KR20210030631A - Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat - Google Patents

Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat Download PDF

Info

Publication number
KR20210030631A
KR20210030631A KR1020190111976A KR20190111976A KR20210030631A KR 20210030631 A KR20210030631 A KR 20210030631A KR 1020190111976 A KR1020190111976 A KR 1020190111976A KR 20190111976 A KR20190111976 A KR 20190111976A KR 20210030631 A KR20210030631 A KR 20210030631A
Authority
KR
South Korea
Prior art keywords
oil
emulsion
vegetable meat
meat
vegetable
Prior art date
Application number
KR1020190111976A
Other languages
Korean (ko)
Other versions
KR102317926B1 (en
Inventor
최미정
김홍균
위기현
조영재
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020190111976A priority Critical patent/KR102317926B1/en
Publication of KR20210030631A publication Critical patent/KR20210030631A/en
Application granted granted Critical
Publication of KR102317926B1 publication Critical patent/KR102317926B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

The present invention relates to a method for manufacturing vegetable meat to which an emulsion is added as a meat fat substitute. More particularly, the present invention relates to: a method for manufacturing vegetable meat comprising a step of separately adding an emulsion composed of Tween 80, water, oil, and lecithin as a fat substitute; and the vegetable meat manufactured by using the method. In the present invention, it is confirmed that the quality and storage stability of the vegetable meat prepared by manufacturing and adding the emulsion are improved when contents and amounts of components are the same, and thus it is confirmed that the sensory preference of the vegetable meat to which the emulsion is added is greatly improved.

Description

육류 지방대체물로서 에멀젼이 첨가된 식물성 고기 제조방법{Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat}Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat}

본 발명은 육류 지방대체물로서 에멀젼이 첨가된 식물성 고기 제조방법에 관한 것으로, 보다 상세하게는 트윈 80, 물, 기름 및 레시틴으로 구성된 에멀젼을 지방대체물로서 따로 첨가하는 것을 특징으로 하는 식물성 고기 제조방법 및 이를 이용하여 제조한 식물성 고기에 관한 것이다.The present invention relates to a method for producing vegetable meat with an emulsion added as a meat fat substitute, and more particularly, a method for producing vegetable meat, characterized in that an emulsion composed of Tween 80, water, oil and lecithin is separately added as a fat substitute, and It relates to a vegetable meat prepared using this.

식물성 고기는 동물성 재료 대신 식물성 재료를 사용하여 색, 맛, 냄새 등을 동물성 고기와 유사하게 만들어 육류를 대신할 제품으로 구현하는 것으로, 탈지한 콩의 부산물로 만든 분리대두단백을 활용하여 고기 및 소시지 등의 동물성 식품을 대체할 제품이 많이 개발되고 있다. Vegetable meat is a product that replaces meat by making color, taste, and smell similar to animal meat by using vegetable ingredients instead of animal ingredients. Meat and sausages using separated soy protein made from by-products of skim soybeans. A lot of products are being developed to replace animal foods such as.

식물성 고기 개발에 콩을 주로 사용하는 것은 단백질의 주요 급원이고, 동물성 단백질보다 콜레스테롤이 낮으며, 암 등을 예방할 수 있는 아르지닌(arginine)과 식물성 고기는 동물성 재료 대신 식물성 재료를 사용하여 색, 맛, 냄새 등을 동물성 고기와 유사하게 만들어 육류를 대신할 제품으로 구현하는 것으로, 탈지한 콩의 부산물로 만든 분리대두단백을 활용하여 고기 및 소시지 등의 동물성 식품을 대체할 제품이 많이 개발되고 있다. The main use of soybeans for the development of vegetable meat is a major source of protein, lower cholesterol than animal protein, and arginine and vegetable meat, which can prevent cancer, etc., use vegetable ingredients instead of animal ingredients. As a product to replace meat by making odors similar to animal meat, many products to replace animal foods such as meat and sausages are being developed using isolated soy protein made from by-products of skim soybeans.

식물성 고기 개발에 콩을 주로 사용하는 것은 단백질의 주요 급원이고, 동물성 단백질보다 콜레스테롤이 낮으며, 암 등을 예방할 수 있는 아르지닌(arginine)과 글라이신(glycine)을 총 아미노산에 각각 8.25%와 4.27% 함유한 것으로 알려져 있기 때문이다.The main use of soybeans for vegetable meat development is the main source of protein, lower cholesterol than animal protein, and arginine and glycine, which can prevent cancer, etc., in total amino acids of 8.25% and 4.27%, respectively. This is because it is known to contain.

유화형 육류제품 제조 시 지방은 공정과정으로 인한 물리적 힘으로 불안정해지는 문제점이 있다. 따라서 식물성 고기 제조에서도 육류대체 지방의 유화 안정성은 중요한 요소로 작용한다. 현재 육류제품에서 동물성 지방을 부분적으로 식물성 기름과 생선 혹은 해조류 기름으로 대체하는 추세이나, 대체기름만을 첨가한 제품은 탄력성이 떨어져 식감에 차이가 나고, 기름의 특성상 제품 내에서 산화가 촉진되어 저장 기간이 감소하며 영양 손실이 생기는 단점이 있다. When manufacturing emulsified meat products, there is a problem that fat becomes unstable due to physical force due to the process. Therefore, even in the manufacture of vegetable meat, the emulsification stability of the meat substitute fat acts as an important factor. Currently, in meat products, animal fats are partially replaced with vegetable oils and fish or seaweed oils, but products with only replacement oils have poor elasticity, resulting in a difference in texture, and due to the nature of the oil, oxidation in the product is promoted and the storage period There is a drawback of reducing this and causing nutrient loss.

지방 대체재로 사용되는 수중유적형 에멀젼 및 에멀젼 겔은 육류제품에 혼합되었을 때 육류제품의 지질 구성, 수분 보유력, 지방의 산화 안정성 및 관능적 측면에서 좋은 평가를 받았으며, 에멀젼 제품에 혼합된 에멀젼의 안정성은 육류제품의 질, 단백질의 물리 화학적 상태, 지방 또는 기름의 비율, pH 및 식품첨가물 등 다양한 가공조건에 의해 영향을 받는 것으로 알려져 있다.Oil-in-water emulsions and emulsion gels used as fat substitutes received good evaluation in terms of lipid composition, moisture retention, oxidation stability and organoleptic properties of meat products when mixed with meat products. It is known to be affected by various processing conditions such as the quality of meat products, the physicochemical state of proteins, the ratio of fat or oil, pH and food additives.

에멀젼 제조에 사용되는 계면활성제로 콩에서 추출되어 널리 사용되고 있는 분리대두단백(soy protein isolate, SPI)과 레시틴이 있으며, 분리대두단백을 이용한 에멀젼은 겔 형태일 때 냉동, 해동 및 가열에 따라 에멀젼 안정성이 높은 것으로 알려져 있다. 레시틴은 양이온성 물질로 계면활성제로써 많이 사용되고 있으며, 식물과 동물에서 추출되는 인지질의 혼합물이면서, 항산화성을 가지고 있어 계면활성제로 사용되면 지방의 산화 안정성을 높이는 것으로 알려져 있다.Surfactants used in emulsion production include soy protein isolate (SPI) and lecithin, which are widely used after being extracted from soybeans.Emulsions using soy protein isolate are in the form of gels, emulsion stability upon freezing, thawing and heating. It is known to be high. Lecithin is a cationic substance and is widely used as a surfactant. It is a mixture of phospholipids extracted from plants and animals, and has antioxidant properties, and is known to increase the oxidation stability of fat when used as a surfactant.

이에, 본 발명자들은 식물성 고기의 질감을 향상시키고, 저장 안정성을 증가시키기 위해 예의 노력한 결과, 지방대체물로써 에멀젼을 따로 제조하여 식물성 고기 제조에 첨가하면, 식물성 고기의 질감 향상뿐만 아니라, 저장 안정성 및 품질이 유지되는 것을 확인하고, 본 발명을 완성하였다. Accordingly, the present inventors have made diligent efforts to improve the texture of vegetable meat and increase the storage stability. As a result, when an emulsion is separately prepared as a fat substitute and added to the production of vegetable meat, not only the texture of vegetable meat is improved, but also storage stability and quality It was confirmed that this was maintained, and the present invention was completed.

본 발명의 목적은 육류 지방대체물로서 에멀젼이 첨가된 식물성 고기 제조방법 및 상기 방법으로 제조된 식물성 고기를 제공하는 데 있다.An object of the present invention is to provide a method for preparing vegetable meat with an emulsion added as a meat fat substitute, and to provide a vegetable meat prepared by the above method.

상기 목적을 달성하기 위해, To achieve the above object,

본 발명은 (a) 계면활성제, 물, 기름 및 레시틴으로 구성된 에멀젼을 제조하는 단계;The present invention comprises the steps of (a) preparing an emulsion consisting of a surfactant, water, oil and lecithin;

(b) 조직 대두 단백 TPV 및 물을 혼합하여 수화 시킨 다음, 탈수하는 단계; 및 (b) mixing the tissue soy protein TPV and water to hydrate, and then dehydrating; And

(c) (b) 단계에서 준비한 조직대두단백 100 중량부당 (a) 단계에서 제조한 에멀젼 25 ~ 35 중량부, 분리대두단백(soy protein isolate, SPI) 4 ~ 5 중량부, 결합제 3 ~ 4 중량부 및 레시틴 0.6 ~ 0.7 중량부를 혼합하여 반죽하는 단계;를 포함하는 식물성 고기 제조방법을 제공한다.(c) Per 100 parts by weight of tissue soy protein prepared in step (b), 25 to 35 parts by weight of emulsion prepared in step (a), 4 to 5 parts by weight of soy protein isolate (SPI), 3 to 4 parts by weight of binder It provides a vegetable meat manufacturing method comprising; mixing and kneading parts and 0.6 to 0.7 parts by weight of lecithin.

본 발명의 바람직한 일실시예에 따르면, 상기 에멀젼의 크기는 0.1 ~ 5.0 μm일 수 있다.According to a preferred embodiment of the present invention, the size of the emulsion may be 0.1 ~ 5.0 μm.

본 발명의 바람직한 다른 일실시예에 따르면, 상기 (a) 단계의 에멀젼은 6:4 ~ 7:3(w/w)의 비율로 혼합된 물 및 기름에 계면활성제 3 ~ 4%(w/w) 및 레시틴 0.4 ~ 0.6%(w/w)을 첨가한 다음, 균질화 시켜 제조할 수 있다. According to another preferred embodiment of the present invention, the emulsion of step (a) is 3 to 4% (w/w) surfactant in water and oil mixed in a ratio of 6:4 to 7:3 (w/w). ) And lecithin 0.4 ~ 0.6% (w/w) can be added and then homogenized.

본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (a) 단계의 계면활성제는 트윈 80(Tween 80)일 수 있다.According to another preferred embodiment of the present invention, the surfactant in step (a) may be Tween 80.

본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 기름은 MCT 기름, 코코넛 기름 또는 땅콩 기름일 수 있다.According to another preferred embodiment of the present invention, the oil may be MCT oil, coconut oil or peanut oil.

또한, 본 발명은 상기 식물성 고기 제조방법으로 제조된 식물성 고기를 제공하며, In addition, the present invention provides a vegetable meat prepared by the method for producing vegetable meat,

상기 식물성 고기는 경도(hardness) 2000 ~ 3000 g, 응집성(cohesiveness) 0.2 ~ 0.3, 탄력성(springiness) 4 ~ 7 mm, 검성(gumminess) 400 ~ 700 g 및 씹힘성(chewiness) 15 ~ 50 mJ의 물성을 가질 수 있다.The vegetable meat has a hardness of 2000 to 3000 g, cohesiveness 0.2 to 0.3, springiness 4 to 7 mm, gumminess 400 to 700 g, and chewiness 15 to 50 mJ. I can have it.

본 발명은 육류 지방 대체물로서 에멀젼을 따로 제조하여 식물성 고기 제조에 첨가한 것으로, 구성성분의 내용과 양을 동일하게 했을 시 에멀젼 제조 후 첨가하여 제조한 식물성 고기의 품질 및 저장안정성이 향상되는 것을 확인하였으며, 에멀젼이 첨가된 식물성 고기의 관능적인 기호도가 크게 향상된 것을 확인하였다.In the present invention, an emulsion was separately prepared as a meat fat substitute and added to the production of vegetable meat. When the contents and amounts of the components were the same, it was confirmed that the quality and storage stability of the vegetable meat prepared by adding after the emulsion production were improved. It was confirmed that the sensory preference of vegetable meat to which the emulsion was added was greatly improved.

도 1은 DCS 분석에 의한 MCT 기름, 코코넛 기름 및 땅콩 기름의 상전이 곡선을 나타낸 데이터이다.
도 2는 기름 및 물의 비율을 1 : 9로 혼합하여 제조한 에멀젼의 광학 현미경 이미지이다. (A) MCT 기름 및 Tween®80; (B) 코코넛 기름 및 Tween®80; (C) 땅콩 기름 및 Tween®80; (D) MCT 기름 및 SPI; (E) 코코넛 기름 및 SPI; (F) 땅콩 기름 및 SPI.
도 3은 기름 및 물의 비율을 4 : 6으로 혼합하여 제조한 에멀젼의 광학 현미경 이미지이다. (A) MCT 기름 및 Tween®80; (B) 코코넛 기름 및 Tween®80; (C) 땅콩 기름 및 Tween®80; (D) MCT 기름 및 SPI; (E) 코코넛 기름 및 SPI; (F) 땅콩 기름 및 SPI.
도 4는 식물성 고기 제조방법을 나타낸 모식도이다.
도 5는 식물성 고기의 겉표면을 관찰한 데이터이다.
도 6은 식물성 고기의 단면을 관찰한 데이터이다.
도 7은 식물성 고기의 가열감량을 나타낸 데이터이다. a-d A-C: 던컨의 다중검정(Duncan's multiple range test)을 이용하여 시료 간의 유의적 차이를 검증하였으며, 같은 기름 간의 차이는 소문자, 같은 액체 첨가물 사이에는 대문자로 나타내었다.
도 8은 식물성 고기의 액상보유력을 나타낸 데이터이다. a-d A-C: 던컨의 다중검정(Duncan's multiple range test)을 이용하여 시료 간의 유의적 차이를 검증하였으며, 같은 기름 간의 차이는 소문자, 같은 액체 첨가물 사이에는 대문자로 나타내었다.
도 9는 MCT 기름이 혼합된 식물성 고기의 관능 평가 결과를 나타낸 데이터이다.
도 10은 코코넛 기름이 혼합된 식물성 고기의 관능 평가 결과를 나타낸 데이터이다.
도 11은 땅콩 기름이 혼합된 식물성 고기의 관능 평가 결과를 나타낸 데이터이다.
도 12는 식물성 고기의 관능 평가 결과를 나타낸 데이터이다.
도 13은 식물성 고기의 저장과정 중 경도 변화를 확인한 데이터이다.
도 14는 에멀젼 입자 크기를 다르게 하여 제조한 식물성 고기의 저장과정 중 경도 변화를 확인한 데이터이다.
1 is data showing a phase transition curve of MCT oil, coconut oil, and peanut oil by DCS analysis.
2 is an optical microscope image of an emulsion prepared by mixing oil and water in a ratio of 1:9. (A) MCT oil and Tween®80; (B) coconut oil and Tween®80; (C) peanut oil and Tween® 80; (D) MCT oil and SPI; (E) coconut oil and SPI; (F) Peanut oil and SPI.
3 is an optical microscope image of an emulsion prepared by mixing oil and water in a ratio of 4:6. (A) MCT oil and Tween®80; (B) coconut oil and Tween®80; (C) peanut oil and Tween® 80; (D) MCT oil and SPI; (E) coconut oil and SPI; (F) Peanut oil and SPI.
Figure 4 is a schematic diagram showing a method for producing vegetable meat.
5 is data obtained by observing the outer surface of vegetable meat.
6 is data obtained by observing a cross section of vegetable meat.
7 is data showing the heating loss of vegetable meat. ad AC: Significant differences between samples were verified using Duncan's multiple range test, and differences between the same oils were shown in lowercase letters and uppercase letters between the same liquid additives.
8 is data showing the liquid retention power of vegetable meat. ad AC: Significant differences between samples were verified using Duncan's multiple range test, and differences between the same oils were shown in lowercase letters and uppercase letters between the same liquid additives.
9 is data showing the sensory evaluation results of vegetable meat mixed with MCT oil.
10 is data showing the sensory evaluation results of vegetable meat mixed with coconut oil.
11 is data showing the sensory evaluation results of vegetable meat mixed with peanut oil.
12 is data showing the sensory evaluation results of vegetable meat.
13 is data confirming the change in hardness during the storage process of vegetable meat.
14 is data confirming the change in hardness during the storage process of vegetable meat prepared by varying the emulsion particle size.

이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 일관점에서, (a) 계면활성제, 물, 기름 및 레시틴으로 구성된 에멀젼을 제조하는 단계;In one aspect, the present invention comprises the steps of: (a) preparing an emulsion consisting of a surfactant, water, oil and lecithin;

(b) 조직 대두 단백 TPV 및 물을 혼합하여 수화 시킨 다음, 탈수하는 단계; 및 (b) mixing the tissue soy protein TPV and water to hydrate, and then dehydrating; And

(c) (b) 단계에서 준비한 조직대두단백 100 중량부당 (a) 단계에서 제조한 에멀젼 25 ~ 35 중량부, 분리대두단백(soy protein isolate, SPI) 4 ~ 5 중량부, 결합제 3 ~ 4 중량부 및 레시틴 0.6 ~ 0.7 중량부를 혼합하여 반죽하는 단계;를 포함하는 식물성 고기 제조방법에 관한 것이다. (c) Per 100 parts by weight of tissue soy protein prepared in step (b), 25 to 35 parts by weight of emulsion prepared in step (a), 4 to 5 parts by weight of soy protein isolate (SPI), 3 to 4 parts by weight of binder It relates to a method for producing vegetable meat comprising; mixing and kneading parts and 0.6 to 0.7 parts by weight of lecithin.

본 발명에서 "에멀젼"은 유화(乳化)라고도 하며, 서로 녹지 않는 액체 물질을 기계적 교반에 의해 혼합하여 분산시킨 상태로, 주로 물과 기름이 이러한 특성을 보인다. 열역학적으로 불안정한 상태를 지니고 있어 시간이 지남에 따라 원래 상태로 돌아가려는 유(油)분리, 수(水)분리 현상이 일어난다. 에멀젼의 두 용액 사이 계면에는 계면장력이 존재하고, 계면장력이 높을수록 에멀젼은 저장 안정성이 떨어지게 된다. 이러한 계면장력을 낮추기 위해 친수성(hydrophilic)과 소수성(hydrophobic) 잔기를 지닌 계면활성제(surfactant)를 첨가해 주어 유화를 만들어주게 된다.In the present invention, "emulsion" is also referred to as emulsification, and is a state in which liquid substances that do not dissolve with each other are mixed and dispersed by mechanical stirring, and mainly water and oil exhibit such characteristics. Since it has a thermodynamically unstable state, oil separation and water separation occur to return to the original state over time. Interfacial tension exists at the interface between the two solutions of the emulsion, and the higher the interfacial tension, the lower the storage stability of the emulsion. To lower the interfacial tension, a surfactant having hydrophilic and hydrophobic residues is added to make emulsification.

기름을 첨가하는 일반적인 방법으로 제조된 식물성 고기는 탄력성이 떨어져 식감에 차이가 발생하며, 기름의 특성상 제품 내에서 산화가 촉진되어 저장 기간이 감소하며 영양 손실이 생기는 문제점이 있다. 이런 문제를 해결하기 위해, 본 발명에서는 모든 재료를 한번에 혼합하여 식물성 고기를 제조하는 기존의 방법 대신에 지방 대체체로 에멀젼을 따로 제조한 다음, 조직대두단백과 혼합하여 질감 및 안정성이 향상된 식물성 고기를 제조하였다.Vegetable meat prepared by the general method of adding oil has a problem that the elasticity is poor, and the texture is different. Due to the nature of the oil, oxidation is promoted in the product, reducing the storage period and causing nutrient loss. In order to solve this problem, in the present invention, instead of the conventional method of preparing vegetable meat by mixing all ingredients at once, an emulsion is separately prepared as a fat substitute, and then mixed with tissue soy protein to produce vegetable meat with improved texture and stability. Was prepared.

본 발명에 있어서, 상기 (a) 단계의 에멀젼은 6:4~ 7:3(w/w)의 비율로 혼합된 물 및 기름에 계면활성제 3 ~ 4%(w/w) 및 레시틴 0.4 ~ 0.6%(w/w)을 첨가한 다음, 균질화 시켜 제조할 수 있다.In the present invention, the emulsion of step (a) is 3 to 4% (w/w) surfactant and 0.4 to 0.6 of lecithin in water and oil mixed in a ratio of 6:4 to 7:3 (w/w). It can be prepared by adding% (w/w) and then homogenizing.

또한, 본 발명의 계면활성제는 권장 섭취량을 넘지 않는 범위 내에서 사용하였으며, 필요에 따라 분리대두단백(soy protein isolate, SPI)과 혼합하여 사용할 수 있다.In addition, the surfactant of the present invention was used within a range not exceeding the recommended intake, and may be mixed with soy protein isolate (SPI) if necessary.

본 발명의 구체적인 일구현예에서, 각 기름과 계면활성제별 에멀젼의 이화학적 특성을 확인하였다. 기름의 종류에 따라서는 에멀젼의 안정성은 뚜렷한 차이를 보이지 않았으며 계면활성제로 사용된 Tween®80이 분리대두단백보다 계면장력을 더 낮추고, 에멀젼의 제타 전위의 절댓값이 높아 에멀젼 안정성이 높은 것을 확인 할 수 있었으며, 분리대두단백은 기름 포집 효율이 높았다. 기름과 물의 혼합비율은 3:7이 기름의 포집 효율이 우수한 것으로 확인되었다 (표 2 내지 표 6).In a specific embodiment of the present invention, the physicochemical properties of the emulsion for each oil and surfactant were confirmed. Depending on the type of oil, the stability of the emulsion did not show a distinct difference, and it was confirmed that Tween®80, used as a surfactant, lowered the interfacial tension more than the isolated soy protein, and the absolute value of the zeta potential of the emulsion was high, so the emulsion stability was high. Soybean protein isolate had high oil collection efficiency. As for the mixing ratio of oil and water, it was confirmed that the oil collection efficiency was excellent at 3:7 (Tables 2 to 6).

본 발명에 있어서, 상기 기름은 MCT 기름, 코코넛 기름 또는 땅콩 기름인 것을 특징으로 하나, 이에 한정되지 않고 식물성 고기의 제조에 사용할 수 있는 식물성 기름 및 동물성 기름 모두 사용할 수 있다.In the present invention, the oil may be MCT oil, coconut oil, or peanut oil, but is not limited thereto, and both vegetable oil and animal oil that can be used in the manufacture of vegetable meat may be used.

MCT 기름은 코코넛 기름과 같은 포화 지방산 함량이 높은 식물성 기름에서 추출되며, 탄소수가 6개에서 12개 사이인 중간사슬 지방산으로 구성되는 식물성 기름이다. 상온에서 액체로 존재하고, 체내에서 바로 에너지로 소비되는 특징이 있다. 또한, MCT 기름은 에멀젼으로 제조할 때 다른 기름을 사용했을 때 보다 안정한 장점이 있다. 땅콩 기름은 땅콩 특유의 강한 향과 맛을 가지고 있으며, 육류제품의 지방을 대체하여 혼합하여도 맛과 향에 대한 거부감이 없는 것으로 알려져 있다.MCT oil is extracted from vegetable oils with a high content of saturated fatty acids, such as coconut oil, and is a vegetable oil composed of medium-chain fatty acids with between 6 and 12 carbon atoms. It exists as a liquid at room temperature and is consumed as energy directly in the body. In addition, MCT oil has the advantage of being more stable than other oils when it is prepared as an emulsion. Peanut oil has a strong aroma and taste peculiar to peanuts, and it is known that there is no resistance to taste and aroma even when mixed by replacing fat in meat products.

본 발명에 있어서, 상기 에멀젼의 크기는 0.1 ~ 5.0 μm인 것을 특징으로 할 수 있다. In the present invention, the size of the emulsion may be characterized in that 0.1 ~ 5.0 μm.

본 발명의 구체적인 다른 일구현예에서, 에멀젼의 입자크기를 40.0, 4.0, 0.4 μm으로 하여 식물성 고기를 제조한 다음, 경도를 관찰한 결과, 입자크기가 클수록 저장 14일 차에서 급격하게 증가하는 것을 확인하였다 (도 14). 반면 0.4 μm의 입자크기를 가지는 에멀젼을 넣은 식물성 고기의 경우 경도 차이를 보이지 않아서 안정성이 뛰어난 것을 확인하였다. 따라서, 에멀젼의 입자크기는 0.1 ~ 5.0 μm, 바람직하게는 0.1 ~ 1.0 μm, 더 바람직하게는 0.1 ~ 0.5 μm인 것이 식물성 고기 제조에 적합한 것을 확인하였다.In another specific embodiment of the present invention, vegetable meat was prepared by setting the particle size of the emulsion to 40.0, 4.0, or 0.4 μm, and then, as a result of observing the hardness, it was found that the larger the particle size, the sharper the 14 days of storage increased. Confirmed (Fig. 14). On the other hand, in the case of vegetable meat containing an emulsion having a particle size of 0.4 μm, it was confirmed that the stability was excellent because there was no difference in hardness. Therefore, it was confirmed that the particle size of the emulsion is 0.1 to 5.0 μm, preferably 0.1 to 1.0 μm, and more preferably 0.1 to 0.5 μm for vegetable meat production.

본 발명에 있어서, 상기 (c) 단계는 바람직하게, 조직대두단백 100 중량부당 에멀젼 27.08 중량부, 분리대두단백(soy protein isolate, SPI) 4.3 중량부, 결합제 3.2 중량부 및 레시틴 0.68 중량부를 혼합하여 반죽할 수 있다.In the present invention, the step (c) is preferably, by mixing 27.08 parts by weight of emulsion per 100 parts by weight of tissue soy protein, 4.3 parts by weight of soy protein isolate (SPI), 3.2 parts by weight of binder, and 0.68 parts by weight of lecithin. You can knead it.

본 발명에서는 식물성 고기를 제조하는데 사용되는 주재료로 조직대두단백(textured vegetable protein, TVP), 분리대두단백(soy protein isolate, SPI)을 사용하였다. 상기 결합제는 난백 분말, 포도당, 로커스트콩검, 카라기난 및 구아검이 함유된 Meatline®2714를 사용하였으나, 이에 제한되지 않고, 식물성 고기의 제조에서 사용할 수 있는 결합제를 모두 사용할 수 있다.In the present invention, textured vegetable protein (TVP) and soy protein isolate (SPI) were used as main ingredients used to manufacture vegetable meat. Meatline® 2714 containing egg white powder, glucose, locust bean gum, carrageenan, and guar gum was used as the binder, but it is not limited thereto, and any binder that can be used in the manufacture of vegetable meat may be used.

본 발명의 식물성 고기 제조방법은 (d) 상기 (c) 단계에서 제조한 반죽을 성형한 다음, 열처리하는 단계를 추가로 포함할 수 있다. The method for producing vegetable meat of the present invention may further include the step of (d) molding the dough prepared in step (c) and then heat-treating.

본 발명은 다른 관점에서, 상기 식물성 고기 제조방법으로 제조된 식물성 고기에 관한 것으로,In another aspect, the present invention relates to a vegetable meat prepared by the method for producing vegetable meat,

상기 식물성 고기는 경도(hardness) 2000 ~ 3000 g, 응집성(cohesiveness) 0.2 ~ 0.3, 탄력성(springiness) 4 ~ 7 mm, 검성(gumminess) 400 ~ 700 g 및 씹힘성(chewiness) 15 ~ 50 mJ의 물성을 가지는 것을 특징으로 한다.The vegetable meat has a hardness of 2000 to 3000 g, cohesiveness 0.2 to 0.3, springiness 4 to 7 mm, gumminess 400 to 700 g, and chewiness 15 to 50 mJ. It is characterized by having.

본 발명에 있어서, 상기 식물성 고기는 떡갈비, 소시지, 만두, 햄버거 패티, 미트볼, 햄 등과 같이 적용될 수 있다.In the present invention, the vegetable meat may be applied as tteokgalbi, sausage, dumplings, hamburger patties, meatballs, ham, and the like.

본 발명의 구체적인 일구현예에서, MCT 기름, 코코넛 기름과 땅콩 기름 각각을 식물성 고기에 물만, 기름만, 물과 기름 분리 혼합, 혹은 에멀젼 형태로 혼합하여 제조된 식물성 고기(도 4 및 표 7)의 이화학적 특성변화(도 5 내지 도 8, 표 7 내지 표 9) 및 관능적 차이(도 9 내지 도 12)를 분석하였다. In a specific embodiment of the present invention, vegetable meat prepared by mixing each of MCT oil, coconut oil and peanut oil with only water, oil only, water and oil separately, or in an emulsion form with vegetable meat (FIGS. 4 and 7) Changes in physicochemical properties (FIGS. 5 to 8, Tables 7 to 9) and sensory differences (FIGS. 9 to 12) were analyzed.

외관과 단면은 물만 첨가한 시료가 육안상으로 가장 거칠고, 기름을 첨가한 시료가 거칠지 않았다. 색차에서는 분리대두단백이 혼합된 식물성 고기가 다른 시료보다 높았다. 가열감량과 수분함량은 모두 물을 첨가한 식물성 고기가 가장 높게 나타났으며, 기름을 혼합한 식물성 고기가 가장 낮게 나타났다. 액상 보유력은 가열감량과 수분함량이 반대의 경향을 보였다. TPA 검사에서 경도(hardness), 응집성(cohesiveness), 탄력성(springiness), 검성(gumminess), 씹힘성(chewiness)은 유사한 경향성을 보였다. 관능검사에서 다즙성과 부드러움에 대한 강도와 기호도가 높을수록 전반적 관능검사는 높은 것으로 나타났으며, Tween®80이 혼합된 식물성 고기가 다른 시료보다 좋은 평가를 받은 것으로 나타났다.As for the external appearance and cross section, the sample with only water was the most coarse visually, and the sample with oil was not. In color difference, vegetable meat mixed with isolated soy protein was higher than that of other samples. In both heating loss and water content, vegetable meat with water was the highest, and vegetable meat with oil was the lowest. As for the liquid-phase retention, the loss of heating and the moisture content showed opposite tendency. In the TPA test, hardness, cohesiveness, springiness, gumminess, and chewiness showed similar trends. In the sensory test, the higher the strength and acceptability for succulent and softness, the higher the overall sensory test, and the vegetable meat mixed with Tween® 80 received better evaluation than other samples.

이화학적 특성평가 결과에서는 기름 종류 간의 뚜렷한 큰 차이를 찾을 수는 없었으나, 관능검사에서 가장 높은 전반적 관능검사를 보인 MCT 기름이 가장 적합한 것으로 나타났다. 또한, 단순히 물 또는 기름만 첨가하는 것보다 에멀젼을 첨가할 경우 식물성 고기의 경도(hardness)가 낮아지고, 부드러움과 다즙성이 증가한 것으로 확인되었다.In the results of physicochemical characterization, no significant difference was found between the types of oil, but MCT oil, which showed the highest overall sensory test in the sensory test, was found to be the most suitable. In addition, it was confirmed that when the emulsion was added rather than simply adding water or oil, the hardness of the vegetable meat was lowered, and the softness and juiciness were increased.

또한, 본 발명의 구체적인 다른 일실시예에서, 본 발명의 방법으로 제조한 식물성 고기의 저장안정성이 우수한지 확인하기 위해, MCT 기름을 이용한 에멀젼과 다른 액상 성분이 들어간 식물성 고기의 저장 온도와 기간에 따른 이화학적 특성을 분석하였다.In addition, in another specific embodiment of the present invention, in order to check whether the storage stability of the vegetable meat prepared by the method of the present invention is excellent, the storage temperature and duration of the vegetable meat containing the emulsion using MCT oil and other liquid components The physicochemical properties were analyzed.

도 13에 나타난 바와 같이, 열처리한 시료가 액상 보유력과 경도가 열처리하지 않은 시료보다 저장 기간에 따라 안정적이었다. 경도의 경우 에멀젼을 첨가한 시료가 -20℃에서 가장 낮은 값을 나타내었으며, 구성성분의 내용과 양을 동일하게 했을시 에멀젼 제조후 첨가하여 제조한 식물성 고기의 저장안정성이 향상되는 것을 확인하였다.As shown in FIG. 13, the heat-treated sample was more stable in terms of storage period than the sample without the heat treatment in terms of liquid retention and hardness. In the case of hardness, the sample to which the emulsion was added showed the lowest value at -20°C, and it was confirmed that the storage stability of the vegetable meat prepared by adding after the emulsion preparation was improved when the contents and amounts of the components were the same.

나아가, 본 발명의 구체적인 또 다른 일실시예에서, 에멀젼의 입자크기는 40.0, 4.0, 0.4 μm으로 하여 저장과정 중 경도 변화를 확인한 결과, 도 14에 나타난 바와 같이, 저장 7일차 까지는 경도의 차이가 나타나지 않았으나, 입자크기가 클수록 저장 14일 차에서 급격하게 증가하는 것을 확인하였다, 반면 0.4 μm의 입자크기를 가지는 에멀젼을 넣은 식물성 고기의 경우 경도 차이를 보이지 않아서 안정성이 뛰어난 것을 확인하였다.Further, in another specific embodiment of the present invention, the particle size of the emulsion is 40.0, 4.0, 0.4 μm, and as a result of confirming the change in hardness during the storage process, as shown in Fig. 14, the difference in hardness is not until the 7th day of storage. Although it did not appear, it was confirmed that the larger the particle size, the sharper the increase was at the 14th day of storage, whereas the vegetable meat containing the emulsion having a particle size of 0.4 μm did not show a difference in hardness, so it was confirmed that the stability was excellent.

따라서 본 발명에서는 식물성 고기에 적용 가능한 육류대체 지방은 MCT 기름을 사용하여 에멀젼을 제조하고, 계면활성제로 Tween®80과 레시틴을 같이 사용하여 기름과 물의 비율을 3:7로 한 에멀젼이 가장 적합하며, 저장은 식물성 고기를 열처리한 상태로 -20℃에서 저장하는 것이 가장 적합한 것을 확인하였다.Therefore, in the present invention, an emulsion is prepared using MCT oil as a meat substitute fat applicable to vegetable meat, and an emulsion in which the ratio of oil and water is 3:7 by using Tween®80 and lecithin as surfactants is most suitable. For storage, it was confirmed that it is most suitable to store vegetable meat at -20°C in a heat-treated state.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail through examples.

이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.These examples are for illustrative purposes only, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.

트윈 80을 이용한 에멀젼 제조 및 이화학적 특성 분석Preparation of emulsion using Tween 80 and analysis of physicochemical properties

1-1: 에멀젼 제조1-1: emulsion preparation

본 실험에 사용된 기름은 MCT 기름(액상 코코넛 기름 추출, Chemrez Technologies Inc., Quezon, Philippines), 코코넛 기름(Earth Born Co., Ltd., 태국), 땅콩 기름(Qinhuangdao Jinhai Food Industry Co., Ltd., 중국)을 사용하였으며, 에멀젼을 제조하기 위하여 계면활성제로 레시틴(대두 추출, Samchun, 한국), 분리대두단백(soy protein isolate, SPI, 단백질 90% 이상, Avention, 한국), Tween®80(polyoxyethylene (20) sorbitan monooleate, Samchun, 한국)을 사용하였다.The oils used in this experiment were MCT oil (liquid coconut oil extraction, Chemrez Technologies Inc., Quezon, Philippines), coconut oil (Earth Born Co., Ltd., Thailand), and peanut oil (Qinhuangdao Jinhai Food Industry Co., Ltd.) ., China), and lecithin (soybean extract, Samchun, Korea), soy protein isolate (SPI, more than 90% protein, Avention, Korea), Tween®80 ( polyoxyethylene (20) sorbitan monooleate, Samchun, Korea) was used.

수중유적형(oil in water, O/W) 에멀젼 제조에 사용된 Tween®80의 농도는 권장 섭취량을 넘지 않는 3.5%(w/w)로 선정하였고(CODEX, 2018), 천연물 계면활성제인 분리대두단백도 동일한 농도로 사용하였다. 물과 기름의 비율은 9:1, 8:2, 7:3, 6:4 (w:w)로 제조하여 계면활성제(co-surfactant)로 레시틴 0.5%(w/w)를 각각의 기름에 혼합하였다. 혼합비율에 따라 혼합한 물과 기름은 초고속균질기(IKA®TA25, Digital Ultra-Turrax®독일)를 사용하여 2분간 20,000 rpm으로 균질하였다.The concentration of Tween®80 used in the preparation of an oil in water (O/W) emulsion was selected as 3.5% (w/w) that does not exceed the recommended intake (CODEX, 2018), and isolated soybeans, a natural surfactant. Protein was also used at the same concentration. The ratio of water and oil is 9:1, 8:2, 7:3, 6:4 (w:w), and lecithin 0.5% (w/w) is added to each oil as a surfactant (co-surfactant). Mixed. The water and oil mixed according to the mixing ratio were homogenized at 20,000 rpm for 2 minutes using an ultra-high-speed homogenizer (IKA®TA25, Digital Ultra-Turrax®Germany).

1-2: 열적 특성분석1-2: Thermal characterization

식물성 고기 개발에 적합한 기름을 선정하기 위해 MCT 기름, 코코넛 기름 및 땅콩 기름의 열적 특성을 분석하였다. 식물성 고기 제조 후 저장 온도에 따른 제품의 상태는 식물성 단백질에 의해서 주로 결정되지만, 지방의 종류도 제품의 특성과 저장 안정성에 중요한 역할을 한다.Thermal properties of MCT oil, coconut oil and peanut oil were analyzed to select oils suitable for vegetable meat development. The state of the product according to the storage temperature after the manufacture of vegetable meat is mainly determined by vegetable protein, but the type of fat also plays an important role in the product's properties and storage stability.

기름의 상변화에 발생하는 열량을 측정하기 위하여 시료 15 mg을 도가니(ø6 mm, aluminum 99.5%, Netzsch, 독일)에 넣어 압착밀봉하여 시차주사열분석기(differential scanning calorimeter)에 넣어 측정하였다. 퍼지(Purge) 가스로 질소 가스(N2)를 사용하였고, 온도는 ±10 K/min 속도를 유지하였다. 초기 시작온도를 -50℃로 하여 5분간 항온을 유지한 뒤 50℃까지 10 K/min 속도로 온도를 올리면서 측정하였다. 시료당 3회 반복측정하였고, 응고점은 녹는점에서 확인하였다.In order to measure the amount of heat generated in the phase change of oil, 15 mg of a sample was put in a crucible (ø6 mm, aluminum 99.5%, Netzsch, Germany) and sealed by compression, and then measured by putting it in a differential scanning calorimeter. Nitrogen gas (N 2 ) was used as the purge gas, and the temperature was maintained at a rate of ±10 K/min. The initial starting temperature was set to -50°C, and after maintaining the constant temperature for 5 minutes, the temperature was increased to 50°C at 10 K/min. Measurements were repeated three times per sample, and the freezing point was confirmed at the melting point.

기름 종류에 따른 열적 특성 분석Analysis of thermal properties according to the type of oil Oil typeOil type PeakPeak Hmax 1) (J/g) H max 1) (J/g) Tpeak (℃)T peak (℃) Tonset (℃)T onset (℃) Tendset (℃)T endset (℃) MCTMCT Peak 1Peak 1 -172.8-172.8 -7.7-7.7 -17.3-17.3 -1.2-1.2 CoconutCoconut Peak 1Peak 1 -100.2-100.2 28.728.7 11.811.8 29.529.5 PeanutPeanut Peak 1Peak 1 -25.9-25.9 -25.9-25.9 -31.4-31.4 -22.6-22.6 Peak 2Peak 2 -46.8-46.8 -13.0-13.0 -21.1-21.1 -1.0-1.0

Hmax: 엔탈피(enthalpy), Tpeak: 피크 온도(peak temperature). Tonset: 개시 온도(onset temperature). Tendset: 종결 온도(endset temperature) H max : enthalpy, T peak : peak temperature. T onset : onset temperature. T endset : endset temperature

도 1 및 표 1에 나타난 바와 같이, MCT 기름은 -23℃에서 10℃사이에서 흡열 과정을 보였고, 흡열량이 가장 크게 나타나는 온도(Tpeak)를 기준으로 MCT 기름의 녹는점은 -7.7℃로 나타났다. 코코넛 기름은 10℃에서 녹기 시작하여 30℃에서 모두 액체로 상전이 되었다. 이는 20 ~ 30℃에서 저장할 때 액체와 고체가 공존할 수 있음을 의미한다.As shown in Fig. 1 and Table 1, MCT oil showed an endothermic process between -23℃ and 10℃, and the melting point of MCT oil was -7.7℃ based on the temperature (T peak) at which the heat absorption was greatest. . Coconut oil started to melt at 10℃ and all turned into liquid at 30℃. This means that liquid and solid can coexist when stored at 20 ~ 30℃.

땅콩 기름은 MCT 기름과 열적 특성이 유사한 기름이지만, -33℃와 -22℃사이에서 첫째 흡열 과정과, -21℃에서 5℃사이에서 두 번째 흡열 과정이 나타나 두 개의 열적 변화과정을 나타냈다. 개시온도는 땅콩 기름, MCT 기름, 코코넛 기름 순으로 나타났고, 발생하는 흡열 열량이 가장 많은 것은 MCT 기름이었다. 흡열 열량은 불포화 지방산 함량이 증가할수록 감소하고, 포화 지방산 함량이 많아질수록 증가하게 되는데, 특히 포화 지방산의 길이가 길어질수록 증가하는 것으로 알려져 있으며, 본 발명에서도 유사한 결과를 나타내었다.Peanut oil is an oil that has similar thermal properties to MCT oil, but the first endothermic process between -33℃ and -22℃ and the second endothermic process between -21℃ and 5℃ showed two thermal changes. The onset temperature was in the order of peanut oil, MCT oil, and coconut oil, and MCT oil had the most endothermic heat generated. The endothermic heat amount decreases as the content of unsaturated fatty acids increases, and increases as the content of saturated fatty acids increases. In particular, it is known to increase as the length of the saturated fatty acid increases, and similar results are shown in the present invention.

1-3 : 점도1-3: viscosity

기름의 종류에 따라 혹은 같은 기름일지라도 점도에 따라서 입안에서 느끼는 질감과 큰 차이가 있다. 이러한 특성을 알아내기 위해 기름의 종류 및 온도에 따른 점도를 측정하였다.Depending on the type of oil or the viscosity of the same oil, there is a big difference from the texture you feel in your mouth. In order to find out these characteristics, the viscosity of the oil according to the type and temperature was measured.

기름 및 에멀젼의 점도 간의 상관관계를 확인하기 위하여 응력제어 유동계(Rheometer®MCR 302, Anton-Paar, 오스트리아)를 사용하여 측정하였다. 이때 사용한 probe는 지름 26 mm, 높이 28 mm의 원통형(cup & bob) 프로브를 사용하였다. 전단 속도 0.01 ~ 100/s1로 설정하였고, 코코넛 기름의 녹는점(약 25℃을 기준으로 하여 10℃에서 40℃구간에서 측정하였고, 에멀젼은 25℃로 고정하여 측정하였다. 각각의 온도에서 10분간 유지하여 온도 평형을 맞춘 후 측정을 하였다.In order to confirm the correlation between the viscosity of oil and emulsion, it was measured using a stress controlled rheometer (Rheometer®MCR 302, Anton-Paar, Austria). The probe used at this time was a cylindrical (cup & bob) probe with a diameter of 26 mm and a height of 28 mm. The shear rate was set to 0.01 ~ 100/s 1 , and the melting point of coconut oil (based on about 25°C was measured at 10°C to 40°C section, and the emulsion was measured at 25°C. 10 at each temperature) After holding for a minute to equilibrate the temperature, measurements were taken.

기름, 계면활성제 및 물 혼합비에 따른 점도Viscosity according to the mixing ratio of oil, surfactant and water Oil typeOil type Mixing ratio (O:W)Mixing ratio (O:W) Viscosity (mPa·s)Viscosity (mPa·s) Tween® 80Tween® 80 SPISPI MCTMCT 1:91:9 1.44±0.011.44±0.01 1.42±0.011.42±0.01 2:82:8 1.53±0.011.53±0.01 1.54±0.011.54±0.01 3:73:7 1.64±0.011.64±0.01 1.65±0.011.65±0.01 4:64:6 2.33±0.012.33±0.01 3.30±0.013.30±0.01 CoconutCoconut 1:91:9 2.00±0.012.00±0.01 1.99±0.011.99±0.01 2:82:8 2.12±0.012.12±0.01 2.14±0.012.14±0.01 3:73:7 2.28±0.012.28±0.01 2.28±0.012.28±0.01 4:64:6 3.24±0.003.24±0.00 4.61±0.014.61±0.01 PeanutPeanut 1:91:9 2.74±0.092.74±0.09 2.60±0.062.60±0.06 2:82:8 2.90±0.072.90±0.07 2.78±0.132.78±0.13 3:73:7 3.12±0.083.12±0.08 3.23±0.033.23±0.03 4:64:6 4.43±0.124.43±0.12 6.29±0.186.29±0.18

에멀젼 조성비, 기름 종류, 계면활성제에 따른 에멀젼을 제조하여 점도를 측정한 결과, 전체적으로 4:6 비율에서 점도가 높게 나타났으며, 1:9 비율이 가장 낮은 점도를 가지는 것으로 나타났다. 이는 기름보다 점도가 낮은 다량의 물이 포함되어 점도가 낮게 나타난 것으로 사료되며, 동일한 물과 기름 혼합비율에서 기름의 종류에 따라서는 계면활성제와 상관없이 기름의 점도에에멀젼 조성비, 기름 종류, 계면활성제에 따른 에멀젼을 제조하여 점도를 측정한 결과, 전체적으로 4:6 비율에서 점도가 높게 나타났으며, 1:9 비율이 가장 낮은 점도를 가지는 것으로 나타났다. 이는 기름보다 점도가 낮은 다량의 물이 포함되어 점도가 낮게 나타난 것으로 사료되며, 동일한 물과 기름 혼합비율에서 기름의 종류에 따라서는 계면활성제와 상관없이 기름의 점도에 따라 차이를 보이는 것으로 나타났다. 기름양이 많아질수록 계면활성제의 종류에 따른 차이를 보이는 것으로 나타났고, 모든 기름 종류의 4:6 혼합비율에서 Tween®80과 분리대두단백 간의 차이를 보였다.As a result of measuring the viscosity by preparing an emulsion according to the emulsion composition ratio, oil type, and surfactant, overall viscosity was high at 4:6 ratio, and 1:9 ratio was found to have the lowest viscosity. It is believed that the viscosity was low because a large amount of water, which had a lower viscosity than oil, was included, and at the same water and oil mixing ratio, depending on the type of oil, the viscosity of the emulsion composition ratio of the oil, the type of oil, and the surfactant As a result of measuring the viscosity by preparing the emulsion according to, the overall viscosity was found to be high at the 4:6 ratio, and the 1:9 ratio was found to have the lowest viscosity. It is believed that the viscosity was lower because a large amount of water, which had a lower viscosity than oil, was included, and it was found that at the same water and oil mixing ratio, depending on the type of oil, the viscosity of the oil was different regardless of the surfactant. As the amount of oil increased, there was a difference according to the type of surfactant, and there was a difference between Tween®80 and soy protein isolate at the 4:6 mixing ratio of all oil types.

1-4 : 계면장력1-4: interfacial tension

계면장력은 섞이지 않는 두 물질 사이에서 각 물질의 응집력에 의한 계면 사이에 발생하는 장력 값을 나타내는 것으로 계면장력 값이 낮을수록 에멀젼 안정성이 높아진다.The interfacial tension represents the value of the tension generated between the interface due to the cohesive force of each substance between two unmixed substances. The lower the interfacial tension value, the higher the emulsion stability.

계면활성제의 종류에 따라 기름과 물 간의 계면장력을 측정하기 위해 에멀젼 제조 시 사용된 농도와 같게 혼합하여 진행하였다. 각 액체의 밀도를 측정하기 위하여 투명그릇(sample vessel, diameter 50 mm, Biolin Scientific)에 구 형태(T113, Biolin Scientific)의 프로브를 표면장력 측정기(Sigma 703D, Biolin Scientific)에 고정한 후 투명그릇을 위아래로 움직이며 밀도를 측정하였다. 고리 형태(T106, Biolin Scientific)의 프로브를 표면장력 측정기에 고정하고, 계면을 측정할 두 액체의 밀도 차를 입력한 후 투명그릇에 물 또는 물과 계면활성제가 혼합된 액상을 넣고 투명그릇을 올려 프로브를 담근다. 이후에 기름 또는 레시틴이 혼합된 기름을 프로브에 닿지 않게 넣은 후 프로브가 기름층으로 끌려 올라오는 물이 프로브에서 떨어질 때까지 올려 최댓값을 측정하여 후 이 값을 계면장력 값으로 사용하였다.In order to measure the interfacial tension between oil and water according to the type of surfactant, the mixture was carried out at the same concentration as the emulsion was prepared. To measure the density of each liquid, fix the probe of the spherical shape (T113, Biolin Scientific) in a transparent vessel (sample vessel, 50 mm in diameter, Biolin Scientific) to a surface tension meter (Sigma 703D, Biolin Scientific), and then place the transparent vessel up and down. And measured the density. Fix a ring-shaped probe (T106, Biolin Scientific) to a surface tension meter, input the difference in density between the two liquids to measure the interface, and put water or a liquid mixture of water and surfactant in a transparent bowl, and place a transparent bowl. Immerse the probe. After that, the oil or oil mixed with lecithin was put so as not to touch the probe, and the probe was pulled up into the oil layer until the water dropped from the probe to measure the maximum value, and this value was used as the interfacial tension value.

기름 종류에 따른 계면장력Interfacial tension according to oil type Oil typeOil type Interfacial tension (mN/m)Interfacial tension (mN/m) W-O1) WO 1) TW-LOTW-LO (%)2) (%) 2) SW-LOSW-LO (%) (%) MCTMCT 13.58±0.4813.58±0.48 1.79±0.051.79±0.05 (13.2%)(13.2%) 3.41±0.153.41±0.15 (25.1%)(25.1%) CoconutCoconut 19.62±0.4919.62±0.49 2.29±0.222.29±0.22 (11.7%)(11.7%) 4.15±0.034.15±0.03 (21.2%)(21.2%) PeanutPeanut 22.81±0.1722.81±0.17 2.36±0.182.36±0.18 (10.3%)(10.3%) 4.77±0.264.77±0.26 (20.9%)(20.9%)

1) W: 물(water). O: 기름(oil), T: Tween® 80, S: SPI, L: 레시틴 1) W: water. O: Oil, T: Tween® 80, S: SPI, L: Lecithin

2) 계명활성제 혼합전 계면 장력 값의 백분율 2) Percentage of interfacial tension value before mixing activator

계면활성제를 첨가하지 않으면 계면장력 크기는 MCT 기름, 코코넛 기름, 땅콩 기름 순으로 낮게 나타났으며, 각각 13.58 mN/m, 19.62 mN/m, 22.81 mN/m이었다. 점도가 높아질수록 액체 내부의 저항값이 커지게 되어 결과적으로 계면장력이 높아지게 된다는 것을 나타낸다.If no surfactant was added, the interfacial tension was lower in the order of MCT oil, coconut oil, and peanut oil, and was 13.58 mN/m, 19.62 mN/m, and 22.81 mN/m, respectively. This indicates that the higher the viscosity, the greater the resistance value inside the liquid, and as a result, the interfacial tension increases.

계면활성제로 사용된 Tween®80과 분리대두단백 중에는 Tween®80이 분리대두단백보다 계면장력을 더 많이 낮추는 것을 확인하였다. 즉, 같은 농도라 하여도 Tween®80의 분자량이 단백질보다 적고, 단백질보다 효율적으로 계면에 흡착하여 계면장력을 더 많이 낮추는 것으로 판단된다. 일반적으로 Tween®80에 존재하는 있는 올레산(oleic acid, C18:1)에 의해 빠르게 계면에 흡착하며, 단백질류의 계면활성제는 계면에 흡착한 이후 단백질 구조가 펼쳐지면서 안쪽에 있던 소수성 기가 계면에 흡착하게 된다. 따라서 빠르고 효과적으로 계면장력을 낮추기에는 분리대두단백보다 Tween®80이 효과적인 것으로 나타났다.Among the Tween®80 and soybean protein isolates used as surfactants, it was confirmed that Tween®80 lowers the interfacial tension more than the soybean isolate isolates. In other words, even at the same concentration, the molecular weight of Tween®80 is less than that of protein, and it is judged to lower the interfacial tension more by adsorbing to the interface more efficiently than protein. In general, oleic acid (C18:1) present in Tween® 80 quickly adsorbs to the interface, and after adsorbing to the interface, surfactants of proteins are adsorbed to the interface, and then the protein structure unfolds and the hydrophobic group inside is adsorbed to the interface. It is done. Therefore, it was found that Tween®80 was more effective than isolated soybean protein to quickly and effectively lower the interfacial tension.

1-5 : 입자크기1-5: particle size

입자의 크기는 에멀젼 식품의 품질 안정성을 예측할 수 있는 중요한 요소로 입자의 크기가 작을수록 분산 안정성이 높아 장기간 저장할 수 있다. 식물성 고기 제조 혼합 시 물성 안정성에도 영향을 미칠 수 있어 기름의 종류, 혼합비율, 계면활성제에 따른 입자 크기를 측정하였다.The size of the particles is an important factor in predicting the quality stability of emulsion foods. The smaller the particle size, the higher the dispersion stability, so it can be stored for a long time. When mixing vegetable meat production, it may affect the stability of physical properties, so the particle size according to the type of oil, mixing ratio, and surfactant was measured.

에멀젼의 입자 크기를 측정하기 위하여 600 mL 비커에 증류수 400 mL을 넣고, 레이저 회절 입도 분석기(Mastersizer®3000E, Malvern, UK)의 흡입구가 잠기게 한 다음 측정할 에멀젼을 넣어 측정농도가 7.5%에서 8.0%가 되도록 유지하여, 체적 부피 분율(d4,3)로 입자의 크기를 측정하였다.To measure the particle size of the emulsion, add 400 mL of distilled water to a 600 mL beaker, submerge the suction port of the laser diffraction particle size analyzer (Mastersizer®3000E, Malvern, UK), and then add the emulsion to be measured, and the measured concentration is 7.5% to 8.0. %, and the size of the particles was measured by volume volume fraction (d 4,3 ).

기름, 계면활성제 및 물 혼합비에 따른 에멀젼 입자 크기Emulsion particle size according to oil, surfactant and water mixing ratio Oil typeOil type Mixing ratio (O:W)Mixing ratio (O:W) Droplet size (d43, μm)Droplet size (d 43 , μm) Tween®80Tween®80 SPISPI MCTMCT 1:91:9 4.92±0.014.92±0.01 6.12±0.066.12±0.06 2:82:8 5.31±0.005.31±0.00 6.64±0.056.64±0.05 3:73:7 5.28±0.035.28±0.03 7.50±0.067.50±0.06 4:64:6 4.94±0.024.94±0.02 7.21±0.457.21±0.45 CoconutCoconut 1:91:9 7.58±0.267.58±0.26 7.84±0.057.84±0.05 2:82:8 8.47±0.008.47±0.00 7.73±0.217.73±0.21 3:73:7 8.57±0.008.57±0.00 8.49±0.098.49±0.09 4:64:6 7.41±0.007.41±0.00 8.21±0.308.21±0.30 PeanutPeanut 1:91:9 10.60±0.0010.60±0.00 8.87±0.088.87±0.08 2:82:8 8.60±0.018.60±0.01 9.44±0.169.44±0.16 3:73:7 7.81±0.017.81±0.01 9.21±0.229.21±0.22 4:64:6 7.74±0.007.74±0.00 10.62±1.9810.62±1.98

기름의 종류별로 Tween® 80이 섞인 에멀젼은 MCT 기름이 가장 작은 입자 크기를 보였고, 코코넛 기름과 땅콩 기름기름의 종류별로 Tween®80이 섞인 에멀젼은 MCT 기름이 가장 작은 입자 크기를 보였고, 코코넛 기름과 땅콩 기름은 큰 차이를 보이지 않았으며, 분리대두단백을 혼합한 에멀젼은 MCT 기름, 코코넛 기름, 땅콩 기름 순으로 작게 분석되었다. Tween®80이 혼합된 에멀젼은 기름과 물의 혼합비율에서 4:6의 비율이 가장 작은 입자 크기를 보였으며, 2:8과 3:7 비율에서는 상대적으로 큰 입자 크기를 보였다. 땅콩 기름의 경우 기름의 혼합비율이 증가할수록 입자 크기는 작아지는 것으로 나타났다. 분리대두단백을 넣은 에멀젼의 경우 기름 함량이 증가할수록 입자 크기가 커지는 것을 확인하였다. The emulsion containing Tween® 80 by type of oil showed the smallest particle size in MCT oil, and the emulsion containing Tween®80 by type of coconut oil and peanut oil showed the smallest particle size in MCT oil. Peanut oil did not show a big difference, and the emulsion mixed with soy protein isolate was analyzed in the order of MCT oil, coconut oil, and peanut oil. The emulsion mixed with Tween®80 showed the smallest particle size in the ratio of 4:6 in the ratio of oil and water, and the relatively large particle size in the ratio of 2:8 and 3:7. In the case of peanut oil, as the mixing ratio of oil increased, the particle size decreased. In the case of the emulsion containing the isolated soy protein, it was confirmed that the particle size increased as the oil content increased.

또한, 에멀젼 입자의 형태, 모양 및 밀집된 정도를 확인하기 위하여 CCD camera(3.0M, Olympus Optical Co., 일본)가 장착된 광학 현미경(CX 31RTSF, Olympus Optical Co., 일본)을 이용하여 촬영 배율을 1,000배로 고정하여 관찰하였다. 분명한 차이를 확인하기 위하여 기름과 물의 비율이 1:9와 4:6인 에멀젼을 제조 직후 관찰하였다. In addition, in order to check the shape, shape, and density of the emulsion particles, the magnification of photographing was adjusted using an optical microscope (CX 31RTSF, Olympus Optical Co., Japan) equipped with a CCD camera (3.0M, Olympus Optical Co., Japan). It was observed by fixing at 1,000 times. In order to confirm a clear difference, an emulsion with an oil-water ratio of 1:9 and 4:6 was observed immediately after preparation.

도 2 및 도 3에 나타난 바와 같이, 기름과 물의 비율이 1:9인 에멀젼은 기름의 종류에 따라서는 땅콩 기름을 넣은 에멀젼의 입자 크기가 다른 기름과 비하여 큰 것으로 확인되었으나, 계면활성제에 의한 차이는 확인할 수 없었다. 기름과 물의 비율이 4:6인 에멀젼은 비율이 1:9인 에멀젼과 비하여 입자의 수가 많은 것으로 확인되었다. 분리대두단백이 혼합된 코코넛 기름과 땅콩 기름 에멀젼에서 고르게 분산되지 못하고 응집(aggregation)이 일어나는 것을 확인하였다. As shown in Figs. 2 and 3, it was confirmed that the emulsion in which the ratio of oil and water is 1:9 was larger than that of other oils, depending on the type of oil, but the difference due to the surfactant. Could not be confirmed. It was confirmed that the emulsion with a ratio of oil and water of 4:6 has a larger number of particles than the emulsion with a ratio of 1:9. It was confirmed that the isolated soy protein was not evenly dispersed in the mixed coconut oil and peanut oil emulsion and aggregation occurred.

분리대두단백이 혼합된 에멀젼의 제타 전위 값은 0에 가까워 Tween®80을 혼합했을 때 보다 분산 안정성이 떨어진다. 또한, 위아래로의 움직임이 작은 입자보다 큰 입자가 빠르게 움직이면서 입자 간에 충돌 빈도 또한 높아지게 된다. 따라서 MCT 기름으로 만든 에멀젼보다 입자 크기가 큰 나머지 두 에멀젼에서 결집체 형성이 일어난 것으로 보인다. The zeta potential value of the emulsion mixed with the isolated soy protein is close to 0, so dispersion stability is lower than when the Tween® 80 is mixed. In addition, as larger particles move faster than particles with smaller upward and downward movements, the frequency of collisions between particles increases. Therefore, it seems that aggregate formation occurred in the other two emulsions, which have a larger particle size than the emulsion made with MCT oil.

1-6 : 제타분석1-6: Zeta analysis

에멀젼의 입자 간에 가지고 있는 전하에 의해 반발력이 발생하게 되며, 전하값이 클수록 입자 간의 반발력이 높아져 에멀젼의 안정성이 높아지게 된다(McClements, 2016). 제타 전위의 측정은 에멀젼을 증류수로 500배 희석한 후, capillary cell(DTS1070, 영국)에 700 μL를 주입하여, 동정광 산란 측정기(Zeta-Sizer®, Nano ZS 90, 영국)를 사용하여 에멀젼의 제타 전위를 측정하였다.The repulsive force is generated by the electric charge between the particles of the emulsion, and the higher the charge value, the higher the repulsive force between the particles, which increases the stability of the emulsion (McClements, 2016). To measure the zeta potential, dilute the emulsion 500 times with distilled water, and then inject 700 μL into a capillary cell (DTS1070, UK), and use an identification scattering meter (Zeta-Sizer®, Nano ZS 90, UK) to measure the emulsion. Zeta potential was measured.

기름의 종류, 혼합비율, 계면활성제에 따라 제조한 에멀젼의 제타 전위를 표 5에 나타내었다Table 5 shows the zeta potential of the emulsion prepared according to the type of oil, mixing ratio, and surfactant.

기름, 계면활성제 및 물 혼합비에 따른 에멀젼의 제타전위Zeta potential of emulsion according to oil, surfactant and water mixing ratio Oil typeOil type Mixing ratio (O:W)Mixing ratio (O:W) Zeta potential (mV)Zeta potential (mV) 80Tween®80Tween® SPISPI MCTMCT 1:91:9 -40.77±1.23-40.77±1.23 -20.60±0.42-20.60±0.42 2:82:8 -42.40±0.61-42.40±0.61 -22.95±2.19-22.95±2.19 3:73:7 -40.40±2.84a -40.40±2.84 a -23.50±0.28-23.50±0.28 4:64:6 -41.27±0.31-41.27±0.31 -23.35±0.35-23.35±0.35 CoconutCoconut 1:91:9 -43.23±1.53-43.23±1.53 -22.00±0.85-22.00±0.85 2:82:8 -44.27±1.90-44.27±1.90 -21.97±0.42-21.97±0.42 3:73:7 -45.60±2.34-45.60±2.34 -23.37±1.14-23.37±1.14 4:64:6 -43.93±3.07-43.93±3.07 -26.85±0.64-26.85±0.64 PeanutPeanut 1:91:9 -43.67±1.24-43.67±1.24 -19.85±0.07-19.85±0.07 2:82:8 -43.23±2.61-43.23±2.61 -22.30±0.00-22.30±0.00 3:73:7 -45.93±0.68-45.93±0.68 -22.40±1.13-22.40±1.13 4:64:6 -45.13±0.80-45.13±0.80 -25.20±1.13-25.20±1.13

계면활성제 종류 간에는 Tween®80는 -45.93 mV 에서-40.40 mV의 값을 보였지만 분리대두단백은 -26.85 mV에서 -19.85 mV의 다소 낮은 값을 나타내었다 (p<0.01). 하지만, 기름의 종류와 혼합비율 간에 따른 제타 전위 값은 유의적인 차이를 보이지는 않았다.Among the surfactant types, Tween®80 showed a value of -45.93 mV to -40.40 mV, but the isolated soy protein showed a slightly lower value of -26.85 mV to -19.85 mV ( p <0.01). However, there was no significant difference in the zeta potential value according to the type of oil and the mixing ratio.

1-7 : 기름 포집 효율1-7: oil collection efficiency

에멀젼의 기름 포집 효율을 확인하기 위하여 Min 등(2018)의 방법을 응용하여 실시하였다. 에멀젼을 제조하기 전에 Oil Red O(CAS No. 1320-06-5, Sigma-Aldrich, 미국)을 기름에 0.02%(w/w) 용해하여 기름의 포집 효율 값으로 사용하였다. 측정할 에멀젼과 핵산을 1:3(v/v)으로 15 mL 원심분리 튜브에 넣고, 1분간 볼텍서(vortexer)를 사용하여 균질화한 후 원심분리기(1736R, LaboGene, 덴마크)에 25℃에서 3000 rpm, 10 min 조건으로 원심분리하였다. 이후 상층 액을 3 mL 취하여 510 nm의 조건에서 가시광선 분광광도계(Optizen, MECASYS Co., 한국)를 사용하여 코팅되지 않은 기름의 흡광도를 측정하였다. 측정한 값은 하기 수학식 1에 대입하여 계산하였다. In order to confirm the oil trapping efficiency of the emulsion, the method of Min et al. (2018) was applied. Before preparing the emulsion, Oil Red O (CAS No. 1320-06-5, Sigma-Aldrich, USA) was dissolved in oil at 0.02% (w/w) and used as an oil collection efficiency value. Put the emulsion and nucleic acid to be measured in a 1:3 (v/v) 15 mL centrifuge tube, homogenize using a vortexer for 1 minute, and then centrifuge (1736R, LaboGene, Denmark) at 25°C at 3000. It was centrifuged under the conditions of rpm and 10 min. Thereafter, 3 mL of the supernatant was taken and the absorbance of the uncoated oil was measured using a visible light spectrophotometer (Optizen, MECASYS Co., Korea) under the condition of 510 nm. The measured value was calculated by substituting it in the following equation (1).

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

FO: 에멀젼에서 n-헥산으로 추출된 유리(비코팅) 오일 레드 오(oil red O)의 양(mg)FO: Amount of free (uncoated) oil red O extracted with n-hexane from the emulsion (mg)

TO: 에멀젼에서 첨가된 총 오일 레드 오(oil red O)의 계산된 중량(mg)TO: Calculated weight (mg) of total oil red O added in the emulsion

기름, 계면활성제 및 물 혼합비에 따른 에멀젼의 기름 포집 효율Oil collection efficiency of emulsion according to oil, surfactant and water mixing ratio Oil typeOil type Mixing ratio (O:W)Mixing ratio (O:W) Encapsulation efficiency (%)Encapsulation efficiency (%) Tween® 80Tween® 80 SPISPI MCTMCT 1:91:9 91.36±0.4091.36±0.40 90.12±0.0090.12±0.00 2:82:8 93.05±0.5793.05±0.57 96.59±0.0096.59±0.00 3:73:7 98.02±0.4098.02±0.40 98.06±0.0098.06±0.00 4:64:6 91.96±0.8191.96±0.81 97.51±0.0097.51±0.00 CoconutCoconut 1:91:9 75.31±0.1475.31±0.14 88.51±1.2188.51±1.21 2:82:8 92.62±0.8092.62±0.80 95.96±0.9095.96±0.90 3:73:7 94.52±0.7194.52±0.71 96.90±1.1096.90±1.10 4:64:6 91.67±1.3091.67±1.30 96.51±0.1096.51±0.10 PeanutPeanut 1:91:9 74.07±0.0474.07±0.04 96.07±0.3396.07±0.33 2:82:8 81.82±0.0081.82±0.00 94.61±0.4094.61±0.40 3:73:7 93.61±0.2893.61±0.28 97.29±0.6597.29±0.65 4:64:6 90.93±0.7690.93±0.76 96.05±1.0796.05±1.07

기름 종류 간에는 Tween®80을 혼합한 에멀젼에서 MCT 기름, 코코넛 기름, 땅콩 기름 순으로 높게 나타났으며, 분리대두단백을 혼합한 에멀젼에서는 유의적 차이를 보이지 않았다. 혼합비율 간에는 Tween®80을 혼합한 에멀젼에서는 3:7 비율로 기름과 물이 혼합되었을 때 포집 효율이 가장 높았으며, 분리대두단백을 혼합한 에멀젼은 땅콩 기름을 제외하고 1:9의 혼합비율이 가장 낮게 나타났다. 에멀젼과 이화학적 특성을 분석한 결과, 기름의 종류에 따라 에멀젼 특성이 결정되었으며, 다른 특징은 관련성이 적은 것을 확인하였다. 따라서, 본 발명에서는 MCT 기름, 코코넛 기름, 땅콩 기름을 3:7로 물과 혼합하여 에멀젼을 제조하여 식물성 고기에 혼합한 뒤 이화학적 특성 및 관능검사를 수행하였다.Among the oil types, MCT oil, coconut oil, and peanut oil were higher in the order of Tween®80-mixed emulsion, and there was no significant difference in the emulsion-mixed soybean protein isolate. In terms of mixing ratios, in the emulsion mixed with Tween®80, the collection efficiency was highest when oil and water were mixed at a ratio of 3:7, and the emulsion mixed with soy protein isolate had a mixing ratio of 1:9 except for peanut oil. It was the lowest. As a result of analyzing the emulsion and physicochemical properties, it was confirmed that the properties of the emulsion were determined according to the type of oil, and other characteristics were not related. Therefore, in the present invention, MCT oil, coconut oil, and peanut oil were mixed with water at 3:7 to prepare an emulsion, mixed with vegetable meat, and then physicochemical properties and sensory tests were performed.

통계분석Statistical analysis

본 발명에서 이화학적 분석결과는 SPSS 통계프로그램(statistical package for the social science, Ver. 24.0 IBM., 미국)을 사용하였고, 일원 배치분산분석(one-way ANOVA) 및 사후검증을 던킨의 다중 범위 분석(Duncan's multiple range test)를 사용하여 시료 간의 유의적 차이를 검증하였다. 계면활성제 간의 차이를 보기 위하여 독립표본 t-test를 사용하였다. 사용한 기름 및 에멀젼의 이화학적 특성과 에멀젼 시료 간의 상관관계를 보기 위하여 주성분 분석(principal component analysis, PCA)을 XLSTAT 프로그램(ver. 2018. 06. 54124, Addinsoft, 미국)을 사용하여 분석하였다.In the present invention, the results of the physicochemical analysis were SPSS statistical program (statistical package for the social science, Ver. 24.0 IBM., USA), one-way batch variance analysis (one-way ANOVA) and Dunkin's multiple range analysis (Duncan's multiple range test) was used to verify significant differences between samples. An independent sample t-test was used to see the difference between surfactants. The principal component analysis (PCA) was analyzed using the XLSTAT program (ver. 2018. 06. 54124, Addinsoft, USA) to see the correlation between the physicochemical properties of the oil and emulsion used and the emulsion samples.

트윈 80을 이용하여 제조한 에멀전을 이용한 식물성 고기 제조Manufacture of vegetable meat using emulsion prepared using Tween 80

식물성 고기를 제조하는데 사용되는 주재료로 조직대두단백(textured vegetable protein, TVP, Supromax 5050®, 단백질 50% 함유, Supromax 5010®, 단백질 59.3% 함유. 브라질), 결합제(Meatline® 2714, 난백 분말, 포도당, 로커스트콩검, 카라기난, 구아검 함유, Danisco, 덴마크), 분리대두단백(soy protein isolate, SPI, 단백질 90% 이상, Avention, 한국)이 사용되었고, 첨가하는 액상 재료 및 에멀젼에 MCT 기름(코코넛 기름 추출, Chemrez Technologies Inc., 필리핀), 코코넛 기름(Earth Born Co. Ltd, 태국), 땅콩 기름(Qinhuangdao Jinhai Food Industry Co., Ltd, 중국), 분리대두단백, 레시틴(대두에서 추출, Samchun, 한국), Tween®80(polyoxyethylene (20) sorbitan monooleate, Samchun, 한국)을 사용하여 실험하였다.Main ingredients used to make vegetable meat are textured vegetable protein (TVP, Supromax 5050®, 50% protein, Supromax 5010®, 59.3% protein, Brazil), binder (Meatline® 2714, egg white powder, glucose). , Containing locust soybean gum, carrageenan, guar gum, Danisco, Denmark), soy protein isolate (SPI, more than 90% protein, Avention, Korea) was used, and MCT oil (coconut oil) was used in the liquid material and emulsion to be added. Extract, Chemrez Technologies Inc., Philippines), Coconut Oil (Earth Born Co. Ltd, Thailand), Peanut Oil (Qinhuangdao Jinhai Food Industry Co., Ltd, China), Soy Protein Isolate, Lecithin (Extracted from Soybean, Samchun, Korea) ), Tween® 80 (polyoxyethylene (20) sorbitan monooleate, Samchun, Korea).

식물성 고기에 혼합할 에멀젼은 상기 실시예 1-1과 동일한 방법으로 제조하였으며, 최적 제조조건을 기준으로 기름과 물의 혼합비율을 3:7 (w:w)로 선정하였다. The emulsion to be mixed with vegetable meat was prepared in the same manner as in Example 1-1, and the mixing ratio of oil and water was selected as 3:7 (w:w) based on the optimum production conditions.

식물성 고기는 도 4에 나타난 제조공법을 사용하여 제조하였으며, 건조된 조직대두단백 Supromax 5050®과 Supromax 5010®을 1:2 (w:w)의 비율로 혼합하고 중량에 5배의 증류수에 2시간 동안 수화시키고, 탈수기(ws-6600, Hanil Electric, 한국)를 사용하여 5분간 탈수시켰다. 탈수된 TVP에 표 7의 조성비에 따라 첨가한 다음, 핸드블렌더(Multiquick 3 Vario MQ3145, Braun, 독일)를 사용하여 1분간 혼합하였다. 19.5 g의 혼합된 반죽을 원통형 틀(지름 30 mm, 높이 25 mm)에 넣어 성형하였다. 오븐(M4207, Simfer, 터키)을 이용하여 15분간 180℃에서 내부온도를 80℃로 맞춰 실시하였고, 열처리한 후 상온에서 30분 방랭하였다.Vegetable meat was prepared using the manufacturing method shown in FIG. 4, and the dried tissue soy protein Supromax 5050® and Supromax 5010® were mixed in a ratio of 1:2 (w:w) and 5 times the weight of distilled water for 2 hours. During the hydration, it was dehydrated for 5 minutes using a dehydrator (ws-6600, Hanil Electric, Korea). It was added to the dehydrated TVP according to the composition ratio in Table 7, and then mixed for 1 minute using a hand blender (Multiquick 3 Vario MQ3145, Braun, Germany). 19.5 g of the mixed dough was put into a cylindrical mold (diameter 30 mm, height 25 mm) and molded. An oven (M4207, Simfer, Turkey) was used to set the internal temperature at 180°C for 15 minutes to 80°C, and after heat treatment, it was allowed to cool at room temperature for 30 minutes.

식물성 고기 제조를 위한 주요 성분 조성 및 함량Composition and content of major ingredients for vegetable meat manufacturing AbbreviationAbbreviation TVP (g)TVP (g) SPI (g)SPI (g) Binder (g)Binder (g) Liquid treatmentsLiquid treatments Liquid homogenizationLiquid homogenization Oil (g)Oil (g) Water (g)Water (g) Emulsion (g)Emulsion (g) Tween® 80 or
SPI (g)
Tween® 80 or
SPI (g)
Lecithin (g)Lecithin (g)
WaterWater 100.00100.00 4.304.30 3.203.20 0.000.00 27.8027.80 0.000.00 0.000.00 0.000.00 XX OilOil 100.00100.00 4.304.30 3.203.20 27.8027.80 0.000.00 0.000.00 0.000.00 0.000.00 XX O+W (Tween® 80)O+W (Tween® 80) 100.00100.00 4.304.30 3.203.20 7.727.72 19.3619.36 0.000.00 0.040.04 0.680.68 XX Emulsion (Tween® 80)Emulsion (Tween® 80) 100.00100.00 4.304.30 3.203.20 0.000.00 0.000.00 27.0827.08 0.040.04 0.680.68 OO O+W (SPI)O+W (SPI) 100.00100.00 4.304.30 3.203.20 7.727.72 19.3619.36 0.000.00 0.040.04 0.680.68 XX Emulsion (SPI)Emulsion (SPI) 100.00100.00 4.304.30 3.203.20 0.000.00 0.000.00 27.0827.08 0.040.04 0.680.68 OO

식물성 고기의 특성 확인Identification of the characteristics of vegetable meat

본 발명에서는 상기 실시예 2에서 제조한 식물성 고기의 특성을 비교하였다.In the present invention, the characteristics of the vegetable meat prepared in Example 2 were compared.

3-1 : 외관 관찰 3-1: Observation of appearance

식물성 고기의 겉면과 단면은 디지털카메라(Alpha 350, Sony, 일본)를 사용하여 촬영하였다.The surface and cross section of vegetable meat were photographed using a digital camera (Alpha 350, Sony, Japan).

처리구별로 열처리 과정이 식품 외관의 겉면과 단면에 어떠한 영향을 미치는지 관찰하였다.It was observed how the heat treatment process affected the outer surface and cross-section of the food appearance for each treatment zone.

도 5 및 도 6에 나타난 바와 같이, 겉표면은 물 첨가, 에멀젼 첨가 및 기름 첨가 식물성 고기 순으로 겉면이 거친 것을 확인할 수 있었고, 이는 열처리 과정 중 겉부분의 수분 증발이 일어나 거칠어지는 것으로 보이며, 기름만을 첨가한 식물성 고기는 상대적으로 거칠지 않은 겉표면을 나타내었다. 절단면의 경우 기름과 분리대두단백을 넣은 식물성 고기의 단면이 밀집도가 높은 것을 확인할 수 있었다. 그러나 물과 Tween®80이 혼합된 식물성 고기는 기름과 분리대두단백을 넣은 식물성 고기에 비해 밀집도가 낮게 나타났다.5 and 6, it was confirmed that the outer surface was rough in the order of water addition, emulsion addition, and oil-added vegetable meat. Vegetable meat to which gulf was added showed a relatively non-coarse outer surface. In the case of the cut side, it was confirmed that the cross section of vegetable meat containing oil and soy protein isolate had high density. However, vegetable meat mixed with water and Tween® 80 was less dense than vegetable meat containing oil and soy protein isolate.

3-2 : 색도 관찰3-2: Observation of chromaticity

식물성 고기의 반죽과 열처리된 식물성 고기의 색을 색도계(CR-400, Konica Minolta sensing, Inc., 일본)를 사용하여 밝기(lightness, L*), 적색(redness, a*), 황색(yellowness, b*)을 측정하였다. 열처리 전후에 대한 색차(total color difference, ΔE)를 하기 수학식 2에 대입하여 계산하였다.Using a colorimeter (CR-400, Konica Minolta sensing, Inc., Japan), the colors of the vegetable meat dough and heat treated vegetable meat are measured using a colorimeter (lightness, L * ), redness, a * ), and yellowness. b * ) was measured. The total color difference (ΔE) before and after heat treatment was calculated by substituting it into Equation 2 below.

[수학식 2][Equation 2]

Figure pat00002
Figure pat00002

L1, a1, b1: 가열 전 시료의 색도L1, a1, b1: chromaticity of the sample before heating

L2, a2, b2: 가열 후 시료의 색도L2, a2, b2: chromaticity of the sample after heating

식물성 고기 색도 분석Vegetable meat chromaticity analysis ColorColor Heat
treatment
Heat
treatment
Oil typeOil type Liquid materialsLiquid materials
WaterWater OilOil O+W
(Tween®80)
O+W
(Tween®80)
Emulsion (Tween®80)Emulsion (Tween®80) O+W (SPI)O+W (SPI) Emulsion (SPI)Emulsion (SPI)
L*L* Non-heatedNon-heated MCTMCT 71.86±2.1071.86±2.10 63.04±4.6463.04±4.64 71.56±1.4471.56±1.44 67.54±1.1667.54±1.16 66.14±0.3666.14±0.36 69.99±0.1269.99±0.12 CoconutCoconut 71.86±2.1071.86±2.10 63.04±1.4163.04±1.41 68.47±1.1168.47±1.11 67.86±0.6367.86±0.63 67.68±1.7667.68±1.76 71.12±0.5971.12±0.59 PeanutPeanut 71.86±2.1071.86±2.10 63.04±1.9463.04±1.94 68.57±0.7868.57±0.78 68.59±0.8868.59±0.88 69.62±0.7669.62±0.76 71.78±1.1771.78±1.17 HeatedHeated MCTMCT 66.18±0.3466.18±0.34 60.24±0.8960.24±0.89 64.01±0.6564.01±0.65 66.34±0.9566.34±0.95 65.98±0.9465.98±0.94 65.37±0.6265.37±0.62 CoconutCoconut 66.18±0.3466.18±0.34 60.24±1.1060.24±1.10 65.34±1.0965.34±1.09 65.22±0.6765.22±0.67 65.64±0.7065.64±0.70 67.47±0.4867.47±0.48 PeanutPeanut 66.18±0.3466.18±0.34 60.24±0.8060.24±0.80 68.40±1.3968.40±1.39 66.31±0.1766.31±0.17 65.66±0.8265.66±0.82 67.52±0.7267.52±0.72 a*a* Non-heatedNon-heated MCTMCT 2.27±0.232.27±0.23 2.05±0.082.05±0.08 1.89±0.151.89±0.15 2.24±0.162.24±0.16 2.01±0.272.01±0.27 2.48±0.052.48±0.05 CoconutCoconut 2.27±0.232.27±0.23 2.05±0.172.05±0.17 2.08±0.202.08±0.20 2.25±0.072.25±0.07 2.01±0.192.01±0.19 2.17±0.132.17±0.13 PeanutPeanut 2.27±0.232.27±0.23 2.05±0.182.05±0.18 1.44±0.061.44±0.06 1.98±0.131.98±0.13 1.98±0.061.98±0.06 2.22±0.172.22±0.17 HeatedHeated MCTMCT 1.87±0.181.87±0.18 2.31±0.042.31±0.04 2.10±0.132.10±0.13 1.94±0.061.94±0.06 2.06±0.052.06±0.05 1.89±0.241.89±0.24 CoconutCoconut 1.87±0.181.87±0.18 2.31±0.082.31±0.08 1.86±0.071.86±0.07 1.96±0.131.96±0.13 1.83±0.131.83±0.13 1.66±0.131.66±0.13 PeanutPeanut 1.87±0.181.87±0.18 2.31±0.062.31±0.06 2.00±0.302.00±0.30 2.05±0.112.05±0.11 2.05±0.082.05±0.08 1.90±0.191.90±0.19 b*b* Non-heatedNon-heated MCTMCT 16.31±0.8716.31±0.87 15.95±0.2415.95±0.24 15.12±0.1315.12±0.13 16.37±0.6316.37±0.63 15.92±0.2515.92±0.25 16.49±0.1416.49±0.14 CoconutCoconut 16.31±0.8716.31±0.87 15.95±0.1515.95±0.15 15.56±0.2815.56±0.28 16.37±0.0416.37±0.04 15.96±0.2815.96±0.28 16.47±0.3216.47±0.32 PeanutPeanut 16.31±0.8716.31±0.87 15.95±0.7315.95±0.73 14.85±0.5114.85±0.51 16.11±0.3216.11±0.32 16.41±0.1916.41±0.19 16.18±0.3816.18±0.38 HeatedHeated MCTMCT 16.48±0.3516.48±0.35 16.14±0.1516.14±0.15 16.04±0.2416.04±0.24 16.16±0.3316.16±0.33 16.27±0.2116.27±0.21 16.76±0.1316.76±0.13 CoconutCoconut 16.48±0.3516.48±0.35 16.14±0.1416.14±0.14 15.40±0.1615.40±0.16 15.99±0.1415.99±0.14 16.00±0.1916.00±0.19 16.57±0.1516.57±0.15 PeanutPeanut 16.48±0.3516.48±0.35 16.14±0.1916.14±0.19 15.85±0.3315.85±0.33 16.10±0.1416.10±0.14 16.08±0.1216.08±0.12 16.52±0.2416.52±0.24 ΔE Δ E MCTMCT 2.93±1.832.93±1.83 4.34±0.694.34±0.69 1.56±1.431.56±1.43 1.20±0.481.20±0.48 4.70±1.054.70±1.05 4.70±0.624.70±0.62 CoconutCoconut 2.93±1.832.93±1.83 3.15±1.333.15±1.33 2.70±1.642.70±1.64 2.05±0.612.05±0.61 3.63±1.553.63±1.55 5.71±0.815.71±0.81 PeanutPeanut 2.93±1.832.93±1.83 2.60±0.542.60±0.54 2.43±1.222.43±1.22 2.98±0.892.98±0.89 4.29±0.664.29±0.66 5.29±1.225.29±1.22

처리구별로 색에 대한 차이를 표 8에 나타내었다. L* 값에서 물만 첨가한 반죽이 70.28-72.24로 가장 높게 나타났고, 기름을 넣은 반죽은 기름 종류에 관계없이 63.04로 가장 낮은 값을 나타냈다. 기름을 넣은 식물성 고기를 열처리할 경우 60.24로 가장 낮게 나타났으며, MCT 기름은 Tween®80이 혼합된 에멀젼, 코코넛 기름은 SPI가 혼합된 에멀젼, 땅콩 기름은 Tween®80이 첨가된 물과 기름이 따로 혼합된 식물성 고기에서 가장 높게 나타났다. 반죽상태에서는 L* 값이 높게 나타내지만 열처리된 이후에는 낮아지는 것으로 나타났다. a* 값은 전반적으로 1.89-2.27의 값을 보였으며, MCT 기름을 첨가한 식물성 고기에서는 SPI가 혼합된 에멀젼 시료가 2.48로 가장 높은 값을 나타났다. 열처리된 식물성 고기는 기름만 첨가한 시료가 2.31로 가장 높았으며, 열처리 이후로 분리대두단백이 포함된 에멀젼 시료에서 a* 값은 감소하는 경향을 보였고, 기름만 첨가한 식물성 고기는 증가하였다. b* 값은 전체적으로 14.85-16.76값을 나타냈다. 처리구간에는 L* 값에서 기름만 첨가한 시료가 가장 낮게 나타나는 것을 확인하였으며, a*와 b* 값은 유의적인 경향성을 찾을 수 없었다. 색차는 기름 종류 간의 차이가 없었으며, 처리구 간에는 SPI가 혼합된 식물성 고기가 높게 나타났다.Table 8 shows the difference in color for each treatment group. In the L * value, the dough with only water showed the highest value at 70.28-72.24, and the dough with oil showed the lowest value at 63.04 regardless of the type of oil. When heat-treated vegetable meat containing oil, the lowest was 60.24. MCT oil was the lowest in Tween®80, coconut oil was an emulsion with SPI, and peanut oil was water and oil with Tween®80 added. It was highest in vegetable meat mixed separately. In the dough state, the L * value was high, but it was found to be low after heat treatment. The a * value was generally 1.89-2.27, and in vegetable meat added with MCT oil, the emulsion sample mixed with SPI showed the highest value at 2.48. In the heat-treated vegetable meat, the oil-only sample was the highest at 2.31. After the heat treatment, the a * value in the emulsion sample containing isolated soy protein showed a tendency to decrease, and the vegetable meat with oil only increased. The values of b* represent 14.85-16.76 values as a whole. In the treatment section, it was confirmed that the sample containing only oil appeared the lowest in the L * value, and the a * and b * values could not find a significant trend. There was no difference in color between oil types, and vegetable meat mixed with SPI was high among treatment groups.

3-3 : 가열감량3-3: heating loss

식물성 고기 시료는 열처리 전과 후 30분 방랭한 시료의 무게를 측정하여 하기 수학식 3을 이용하여 측정하였다.The vegetable meat sample was measured using Equation 3 below by measuring the weight of the sample that was left to cool for 30 minutes before and after the heat treatment.

[수학식 3][Equation 3]

Figure pat00003
Figure pat00003

W1: 가열 전 식물성 고기 반죽의 무게 (g)W1: Weight of vegetable meat dough before heating (g)

W2: 가열 후 식물성 고기 반죽의 무게 (g)W2: Weight of vegetable meat dough after heating (g)

일반 육류제품에서 다즙성은 소비자의 기호도와 관련이 깊다. 식물성 고기의 다즙성을 가열감량과 액상 보유력을 통해 확인하였다. 도 7에 나타난 바와 같이, 가열감량은 모든 시료 중에 물을 첨가한 식물성 고기에서 가열감량이 가장 높게 나타났으며, 기름을 첨가한 식물성 고기의 가열감량은 가장 낮게 나타나는 것을 확인할 수 있었다. 기름과 물이 함께 혼합된 식물성 고기와 에멀젼이 혼합된 식물성 고기는 기름만 혼합된 식물성 고기의 가열감량 값 보다 낮고, 물만 혼합된 식물성 고기의 가열감량 값 보다는 높았다. MCT 기름을 혼합한 식물성 고기에서 Tween®80이 SPI를 혼합한 식물성 고기의 감열감량보다 유의적으로 낮은 값을 가지는 것으로 나타났다. In general meat products, the succulence is deeply related to consumer preference. The juicyness of vegetable meat was confirmed through heating loss and liquid retention. As shown in FIG. 7, it was confirmed that the heating loss was the highest in the vegetable meat added with water among all samples, and the heating loss was the lowest in the vegetable meat added with oil. Vegetable meat mixed with oil and water and vegetable meat mixed with emulsion were lower than the heating loss value of vegetable meat mixed with only oil and higher than the heating loss value of vegetable meat mixed only with water. In vegetable meat mixed with MCT oil, Tween®80 was found to have significantly lower heat loss than that of vegetable meat mixed with SPI.

3-4 : 액상 보유력3-4: liquid retention

식물성 고기의 액상 보유력은 기존 보수력 측정 방법(Pietrasik & Shand, 2004)으로 수분과 기름을 함께 측정하여 같이 측정하여 액상 보유력(liquid holding capacity, LHC)이라 표현한다.The liquid holding capacity of vegetable meat is expressed as liquid holding capacity (LHC) by measuring water and oil together with the existing water holding capacity measurement method (Pietrasik & Shand, 2004).

구체적으로, 액상 보유력은 사용한 조직대두단백의 수분함량 및 액상 재료를 측정하여 식물성 고기의 열처리 전후의 중량을 측정하여 열처리 과정 중 발생한 가열감량을 계산한다. 또한, 열처리된 시료 약 2 g을 멸균 거즈가 들어있는 15 mL conical tube에 넣고, 원심분리기(1736R, LaboGene, 덴마크)에 3000 rpm에서 10 분간 원심분리 후 시료의 무게를 측정하여 하기 수학식 4에 대입하여 계산하였다.Specifically, liquid retention is calculated by measuring the moisture content and liquid material of the tissue soy protein used to measure the weight of vegetable meat before and after heat treatment to calculate the amount of heating loss generated during the heat treatment process. In addition, about 2 g of the heat-treated sample was placed in a 15 mL conical tube containing sterile gauze, centrifuged at 3000 rpm for 10 minutes in a centrifuge (1736R, LaboGene, Denmark), and then the weight of the sample was measured. It was calculated by substituting.

[수학식 4][Equation 4]

Figure pat00004
Figure pat00004

LHC: 액체 보유 용량(Liquid holding capacity)LHC: Liquid holding capacity

WTL: 식물성 고기 반죽에 첨가된 액체의 총량 무게 (g)WTL: Total weight of liquid added to vegetable meat dough (g)

LWP: 식물성 고기 생산과정에서 무게 손실 (g)LWP: Weight loss in vegetable meat production (g)

WHM: 가열된 식물성 고기 무게 (g)WHM: heated vegetable meat weight (g)

LWC: 가열된 식물성 고기의 원심분리에 의한 체중 감소량 (g)LWC: weight loss by centrifugation of heated vegetable meat (g)

도 8에 나타난 바와 같이, 액상 보유력은 가열감량과 동일한 결과가 나타났다. 물을 첨가한 식물성 고기의 액상 보유력이 가장 낮게 나타났고, 기름만 첨가한 식물성 고기의 액상 보유력이 가장 높게 나타났다. MCT 기름과 코코넛 기름이 혼합된 식물성 고기에서는 물과 기름 분리 혼합 식물성 고기와 에멀젼을 혼합한 식물성 고기에서 유의적 차이를 보이지 않았다. 땅콩 기름과 물이 분리 혼합된 식물성 고기와 에멀젼을 혼합한 식물성 고기는 유의적 차이를 보였으며, 다른 기름에 비해 낮은 액상 보유력을 가지는 것으로 나타났다.As shown in FIG. 8, the liquid retention power was the same as the heating loss. The liquid retention power of vegetable meat added with water was the lowest, and the liquid retention power of vegetable meat added only oil was the highest. In vegetable meat mixed with MCT oil and coconut oil, there was no significant difference in vegetable meat mixed with water and oil separated mixed vegetable meat and emulsion. Vegetable meat with peanut oil and water separated and mixed with emulsion showed significant difference, and it was found to have lower liquid retention than other oils.

3-5 : TPA(Texture profile analysis)3-5: TPA(Texture profile analysis)

식물성 고기의 물성검사는 방랭한 시료를 그대로 사용하여 texture analyzer(CT3-1000, Brookfield Engineering Laboratories, Inc., 미국)를 이용하였다. 측정은 texture profile analysis type, 시료의 변형률은 50%, trigger load는 100 g, 측정 속도는 1 mm/s, 평판형 probe(TA4/1000)를 이용하여, 처리구 당 15회 반복 측정하였다.For the physical property test of vegetable meat, a texture analyzer (CT3-1000, Brookfield Engineering Laboratories, Inc., USA) was used using a sample that has been cooled and cooled as it is. The measurement was performed 15 times per treatment using a texture profile analysis type, a strain rate of 50%, a trigger load of 100 g, a measurement speed of 1 mm/s, and a plate type probe (TA4/1000).

TPA 분석 결과TPA analysis results Oil typeOil type Liquid materialsLiquid materials WaterWater OilOil O+W
(Tween 80)
O+W
(Tween 80)
Emulsion
(Tween 80)
Emulsion
(Tween 80)
O+W (SPI)O+W (SPI) Emulsion (SPI)Emulsion (SPI)
Hardness
(g)
Hardness
(g)
MCTMCT 3844.75±389.773844.75±389.77 4790.00±211.984790.00±211.98 2890.50±67.652890.50±67.65 2203.00±186.692203.00±186.69 5144.75±291.455144.75±291.45 5338.50±54.885338.50±54.88
CoconutCoconut 3844.75±389.773844.75±389.77 6365.50±594.786365.50±594.78 3063.00±338.673063.00±338.67 2766.00±583.432766.00±583.43 4796.50±73.174796.50±73.17 4174.75±312.564174.75±312.56 PeanutPeanut 3844.75±389.773844.75±389.77 5404.00±301.305404.00±301.30 2991.75±151.132991.75±151.13 2816.25±60.262816.25±60.26 4873.50±477.484873.50±477.48 4292.75±246.104292.75±246.10 Adhesiveness
(mJ)
Adhesiveness
(mJ)
MCTMCT 0.03±0.050.03±0.05 0.03±0.060.03±0.06 0.08±0.100.08±0.10 0.10±0.080.10±0.08 0.08±0.050.08±0.05 0.10±0.080.10±0.08
CoconutCoconut 0.03±0.050.03±0.05 0.05±0.060.05±0.06 0.03±0.050.03±0.05 0.07±0.060.07±0.06 0.10±0.080.10±0.08 0.08±0.100.08±0.10 PeanutPeanut 0.03±0.050.03±0.05 0.00±0.000.00±0.00 0.00±0.000.00±0.00 0.00±0.000.00±0.00 0.05±0.060.05±0.06 0.00±0.000.00±0.00 CohesivenessCohesiveness MCTMCT 0.26±0.010.26±0.01 0.34±0.020.34±0.02 0.22±0.010.22±0.01 0.21±0.010.21±0.01 0.29±0.030.29±0.03 0.33±0.070.33±0.07 CoconutCoconut 0.26±0.010.26±0.01 0.41±0.010.41±0.01 0.22±0.010.22±0.01 0.21±0.020.21±0.02 0.27±0.010.27±0.01 0.25±0.020.25±0.02 PeanutPeanut 0.26±0.010.26±0.01 0.41±0.010.41±0.01 0.25±0.020.25±0.02 0.24±0.010.24±0.01 0.30±0.010.30±0.01 0.27±0.010.27±0.01 Springiness
(mm)
Springiness
(mm)
MCTMCT 7.67±1.137.67±1.13 9.94±0.369.94±0.36 6.44±0.456.44±0.45 5.02±0.605.02±0.60 9.63±0.349.63±0.34 9.76±0.299.76±0.29
CoconutCoconut 7.67±1.137.67±1.13 10.31±0.1810.31±0.18 6.86±1.146.86±1.14 6.10±1.556.10±1.55 9.34±0.269.34±0.26 8.30±0.728.30±0.72 PeanutPeanut 7.67±1.137.67±1.13 10.55±0.1010.55±0.10 7.34±0.917.34±0.91 6.64±0.116.64±0.11 9.27±0.749.27±0.74 8.11±0.808.11±0.80 Gumminess
(g)
Gumminess
(g)
MCTMCT 1006.50±122.971006.50±122.97 1621.00±32.051621.00±32.05 645.00±17.19645.00±17.19 458.75±62.03458.75±62.03 1507.50±221.301507.50±221.30 1743.75±347.111743.75±347.11
CoconutCoconut 1006.50±122.971006.50±122.97 2619.00±327.802619.00±327.80 679.75±101.14679.75±101.14 566.33±85.71566.33±85.71 1283.75±48.011283.75±48.01 1061.00±163.461061.00±163.46 PeanutPeanut 1006.50±122.971006.50±122.97 2191.25±157.222191.25±157.22 739.25±67.62739.25±67.62 682.00±22.41682.00±22.41 1445.50±195.421445.50±195.42 1180.25±71.851180.25±71.85 Chewiness
(mJ)
Chewiness
(mJ)
MCTMCT 76.73±18.5376.73±18.53 157.97±7.47157.97±7.47 40.73±3.3140.73±3.31 22.85±6.0522.85±6.05 142.78±23.90142.78±23.90 166.98±33.64166.98±33.64
CoconutCoconut 76.73±18.5376.73±18.53 265.08±36.29265.08±36.29 46.60±14.3846.60±14.38 34.73±14.2934.73±14.29 117.65±7.31117.65±7.31 86.93±20.0686.93±20.06 PeanutPeanut 76.73±18.5376.73±18.53 226.58±16.27226.58±16.27 53.63±11.3653.63±11.36 44.38±1.7644.38±1.76 132.23±26.33132.23±26.33 94.30±14.3094.30±14.30

TPA 검사는 소비자가 제품을 섭취했을 때의 저작 운동을 유추할 수 있는 측정값으로 제품의 개발에 있어서 중요한 참고 자료로 사용된다. 다양한 액상재료가 첨가된 식물성 고기의 물성을 표 9에 나타냈다. 점착력(adhesiveness)를 제외하고 경도(hardness), 응집성(cohesiveness), 탄력성(springiness), 검성(gumminess), 씹힘성(chewiness)에서 액상재료 간에 유의적인 차이를 보이며, 기름만 넣은 시료의 경도, 검성 및 씹힘성은 코코넛 기름이 가장 높고 MCT 기름에서 낮게 나타났다. 계면활성제에 따라서는 SPI가 혼합된 시료의 경도가 높게 나타나는 경향을 보이고, 가장 낮은 값은 액상재료에 Tween®80이 혼합한 시료였다. 물과 기름을 따로 첨가한 시료와 에멀젼을 첨가한 시료 간에 뚜렷한 경향성을 찾을 수 없었다. SPI를 첨가한 식물성 고기가 Tween®80을 넣은 식물성 고기의 점착력를 제외한 모든 항목에서 높은 것은 열변성 시 추가된 분리대두단백질에 의해 경고한 겔 매트릭스 구조를 형성하기 때문이다. 반면 Tween®80을 넣은 식물성 고기는 첨착력를 제외한 모든 항목이 다른 시료에 비해 낮게 나타났다.The TPA test is a measure that can infer the chewing movement when a consumer consumes a product, and is used as an important reference material in product development. The physical properties of vegetable meat to which various liquid ingredients were added are shown in Table 9. Except for adhesiveness, there are significant differences between liquid materials in hardness, cohesiveness, springiness, gumminess, and chewiness. The chewiness was highest in coconut oil and lowest in MCT oil. Depending on the surfactant, the hardness of the sample mixed with SPI tended to be high, and the lowest value was the sample mixed with Tween®80 in the liquid material. There was no clear tendency to be found between the samples to which water and oil were added separately and the samples to which the emulsion was added. Vegetable meat added with SPI is high in all items except for the adhesion of vegetable meat with Tween®80 because it forms a gel matrix structure warned by the added soy protein isolate upon heat denaturation. On the other hand, vegetable meat containing Tween® 80 showed lower values than other samples except for stickiness.

식물성 고기의 관능 검사Sensory testing of vegetable meat

관능검사를 시행하기 전에 피실험자의 인권 보호 및 실험의 신뢰성을 확보하기 위하여 임상시험 관리기준(Guideline for Good Clinical Practice by International Conference on Harmonization, ICH GCP)에 따라 건국대학교 생명 윤리 위원회(Institutional Review Board, IRB)의 승인을 받아 실시하였다(700355-201901-HR-294). 식물성 고기의 관능검사는 식물성 고기에 대한 정보를 교육 및 훈련을 3개월간 주기적으로 받은 대학원생 12명을 대상으로 하였다. 관능검사의 교육과 훈련은 평소 접하기 어려운 식물성 고기의 맛, 향 및 질감에 대한 적응과 관능검사 평가 항목을 사전내용 검토를 통해 선정하였다. 관능검사에 사용된 시료 동일한 온도와 크기로 제공하고, 시료마다 난수를 사용하였다. 항목은 외부 색(surface color), 내부 색(inside color), 기름 향미(oil flavor), 콩 향미(bean flavor), 부드러움(tenderness), 탄력성 (springiness), 다즙성(juiciness), 조밀도(compactness), 기름기(fattiness)에 대한 강도, 기호도와 전반적 느낌(overall sensation)을 7점 척도를 사용하여 평가하였다. 강도에서 '적다'와 '약하다'는 0점, '많다'와 '강하다'는 7점으로 평가하였고, 기호도는 '싫다'(0), '좋다'(7)로 평가하였다.In order to protect the human rights of the subject and secure the reliability of the experiment before performing the sensory test, the Institutional Review Board (IRB) at Konkuk University in accordance with the Guidelines for Good Clinical Practice by International Conference on Harmonization (ICH GCP). ) Was approved (700355-201901-HR-294). The sensory test of vegetable meat was conducted on 12 graduate students who received education and training for 3 months periodically. For the education and training of the sensory test, the adaptation to the taste, aroma, and texture of vegetable meat, which is difficult to encounter normally, and the evaluation items of the sensory test were selected through a preliminary review of the contents. Samples used for sensory testing were provided at the same temperature and size, and random numbers were used for each sample. The items are surface color, inside color, oil flavor, bean flavor, tenderness, springiness, juiciness, and compactness. , Intensity, acceptability and overall sensation for fattiness were evaluated using a 7-point scale. In terms of intensity,'less' and'weak' were evaluated as 0 points,'many' and'strong' were evaluated as 7 points, and preference was evaluated as'dislike' (0) and'like' (7).

본 발명의 이화학적 분석결과는 SPSS 통계프로그램(statistical package for the social science, Ver. 24.0 IBM., 미국)을 사용하였고, 일원 배치분산분석(one-way ANOVA) 및 사후검증을 Duncan's multiple range test를 사용하여 시료 간의 유의적 차이를 검증하였다. 관능검사 결과는 주성분 분석(principal component analysis, PCA)을 사용하여 검사항목의 강도 및 기호도와 시료 간의 관계를 XLSTAT 프로그램(XLSTAT ver. 2018. 06. 54124, Addinsoft, 미국)을 사용하여 분석하였다.The results of the physicochemical analysis of the present invention were SPSS statistical program (statistical package for the social science, Ver. 24.0 IBM., USA), one-way batch variance analysis (one-way ANOVA) and post-test Duncan's multiple range test. Was used to verify the significant difference between the samples. The sensory test results were analyzed using a principal component analysis (PCA) to analyze the strength and preference of test items and the relationship between samples using the XLSTAT program (XLSTAT ver. 2018. 06. 54124, Addinsoft, USA).

MCT 기름을 첨가한 식물성 고기의 관능검사 결과를 대상으로 주성분 분석을 실시하여 도 9에 나타냈다. 관능검사 항목과 시료 간에는 콩 향미, 외부색, 기름 향미, 탄력성, 내부색의 기호도 간에는 양(+)의 상관관계를 가지며 물을 혼합한 식물성 고기가 다른 식물성 고기에 비해 높은 것으로 나타났고, 이 관능검사 항목과 탄력성 및 기름기의 강도, SPI가 혼합된 식물성 고기와는 음(-)의 상관관계를 가지고 있다. Tween®80이 혼합된 식물성 고기와 기름만 혼합된 식물성 고기는 정반대의 경향을 보였으며 조밀도의 기호도, 다즙성과 부드러움에 대한 강도와 기호도는 전반적 관능검사와 양(+)의 상관관계를 가지고 Tween®80이 혼합된 식물성 고기의 값이 다른 식물성 고기보다 높은 것으로 나타났다.The principal component analysis was performed on the sensory test results of vegetable meat to which MCT oil was added, and is shown in FIG. 9. Between the sensory test item and the sample, there was a positive (+) correlation between soybean flavor, external color, oily flavor, elasticity, and preference of internal color, and it was found that vegetable meat mixed with water was higher than that of other vegetable meats. There was a negative (-) correlation between test items, elasticity and greasy strength, and vegetable meat mixed with SPI. Vegetable meat mixed with Tween®80 and vegetable meat mixed only with oil showed the opposite tendency, and the preference of density, strength and preference for succulent and softness had a positive correlation with the overall sensory test. It was found that the value of vegetable meat mixed with ®80 was higher than that of other vegetable meats.

코코넛 기름을 첨가한 식물성 고기의 관능검사 결과를 대상으로 주성분 분석을 실시하여 도 10에 나타냈다. 관능검사 항목과 시료 간의 관계는 조밀도에 대한 강도와 기호도, 외부색의 기호도, 탄력성에 대한 강도와 기호도 간에는 음(-)의 상관관계를 가지는 지며, 기름과 물을 혼합한 식물성 고기의 관능적 특성은 유사한 것으로 나타났다. 전반적 관능검사와 다즙성과 부드러움에 대한 강도와 기호도, 기름기와 기름 향미의 기호도와 양(+)의 상관관계를 가지며, 이 항목들은 다른 식물성 고기에 비해 Tween®80이 혼합된 에멀전을 넣은 식물성 고기가 높은 것으로 나타났으며 기름을 넣은 식물성 고기는 가장 낮은 것으로 나타났다.The principal component analysis was performed on the sensory test results of vegetable meat to which coconut oil was added, and the results are shown in FIG. 10. The relationship between the sensory test item and the sample has a negative (-) correlation between the strength and preference for density, the preference for external color, and the strength and preference for elasticity, and the sensory characteristics of vegetable meat mixed with oil and water. Appeared to be similar. There is a positive correlation between the overall sensory evaluation and the strength and preference of succulent and softness, and the preference of greasy and oily flavor, and these items are compared to other vegetable meats. It was found to be high, and vegetable meat with oil was the lowest.

땅콩 기름을 첨가한 식물성 고기의 관능검사 결과를 대상으로 주성분 분석을 실시하여 도 11에 나타냈다. 관능검사 항목과 시료 처리구의 관계는 대부분의 관능검사 항목이 전반적 관능검사와 관련 있으며, 특히 기름 향미의 기호도가 관련성이 큰 것으로 나타났다. The principal component analysis was performed on the sensory test results of vegetable meat to which peanut oil was added, and shown in FIG. 11. As for the relationship between sensory test items and sample treatment groups, most of the sensory test items were related to the overall sensory test, and in particular, the preference of oil flavor was found to be highly related.

첨가된 액상재료 간의 식물성 고기 관능검사 결과를 대상으로 주성분 분석을 실시하여 도 12에 나타냈다. 각각의 식물성 고기는 혼합재료 종류에 따라 물, 기름, Tween®80, SPI가 각각 분리되어 있어서 기름과 물의 혼합과 에멀젼과의 관능적 특성차이는 뚜렷하게 확인할 수 없었다. 전반적 관능검사와 가장 밀접한 관계를 가지는 관능검사 항목은 다즙성으로 나타났고, 콩 향미의 강도, 기름기의 기호도, 부드러움의 강도와 기호도가 관련성이 높은 것을 확인하였다.The principal component analysis was performed on the results of the sensory test of vegetable meat between the added liquid materials and shown in FIG. 12. Each vegetable meat was divided into water, oil, Tween®80, and SPI according to the type of mixed material, so the difference in organoleptic properties between oil and water mixture and emulsion could not be clearly identified. The sensory test item having the most close relationship with the general sensory test was found to be succulent, and it was confirmed that the strength of soybean flavor, the taste of grease, the strength of the softness and the taste are highly related.

저장 조건에 따른 특성 분석Characterization according to storage conditions

동물성 혹은 식물성 식품을 결정짓는 주요 요인에는 저장 온도가 매우 중요한 요인으로 작용한다. 본 발명에서는 MCT 기름을 이용한 에멀젼과 다른 액상 성분이 들어간 식물성 고기의 저장 온도와 기간에 따른 이화학적 특성을 분석하였다.Storage temperature is a very important factor in determining animal or vegetable food. In the present invention, the physicochemical properties of vegetable meat containing emulsions using MCT oil and other liquid components were analyzed according to storage temperature and duration.

식물성 고기는 상기 실시예 2와 동일한 방법으로 제조하였으며, 식물성 고기의 반죽과 반죽을 열처리 후 방랭한 각 시료 간의 저장 안정성을 확인하기 위하여 따로 분리하여 저장 실험을 하였고, 각 시료는 19×15×6 cm 크기의 폴리프로필렌(polypropylene, PP) 용기에 넣어 저장하였다. 저장 과정에서 발생하는 물이 식물성 고기 시료 아래 고여 있는 것을 막기 위하여 호일을 경사지게 깔고 그 위에 식물성 고기 시료를 놓았다. 저장 과정 중 건조를 막기 위하여 폴리프로필렌 용기 위에 폴리에스테르(polyester, PET) 필름으로 덮은 후 식품 포장기(M-Series, Packsis, 한국)로 밀봉하여 포장하였다. 상온 저장은 25℃인큐베이터(103M, Vision Lab & Instrument, 한국)를 사용하였고, 냉장 저장은 4℃냉장고(A255WD, LG, 한국)를 사용하였으며, 냉동 저장은 -20℃로 고정된 직냉식 냉동고(A255WD, LG, 한국)를 사용하여, 4일, 7일, 14일로 실시하였다. 냉장 및 냉동한 시료는 25℃로 설정된 인큐베이터에서 시료 온도가 25℃가 되면 실험에 사용하였다.Vegetable meat was prepared in the same manner as in Example 2, and the dough and dough of vegetable meat were separately separated and stored in order to check the storage stability between each sample that was cooled after heat treatment, and each sample was 19×15×6. It was stored in a cm-sized polypropylene (PP) container. In order to prevent water generated during the storage process from accumulating under the vegetable meat sample, the foil was obliquely laid and the vegetable meat sample was placed on it. To prevent drying during the storage process, a polypropylene container was covered with a polyester (PET) film, and then sealed and packaged with a food packaging machine (M-Series, Packsis, Korea). A 25°C incubator (103M, Vision Lab & Instrument, Korea) was used for room temperature storage, a 4°C refrigerator (A255WD, LG, Korea) was used for cold storage, and a direct cooling freezer (A255WD) fixed at -20°C for freezer storage. , LG, Korea), 4 days, 7 days, 14 days. Refrigerated and frozen samples were used in the experiment when the sample temperature reached 25°C in an incubator set at 25°C.

식물성 고기의 물성검사는 방랭한 시료를 그대로 사용하여 texture analyzer(CT3-1000, Brookfield Engineering Laboratories, Inc., 미국)를 이용하였다. 측정은 texture profile analysis type, 시료의 변형률은 50%, trigger load는 100 g, 측정 속도는 1 mm/s, 평판형 probe(TA4/1000)를 이용하여, 처리구 당 15회 반복 측정하였다.For the physical property test of vegetable meat, a texture analyzer (CT3-1000, Brookfield Engineering Laboratories, Inc., USA) was used using a sample that has been cooled and cooled as it is. The measurement was performed 15 times per treatment using a texture profile analysis type, a strain rate of 50%, a trigger load of 100 g, a measurement speed of 1 mm/s, and a plate type probe (TA4/1000).

도 13에 나타난 바와 같이, 상기 실시예 3의 표 9에 개시된 값과 유사하게 기름만 첨가된 시료가 가장 경도가 높은 것으로 나타났다. 하지만, 기름만 첨가한 처리구의 경우 온도에 상관없이 경도 변화가 급격한 것으로 관찰된 반면, 에멀젼 첨가시료의 경우, 저장 온도에 의한 경도 변화가 거의 없다.As shown in FIG. 13, similar to the value disclosed in Table 9 of Example 3, the sample containing only oil was found to have the highest hardness. However, in the case of the treatment with only oil added, it was observed that the hardness change was abrupt regardless of the temperature, whereas in the case of the emulsion-added sample, there was little change in hardness due to storage temperature.

에멀젼 입자 크기에 따른 식물성 고기 경도 변화Changes of Vegetable Meat Hardness According to Emulsion Particle Size

상기 실시예 1에서 제조한 에멀젼의 입자크기는 4.0 μm로 확인되었다. The particle size of the emulsion prepared in Example 1 was confirmed to be 4.0 μm.

따라서, 본 발명에서는 에멀젼 입자크기를 다르게 하여 혼합한 식물성 고기의 경도를 확인하였다. 에멀젼의 입자크기는 40.0, 4.0, 0.4 μm으로 하여 상기 실시예 2와 동일한 방법으로 식물성 고기를 제조한 다음, -20℃에서 저장하였으며, 경도측정은 상기 실시예 5와 동일한 방법으로 수행하였다. Therefore, in the present invention, the hardness of the mixed vegetable meat was confirmed by varying the emulsion particle size. The particle size of the emulsion was 40.0, 4.0, 0.4 μm, and vegetable meat was prepared in the same manner as in Example 2, and then stored at -20°C, and hardness measurement was performed in the same manner as in Example 5.

그 결과, 도 14에 나타난 바와 같이, 저장 7일차 까지는 경도의 차이가 나타나지 않았으나, 입자크기가 클수록 저장 14일 차에서 급격하게 증가하는 것을 확인하였다, 반면 0.4 μm의 입자크기를 가지는 에멀젼을 넣은 식물성 고기의 경우 경도 차이를 보이지 않아서 안정성이 뛰어난 것을 확인하였다.As a result, as shown in FIG. 14, the difference in hardness did not appear until the 7th day of storage, but it was confirmed that the larger the particle size, the sharply increased on the 14th day of storage, whereas vegetable containing an emulsion having a particle size of 0.4 μm In the case of meat, it was confirmed that the stability was excellent because there was no difference in hardness.

Claims (7)

(a) 계면활성제, 물, 기름 및 레시틴으로 구성된 에멀젼을 제조하는 단계;
(b) 조직 대두 단백 TPV 및 물을 혼합하여 수화 시킨 다음, 탈수하는 단계; 및
(c) (b) 단계에서 준비한 조직대두단백 100 중량부당 (a) 단계에서 제조한 에멀젼 25 ~ 35 중량부, 분리대두단백(soy protein isolate, SPI) 4 ~ 5 중량부, 결합제 3 ~ 4 중량부 및 레시틴 0.6 ~ 0.7 중량부를 혼합하여 반죽하는 단계;를 포함하는 식물성 고기 제조방법.
(a) preparing an emulsion consisting of a surfactant, water, oil and lecithin;
(b) mixing the tissue soy protein TPV and water to hydrate, and then dehydrating; And
(c) Per 100 parts by weight of tissue soy protein prepared in step (b), 25 to 35 parts by weight of emulsion prepared in step (a), 4 to 5 parts by weight of soy protein isolate (SPI), 3 to 4 parts by weight of binder Mixing and kneading parts and 0.6 to 0.7 parts by weight of lecithin; vegetable meat manufacturing method comprising.
제1항에 있어서, 상기 에멀젼의 크기는 0.1 ~ 5.0 μm인 것을 특징으로 하는 식물성 고기 제조방법.
The method of claim 1, wherein the emulsion has a size of 0.1 to 5.0 μm.
제1항에 있어서, 상기 (a) 단계의 에멀젼은 6:4 ~ 7:3(w/w)의 비율로 혼합된 물 및 기름에 계면활성제 3 ~ 4%(w/w) 및 레시틴 0.4 ~ 0.6%(w/w)을 첨가한 다음, 균질화 시켜 제조하는 것을 특징으로 하는 식물성 고기 제조방법.
The method of claim 1, wherein the emulsion in step (a) is 3 to 4% (w/w) surfactant and 0.4 to lecithin in water and oil mixed in a ratio of 6:4 to 7:3 (w/w). Addition of 0.6% (w/w), and then homogenization to prepare a vegetable meat manufacturing method.
제1항에 있어서, 상기 (a) 단계의 계면활성제는 트윈 80(Tween 80)인 것을 특징으로 하는 식물성 고기 제조방법.
The method of claim 1, wherein the surfactant in step (a) is Tween 80.
제1항에 있어서, 상기 기름은 MCT 기름, 코코넛 기름 또는 땅콩 기름인 것을 특징으로 하는 식물성 고기 제조방법.
The method of claim 1, wherein the oil is MCT oil, coconut oil or peanut oil.
제1항 내지 제5항 중 어느 한 항의 방법으로 제조된 식물성 고기.
Vegetable meat prepared by the method of any one of claims 1 to 5.
제6항에 있어서, 상기 식물성 고기는 경도(hardness) 2000 ~ 3000 g, 응집성(cohesiveness) 0.2 ~ 0.3, 탄력성(springiness) 4 ~ 7 mm, 검성(gumminess) 400 ~ 700 g 및 씹힘성(chewiness) 15 ~ 50 mJ의 물성을 가지는 것을 특징으로 하는 식물성 고기.The method of claim 6, wherein the vegetable meat has a hardness of 2000 to 3000 g, a cohesiveness of 0.2 to 0.3, a springiness of 4 to 7 mm, a guminess of 400 to 700 g, and a chewiness of 15 Vegetable meat, characterized in that it has a physical property of ~ 50 mJ.
KR1020190111976A 2019-09-10 2019-09-10 Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat KR102317926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190111976A KR102317926B1 (en) 2019-09-10 2019-09-10 Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190111976A KR102317926B1 (en) 2019-09-10 2019-09-10 Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat

Publications (2)

Publication Number Publication Date
KR20210030631A true KR20210030631A (en) 2021-03-18
KR102317926B1 KR102317926B1 (en) 2021-10-26

Family

ID=75232197

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190111976A KR102317926B1 (en) 2019-09-10 2019-09-10 Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat

Country Status (1)

Country Link
KR (1) KR102317926B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202532A1 (en) * 2021-03-22 2022-09-29 不二製油グループ本社株式会社 Oil-in-water emulsion
CN115530284A (en) * 2022-10-14 2022-12-30 中国农业科学院农产品加工研究所 Emulsified slurry for preparing plant-based whole meat product and preparation method thereof
WO2023287170A1 (en) * 2021-07-12 2023-01-19 씨제이제일제당 (주) Meat-product substitute material and dumplings
KR102559823B1 (en) 2022-09-16 2023-07-26 (주)소유에프앤비 Tempeh using chickpeas and yeast and a method of manufacturing the same
KR102588773B1 (en) * 2022-09-05 2023-10-17 주식회사 지구인컴퍼니 A Animal Fat Substitute Composition and Vegetable Patty Comprising the Same
KR20240063304A (en) 2022-11-01 2024-05-10 주식회사 풀무원 Vegetable jerky and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002649A (en) * 1992-07-10 1994-02-17 이헌조 Active matrix liquid crystal display device and manufacturing method
US20140272094A1 (en) * 2013-03-12 2014-09-18 Advanced Food Systems, Inc. Textured vegetable protein as a meat substitute and method and composition for making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002649A (en) * 1992-07-10 1994-02-17 이헌조 Active matrix liquid crystal display device and manufacturing method
US20140272094A1 (en) * 2013-03-12 2014-09-18 Advanced Food Systems, Inc. Textured vegetable protein as a meat substitute and method and composition for making same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
2018 한국식품영양과학회 학술대회발표집, 340쪽, 2018년 10월 31일. 사본 1부.* *
FOOD RESEARCH INTERNATIONAL 제96권, 103~112쪽, 2017년 03월 11일. *
산업식품공학 제23권 제1호, 62~68쪽, 2019년 02월 29일. 사본 1부.* *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202532A1 (en) * 2021-03-22 2022-09-29 不二製油グループ本社株式会社 Oil-in-water emulsion
WO2023287170A1 (en) * 2021-07-12 2023-01-19 씨제이제일제당 (주) Meat-product substitute material and dumplings
KR20230011249A (en) * 2021-07-12 2023-01-20 씨제이제일제당 (주) A meat substitute materials and a dumpling
KR102588773B1 (en) * 2022-09-05 2023-10-17 주식회사 지구인컴퍼니 A Animal Fat Substitute Composition and Vegetable Patty Comprising the Same
KR102559823B1 (en) 2022-09-16 2023-07-26 (주)소유에프앤비 Tempeh using chickpeas and yeast and a method of manufacturing the same
CN115530284A (en) * 2022-10-14 2022-12-30 中国农业科学院农产品加工研究所 Emulsified slurry for preparing plant-based whole meat product and preparation method thereof
CN115530284B (en) * 2022-10-14 2024-02-23 中国农业科学院农产品加工研究所 Emulsified slurry for preparing plant-based whole meat product and preparation method thereof
KR20240063304A (en) 2022-11-01 2024-05-10 주식회사 풀무원 Vegetable jerky and manufacturing method thereof

Also Published As

Publication number Publication date
KR102317926B1 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
KR102317926B1 (en) Preparation Method for Meat Analogue Comprising Emulsion as a Substitute for Meat Fat
Zhou et al. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: Effects of fat type and concentration
Zhou et al. Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil
Gani et al. Effect of virgin coconut oil on properties of surimi gel
Youssef et al. Effects of two types of soy protein isolates, native and preheated whey protein isolates on emulsified meat batters prepared at different protein levels
Hedayati et al. Effect of total replacement of egg by soymilk and lecithin on physical properties of batter and cake
Ghiasi et al. Fabrication and characterization of a novel biphasic system based on starch and ethylcellulose as an alternative fat replacer in a model food system
Shao et al. Evaluation of structural changes in raw and heated meat batters prepared with different lipids using Raman spectroscopy
Sun et al. Effect of peanut protein isolate on functional properties of chicken salt-soluble proteins from breast and thigh muscles during heat-induced gelation
Pei et al. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation
Zhang et al. Effects of oleogels prepared with fish oil and beeswax on the gelation behaviors of protein recovered from Alaska Pollock
AU2015247529A1 (en) Plant based meat structured protein products
Roesch et al. Characterization of oil‐in‐water emulsions prepared with commercial soy protein concentrate
Utama et al. Formula optimization of a perilla-canola oil (O/W) emulsion and its potential application as an animal fat replacer in meat emulsion
Tang et al. Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application
Han et al. Effects of camellia oil on the properties and molecular forces of myofibrillar protein gel induced by microwave heating
Wang et al. High internal phase emulsions of ω-3 fatty acids stabilized by fish scale gelatin particles: application to lipid-enhanced surimi 3D printing
Lan et al. Effects of different lipids on the physicochemical properties and microstructure of pale, soft and exudative (PSE)-like chicken meat gel
Wang et al. Evaluation of chickpea protein isolate as a partial replacement for phosphate in pork meat batters: Techno-functional properties and molecular characteristic modifications
Fernández et al. Fat substitutes based on bovine blood plasma and flaxseed oil as functional ingredients
Zhang et al. Improving the freeze-thaw stability of pork sausage with oleogel-in-water Pickering emulsion used for pork backfat substitution
Liu et al. Gelling properties of silver carp surimi as affected by different comminution methods: blending and shearing
Han et al. Influence of beeswax-based fish oil oleogels on the mechanism of water and oil retention in Pacific white shrimp (Litopenaeus vannamei) meat emulsion gels: Filling, emulsification and phase transition
ES2671784T3 (en) Procedure for the production of poultry sausage
Lee et al. Physicochemical and sensory properties of plant-based meat patties using oil-in-water emulsion

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant