaa gagctcctga aaatctcgat aactcaaaaa atacgcccgg tagtgatctt 4320 atttcattat ggtgaaagtt ggaacctctt acgtgccgat caacgtctca ttttcgccaa 4380 aagttggccc agggcttccc ggtatcaaca gggacaccag gatttattta ttctgcgaag 4440 tgatcttccg tcacaggtat ttattcggcg caaagtgcgt cgggtgatgc tgccaactta 4500 ctgatttagt gtatgatggt gtttttgagg tgctccagtg gcttctgttt ctatcagctc 4560 ctgaaaatct cgataactca aaaaatacgc ccggtagtga tcttatttca ttatggtgaa 4620 agttggaacc tcttacgtgc cgatcaacgt ctcattttcg ccaaaagttg gcccagggct 4680 tcccggtatc aacagggaca ccaggattta tttattctgc gaagtgatct tccgtcacag 4740 gtatttattc ggcgcaaagt gcgtcgggtg atgctgccaa cttactgatt tagtgtatga 4800 tggtgttttt gaggtgctcc agtggcttct gtttctatca gggctggatg atcctccagc 4860 gcggggatct catgctggag ttcttcgccc accccaaaag gatctaggtg aagatccttt 4920 ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc 4980 ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct 5040 tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa 5100 ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag 5160 tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc 5220 tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg 5280 actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca 5340 cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag cgtgagcatt 5400 gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 5460 tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc 5520 ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc 5580 ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc 5640 cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg 5700 cctttgagtg agctgatacc gc 5722 <210> 20 <211> 836 <212> DNA <213> Methylobacterium extorquens <400> 20 atgaacacgg acgatttcgc ctacgatttc gacgcgcccg attcggactg gaactacgag 60 ccgtcgcggg ccgatctgtt ccggcagatc gacgcgccac tctataccac tgattccaac 120 ggctggctga cctactacaa cgaagccgcc gcacagcttt ggggattccg ccccgtgatc 180 ggcaaggcgc gctggtgcgg cgcttggcgg ctgttcgagg cggacggcgc gccgctgccg 240 cacgacctgt cgccgatggc gctcaccctc aaaggcgcgc gcccagtgcg cggcgtccag 300 atcggcctcg aacggccgga cggaagccgg atggcgttcc tgccttaccc gacggcgttg 360 cgcgacggga cgggcgccgt ggtgggggga tgcaacatcc tcctcgccgt cgagcgctca 420 agcctgcgcg ttccgctccg cggggcgctc cagggccggc cgacgcttcg ggccgcccaa 480 cttgcgagca tgcacagatg ttcggcgtga gcttgccgcg tctgcctcgg cgatccacct 540 cgttcgagcg aagcgatccg cgggatgtct ccccggatcg ccttgccgcc tgaggaacgt 600 gccgcctgaa aaacaggagg aagccatgtc ggtcgatacc aactggagcc tcgacgccgt 660 ccagagcctg cgcagcatgg cccgcgaggg catacccctc tccgtcatca gcctgcggct 720 caagcggccg gtcgatgcgg tctgcgccaa gctcgccgaa ctcggcatca cgcccaagct 780 cgagctttga ccggacgggc gccggggcat cgcgcccggg cgcccacccg ccggac 836 <210> 21 <211> 439 <212> DNA <213> Methylobacterium extorquens <400> 21 cgtgtgcaag tattccatgg ccacaccgga tgatgacagg gatgtccggc tatctggccc 60 ggcacgcaaa cccgtcaacg gggcgaccga tcaggctccc gcgcggccag tcagccagcg 120 gcggccaaac ggccgttcga ccggcggcgc ccgccggatt cgaccggact gccggtgaat 180 aacatccatt tgaaaaaagc ttctcttgtg gcaattgctt gatccaatta cgatcactat 240 cgcgtctcgc aagcctccg ttaaattata gtgacatggc attgaaaaat agaaggcatt 300 ccttcgcaac tgacttggcg tcgatgcata ttatagcatt taagagcttt tgtttcccga 360 aatggcaaca gctaagattc gccgcgtccc ggcctgcgat gatcgtcgaa tcgggcatgc 420 cgcgaccggg agacggcgc 439 <210> 22 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 22 gaccatgatt acgccaagct tatgaacacg gacgatttcg cc 42 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 23 cttgcacacg gtccggcggg tgggcgcc 28 <210> 24 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 24 cccgccggac cgtgtgcaag tattccatgg cc 32 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 25 aaaacgacgg ccagtgaatt cgcgccgtct cccggtcgc 39 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 26 aacccgcaga aacacgcttt 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 27 gaagctagct tatcgcgcca 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 28 tttctgcgcg taatctgctg 20 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 29 acgatgatgg cgagggtg 18 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 30 ggagcctgat gaacacggac 20 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 31 gcaatcatgc gccgtctc 18 <210> 32 <211> 580 <212> DNA <213> Methylobacterium extorquens <400> 32 gctggtatct gccgccgcgc tgccggcaga acctccggaa agacccattg tcgccccctg 60 tcgtttccgg cttgaccgtg gacgagattc gctcccgaga gcgtgaggga acgcacgcga 120 cctgtcgcgt ccggcgcgat cgccggatcg ggcgggatgc ggtgccgttc tgaagtgctg 180 tgagggagaa cattcgatgc gctcaggggc cgcttccgtc ttcttccccc tgttcgggct 240 cgtgctcacg gtcggcgcgg ccgatgcgca gacgccgccc gagccaggcg ctgcccggcc 300 gctggtgatc ccccaggtcg agggcgagcg ccagggcaag gtgctgggcc gggcgctcgc 360 ctgcggcgcg gagcgcgagc gggtcgatcg ggtgctgaga gccggccgcg agcgcatgat 420 ggcggcggtc ggccgggcgc tcacggagga gcgctacgcc ctggcgctcg acgacgcgat 480 gcgtctggag acgagcctgc ctgcgccctc ttcgatcgcg tgcgagaagg cgctggccgg 540 gctcgaacgc ctggagaagg cgccgtagac acccaaacga 580 <210> 33 <211> 1220 <212> DNA <213> Methylobacterium extorquens <400> 33 cggccctctc tccccggtac ggatgttgtg tggatgagcg cccatctggc gcagtccggc 60 cgggcggaaa gggtttttgc cgtttaccct tcgtcaacct taccgggtgc ttgctgccgg 120 caatgatgcg caccgcgtcc ctcaccgccg tcgatcccga agccctgctg ccgccgggcg 180 acgccgccct gcgcgcggcg atgcggggct ggcgcgaggc gctggcgcgg gagcggcgca 240 tggccgccaa cacggtcgag gcctacgagc gtgacctgcg ccagtttctg atccatcgcg 300 ccgcccgctc cggcacgccc accatcgccg ggctgatcgc cctgaagccc cgcgacctgc 360 gcgccttcat ggccgcgcgc cgggccgagg ggatcggtgg gcgctccctg atgcggatgc 420 tggcgggtct gcgctccttc gcccgcttcc tcgaacggga gggacacggc agcgtcgcgg 480 cgctcggcgc ggtgcgctcc cccaaggtcg agcgccgcct gccgcgcccg cttcccattt 540 ccgccgcgct ggcgatgacc gcgcccgaga cccgccccga cgacgaccgc gccccgtggg 600 tgctcgcccg cgacgcggcg gtgatcgccc tcctctacgg ctcgggcctg cgcatctcgg 660 aagccttagg gctcaccgcc cgcgacgcgc cgatgccggg catcgacgag gtgcgggtga 720 cgggcaaggg tgggaaggtc cgcgccgtgc cggtgctgcc ggcggtggcc gaggcggtgg 780 ccgcctacct gtcgctgtgc ccgcaccccc tcgatccgga ggggccgctc ttcgtcggcg 840 tgaagggcgg gccgctctcg ccgcgagtgg tccagtacgc ggtttccgcg ctccgcggcg 900 cgctcggcct gcccgagagc gcgaccccgc acgccctgcg acactccttc gcaacccatc 960 tgctcgcccg ccggggcgag ctgcgggcga tccaggaatt gctcggccac gcctcgctct 1020 cgaccacgca aatctacacc aaggtcgatg ccgcccgcct gatgagcgcc ttcgaggacg 1080 cccatccccg cgcccggcgg ctgccgccct cggaaccgcc gtcaccgcgt tccgaaaccg 1140 ttgatgcaga gcaaggcacg agcgcccgat ccggctatgc tgtccggcag gacaggccgg 1200 tggagcgtag aaatgcgtga 1220 <210> 34 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 34 gaccatgatt acgccaagct tgctggtatc tgccgccgc 39 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 35 gagagggccg tcgtttgggt gtctacggcg 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 36 acccaaacga cggccctctc tccccggtac 30 <210> 37 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 37 aaaacgacgg ccagtgaatt ctcacgcatt tctacgctcc acc 43 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 38 agatcgagac gagaagcg 18 <210> 39 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 39 ccacacaaca tccgtacc 18 <210> 40 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 40 gaccatgatt acgccaagc 19 <210> 41 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 41 ccacacaaca tccgtacc 18 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 42 cagaacctcc ggaaagaccc 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial primer <400> 43 tccacacaac atccgtaccg 20

Claims (17)

포몰레이즈(Formolase)를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소(Dihydroxyacetone kinase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터.Recombinant vector comprising at least one selected from the group consisting of a nucleic acid sequence encoding Formolase and a nucleic acid sequence encoding dihydroxyacetone kinase. 제1항에 있어서, 상기 재조합 벡터는 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것인, 재조합 벡터.The method of claim 1, wherein the recombinant vector is a nucleic acid sequence encoding methylglyoxal synthase, a nucleic acid sequence encoding glycerol dehydrogenase, and methylglyoxal reductase or lact. The recombinant vector further comprises one or more selected from the group consisting of nucleic acid sequences encoding aldehyde reductase (lactaldehyde reductase). 락토일글루타티온 분해효소(Lactoylglutathione lyase)를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균(Methylotroph).Methylotroph containing a nucleic acid sequence encoding lactoylglutathione lyase in an inactive state. 제3항에 있어서, 상기 메틸영양세균은 포몰레이즈(Formolase)를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소(Dihydroxyacetone kinase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것인, 메틸영양세균.The method of claim 3, wherein the methylotrophic bacteria are recombinant comprising at least one selected from the group consisting of a nucleic acid sequence encoding Formolase and a nucleic acid sequence encoding dihydroxyacetone kinase. Transformed with a vector, methyl tropism. 제4항에 있어서, 상기 재조합 벡터는 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것인, 메틸영양세균.The method of claim 4, wherein the recombinant vector is a nucleic acid sequence encoding methylglyoxal synthase, a nucleic acid sequence encoding glycerol dehydrogenase, and methylglyoxal reductase or lactate. The methyltrophic bacteria additionally comprising at least one selected from the group consisting of a nucleic acid sequence encoding an aldehyde reductase (lactaldehyde reductase). 제3항에 있어서, 상기 메틸영양세균은 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것인, 메틸영양세균.The method of claim 3, wherein the methyltrophic bacteria are a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a glycerol dehydrogenase, and a methylglyoxal reductase or Lactaldehyde reductase (lactaldehyde reductase) will be transformed with a recombinant vector containing at least one selected from the group consisting of a nucleic acid sequence encoding a methyl bacterium. 제3항에 있어서, 상기 메틸영양세균은 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens), 메틸로박테리움 수오미엔스(Methylobacterium suomiense), 메틸로박테리움 플래타니(Methylobacterium platani), 메틸로박테리움 어드해시붐(Methylobacterium adhaesivum), 메틸로박테리움 솔라이(Methylobacterium soli) 및 메틸로박테리움 클로로메타니쿰(Methylobacterium chloromethanicum)으로 이루어진 군으로부터 선택되는 1종 이상인 것인, 메틸영양세균.The method of claim 3, wherein the methylotrophic bacteria are Methylobacterium extorquens , Methylobacterium suomiense , Methylobacterium platani, Methylobacterium Ad. Hash boom ( Methylobacterium adhaesivum ), methylobacterium soli (Methylobacterium soli) and methylobacterium chloromethanicum (Methylobacterium chloromethanicum ) that is one or more selected from the group consisting of, methyltrophic bacteria. 락토일글루타티온 분해효소(Lactoylglutathione lyase)를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균(Methylotroph)을 포함하는 1,2-프로필렌글라이콜(propanediol; PDO) 생산용 조성물.A composition for producing 1,2-propylene glycol (PDO) containing methylotroph containing a nucleic acid sequence encoding a lactoylglutathione lyase in an inactivated state. 제8항에 있어서, 상기 메틸영양세균은 포몰레이즈(Formolase)를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소(Dihydroxyacetone kinase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것인, 1,2-PDO 생산용 조성물.The method of claim 8, wherein the methylotrophic bacteria are recombinant comprising at least one selected from the group consisting of a nucleic acid sequence encoding Formolase and a nucleic acid sequence encoding dihydroxyacetone kinase. The composition for the production of 1,2-PDO, which was transformed with a vector. 제9항에 있어서, 상기 재조합 벡터는 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것인, 1,2-PDO 생산용 조성물.The method of claim 9, wherein the recombinant vector is a nucleic acid sequence encoding methylglyoxal synthase, a nucleic acid sequence encoding glycerol dehydrogenase, and methylglyoxal reductase or lactate. The composition for producing 1,2-PDO, which additionally comprises at least one selected from the group consisting of a nucleic acid sequence encoding an aldehyde reductase (lactaldehyde reductase). 제8항에 있어서, 상기 메틸영양세균은 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것인, 1,2-PDO 생산용 조성물.The method of claim 8, wherein the methylotrophic bacteria are a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a glycerol dehydrogenase, and a methylglyoxal reductase or The composition for production of 1,2-PDO, which is transformed with a recombinant vector comprising at least one selected from the group consisting of nucleic acid sequences encoding lactaldehyde reductase. 제8항에 있어서, 상기 메틸영양세균은 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens), 메틸로박테리움 수오미엔스(Methylobacterium suomiense), 메틸로박테리움 플래타니(Methylobacterium platani), 메틸로박테리움 어드해시붐(Methylobacterium adhaesivum), 메틸로박테리움 솔라이(Methylobacterium soli) 및 메틸로박테리움 클로로메타니쿰(Methylobacterium chloromethanicum)으로 이루어진 군으로부터 선택되는 1종 이상인 것인, 1,2-PDO 생산용 조성물.The method of claim 8, wherein the methylotrophic bacteria are Methylobacterium extorquens , Methylobacterium suomiense , Methylobacterium platani, Methylobacterium Ad. Hash boom ( Methylobacterium adhaesivum ), methylobacterium soli (Methylobacterium soli) and methylobacterium chloromethanicum (Methylobacterium chloromethanicum ) is one or more selected from the group consisting of, 1,2-PDO production composition. 락토일글루타티온 분해효소(Lactoylglutathione lyase)를 코딩하는 핵산 서열을 불활성화된 상태로 포함하는 메틸영양세균(Methylotroph)을 배양하는 배양 단계를 포함하는 1,2-프로필렌글라이콜(propanediol; PDO)의 생산방법.1,2-propylene glycol (propanediol; PDO) comprising a culture step of culturing methylotroph containing a nucleic acid sequence encoding lactoylglutathione lyase in an inactivated state. Production method. 제13항에 있어서, 상기 메틸영양세균은 포몰레이즈(Formolase)를 코딩하는 핵산 서열 및 디하이드록시아세톤 인산화효소(Dihydroxyacetone kinase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것인, 1,2-PDO의 생산방법.The method of claim 13, wherein the methylotrophic bacteria are recombinant comprising at least one selected from the group consisting of a nucleic acid sequence encoding Formolase and a nucleic acid sequence encoding dihydroxyacetone kinase. Transformed with a vector, 1,2-PDO production method. 제14항에 있어서, 상기 재조합 벡터는 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 추가적으로 포함하는 것인, 1,2-PDO의 생산방법.The method of claim 14, wherein the recombinant vector comprises a nucleic acid sequence encoding methylglyoxal synthase, a nucleic acid sequence encoding glycerol dehydrogenase, and methylglyoxal reductase or lactate. The method for producing 1,2-PDO further comprises at least one selected from the group consisting of a nucleic acid sequence encoding an aldehyde reductase (lactaldehyde reductase). 제3항에 있어서, 상기 메틸영양세균은 메틸글리옥살 합성효소(methylglyoxal synthase)를 코딩하는 핵산 서열, 글리세롤 탈수소효소(glycerol dehydrogenase)를 코딩하는 핵산 서열, 및 메틸글리옥살 환원효소(methylglyoxal reductase) 또는 락트알데히드 환원효소(lactaldehyde reductase)를 코딩하는 핵산 서열로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 재조합 벡터로 형질전환된 것인, 1,2-PDO 생산용 조성물.The method of claim 3, wherein the methyltrophic bacteria are a nucleic acid sequence encoding a methylglyoxal synthase, a nucleic acid sequence encoding a glycerol dehydrogenase, and a methylglyoxal reductase or The composition for production of 1,2-PDO, which is transformed with a recombinant vector comprising at least one selected from the group consisting of nucleic acid sequences encoding lactaldehyde reductase. 제13항에 있어서, 상기 메틸영양세균은 메틸로박테리움 엑스토르켄스(Methylobacterium extorquens), 메틸로박테리움 수오미엔스(Methylobacterium suomiense), 메틸로박테리움 플래타니(Methylobacterium platani), 메틸로박테리움 어드해시붐(Methylobacterium adhaesivum), 메틸로박테리움 솔라이(Methylobacterium soli) 및 메틸로박테리움 클로로메타니쿰(Methylobacterium chloromethanicum)으로 이루어진 군으로부터 선택되는 1종 이상인 것인, 1,2-PDO의 생산방법.The method of claim 13, wherein the methylotrophic bacteria are Methylobacterium extorquens , Methylobacterium suomiense , Methylobacterium platani, Methylobacterium Ad. Hash boom ( Methylobacterium adhaesivum ), methylobacterium soli (Methylobacterium soli) and methylobacterium chloromethanicum (Methylobacterium chloromethanicum ) is one or more selected from the group consisting of, the production method of 1,2-PDO.
KR1020190121127A 2019-09-30 2019-09-30 Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same KR102346757B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190121127A KR102346757B1 (en) 2019-09-30 2019-09-30 Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190121127A KR102346757B1 (en) 2019-09-30 2019-09-30 Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same

Publications (2)

Publication Number Publication Date
KR20210038805A true KR20210038805A (en) 2021-04-08
KR102346757B1 KR102346757B1 (en) 2021-12-31

Family

ID=75480597

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190121127A KR102346757B1 (en) 2019-09-30 2019-09-30 Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same

Country Status (1)

Country Link
KR (1) KR102346757B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024033303A1 (en) 2022-08-08 2024-02-15 Technische Universität Wien Synthetic formolase pathway

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045447A (en) * 2012-08-28 2015-04-28 란자테크 뉴질랜드 리미티드 Recombinant microorganisms and uses therefor
KR20160067228A (en) * 2007-03-23 2016-06-13 메타볼릭 익스플로러 Microorganisms and methods for production of 1,2-propanediol and acetol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160067228A (en) * 2007-03-23 2016-06-13 메타볼릭 익스플로러 Microorganisms and methods for production of 1,2-propanediol and acetol
KR20150045447A (en) * 2012-08-28 2015-04-28 란자테크 뉴질랜드 리미티드 Recombinant microorganisms and uses therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gutknecht 등, The EMBO Journal, 20권, 10호, 페이지 2480-2486 (2001).* *
Wang 등, Bioresour. Bioprocess., 4권, 41호, 페이지 1-6 (2017).* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024033303A1 (en) 2022-08-08 2024-02-15 Technische Universität Wien Synthetic formolase pathway
AT526405A1 (en) * 2022-08-08 2024-02-15 Univ Wien Tech Synthetic formolase pathway

Also Published As

Publication number Publication date
KR102346757B1 (en) 2021-12-31

Similar Documents

Publication Publication Date Title
Vuoristo et al. Metabolic engineering of itaconate production in Escherichia coli
CA2481414A1 (en) Promoter and plasmid system for genetic engineering
US20200063167A1 (en) Process for producing at least one metabolite of interest by conversion of a pentose in a microorganism
Niu et al. Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1, 2-propanediol through lactic acid
KR20120025450A (en) Engineering the pathway for succinate production
CN113832199A (en) Recombinant microorganism and use thereof
Chen et al. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose
US20210147889A1 (en) Method for enhancing continuous production of a natural compound during exponential growth phase and stationary phase of a microorganism
Hoefel et al. Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed‐batch‐operated stirred tank bioreactors
CN103221548B (en) Use of inducible promoters in the production of glycolic acid
KR102346757B1 (en) Methylotroph with enhanced 1,2-propylene glycol productivity and method for producing 1,2-propylene glycol using the same
JP2015149978A (en) Method for producing 2, 3-butanediol and acetoin
US20230332165A1 (en) Marker composition for selecting living modified organism, living modified organism, and transformation method
US11549117B2 (en) Marker composition for selecting living modified organism, living modified organism, and transformation method
KR102616801B1 (en) Composition for promoting production of 1,2-propanediol, and method for producing 1,2-propanediol using the same
US20230323410A1 (en) Bacterial cells and methods for production of 2-fluoro-cis,cis-muconate
KR101740031B1 (en) Recombinant Microorganism Producing Terephthalic Acid and Method for Producing Terephthalic Acid Using the Same
JP2023528727A (en) Methods and compositions for producing xylitol from xylose using dynamic metabolic control
Xiang-Lei et al. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli
BR112019027919A2 (en) microorganism with stabilized copy number of functional dna sequence and associated methods
KR102173766B1 (en) Composition for 1,2-propylene glycol production using methylotroph and method for producing thereof
KR101775226B1 (en) Fatty acid double bond hydratases acting in periplasm and process for producing hydroxy fatty acids using thereof
KR102518841B1 (en) Composition and method for preparing retinoids
US20150275238A1 (en) Genetically engineered microbes and methods for converting organic acids to alcohols
KR102683624B1 (en) Microorganisms with stabilized copy numbers of functional DNA sequences and related methods

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant