KR20210028363A - 열 소손 방지 기능을 포함하는 전력 변환 장치 - Google Patents

열 소손 방지 기능을 포함하는 전력 변환 장치 Download PDF

Info

Publication number
KR20210028363A
KR20210028363A KR1020190109320A KR20190109320A KR20210028363A KR 20210028363 A KR20210028363 A KR 20210028363A KR 1020190109320 A KR1020190109320 A KR 1020190109320A KR 20190109320 A KR20190109320 A KR 20190109320A KR 20210028363 A KR20210028363 A KR 20210028363A
Authority
KR
South Korea
Prior art keywords
inverter
conversion device
power conversion
control unit
gate
Prior art date
Application number
KR1020190109320A
Other languages
English (en)
Other versions
KR102362713B1 (ko
Inventor
정용찬
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020190109320A priority Critical patent/KR102362713B1/ko
Publication of KR20210028363A publication Critical patent/KR20210028363A/ko
Application granted granted Critical
Publication of KR102362713B1 publication Critical patent/KR102362713B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • H02M2001/327
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 본 발명의 목적은 게이트 저항 값 가변을 통해 하드웨어적으로 발열을 대응하되 스위칭 속도에는 문제가 없도록 하여 발열 제안으로 인한 스위칭 성능 저하를 최소화하는 열 소손 방지 기능을 포함하는 전력 변환 장치에 관한 것이다. 본 발명에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치는 다수의 스위칭 소자를 포함하는 인버터 모듈; 상기 인버터 모듈을 구동하는 구동 신호를 인가하는 인버터 제어부; 상기 인버터 모듈 측에 위치하여 상기 인버터 모듈의 온도에 따라 가변하는 전압을 출력하는 서미스터; 및 상기 인버터 모듈과 상기 인버터 제어부 사이에 위치하여, 상기 서미스터에서 출력된 전압 값에 따라 상기 인버터 제어부로부터 상기 인버터 모듈의 스위칭 소자 게이트 단으로 전달되는 구동 신호의 경로에 위치하는 게이트 저항 값을 가변하는 게이트 저항 제어부를 포함할 수 있다.

Description

열 소손 방지 기능을 포함하는 전력 변환 장치{Power transforming apparatus having thermal protection function}
본 발명은 게이트 저항 값 가변을 통해 발열 제안으로 인한 스위칭 성능 저하를 최소화하는 열 소손 방지 기능을 포함하는 전력 변환 장치에 관한 것이다.
일반적으로, 공기 조화기의 압축기는 모터를 구동원으로 이용하고 있다. 이러한 모터에는 전력 변환 장치로부터 교류 전력이 공급된다.
이와 같은 전력 변환 장치는 주로, 정류부, 역률 제어부 및 인버터를 포함하는 것으로 일반적으로 알려져 있다.
우선, 상용 전원으로부터 출력되는 교류의 상용 전압은, 정류부에 의하여 정류된다. 이러한 정류부에서 정류된 전압은 인버터에 공급된다. 이때, 역률 제어부는 인덕터와 커패시터가 연결되어 입력 전원의 역률을 개선한다. 그리고 인버터는 역률 제어부의 출력을 교류로 변환하여 모터를 구동하기 위한 교류전력을 생성한다.
보통 인버터와 같은 다수의 IGBT 소자를 이용하는 부품의 경우에는 모듈 형태로 구비되는 경우가 많고, 이 경우에는 모듈 내에 열을 감지하고, 발생되는 열을 열 전달 및 열 방출시킬 수 있는 히트 싱크(heat sink)가 구성된다.
이때, 히트 싱크는 발열이 주로 발생되는 IGBT와 같은 스위칭 소자에 접촉되게 구성된다. 히트 싱크의 온도는 NTC(Negative Temperature Coefficient)라는 열감지 특성을 가진 저항을 히트 싱크와 접촉되게 한다. NTC는 온도가 높을수록 저항값이 낮아지는 특성이 있다.
MCU 제어부는 NTS의 특성을 활용하여 온도에 따른 저항 변화를 분배되는 전압값으로 정보를 받아들여 히트 싱크의 온도를 감시한다. 만일 히트 싱크의 온도가 위험하다고 판단되는 온도에 이르면, 제어부는 소프트웨어적으로 스위칭 소자의 스위칭 속도를 줄이거나, 동작을 정지시켜 위험 온도를 낮추도록 한다.
이처럼, 기존의 열 소손 방지 기능을 포함하는 전력 변환 장치는 소프트웨어적으로만 이상 히트 싱크 발열에 대응하도록 구성한다. 이러한 소프트웨어의 대응 방식은 동작하던 스위칭 소자의 스위칭 속도를 낮추거나 정지시켜 발열 위험에 대응한다.
그러나 소프트웨어의 대응 방식을 통해 동작하던 스위칭 소자의 스위칭 속도를 낮추거나 정지시키는 방식은 전력 변환 장치의 성능이 정지 또는 낮아지도록 하는 방식이다. 즉, 기존의 소프트웨어의 대응 방식은 발명을 낮추기 위해 전력 변환 장치의 성능 및 능력을 낮추게 되는 문제점이 있다.
본 발명의 목적은 게이트 저항 값 가변을 통해 하드웨어적으로 발열을 대응하되 스위칭 속도에는 문제가 없도록 하여 발열 제안으로 인한 스위칭 성능 저하를 최소화하는 열 소손 방지 기능을 포함하는 전력 변환 장치를 제공하는 것이다.
또한 본 발명의 목적은 기존 전력 변환 장치에 사용되는 열 소손 방지 회로에 단순한 반도체 소자 회로를 구성함으로써, 추가 비용 최소화 및 회로 수정 최소의 수준으로 개선할 수 있는 열 소손 방지 기능을 포함하는 전력 변환 장치를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치는 본 발명의 구성은 히트 싱크 온도에 의해 출력된 전압 값을 비교부에서 회로적으로 일정 이상의 온도인지 아닌지를 판단하고, 위험 온도에 이르면 스위칭 소자(IGBT)의 게이트 저항 값을 조정할 수 있다.
또한 본 발명에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치는 다수의 스위칭 소자를 포함하는 인버터 모듈; 상기 인버터 모듈을 구동하는 구동 신호를 인가하는 인버터 제어부; 상기 인버터 모듈 측에 위치하여 상기 인버터 모듈의 온도에 따라 가변하는 전압을 출력하는 서미스터; 및 상기 인버터 모듈과 상기 인버터 제어부 사이에 위치하여, 상기 서미스터에서 출력된 전압 값에 따라 상기 인버터 제어부로부터 상기 인버터 모듈의 스위칭 소자 게이트 단으로 전달되는 구동 신호의 경로에 위치하는 게이트 저항 값을 가변하는 게이트 저항 제어부를 포함할 수 있다.
본 발명에 따는 열 소손 방지 기능을 포함하는 전력 변환 장치는 게이트 저항 값 가변을 통해 하드웨어적으로 발열을 대응하되 스위칭 속도에는 문제가 없도록 하여 발열 제안으로 인한 스위칭 성능을 최대한 발휘하도록 할 수 있다.
또한, 본 발명에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치는 기존 전력 변환 장치에 사용되는 열 소손 방지 회로에 단순한 반도체 소자 회로를 구성함으로써, 추가 비용 최소화 및 회로 수정 최소의 수준으로 개선할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명의 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치를 나타낸 블록도이다.
도 2는 본 발명의 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치를 나타낸 회로도이다.
도 3은 본 발명의 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치에서 비교부 및 게이트 저항 제어부의 구성을 상세히 나타낸 회로도이다.
도 4는 본 발명의 실시예에 따른 전력 변환 장치에서 인버터 모듈(140)의 스위칭 소자(IGBT) 게이트 저항에 따른 발열 관계를 나타낸 그래프이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다.
이하에서는, 본 발명의 몇몇 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치를 설명하도록 한다.
도 1은 본 발명의 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치를 나타낸 블록도이고, 도 2는 본 발명의 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치를 나타낸 회로도이다. 도 1 및 도 2에 도시된 열 소손 방지 기능을 포함하는 전력 변환 장치(100)는 일 실시예에 따른 것이고, 그 구성요소들이 도 1 및 도2에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 일부 구성요소가 부가, 변경 또는 삭제될 수 있다.
도 1 및 도 2를 참조하면, 본 발명의 전력 변환 장치(100)는 교류 전원(10)을 정류하는 정류부(110), 정류부(110)에서 정류된 DC 전압을 승/강압하거나 역률을 제어하는 컨버터(120), 컨버터(120)를 제어하는 컨버터 제어부(130), 삼상 교류 전류를 출력하는 인버터(140), 인버터(140)를 제어하는 인버터 제어부(150)와, 그리고 컨버터(120)와 인버터(140) 사이에서 상기 인버터 모듈에 전력을 공급하는 DC-링크(DC-link) 커패시터(C)를 포함할 수 있다.
이러한 인버터(140)는 삼상 교류 전류를 출력하며, 이러한 출력 전류는 모터(200)에 공급된다. 여기서, 모터(200)는 공기 조화기를 구동하는 압축기 모터일 수 있다. 이하, 모터(200)는 공기 조화기를 구동하는 압축기 모터이고, 전력 변환 장치(100)는 이러한 압축기 모터를 구동하는 모터 구동장치인 것을 예로 설명한다.
그러나 모터(200)는 압축기 모터에 제한되지 않으며, 주파수 가변된 교류 전압을 이용하는 다양한 응용제품, 예를 들어, 냉장고, 세탁기, 전동차, 자동차, 청소기 등의 교류 모터에 이용될 수 있다.
한편, 전력 변환 장치(100)는, DC단 전압 검출부(B), 입력 전압 검출부(A), 입력 전류 검출부(D), 출력 전류 검출부(E)를 더 포함할 수 있다. 그리고 전력 변환 장치(100)는, 계통으로부터의 교류 전원을 공급받아, 전력 변환하여, 모터(200)에 변환된 전력을 공급한다.
컨버터(120)는, 입력 교류 전원(10)을 직류 전원으로 변환한다. 이러한 컨버터(120)는 역률 제어(PFC(power factor control))로 작동하는 직류-직류(DC-DC) 컨버터를 이용할 수 있다. 또한, 이러한 직류-직류(DC-DC) 컨버터는 승압 컨버터(boost converter)를 이용할 수 있다. 경우에 따라, 컨버터(120)는 정류부(110)를 포함하는 개념일 수 있다. 이하, 컨버터(120)는 승압 컨버터를 이용하는 예를 들어 설명한다.
정류부(110)는, 단상 교류 전원(10)을 입력 받아 정류하고, 이와 같이 정류된 전원을 컨버터(120) 측으로 출력한다. 이를 위해, 정류부(110)는 브리지 다이오드를 이용한 전파 정류 회로를 이용할 수 있다.
이와 같이, 컨버터(120)는 정류부(110)에서 정류된 전압을 승압 및 평활하는 과정에서 역률 개선 동작을 행할 수 있다.
이러한 컨버터(120)는, 정류부(110)에 연결되는 인덕터(L1), 이 인덕터(L1)에 연결되는 스위칭 소자(Q1), 이러한 스위칭 소자(Q1)와 병렬로 연결되는 커패시터(C), 및 스위칭 소자(Q1)와 DC-링크 커패시터(C) 사이에 연결되는 다이오드(D1)를 포함할 수 있다.
승압 컨버터(120)는 입력전압보다 높은 출력전압을 얻을 수 있는 컨버터로서, 스위칭 소자(Q1)가 도통되면 다이오드(D1)가 차단되면서 인덕터(L1)에 에너지가 저장되며, DC-링크 커패시터(C)에 저장되어 있던 전하가 방전하면서 출력단에 출력전압을 발생시킨다. 또한, 승압 컨버터(120)는 스위칭 소자(Q1)가 차단되면 스위칭 소자(Q1) 도통 시 인덕터(L1)에 저장되어 있던 에너지가 더해져서 출력단으로 전달된다.
여기서, 스위칭 소자(Q1)는 별도의 PWM(pulse width modulation) 신호에 의하여 스위칭 동작을 할 수 있다. 즉, 스위칭 소자(Q1)는 컨버터 제어부(130)에서 전달되는 PWM 신호가 스위칭 소자(Q1)의 베이스(base; 또는 게이트) 단에 연결되어, 이 PWM 신호에 의하여 스위칭 동작을 할 수 있다.
컨버터 제어부(130)는 스위칭 소자(Q1)의 게이트 단에 PWM 신호를 전달하는 게이트 구동부(gate driver)와, 이러한 게이트 구동부에 구동 신호를 전달하는 제어부를 포함한 구성일 수 있다.
이러한 스위칭 소자(Q1)는, 전력 트랜지스터를 이용할 수 있으며, 예를 들어, 절연 게이트 바이폴라 트랜지스터(insulated gate bipolar mode transistor; IGBT)를 이용할 수 있다. IGBT는 전력 MOSFET(metal oxide semi-conductor field effect transistor)과 바이폴라 트랜지스터(bipolar transistor)의 구조를 가지는 스위칭(switching) 소자로서, 구동전력이 작고, 고속 스위칭, 고내압화, 고전류 밀도화가 가능한 소자이다.
이와 같이, 컨버터 제어부(130)는 컨버터(120) 내의 스위칭 소자(Q1)의 턴 온 타이밍을 제어할 수 있다. 이에 따라, 스위칭 소자(Q1)의 턴 온 타이밍을 위한 컨버터 제어 신호(Sc)를 출력할 수 있다.
이를 위해, 컨버터 제어부(130)는 입력 전압 검출부(A)와 입력 전류 검출부(D)로부터 각각, 입력 전압(Vs)과, 입력 전류(Is)를 수신할 수 있다. 경우에 따라, 이러한 컨버터(120) 및 컨버터 제어부(130)는 생략될 수 있다. 즉, 정류부(110)를 거친 출력 전압이 컨버터(120)를 거치지 않고 DC-링크 커패시터(C)에 충전되거나 인버터(140)를 구동할 수 있다.
입력 전압 검출부(A)는 입력 교류 전원(10)으로부터의 입력 전압(Vs)을 검출할 수 있다. 예를 들어, 정류부(110) 전단에 위치할 수 있다.
입력 전압 검출부(A)는 전압 검출을 위해, 저항 소자, OP AMP 등을 포함할 수 있다. 검출된 입력 전압(Vs)은, 펄스 형태의 이산 신호(discrete signal)로서, 컨버터 제어 신호(Sc)의 생성을 위해, 컨버터 제어부(130)에 인가될 수 있다.
다음으로, 입력 전류 검출부(D)는 입력 교류 전원(10)으로부터의 입력 전류(Is)를 검출할 수 있다. 구체적으로, 정류부(110) 전단에 위치할 수 있다.
입력 전류 검출부(D)는 전류 검출을 위해, 전류센서, CT(current transformer), 션트 저항 등을 포함할 수 있다. 검출된 입력 전압(Is)은, 펄스 형태의 이산 신호(discrete signal)로서, 컨버터 제어 신호(Sc)의 생성을 위해 컨버터 제어부(130)에 인가될 수 있다.
DC 전압 검출부(B)는 DC-링크 커패시터(C)의 맥동하는 전압(Vdc)을 검출한다. 이러한 전원 검출을 위해, 저항소자, OP AMP 등이 사용될 수 있다. 검출된 DC-링크 커패시터(C)의 전압(Vdc)은, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(150)에 인가될 수 있으며, DC-링크 커패시터(C)의 직류 전압(Vdc)에 기초하여 인버터 제어신호(Si)가 생성될 수 있다.
한편, 도면과 달리, 검출되는 DC 전압은, 컨버터 제어부(130)에 인가되어, 컨버터 제어신호(Sc)의 생성에 사용될 수도 있다.
인버터(140)는, 복수 개의 인버터 스위칭 소자(Qa, Qb, Qc, Qa', Qb', Qc')를 구비하고, 스위칭 소자의 온/오프 동작에 의해 평활된 직류 전원(Vdc)을 소정 주파수의 삼상 교류 전원으로 변환하여, 삼상 모터(200)에 출력할 수 있다.
구체적으로, 인버터(140)는 각각 서로 직렬 연결되는 상측 스위칭 소자(Qa, Qb, Qc) 및 하측 스위칭 소자(Qa', Qb', Qc')가 한 쌍이 되며, 총 세 쌍의 상, 하측 스위칭 소자가 서로 병렬로 연결될 수 있다.
컨버터(120)와 마찬가지로, 인버터의 스위칭 소자(Qa, Qb, Qc, Qa', Qb', Qc')는, 전력 트랜지스터를 이용할 수 있으며, 예를 들어, 절연 게이트 바이폴라 트랜지스터(insulated gate bipolar mode transistor; IGBT)를 이용할 수 있다.
이와 같은 인버터(140)는 삼상 모터를 구동하는 경우에 6개의 스위칭 소자(Qa, Qb, Qc, Qa', Qb', Qc')가 하나의 회로 기판에 모듈 형태로 구현될 수 있다. 이하, 인버터(140)는 인버터 모듈(140)을 의미할 수 있다.
이때, 이러한 인버터 모듈(140)을 구성하는 회로 기판에는 회로 기판 또는 스위칭 소자의 온도를 측정하기 위한 서미스터(NTC)(180)가 구비될 수 있다. 이때, 서미스터(NTC)는, 인버터 모듈(140)이 구비되는 회로 기판에 설치될 수 있다.
서미스터(NTC)(180)는 온도 값을 전압 값으로 출력한다. 즉, 서미스터(NTC)(180)는 인버터 모듈(140)의 온도에 해당하는 전압 값을 출력하며, 이 전압 값을 이용하여 인버터 모듈(140)의 온도를 측정할 수 있다.
이와 같이, 서미스터(NTC)(180)는 인버터 모듈(140) 측에 위치하여 인버터 모듈(140)의 온도에 따라 가변하는 전압을 출력한다.
그리고 인버터 모듈(140)과 인버터 제어부(150) 사이에는 서미스터(NTC)(180)에서 출력된 전압 값에 따라 인버터 제어부(150)로부터 인버터 모듈(140)의 스위칭 소자(IGBT)의 게이트 단으로 전달되는 구동 신호(PWM)의 경로에 위치하는 게이트 저항 값을 가변하는 게이트 저항 제어부(170)가 구비될 수 있다.
즉, 저항 제어부(170)는 인버터 모듈(140) 측에 위치하여 인버터 모듈(140)의 온도에 따라 가변하는 전압을 출력하는 서미스터(NTC)(180) 및 인버터 모듈(140)과 인버터 제어부(150) 사이에 위치하여, 인버터 모듈(140)의 온도가 일정 값 이상일 경우에 인버터 제어부(150)로부터 인버터 모듈(140)의 스위칭 소자(Qa, Qb, Qc, Qa', Qb', Qc')의 게이트 단으로 전달되는 경로에 위치하는 게이트 저항 값을 가변하는 게이트 저항 제어부(170)가 구성될 수 있다.
이러한 게이트 저항 제어부(170)의 구성은 도 3을 참조하여 아래에서 자세히 후술한다.
인버터 제어부(150)는, 인버터(140)의 스위칭 동작을 제어하기 위해, 인버터 제어신호(Si)를 인버터(140)에 출력할 수 있다. 이때, 인버터 제어부(150)에서 출력되는 인버터 제어신호(Si)는 게이트 저항 제어부(170)를 거쳐 가변된 게이트 저항 값으로 스위칭 소자(Qa, Qb, Qc, Qa', Qb', Qc')의 게이트 단으로 출력할 수 있다.
인버터 제어신호(Si)는 펄스폭 변조 방식(PWM)의 스위칭 제어신호로서, 모터(200)에 흐르는 출력전류(io) 및 DC-링크 커패시터(C) 양단인 DC-링크 전압(Vdc)에 기초하여 생성되어 출력될 수 있다. 이때의 출력전류(io)는, 출력전류 검출부(E)로부터 검출될 수 있으며, DC-링크 전압(Vdc)은 DC-링크 전압 검출부(B)로부터 검출될 수 있다.
경우에 따라, 인버터 제어부(150)는 인버터(140)에 포함되는 스위칭 소자(Qa, Qb, Qc, Qa', Qb', Qc')의 게이트 단에 PWM 신호를 전달하는 게이트 구동부(gate driver)와, 이러한 게이트 구동부에 구동 신호를 전달하는 제어부를 포함할 수 있다.
출력전류 검출부(E)는, 인버터(140)와 모터(200) 사이에 흐르는 출력전류(io)를 검출할 수 있다. 즉, 모터(200)에 흐르는 전류를 검출한다. 출력전류 검출부(E)는 각 상의 출력 전류(ia, ib, ic)를 모두 검출할 수 있으며, 또는 삼상 평형을 이용하여 두 상의 출력 전류를 검출할 수도 있다.
출력전류 검출부(E)는 인버터(140)와 모터(200) 사이에 위치할 수 있으며, 전류 검출을 위해, CT(current transformer), 션트 저항 등이 사용될 수 있다.
도 3은 본 발명의 실시예에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치에서 비교부 및 게이트 저항 제어부의 구성을 상세히 나타낸 회로도이다.
도 3에서는 다수의 스위칭 소자가 모듈화되어 구비되는 인버터 모듈(140)이 도시되고, 이후의 모터(200), 정류부(110), 역률 개선 동작을 수행하는 컨버터(120), 컨버터 제어부(130) 및 DC-링크 커패시터(C)(도 1 및 도 2 참조)는 생략되어 있으며, 이러한 구성은 위에서 설명한 바와 동일하므로 중복되는 설명은 생략한다.
그리고, 도 3에서는 비교부(160) 및 게이트 저항 제어부(17)의 세부 구성이 도시되고 있다.
도 3을 참조하여 설명하면, 본 발명의 전력 변환 장치(100)는 서미스터(NTC)(80)에서 검출되는 인버터 모듈(140)의 온도에 해당하는 전압 값을 노드 A에서 검출한다. 서미스터(NTC)(80)는 히트 싱크 온도에 의해 저항 값이 결정되고, 이에 따라 노드 A에 해당 분배된 전압이 전달된다.
일례로, 노드 A는 인버터 모듈(140)의 내부 온도가 95
Figure pat00001
가 되면 서미스터(NTC) 설정저항(분배저항; R1)을 통해 3.16V의 전압 값을 검출할 수 있다.
그리고 노드 A에서 검출된 전압 값을 비교부(160)를 통해 온도 판단 레벨의 전압 값과 비교한다. 즉, 노드 A에서 전달된 전압 값은 비교기(160)의 연산 증폭기(OP-amp)의 +단에 전달되고, 이 값은 -단에 전달되고 있는 설계된 전압 값과 비교된다.
이어서 게이트 저항 제어부(170)는 비교부(160)의 출력 레벨에 따라 인버터 모듈(140)의 스위칭 소자(IGBT) 게이트 단으로 전달되는 경로에 위치하는 게이트 저항 값을 가변할 수 있다.
이때, 비교부(160)는 노드 A에서 검출된 전압 값을 온도 판단 레벨의 전압과 비교하여 하이(high) 또는 로우(low) 신호를 출력하는 연산 증폭기(OP-amp)를 포함한다.
예로서, 노드 A에서 3.16V의 전압 값 이상이 검출된 경우, 온도 판단 레벨의 전압은 분배저항(R3, R4)을 통하여 3.16V로 설정될 수 있다. 즉, 공급전압 5V가 R3/(R2 + R3)로 분배되면 R2는 2.2kΩ, R3는 3.8kΩ일 경우, 연산 증폭기(OP-amp)는 3.16V로 하이 신호가 출력된다. 한편, 노드 A에서 3.16V의 전압 값 미만이 검출된 경우, 연산 증폭기(OP-amp)는 로우 신호가 출력된다.
그리고 게이트 저항 제어부(170)는 서로 병렬로 연결된 제1 저항(R1) 및 제2 저항(R2)과, 연산 증폭기(OP-amp)의 출력 신호가 게이트 단에 입력되고, 제2 저항(R2)과 직렬로 연결되는 트랜지스터(TR)를 포함한다.
따라서, 게이트 저항 제어부(170)는 연산 증폭기(OP-amp)의 출력이 하이 신호인 경우, 트랜지스터(TR)의 게이트에 하이 신호가 전달되어 오픈 상태가 되고, 인버터 모듈(140)의 스위칭 소자(IGBT) 게이트 단 저항은 R1과 R2의 병렬값(R1xR2)/(R1+R2)으로 인버터 제어부(150)의 제어신호를 받고 동작한다.
한편, 게이트 저항 제어부(170)는 연산 증폭기(OP-amp)의 출력이 로우 신호인 경우, 트랜지스터(TR)의 게이트에 로우 신호가 전달되어 차단된 상태가 되고, 인버터 모듈(140)의 스위칭 소자(IGBT) 게이트 단 저항은 R1의 값으로 인버터 제어부(150)의 제어신호를 받고 동작한다.
이처럼, 게이트 저항 제어부(170)는 출력 전압 값이 온도 판단 레벨 이상이 되면 하이 신호를 출력하여 트랜지스터(TR)의 게이트에 하이 신호가 인가되어 트랜지스터(Q2)가 오픈된 스위치로 작동하여 구동 신호(PWM)의 경로의 게이트 단 저항을 R1과 R2의 병렬값(R1xR2)/(R1+R2)으로 가변할 수 있다.
또한, 게이트 저항 제어부(170)는 출력 전압 값이 온도 판단 레벨 미만이 되면 로우 신호를 출력하여 트랜지스터(TR)의 게이트에 로우 신호가 인가되어 트랜지스터(Q2)가 차단된 스위치로 작동하여 구동 신호(PWM)의 경로의 게이트 단 저항을 R1으로 가변할 수 있다.
이때, 트랜지스터(TR)는 연산 증폭기(OP-amp)의 출력이 게이트 단에 연결되고 인버터 모듈(140)의 스위칭 소자로 전달되는 구동 신호(PWM)가 드레인과 소스를 통하여 스위칭 소자에 연결될 수 있다. 이때, 트랜지스터(TR)는 BJT 트랜지스터로 구성될 수 있음은 당연할 것이다.
즉, 구동 신호(PWM)가 전달되는 부분이 트랜지스터(Q2)의 드레인에 연결되고 트랜지스터(Q2)의 소스는 인버터 모듈(140)의 스위칭 소자(IGBT) 게이트 단에 연결될 수 있다.
도 4는 본 발명의 실시예에 따른 전력 변환 장치에서 인버터 모듈(140)의 스위칭 소자(IGBT) 게이트 저항에 따른 발열 관계를 나타낸 그래프이다.
도 4(a)(b)에서 도시하고 있는 것과 같이, 스위칭 소자(IGBT)의 게이트 저항 값을 낮게 함으로써, 스위칭 소자(IGBT)의 게이트 온/오프에 따른 전력 손실 감소에 따른 발열을 감소시킬 수 있다.
좀 더 상세히 설명하면, 스위칭 소자의 게이트 저항은 온/오프 시 발생되는 리커버리 전류에 의한 전력 손실이 발생되고 이의 대부분은 발열로 나타난다.
도 4(a)는 스위칭 소자의 게이트 저항 값이 47Ω인 경우이고, 도 4(b)는 스위칭 소자의 게이트 저항 값이 22Ω인 경우에 각각 발생되는 리커버리 전류(190)의 시간을 나타내고 있다.
도 4(a)에서 도시하고 있는 것과 같이, 게이트 저항 값이 47Ω인 경우 게이트 전압은 발생되지 않지만 오프 시간(리커버리 전류)이 약 280ns 걸린다. 이에 반해, 도 4(b)에서 도시하고 있는 것과 같이, 게이트 저항 값이 22Ω인 경우 오프 시간(리커버리 전류)은 약 150ns로 짧아진 것을 알 수 있다.
이처럼, 저항 값이 낮으면 리커버리 전류는 짧은 시간 흐르게 되어 손실을 낮게 할 수 있다.
다만, 부작용(side effect)으로 낮은 게이트 전압은 순간 서지(surge) 전압/전류를 높이는 경향이 있다. 따라서, 스위칭 소자의 게이트 저항 값을 낮게 가변하는 것은 정상상태가 아닌 히트 싱크 과열 상태인 가정(특수 상태)에서만 동작 하도록 하는 것이 바람직하다.
이와 같이 구성된 본 발명에 따른 열 소손 방지 기능을 포함하는 전력 변환 장치의 동작을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다. 도 1 내지 도 3과 동일한 참조부호는 동일한 기능을 수행하는 동일한 부재를 지칭한다.
도 1 내지 도 3을 다시 참조하여 설명하면, 서미스터(NTC)(80)는 히트 싱크 온도에 의해 저항 값이 결정되고, 이에 따라 노드 A에 해당 분배된 전압이 전달된다.
노드 A에 전달된 전압 값은 연산 증폭기(OP-amp)의 + 단에 전달 되고, + 단에 전달되는 전압 값은 - 단에 전달되고 있는 미리 설계된 전압 값과 비교된다.
이때, 비교부(160)는 노드 A에서 검출된 전압 값과 미리 설정된 온도 판단 레벨의 전압 값과 비교하여 히트 싱크의 온도 상태가 정상 온도일 경우는 로우 신호를 출력한다. 또한, 비교부(160)는 노드 A에서 검출된 전압 값과 미리 설정된 온도 판단 레벨의 전압 값과 비교하여 히트 싱크의 온도 상태가 이상 온도일 경우는 하이 신호를 출력한다.
먼저, 히트 싱크의 온도 상태가 정상 온도인 경우를 설명하면 다음과 같다.
노드 A의 전압 값과 설계된 전압 값의 비교 결과, 일반 온도 상태는 설계된 전압보다 작은 전압 값이 노드 A에 전달되어 연산 증폭기(Op-amp)의 출력은 로우 신호(0V)이 된다.
출력된 로우 신호(0V)는 트랜지스터(TR)의 게이트 단에 전달되어, 트랜지스터(TR)가 오픈 상태가 된다. 이에 따라, 스위칭 소자(IGBT)의 게이트 저항은 제1 저항(R1)의 값으로 인버터 제어부(150)의 제어 신호를 받아 동작한다.
한편, 히트 싱크의 온도 상태가 이상 온도인 경우를 설명하면 다음과 같다.
노드 A의 전압 값과 설계된 전압 값이 비교 결과, 이상 온도 상태는 설계된 전압보다 높은 전압 값이 노드 A에 전달되어 연산 증폭기(Op-amp)의 출력은 하이 신호(5V)이 된다.
출력된 하이 신호(5V)는 트랜지스터(TR)의 게이트 단에 전달되어, 트랜지스터(TR)가 차단 상태가 된다. 이에 따라, 스위칭 소자(IGBT)의 게이트 저항은 R1과 R2의 병렬 값(R1xR2)/(R1+R2)으로 인버터 제어부(150)의 제어 신호를 받아 동작한다.
이처럼, 히트 싱크가 이상 온도 상태일 때, 스위칭 소자(IGBT)의 게이트 저항을 낮은 저항 값으로 가변함으로써, 리커버리 전류가 짧은 시간 흐르게 되어 손실을 낮게 할 수 있다. 이는 스위칭 소자의 속도 및 성능은 유지하되 발열 특성은 개선되도록 하여 제품 성능을 최대한 발휘되도록 할 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.
100: 전력 변환 장치 110: 정류부
120: 컨버터 130: 컨버터 제어부
140: 인버터 150: 인버터 제어부
160: 비교부 170: 게이트 저항 제어부
180: NTC 190: 리커버리 전류
200: 모터

Claims (10)

  1. 다수의 스위칭 소자를 포함하는 인버터 모듈;
    상기 인버터 모듈을 구동하는 구동 신호를 인가하는 인버터 제어부;
    상기 인버터 모듈 측에 위치하여 상기 인버터 모듈의 온도에 따라 가변하는 전압을 출력하는 서미스터; 및
    상기 인버터 모듈과 상기 인버터 제어부 사이에 위치하여, 상기 서미스터에서 출력된 전압 값에 따라 상기 인버터 제어부로부터 상기 인버터 모듈의 스위칭 소자 게이트 단으로 전달되는 구동 신호의 경로에 위치하는 게이트 저항 값을 가변하는 게이트 저항 제어부를 포함하는 전력 변환 장치.
  2. 제1 항에 있어서,
    상기 전력 변환 장치는
    상기 서미스터에서 출력된 전압 값을 미리 설정된 온도 판단 레벨의 전압 값과 비교하여 하이(high) 또는 로우(low) 신호를 출력하는 비교부를 더 포함하는 전력 변환 장치.
  3. 제2 항에 있어서,
    상기 비교부는
    상기 서미스터에서 출력된 전압 값이 연산 증폭기(OP-amp)의 + 단에 전달 되고, + 단에 전달되는 전압 값은 - 단에 전달되고 있는 미리 설계된 전압 값과 비교되는 전력 변환 장치.
  4. 제3 항에 있어서,
    상기 비교부는 히트 싱크의 온도가 설계된 전압보다 작은 전압 값인 경우, 연산 증폭기(Op-amp)의 출력이 로우 신호인 것을 특징으로 하는 전력 변환 장치.
  5. 제3 항에 있어서,
    상기 비교부는 히트 싱크의 온도가 설계된 전압보다 높은 전압 값인 경우, 연산 증폭기(Op-amp)의 출력이 하이 신호인 것을 특징으로 하는 전력 변환 장치.
  6. 제2 항에 있어서,
    상기 게이트 저항 제어부는
    서로 병렬로 연결된 제1 저항(R1) 및 제2 저항(R2)과,
    상기 비교부의 출력 신호가 게이트 단에 입력되고, 상기 제2 저항(R2)과 직렬로 연결되는 트랜지스터(TR)를 포함하는 전력 변환 장치.
  7. 제6 항에 있어서,
    상기 게이트 저항 제어부는
    상기 비교부의 출력이 하이 신호인 경우, 상기 트랜지스터(TR)의 게이트에 하이 신호가 전달되어 오픈 상태가 되고, 상기 인버터 모듈의 스위칭 소자(IGBT) 게이트 단 저항은 R1과 R2의 병렬 값으로 상기 인버터 제어부의 제어신호를 받고 동작하는 전력 변환 장치.
  8. 제6 항에 있어서,
    상기 게이트 저항 제어부는
    상기 비교부의 출력이 로우 신호인 경우, 상기 트랜지스터(TR)의 게이트에 하이 신호가 전달되어 차단 상태가 되고, 상기 인버터 모듈의 스위칭 소자(IGBT) 게이트 단 저항은 R1의 저항 값으로 상기 인버터 제어부의 제어신호를 받고 동작하는 전력 변환 장치.
  9. 제1 항에 있어서,
    상기 서미스터는 상기 인버터 모듈의 회로 기판에 설치된 것을 전력 변환 장치.
  10. 제1 항에 있어서,
    교류 전원을 정류하는 정류부;
    상기 정류부에서 정류된 DC 전압을 승/강압하거나 역률을 제어하는 컨버터;
    상기 컨버터를 제어하는 컨버터 제어부; 및
    상기 컨버터와 인버터 사이에서 상기 인버터 모듈에 전력을 공급하는 DC-링크(DC-link) 커패시터(C)를 더 포함하는 전력 변환 장치.
KR1020190109320A 2019-09-04 2019-09-04 열 소손 방지 기능을 포함하는 전력 변환 장치 KR102362713B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190109320A KR102362713B1 (ko) 2019-09-04 2019-09-04 열 소손 방지 기능을 포함하는 전력 변환 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190109320A KR102362713B1 (ko) 2019-09-04 2019-09-04 열 소손 방지 기능을 포함하는 전력 변환 장치

Publications (2)

Publication Number Publication Date
KR20210028363A true KR20210028363A (ko) 2021-03-12
KR102362713B1 KR102362713B1 (ko) 2022-02-11

Family

ID=75177424

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190109320A KR102362713B1 (ko) 2019-09-04 2019-09-04 열 소손 방지 기능을 포함하는 전력 변환 장치

Country Status (1)

Country Link
KR (1) KR102362713B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337228A (zh) * 2021-10-25 2022-04-12 杭州先途电子有限公司 一种空调控制器
CN114362502A (zh) * 2021-10-25 2022-04-15 杭州先途电子有限公司 一种空调控制器
KR20230174022A (ko) 2022-06-20 2023-12-27 현대자동차주식회사 모터 구동 장치 및 모터 구동 장치의 소손을 완화하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119044A (ja) * 2000-10-12 2002-04-19 Fuji Electric Co Ltd 電力用半導体素子のゲート駆動回路
KR20180097357A (ko) * 2017-02-23 2018-08-31 엘지전자 주식회사 열 소손 방지 기능을 포함하는 전력 변환 장치 및 이를 포함하는 공기 조화기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119044A (ja) * 2000-10-12 2002-04-19 Fuji Electric Co Ltd 電力用半導体素子のゲート駆動回路
KR20180097357A (ko) * 2017-02-23 2018-08-31 엘지전자 주식회사 열 소손 방지 기능을 포함하는 전력 변환 장치 및 이를 포함하는 공기 조화기

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337228A (zh) * 2021-10-25 2022-04-12 杭州先途电子有限公司 一种空调控制器
CN114362502A (zh) * 2021-10-25 2022-04-15 杭州先途电子有限公司 一种空调控制器
CN114362502B (zh) * 2021-10-25 2024-03-12 杭州先途电子有限公司 一种空调控制器
CN114337228B (zh) * 2021-10-25 2024-03-29 杭州先途电子有限公司 一种空调控制器
KR20230174022A (ko) 2022-06-20 2023-12-27 현대자동차주식회사 모터 구동 장치 및 모터 구동 장치의 소손을 완화하는 방법

Also Published As

Publication number Publication date
KR102362713B1 (ko) 2022-02-11

Similar Documents

Publication Publication Date Title
KR102362713B1 (ko) 열 소손 방지 기능을 포함하는 전력 변환 장치
KR101887067B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
EP3396804A1 (en) Method and apparatus for detecting inter-phase short-circuit of three-phase motor and air conditioner including the same
KR102036115B1 (ko) 압축기 보호 기능을 가지는 공기 조화기
KR101911263B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102174638B1 (ko) 전력 변환 장치, 이를 포함하는 압축기 및 그 제어 방법
KR20180097357A (ko) 열 소손 방지 기능을 포함하는 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102043217B1 (ko) 전력 변환 장치, 이를 포함하는 공기 조화기 및 그 제어 방법
KR20180125690A (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102024602B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR101911259B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102122972B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102197864B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102189448B1 (ko) 하드웨어 고장 감지를 수행하는 전력 변환 장치
KR102287893B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102108071B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102024604B1 (ko) 전원 공급 장치 및 이를 포함하는 공기 조화기
KR101925036B1 (ko) 팬 모터 제어 장치 및 이를 포함하는 공기 조화기
KR102036113B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR101873764B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102036112B1 (ko) 전원 공급 장치 및 이를 포함하는 공기 조화기
KR102024603B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102160049B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR101978223B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102060069B1 (ko) 전력 변환 장치와 그 제어방법 및 전력 변환 장치를 포함하는 공기 조화기

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant