KR20210025927A - System and Method for Predicting Indoor Condensation Occurence Time - Google Patents
System and Method for Predicting Indoor Condensation Occurence Time Download PDFInfo
- Publication number
- KR20210025927A KR20210025927A KR1020190105963A KR20190105963A KR20210025927A KR 20210025927 A KR20210025927 A KR 20210025927A KR 1020190105963 A KR1020190105963 A KR 1020190105963A KR 20190105963 A KR20190105963 A KR 20190105963A KR 20210025927 A KR20210025927 A KR 20210025927A
- Authority
- KR
- South Korea
- Prior art keywords
- temperature
- condensation
- window
- surface temperature
- time
- Prior art date
Links
- 230000005494 condensation Effects 0.000 title claims abstract description 151
- 238000009833 condensation Methods 0.000 title claims abstract description 151
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000008859 change Effects 0.000 claims abstract description 18
- 230000036962 time dependent Effects 0.000 claims abstract 2
- 238000010801 machine learning Methods 0.000 claims description 29
- 238000004891 communication Methods 0.000 claims description 19
- 238000012417 linear regression Methods 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000009423 ventilation Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 241000233866 Fungi Species 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/0001—Control or safety arrangements for ventilation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
- G01K1/143—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Primary Health Care (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
본 발명은 결로 예측 시스템에 관한 것으로서, 특히 실내 온도와 실외 온도의 온도 변화에 따라 결로가 발생할 표면의 표면 온도를 예측하는 모델링을 수행하고, 상기 예측된 표면 온도와 이슬점 온도의 시간에 따른 변화를 분석하여 실내 결로가 발생하는 시간을 계산하여 미리 알려주는 실내 결로 발생 시간을 예측하는 결로 예측 시스템 및 방법에 관한 것이다.The present invention relates to a condensation prediction system, and in particular, performs modeling for predicting the surface temperature of a surface where condensation occurs according to temperature changes of indoor and outdoor temperatures, and changes in the predicted surface temperature and dew point temperature over time. The present invention relates to a condensation prediction system and method for predicting indoor condensation occurrence time that is notified in advance by calculating the time when indoor condensation occurs by analyzing.
결로는 공기 중의 수증기에 의해서 발생되는 일종의 습윤 상태를 말한다.Condensation refers to a kind of wet state caused by water vapor in the air.
실내 건축물에서의 결로는 지난 수십년 간 건축 분야에서 큰 문제 중 하나로 지속되었으며, 다양한 노력에 의해 결로에 의한 피해를 최소화하는데 노력했다.Condensation in indoor buildings has persisted as one of the major problems in the field of architecture for the past several decades, and various efforts have been made to minimize the damage caused by condensation.
실내 건축물은 결로가 생기면, 부투습성의 재료 표면에 물방울이 맺히고, 흡수성 물질에 습기가 차서 곰팡이류, 각종 균의 번식으로 인한 손상 및 불쾌한 냄새가 발생하게 되며, 변형에 의해 건물 재료와 구조체에 해를 끼치게 된다.In indoor buildings, when condensation occurs, water droplets form on the surface of impermeable materials, and moisture in the absorbent material causes damage and unpleasant odor due to the propagation of molds and various fungi. It will hurt.
곰팡이는 균사로 되어 있는 사상균으로 인체 흡입시 호흡기 질환을 유발시킬 수 있으며, 거주 환경이 악화되는 문제점이 발생할 수 있다.Fungi are filamentous fungi composed of hyphae and can cause respiratory diseases when inhaled by the human body, and a problem of deteriorating the living environment may occur.
결로에 관한 해결 방안은 건축물의 내장재와 외장재를 결로에 강인한 재료를 고려하여 건축을 수행하는 것이다.The solution to condensation is to perform construction by considering the materials that are strong against condensation in the interior and exterior materials of the building.
그러나 실내 건축물에서의 결로는 최적의 재료 및 구조물을 이용하여 건축 설계를 수행한다 하더라도 결로가 입주 및 생활 전반에 걸쳐 실내와 실외의 온도차에 의한 실내 습도 변화에 의해 발생하기 때문에 근본적으로 결로 문제의 해결책이 되지 못하고 있다.However, condensation in indoor buildings is fundamentally a solution to the condensation problem because condensation occurs due to changes in indoor humidity due to the temperature difference between indoor and outdoor throughout the occupancy and life even if architectural design is performed using the optimal materials and structures. This is not being possible.
결로 문제가 어려운 이유는 각 건축물마다 사용된 재료가 다르고, 구조물의 크기가 다르며, 이와 더불어 거주자의 생활 패턴이 다르기 때문에 이에 대한 포괄적인 솔루션을 찾기가 어렵다.The reason why the condensation problem is difficult is that the materials used for each building are different, the size of the structure is different, and the living patterns of the residents are different, so it is difficult to find a comprehensive solution for this.
이와 같은 문제점을 해결하기 위하여, 본 발명은 실내 온도와 실외 온도의 온도 변화에 따라 결로가 발생할 표면의 표면 온도를 예측하는 모델링을 수행하고, 상기 예측된 표면 온도와 이슬점 온도의 시간에 따른 변화를 분석하여 실내 결로가 발생하는 시간을 계산하여 미리 알려주는 실내 결로 발생 시간을 예측하는 결로 예측 시스템 및 방법을 제공하는데 그 목적이 있다.In order to solve such a problem, the present invention performs modeling to predict the surface temperature of the surface where condensation occurs according to the temperature change of the indoor temperature and the outdoor temperature, and changes the predicted surface temperature and the dew point temperature over time. An object of the present invention is to provide a condensation prediction system and method for predicting indoor condensation occurrence time that is notified in advance by calculating the time when indoor condensation occurs through analysis.
상기 목적을 달성하기 위한 본 발명의 특징에 따른 실내 결로 발생 시간을 예측하는 시스템은,A system for predicting the occurrence time of indoor condensation according to a feature of the present invention for achieving the above object,
결로가 발생하는 창문의 내측면에 부착된 제1 센서노드;A first sensor node attached to the inner surface of the window where condensation occurs;
실내의 일측에 부착된 제2 센서노드; 및A second sensor node attached to one side of the room; And
상기 제1 센서노드로부터 창문 내측면의 표면 온도를 무선 통신으로 수신하고, 상기 제2 센서노드로부터 실내 온도와 습도 정보를 무선 통신으로 수신하고, 외부의 날씨 정보 서버로부터 실외 온도를 수신하고, 상기 표면 온도와 상기 습도 정보를 하기의 수학식 1과 수학식 2의 바렌부르크 공식(Barenbrug Formula)을 이용하여 이슬점 온도를 계산하며, 상기 창문 내측면의 표면 온도와 상기 계산한 이슬점 온도의 시간에 따른 변화 패턴을 모니터링하여 미래에 발생할 결로 발생의 시간을 계산하여 알리는 결로 예측부를 구비한 클라이언트 서버를 포함하는 것을 특징으로 하한다.Receiving the surface temperature of the inner surface of the window from the first sensor node by wireless communication, receiving indoor temperature and humidity information from the second sensor node by wireless communication, receiving the outdoor temperature from an external weather information server, the The dew point temperature is calculated using the Barenbrug Formula of
[수학식 1][Equation 1]
[수학식 2][Equation 2]
여기서, a는 17.27℃, b는 237.3℃, T는 창문 내측면의 표면 온도, 0℃ < T < 60℃, RH는 상기 제2 센서노드에서 측정된 실내 공간의 실내 습도, 1% < RH < 100%, Td는 이슬점 온도임.Where a is 17.27°C, b is 237.3°C, T is the surface temperature of the inner side of the window, 0°C <T <60°C, RH is the indoor humidity of the indoor space measured by the second sensor node, 1% <RH < 100%, Td is the dew point temperature.
결로 예측부는 시간(i)에 따른 창문 내측면의 표면 온도()에서 두 점 을 이용한 제1 직선방정식(Tangent of Tsurf)을 기설정된 시간 단위마다 주기적으로 생성하고, 시간(i)에 따른 이슬점 온도()에서 두 점 을 이용한 제2 직선방정식(Tangent of Tdew)을 기설정된 시간 단위마다 주기적으로 생성하는 것을 특징으로 한다.The condensation prediction part is the surface temperature of the inner side of the window over time (i) ) In two points A first linear equation using (Tangent of Tsurf) is periodically generated for each preset time unit, and the dew point temperature ( ) In two points It is characterized in that the second linear equation (Tangent of Tdew) is periodically generated for each preset time unit.
결로 예측부는 상기 각각의 제1 직선방정식으로부터 얻은 제1 직선과, 상기 각각의 제2 직선방정식으로부터 얻은 제2 직선의 시간에 따른 변화 패턴을 분석하며, 상기 제1 직선과 상기 제2 직선이 만나는 교차점을 결로 발생 지점으로 판단하고, 현재 시간에서 상기 결로 발생 지점까지 소요되는 결로 예측 시간()을 계산하는 것을 특징으로 한다.The condensation prediction unit analyzes a change pattern over time of a first straight line obtained from each of the first linear equations and a second straight line obtained from each of the second linear equations, and the first straight line and the second straight line meet. The intersection is determined as the point where condensation occurs, and the estimated condensation time from the current time to the point where condensation occurs ( Characterized in that it calculates ).
하나 이상의 센서노드 및 클라이언트 서버로 이루어진 실내 결로 발생 시간을 예측하는 방법에 있어서,In the method for predicting the occurrence time of indoor condensation consisting of one or more sensor nodes and a client server,
상기 클라이언트 서버는 결로가 발생하는 창문의 내측면에 부착된 제1 센서노드로부터 창문 내측면의 표면 온도를 무선 통신으로 수신하고, 실내의 일측에 부착된 제2 센서노드로부터 실내 온도와 습도 정보를 무선 통신으로 수신하고, 외부의 날씨 정보 서버로부터 실외 온도를 수신하는 단계;The client server receives the surface temperature of the inner side of the window from a first sensor node attached to the inner side of the window where condensation occurs, and receives room temperature and humidity information from the second sensor node attached to one side of the room. Receiving through wireless communication and receiving an outdoor temperature from an external weather information server;
상기 클라이언트 서버는 상기 표면 온도와 상기 습도 정보를 하기의 수학식 4와 수학식 5의 바렌부르크 공식(Barenbrug Formula)을 이용하여 이슬점 온도를 계산하며, 상기 창문 내측면의 표면 온도와 상기 계산한 이슬점 온도의 시간에 따른 변화 패턴을 모니터링하여 미래에 발생할 결로 발생의 시간을 계산하여 알리는 단계를 포함하는 것을 특징으로 한다.The client server calculates the dew point temperature by using the Barenbrug Formula of
[수학식 4][Equation 4]
[수학식 5][Equation 5]
여기서, a는 17.27℃, b는 237.3℃, T는 창문 내측면의 표면 온도, 0℃ < T < 60℃, RH는 상기 제2 센서노드에서 측정된 실내 공간의 실내 습도, 1% < RH < 100%, Td는 이슬점 온도임.Where a is 17.27°C, b is 237.3°C, T is the surface temperature of the inner side of the window, 0°C <T <60°C, RH is the indoor humidity of the indoor space measured by the second sensor node, 1% <RH < 100%, Td is the dew point temperature.
전술한 구성에 의하여, 본 발명은 실내 온도와 실외 온도의 온도 변화에 따라 결로가 발생할 표면의 표면 온도 추정치를 예측하는 모델링을 수행하고, 상기 예측된 표면 온도 추정치와 이슬점 온도의 시간에 따른 변화를 분석하여 결로가 발생하는 결로 예측 시간을 계산하여 알려줌으로써 사전 환기 작업을 통해 결로를 사전에 예방할 수 있는 효과가 있다.According to the above-described configuration, the present invention performs modeling for predicting an estimate of the surface temperature of a surface where condensation occurs according to temperature changes of the indoor temperature and the outdoor temperature, and changes the predicted surface temperature estimate and the dew point temperature over time. It is effective to prevent condensation in advance through pre-ventilation work by analyzing and calculating the predicted time for condensation to occur.
도 1은 본 발명의 실시예에 따른 실내 결로 발생을 예측하는 결로 예측 시스템의 전체 구성을 나타낸 도면이다.
도 2는 본 발명의 실시예에 따른 제1 센서노드, 제2 센서노드 및 결로 예측 시스템의 내부 구성을 간략하게 나타낸 블록도이다.
도 3은 본 발명이 실시예에 따른 제1 센서노드로부터 측정된 창문 내측면의 측정 표면 온도(Tsurf-real)와 창문 내측면의 표면 온도 추정치(Tsurf-pred)를 6일 동안 비교한 도면이다.
도 4는 본 발명의 실시예에 따른 결로 예측 시간을 계산하는 알고리즘을 설명하기 위한 도면이다.
도 5는 본 발명의 실시예에 따른 실내의 결로 예측 시간을 추정하기 위한 알고리즘을 이용하여 실제 결로가 발생하는 창문 내측면의 표면 온도 추정치와 이슬점 온도의 변화와 결로 예측 시간을 나타낸 그래프이다.1 is a diagram showing the overall configuration of a condensation prediction system for predicting the occurrence of indoor condensation according to an embodiment of the present invention.
2 is a block diagram schematically showing an internal configuration of a first sensor node, a second sensor node, and a condensation prediction system according to an embodiment of the present invention.
FIG. 3 is a diagram comparing the measured surface temperature (Tsurf-real) of the inner side of the window measured from the first sensor node according to the present invention and the estimated surface temperature of the inner side of the window (Tsurf-pred) for 6 days. .
4 is a diagram illustrating an algorithm for calculating a condensation prediction time according to an embodiment of the present invention.
5 is a graph showing an estimate of a surface temperature of an inner surface of a window where condensation occurs, a change in a dew point temperature, and a condensation prediction time using an algorithm for estimating a prediction time of condensation indoors according to an embodiment of the present invention.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
기존 건축물의 경우 건축물의 내외장재에 관한 세부적인 사항을 고려하기 어렵고, 사용자의 생활 패턴에 따라 같은 집에서도 결로의 패턴이 달라지는 현상이 있다.In the case of existing buildings, it is difficult to consider the details of the interior and exterior materials of the building, and there is a phenomenon in which the pattern of condensation in the same house varies depending on the user's life pattern.
본 발명은 실제 거주하고 있는 집에서 결로에 영향을 미치는 환경(실내 온도, 실내 습도, 실외 온도, 창문 내측면의 표면 온도)을 무선센서노드를 통해 실시간으로 수집하고, 수집된 데이터를 기반으로 창문 내측면의 표면온도를 예측하는 표면온도 예측 모델을 생성하고, 표면온도 예측 모델과 이슬점 온도의 변화를 이용하여 창문 내측면에 결로 발생 시간을 예측하는 시스템을 제공한다.The present invention collects the environment (indoor temperature, indoor humidity, outdoor temperature, surface temperature on the inner side of the window) that affects condensation in the house where you live in real time through a wireless sensor node, and based on the collected data, the window A surface temperature prediction model that predicts the surface temperature of the inner surface is generated, and a system that predicts the occurrence time of condensation on the inner surface of a window using a surface temperature prediction model and a change in dew point temperature is provided.
어떤 공간이나 장소의 공기 중 온도가 특정 대상 물체의 온도보다 높을 때 물체의 표면에 이슬이 맺히게 되는데, 이때, 온도를 이슬점(Dew Point)이라고 하며, 이슬점 온도에서 결로 현상이 발생한다.When the temperature of the air in a space or place is higher than the temperature of a specific object, dew condenses on the surface of the object. At this time, the temperature is called the dew point, and condensation occurs at the dew point temperature.
도 1은 본 발명의 실시예에 따른 실내 결로 발생을 예측하는 결로 예측 시스템의 전체 구성을 나타낸 도면이고, 도 2는 본 발명의 실시예에 따른 제1 센서노드, 제2 센서노드 및 결로 예측 시스템의 내부 구성을 간략하게 나타낸 블록도이다.1 is a diagram showing the overall configuration of a condensation prediction system for predicting the occurrence of indoor condensation according to an embodiment of the present invention, and FIG. 2 is a first sensor node, a second sensor node, and a condensation prediction system according to an embodiment of the present invention. It is a block diagram briefly showing the internal configuration of.
본 발명의 실시예에 따른 결로 예측 시스템(100)은 제1 센서노드(110), 제2 센서노드(120) 및 클라우드 서버(140)를 포함한다. 이외에 날씨 정보를 클라우드 서버(140)로 제공하는 날씨 API(Application Programming Interface) 서버(150)를 더 포함한다.The
제1 센서노드(110)는 제1 센서부(111), 제1 제어부(112) 및 제1 무선통신모듈(113)을 포함하며, 창문의 외부면이 아닌 결로가 발생할 수 있는 표면인 창문의 내측면이나 벽면의 일면에 부착될 수 있다. The
본 발명의 제1 센서노드(110)는 설명의 편의를 위하여 창문의 내측면에 설치하는 것으로 설명한다.It will be described that the
제1 센서부(111)는 가정집(10)에서 창문의 내측면의 표면온도 정보와 습도 정보를 포함한 제1 센싱 정보를 측정한다.The
제1 제어부(112)는 센싱 제어 신호를 생성하여 제1 센서부(111)로 전송하고, 제1 센서부(111)로부터 상기 센싱 제어 신호의 응답으로 제1 센싱 정보를 수신하며, 상기 수신한 제1 센싱 정보를 제1 무선통신모듈(113)을 통해 통신망(130)을 거쳐 클라우드 서버(140)로 전송한다.The
제2 센서노드(120)는 제2 센서부(121), 제2 제어부(122) 및 제2 무선통신모듈(123)을 포함하며, 가정집(10)의 실내의 일측에 설치될 수 있다.The
제2 센서부(121)는 실내 온도 정보와 습도 정보를 포함한 제2 센싱 정보를 측정한다.The
제2 제어부(122)는 센싱 제어 신호를 생성하여 제2 센서부(121)로 전송하고, 제2 센서부(121)로부터 상기 센싱 제어 신호의 응답으로 제2 센싱 정보를 수신하며, 상기 수신한 제2 센싱 정보를 제2 무선통신모듈(123)을 통해 통신망(130)을 거쳐 클라우드 서버(140)로 전송한다.The
날씨 API 서버(150)는 각 지역의 위치별, 시간대별, 날짜별로 실외 온도 정보를 생성하여 저장하는 서버이다.The
본 발명의 실시예에 따른 클라우드 서버(140)는 서버 제어부(141), 결로 예측부(142), 온습도 정보 데이터베이스부(143), 디스플레이부(144), 무선통신부(145), 기계 학습부(146), 메모리부(147) 및 저장부(148)를 포함한다.The
클라우드 서버(140)는 실외에 설치되는 것으로 예시하고 있지만, 이에 한정하지 않으며, 실내 일측에도 설치될 수 있다.The
서버 제어부(141)는 날씨 API 서버(150)부터 실외 온도 정보를 주기적으로 수신하여 온습도 정보 데이터베이스부(143)에 시간대별, 날짜별로 저장한다.The
서버 제어부(141)는 제1 센서노드(110)로부터 창문 내측면의 표면온도 정보와 습도 정보를 포함한 제1 센싱 정보를 수신하며, 제2 센서노드(120)로부터 실내 공간의 실내 온도 정보와 습도 정보를 포함한 제2 센싱 정보를 수신하여 온습도 정보 데이터베이스부(143)에 시간대별, 날짜별로 저장한다.The
일반적으로 건축학에서는 구조물의 재질과 두께, 열저항성 등을 기반하여 해당 구조물의 열전도율을 사전에 계산하고, 이를 기초로 최적의 구조물을 이용하여 건축물 설계와 공사를 진행한다. 하지만 생활하고 있는 집에서 결로 발생의 가장 강력한 요인이 실내와 실외의 온도 차이와 실내 습도의 상승이다. 이것은 거주하고 있는 생활 패턴에 따라 달라진다.In general, in architecture, the thermal conductivity of the structure is calculated in advance based on the material, thickness, and thermal resistance of the structure, and based on this, the optimal structure is used to design and construct a building. However, the most powerful factors in the occurrence of condensation in a living house are the temperature difference between indoors and outdoors and an increase in indoor humidity. This depends on the lifestyle pattern you live in.
이러한 결로 현상은 단순히 구조물의 특성에 기반하여 결로를 방지하는데 큰 어려움을 가져온다. 따라서, 본 발명은 구조물의 종류에 상관없이 결로 발생이 예상되는 실내 공간에서의 실내 온도 정보와 실외 온도 정보를 이용하여 창문 내측면의 표면 온도를 추정할 수 있다.This condensation phenomenon brings great difficulty in preventing condensation simply based on the characteristics of the structure. Accordingly, the present invention can estimate the surface temperature of the inner side of the window by using indoor temperature information and outdoor temperature information in an indoor space where condensation is expected to occur regardless of the type of structure.
표면온도 예측 모델을 구현하기 위한 기계 학습법은 선형회귀분석(Linear regression model), 랜덤포레스트(Random Forest), 딥러닝(Deep Learning) 방식을 단독 또는 하나 이상을 조합하여 적용한다. 본 발명의 기계 학습법은 선형회귀분석을 일실시예로 적용한다.The machine learning method to implement the surface temperature prediction model applies a linear regression model, a random forest, and a deep learning method alone or in combination of one or more. The machine learning method of the present invention applies linear regression analysis as an example.
선형회귀분석은 선형성이라는 기본 가정이 충족된 상태에서 독립변수와 종속변수의 관계를 설명하거나 예측하는 통계 방법으로, 회귀분석에서 독립변수에 따라 종속변수의 값이 일정한 패턴으로 변해 가는데, 이러한 변수 간의 관계를 나타내는 회귀선이 직선에 가깝게 나타나는 경우를 의미한다.Linear regression analysis is a statistical method that explains or predicts the relationship between the independent variable and the dependent variable while the basic assumption of linearity is satisfied.In regression analysis, the value of the dependent variable changes in a certain pattern according to the independent variable. It means a case where the regression line representing the relationship appears close to a straight line.
표면온도 예측 모델을 만들기 위해서는 온습도 정보 데이터베이스부(143)에 저장된 실내 온도, 실외 온도, 창문 내측면의 측정 표면 온도를 기계 학습의 학습 데이터 셋으로 이용할 수 있다.In order to create a surface temperature prediction model, the indoor temperature, the outdoor temperature, and the measured surface temperature of the inner side of the window stored in the temperature/humidity
기계 학습 과정은 과거에 저장된 많은 데이터로부터 특징 벡터를 추출하고, 추출된 특징 벡터를 토대로 학습 데이터 셋을 만들고, 학습 데이터 셋은 기계 학습 알고리즘에 기반하여 표면온도 예측 모델을 생성하게 된다. 학습 데이터는 기계 학습에서 원하는 정보를 추출하기 위해서 사용되는 데이터의 집합이다.In the machine learning process, feature vectors are extracted from many data stored in the past, a learning data set is created based on the extracted feature vectors, and the learning data set generates a surface temperature prediction model based on a machine learning algorithm. Learning data is a set of data used to extract desired information in machine learning.
기계 학습부(146)는 선형회귀분석을 이용하여 기계 학습할 수 있다. 기계 학습 모델은 널리 알려진 딥 컨벌루션 신경 네트워크일 수 있으며, 이에 한정하지 않는다.The machine learning unit 146 may perform machine learning using linear regression analysis. The machine learning model may be a well-known deep convolutional neural network, but is not limited thereto.
기계 학습부(146)는 창문 내측면의 표면 온도를 추정하는 기계 학습법의 선형 회귀 모델을 하기의 [수학식 1]과 같이 나타낸다.The machine learning unit 146 represents a linear regression model of a machine learning method for estimating the surface temperature of the inner surface of the window as shown in [Equation 1] below.
여기서, 은 시간(i)에 따른 창문 내측면의 표면 온도 추정치, 은 시간(i)에 따른 실내 온도, 은 시간(i)에 따른 실외 온도를 나타낸다.here, Is the estimate of the surface temperature of the inner side of the window over time (i), Is the room temperature over time (i), Represents the outdoor temperature over time (i).
기계 학습부(146)는 저장부(148)에 저장된 선형 회귀 모델을 메모리부(147)로 불러와서 실내 온도와 실외 온도를 입력 데이터로 창문 내측면의 표면 온도를 추정할 수 있다.The machine learning unit 146 may load the linear regression model stored in the
기계 학습부(146)는 각 시간대별 실내 온도와 실외 온도에 따른 창문 내측면의 측정 표면 온도의 상관 관계를 기계 학습한다.The machine learning unit 146 machine learns the correlation between the indoor temperature for each time period and the measured surface temperature of the inner side of the window according to the outdoor temperature.
다시 말해, 기계 학습부(146)는 온습도 정보 데이터베이스부(143)로부터 실내 온도, 실외 온도, 창문 내측면의 측정 표면 온도를 수신하고, 전술한 수학식 1의 파라미터인 선형 계수값(, , )의 최적값을 찾기 위해서 실내 온도와 실외 온도에 따른 창문 내측면의 측정 표면 온도를 기계 학습한다.In other words, the machine learning unit 146 receives the indoor temperature, the outdoor temperature, and the measured surface temperature of the inner side of the window from the temperature/humidity
기계 학습부(146)는 기계 학습으로 얻어진 선형 계수값(, , )을 수학식 1에 대입하여 창문 내측면의 표면 온도 추정치를 계산한다.The machine learning unit 146 is a linear coefficient value obtained by machine learning ( , , ) Is substituted into
표 1에 도시된 바와 같이, 기계 학습부(146)는 선형 회귀 모델을 이용하여 온습도 정보 데이터베이스부(143)에서 각각의 학습 데이터와 테스트 데이터의 루트 평균 제곱 오차(Root Mean Square Error, RMSE)를 계산하고, 온습도 정보 데이터베이스부(143)로부터 수신된 데이터 셋에서 서로 다른 학습 데이터로 학습하여 얻어진 선형 계수값(, , )을 계산하여 나타낸다.As shown in Table 1, the machine learning unit 146 calculates a root mean square error (RMSE) of each training data and test data in the temperature and humidity
표 1에 결과에서 볼 수 있듯이 70% 학습 데이터가 있는 선형 회귀 모델은 학습 데이터와 테스트 데이터의 모두에서 최고의 성능을 보여준다.As can be seen from the results in Table 1, the linear regression model with 70% training data shows the best performance for both the training data and the test data.
표 1은 학습 데이터의 개수가 변함에 따라 선형 계수값과 성능(즉, RMSE)이 변화되는 것을 보여준다.Table 1 shows that the linear coefficient value and performance (ie, RMSE) change as the number of training data changes.
기계 학습부(146)는 루트 평균 제곱 오차(RMSE)를 최소화하기 위한 최적화를 수행하고, 루트 평균 제곱 오차가 최소값이 되면 이를 창문 내측면의 표면 온도 추정치로 선택한다.The machine learning unit 146 performs optimization to minimize the root mean square error (RMSE), and when the root mean square error reaches a minimum value, selects it as an estimate of the surface temperature of the inner side of the window.
도 3은 제1 센서노드(110)로부터 측정된 창문 내측면의 측정 표면 온도(Tsurf-real)과 창문 내측면의 표면 온도 추정치(Tsurf-pred)를 6일 동안 비교한 것이다. 비교한 결과는 온습도 정보 데이터베이스부(143)의 데이터 셋을 통해 학습된 선형 회귀 모델이 측정 표면 온도(Tsurf-real)에 근접한 표면 온도 추정치(Tsurf-pred)를 찾을 수 있음을 확인하였다.FIG. 3 is a comparison of the measured surface temperature (Tsurf-real) of the inner side of the window measured from the
도 3에 도시된 바와 같이, 서버 제어부(141)는 제1 센서노드(110)에서 측정된 창문 내측면의 측정 표면 온도(Tsurf-real)와 창문 내측면의 표면 온도 추정치(Tsurf-pred)의 차이를 계산하며, 평균 오차와 최대 오차를 계산한다.As shown in FIG. 3, the
기계 학습부(146)는 시간에 따른 창문 내측면의 측정 표면 온도와 창문 내측면의 표면 온도 추정치의 차이값을 분석하여 차이값이 기설정된 기준값 이하일 때, 선형 계수값(, , )을 선택한다.The machine learning unit 146 analyzes the difference value between the measured surface temperature of the inner surface of the window and the estimated surface temperature of the inner surface of the window over time, and when the difference value is less than or equal to a preset reference value, a linear coefficient value ( , , Select ).
서버 제어부(141)는 제1 센서노드(110)에서 측정된 창문 내측면의 측정 표면 온도(Tsurf-real)와 창문 내측면의 표면 온도 추정치(Tsurf-pred)의 시간에 따른 변화를 시간대별, 날짜별로 그래프로 각각 생성하여 디스플레이부(144)에 출력하며, 상기 계산한 평균 오차와 최대 오차를 문자 형태로 디스플레이부(144)에 출력한다.The
서버 제어부(141)는 창문 내측면의 표면 온도 추정치와 실내 공간의 실내 습도를 하기의 [수학식 2]과 [수학식 3]의 바렌부르크 공식(Barenbrug Formula)을 이용하여 이슬점 온도를 계산한다. 여기서, 실내 공간의 실내 습도는 온습도 정보 데이터베이스부(143)에서 검색하여 얻을 수 있다.The
여기서, a는 17.27℃, b는 237.3℃이다. T는 창문 내측면의 표면 온도 추정치, 0℃ < T < 60℃, RH는 제2 센서노드(120)에서 측정된 실내 공간의 실내 습도, 1% < RH < 100%, Td는 이슬점 온도를 나타낸다.Here, a is 17.27°C and b is 237.3°C. T is the estimated surface temperature of the inner side of the window, 0°C <T <60°C, RH is the indoor humidity of the indoor space measured by the
기계 학습부(146)는 수학식 1의 선형 계수값(, , )을 계산하여 시간에 따른 창문 내측면의 표면 온도를 추정할 수 있다. 이후에는 창문 내측면에 설치된 제1 센서노드(110)를 제거하고, 제2 센서노드(120)만을 설치하여 주기적으로 실내 온도와 실외 온도를 이용하여 창문 내측면의 표면 온도를 추정할 수 있다.The machine learning unit 146 is a linear coefficient value of Equation 1 ( , , ) Can be calculated to estimate the surface temperature of the inner side of the window over time. Thereafter, the
서버 제어부(140)는 제2 센서노드(120)로부터 실내 온도를 시간대별, 날짜별로 주기적으로 수신하고, 날씨 API 서버(150)로부터 실외 온도를 시간대별, 날짜별로 주기적으로 수신한다.The
서버 제어부(140)는 실내 온도와 실외 온도를 전술한 수학식 1에 대입하여 시간에 따른 창문 내측면의 표면 온도를 추정한다.The
결로 예측부(142)는 창문 내측면의 표면 온도 추정치와, 이슬점 온도를 이용하여 실내 결로의 발생을 추정할 수 있다. 여기서, 실내 결로는 설명의 편의를 위하여 창문 내측면의 결로 발생을 예시하고 있지만, 이에 한정하지 않으며, 실내 벽면 등 실내의 다양한 위치에 발생하는 결로를 나타낼 수 있다.The
결로 예측부(142)는 시간에 따른 창문 내측면의 표면 온도 추정치와 시간에 따른 이슬점 온도에 대한 변화하는 패턴을 모니터링하고, 상기 이슬점 온도와 상기 창문 내측면의 표면 온도 추정치의 차이를 계산하여 결로를 판단할 수 있다.The
이하에서는 실내 결로 발생 시간을 예측하는 방법을 상세하게 설명한다.Hereinafter, a method of predicting the occurrence time of indoor condensation will be described in detail.
기계 학습부(146)는 수학식 1의 선형 계수값(, , )을 계산하여 시간에 따른 창문 내측면의 표면 온도를 추정할 수 있다. 이후에는 창문 내측면에 설치된 제1 센서노드(110)를 제거하고, 제2 센서노드(120)만을 설치하여 주기적으로 실내 온도를 제2 무선통신모듈(123)을 통해 클라우드 서버(140)로 전송한다.The machine learning unit 146 is a linear coefficient value of Equation 1 ( , , ) Can be calculated to estimate the surface temperature of the inner side of the window over time. After that, the
본 발명은 선형 계수값을 이용하여 창문 내측면의 표면 온도를 추정하게 되면, 이후에 실내 온도와 실외 온도만을 이용하여 실내 결로를 예측할 수 있다.According to the present invention, if the surface temperature of the inner surface of the window is estimated by using a linear coefficient value, then indoor condensation can be predicted using only the indoor temperature and the outdoor temperature.
서버 제어부(140)는 제2 센서노드(120)로부터 실내 온도를 시간대별, 날짜별로 주기적으로 수신하고, 날씨 API 서버(150)로부터 실외 온도를 시간대별, 날짜별로 주기적으로 수신한다.The
서버 제어부(140)는 실내 온도와 실외 온도를 전술한 수학식 1에 대입하여 시간에 따른 창문 내측면의 표면 온도를 추정한다.The
결로 예측부(142)는 창문 내측면의 표면 온도 추정치와, 이슬점 온도를 이용하여 실내 결로의 발생을 추정할 수 있다. 여기서, 실내 결로는 설명의 편의를 위하여 창문 내측면의 결로 발생을 예시하고 있지만, 이에 한정하지 않으며, 실내 벽면 등 실내의 다양한 위치에 발생하는 결로를 나타낼 수 있다.The
결로 예측부(142)는 시간에 따른 창문 내측면의 표면 온도 추정치와 시간에 따른 이슬점 온도에 대한 변화하는 패턴을 모니터링하여 가까운 미래에 발생할 창문 내측면의 결로 발생 시간을 계산할 수 있다.The
도 4에 도시된 바와 같이, 결로 예측부(142)는 시간(i)에 따른 창문 내측면의 표면 온도 추정치()에서 두 점 을 이용하여 제1 직선방정식(Tangent of Tsurf)을 생성한다.As shown in FIG. 4, the
도 4에 도시된 바와 같이, 결로 예측부(142)는 시간(i)에 따른 이슬점 온도()에서 두 점 을 이용하여 제2 직선방정식(Tangent of Tdew)을 생성한다.As shown in FIG. 4, the
두 점을 이용한 직선방정식은 널리 알려진 수학식으로 하기의 수학식 4와 같다.The linear equation using two points is a widely known equation and is shown in
결로 예측부(142)는 시간(i)에 따른 창문 내측면의 표면 온도 추정치의 두 점을 이용한 제1 직선방정식을 기설정된 시간 단위마다 주기적으로 생성하고, 상기 각각의 제1 직선방정식으로부터 얻은 제1 직선을 디스플레이부(144)를 통해 출력한다.The
결로 예측부(142)는 시간(i)에 따른 이슬점 온도의 두 점을 이용한 제2 직선방정식을 기설정된 시간 단위마다 주기적으로 생성하고, 상기 각각의 제2 직선방정식으로부터 얻은 제2 직선을 디스플레이부(144)를 통해 출력한다.The
결로 예측부(142)는 각각의 제1 직선방정식으로부터 얻은 제1 직선과, 각각의 제2 직선방정식으로부터 얻은 제2 직선이 만나는 교차점을 결로 발생 지점으로 판단한다.The
따라서, 결로 예측부(142)는 각각의 제1 직선방정식으로부터 얻은 제1 직선과, 각각의 제2 직선방정식으로부터 얻은 제2 직선의 시간에 따른 변화 패턴을 분석하며, 제1 직선과 제2 직선이 만나는 교차점을 결로 발생 지점으로 판단하고, 현재 시간에서 결로 발생 지점까지 소요되는 결로 예측 시간()을 계산한다.Therefore, the
실내 결로는 창문 내측면의 표면 온도 추정치와 이슬점 온도가 동일한 경우 발생되므로 시간(i)에 따른 창문 내측면의 표면 온도 추정치의 곡선에 접하는 접선과, 시간(i)에 따른 이슬점 온도의 곡선에 접하는 접선이 점차 가까워질수록 결로가 발생할 가능성이 높아진다.Indoor condensation occurs when the estimated surface temperature of the inner side of the window and the dew point temperature are the same, so the tangent to the curve of the estimated surface temperature of the inner side of the window over time (i) and the curve of the dew point temperature over time (i) The closer the tangent line is, the higher the likelihood of condensation will occur.
결로 예측 시간을 계산하는 알고리즘을 의사 코드로 나타내면 다음과 같다.The algorithm for calculating the condensation prediction time is expressed as a pseudo code as follows.
서버 제어부(141)는 제2 센서노드(120)로부터 현재 실내 온도 및 습도 정보를 수신하여 Tin, RH에 저장하고, 날씨 API 서버(150)로부터 실외 온도를 수신하여 Tout에 저장한다(1번, 2번, 3번).The
기계 학습부(146)는 선형 회귀 모델을 통해 창문 내측면의 표면 온도 추정치를 추정할 수 있다(4번).The machine learning unit 146 may estimate a surface temperature estimate of the inner side of the window through a linear regression model (No. 4).
전술한 수학식 1에서의 선형 계수값(, , )을 Coeff1, Coeff2, Coeff()로 표현하고, 회귀 학습 과정에서 얻어진 최적값은 상수로 미리 지정된다.The linear coefficient value in Equation 1 ( , , ) Is expressed as Coeff1, Coeff2, and Coeff(), and the optimum value obtained in the regression learning process is preset as a constant.
서버 제어부(141)는 창문 내측면의 표면 온도 추정치와 실내 공간의 실내 습도를 전술한 수학식 3과 수학식 4의 바렌부르크 공식(Barenbrug Formula)을 이용하여 이슬점 온도를 계산한다(5번).The
결로 예측부(142)는 시간(i)에 따른 창문 내측면의 표면 온도 추정치의 두 점()을 이용하여 제1 접선 방정식()을 계산한다(6번).The
결로 예측부(142)는 시간(i)에 따른 이슬점 온도의 두 점()을 이용하여 제2 접선 방정식()을 계산한다(7번).The
결로 예측부(142)는 현재의 표면 온도 추정치과 현재 이슬점 온도를 이전 데이터로 저장한다(8번).The
결로 예측부(142)는 각각의 제1 접선방정식으로부터 얻은 제1 직선과, 각각의 제2 접선방정식으로부터 얻은 제2 직선의 시간에 따른 변화 패턴을 모니터링하며, 제1 직선과 제2 직선의 만나는 교차점을 결로 발생 지점으로 판단하고, 현재 시간에서 결로 발생 지점까지 소요되는 결로 예측 시간()을 계산한다(9번).The
결로 예측부(142)는 시간(i)에 따른 창문 내측면의 표면 온도 추정치와 시간(i)에 따른 이슬점 온도의 차이값이 기설정된 기준값(아주 작은값, con_bound)보다 작거나 같다면, 이미 결로가 진행되고 있음을 나타내고, 현재 시간을 결로 예측 시간으로 설정한다(10번, 11번).If the difference between the estimated surface temperature of the inner surface of the window over time (i) and the dew point temperature over time (i) is less than or equal to a preset reference value (very small value, con_bound), the
결로 예측부(142)는 시간(i)에 따른 창문 내측면의 표면 온도 추정치와 시간(i)에 따른 이슬점 온도의 차이값이 기설정된 기준값보다 크다면, 현재 시간이 결로 예측 시간보다 작거나(결로 위치가 현재 시간을 기준으로 후방에 있는 경우), 결로 예측 시간이 먼 시간에 존재하는 경우(예를 들면, 3일, 4일 등), 기설정된 최대값(예를 들면, 10시간 등) 시간을 결로 예측 시간으로 설정한다(13번, 14번).If the difference between the estimated surface temperature of the inner surface of the window over time (i) and the dew point temperature over time (i) is greater than a preset reference value, the
도 5는 본 발명의 실시예에 따른 실내의 결로 예측 시간을 추정하기 위한 알고리즘을 이용하여 실제 결로가 발생하는 창문 내측면의 표면 온도 추정치와 이슬점 온도의 변화와 결로 예측 시간을 나타낸 그래프이다.5 is a graph showing an estimate of a surface temperature of an inner surface of a window where condensation occurs, a change in a dew point temperature, and a condensation prediction time using an algorithm for estimating a prediction time of condensation indoors according to an embodiment of the present invention.
결로 예측부(142)는 결로가 발생할 때까지 도 5와 같이, 다음의 5 단계로 구분된다.The
결로가 없는 단계(Phase 0)는 결로 징후가 발견되지 않는다.In the phase without condensation (Phase 0), no signs of condensation are found.
결로 표시 단계(Phase 1)는 결로 예측 시간이 급격한 감소로 나타난다.In the condensation display phase (Phase 1), the condensation prediction time is rapidly decreased.
결로 표시 단계(Phase 1)는 실시간으로 이슬점 온도와 창문 내측면의 표면 온도 추정치의 변화를 모니터링하고, 이슬점 온도가 갑자기 높아지거나 표면 온도 추정치가 낮아진다.The condensation display step (Phase 1) monitors changes in the dew point temperature and the surface temperature estimate of the inside of the window in real time, and the dew point temperature suddenly increases or the surface temperature estimate decreases.
결로 가능성이 증가하는 단계(Phase 2)는 결로 표시 단계 이후로 결로 예측 시간이 지속적으로 감소하고, 결로 표시 단계의 임계값 이하로 떨어진다.In the step of increasing the probability of condensation (Phase 2), after the condensation display step, the condensation prediction time continuously decreases and falls below the threshold value of the condensation display step.
결로 가능성이 높은 단계(Phase 3)는 Phase 2 이하로 결로 예측 시간이 연속적으로 감소하면, 몇 시간 안에 결로 발생 가능성이 높음을 나타낸다.In the phase with high probability of condensation (Phase 3), if the condensation prediction time continuously decreases below
결로 발생 단계(Phase 4)는 결로가 발생하는 경우, 결로 예측 시간이 0에 가까워지고, 현재 결로 상태인 것을 나타낸다.In the condensation generation step (Phase 4), when condensation occurs, the prediction time for condensation approaches 0, indicating that the current condensation state is present.
결로 예측부(142)는 결로 예측 시간을 통해 결로 징후를 감지하고, 5 단계를 통해 결로 위험성을 디스플레이부(144)로 출력하거나, 무선 통신부(145)를 통해 외부로 전송하여 경보를 알리는 기능을 수행할 수 있다.The
결로 예측 시스템(100)은 제1 센서노드(100)에 의해 창문 내측면의 표면 온도를 측정하거나 기계 학습을 이용하여 창문 내측면의 표면 온도를 추정하던지 창문 내측면의 표면 온도를 획득했다는 가정하에 지속적으로 변화하는 표면 온도와 전술한 수학식 2와 수학식 3을 적용한 이슬점 온도의 시간 변화에 따른 두 개의 직선 방정식의 교차점을 이용하여 향후 결로 발생에 대한 시간을 예측한다.The
이상에서 본 발명의 실시예는 장치 및/또는 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.In the above, embodiments of the present invention are not implemented only through an apparatus and/or a method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention, a recording medium in which the program is recorded, or the like. And, this implementation can be easily implemented by an expert in the technical field to which the present invention belongs from the description of the above-described embodiment.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
100: 결로 예측 시스템 110: 제1 센서노드
111: 제1 센서부 112: 제1 제어부
113: 제1 무선통신모듈 120: 제2 센서노드
121: 제2 센서부 122: 제2 제어부
123: 제2 무선통신모듈 130: 통신망
140: 클라우드 서버 141: 서버 제어부
142: 결로 예측부 143: 온습도 정보 데이터베이스부
144: 디스플레이부 145: 무선통신부
146: 기계 학습부 147: 메모리부
148: 저장부 150: 날씨 API 서버100: condensation prediction system 110: first sensor node
111: first sensor unit 112: first control unit
113: first wireless communication module 120: second sensor node
121: second sensor unit 122: second control unit
123: second wireless communication module 130: communication network
140: cloud server 141: server control unit
142: condensation prediction unit 143: temperature and humidity information database unit
144: display unit 145: wireless communication unit
146: machine learning unit 147: memory unit
148: storage unit 150: weather API server
Claims (10)
실내의 일측에 부착된 제2 센서노드; 및
상기 제1 센서노드로부터 창문 내측면의 표면 온도를 무선 통신으로 수신하고, 상기 제2 센서노드로부터 실내 온도와 습도 정보를 무선 통신으로 수신하고, 외부의 날씨 정보 서버로부터 실외 온도를 수신하고, 상기 표면 온도와 상기 습도 정보를 하기의 수학식 1과 수학식 2의 바렌부르크 공식(Barenbrug Formula)을 이용하여 이슬점 온도를 계산하며, 상기 창문 내측면의 표면 온도와 상기 계산한 이슬점 온도의 시간에 따른 변화 패턴을 모니터링하여 미래에 발생할 결로 발생의 시간을 계산하여 알리는 결로 예측부를 구비한 클라이언트 서버를 포함하는 것을 특징으로 하는 결로 예측 시스템.
[수학식 1]
[수학식 2]
여기서, a는 17.27℃, b는 237.3℃, T는 창문 내측면의 표면 온도, 0℃ < T < 60℃, RH는 상기 제2 센서노드에서 측정된 실내 공간의 실내 습도, 1% < RH < 100%, Td는 이슬점 온도임.A first sensor node attached to the inner surface of the window where condensation occurs;
A second sensor node attached to one side of the room; And
Receiving the surface temperature of the inner surface of the window from the first sensor node by wireless communication, receiving indoor temperature and humidity information from the second sensor node by wireless communication, receiving the outdoor temperature from an external weather information server, the The dew point temperature is calculated using the Barenbrug Formula of Equations 1 and 2 below for the surface temperature and the humidity information, and the surface temperature of the inner surface of the window and the calculated dew point temperature depend on time. A condensation prediction system comprising a client server having a condensation prediction unit that monitors a change pattern and calculates and informs a time of occurrence of condensation to occur in the future.
[Equation 1]
[Equation 2]
Where a is 17.27°C, b is 237.3°C, T is the surface temperature of the inner side of the window, 0°C <T <60°C, RH is the indoor humidity of the indoor space measured by the second sensor node, 1% <RH < 100%, Td is the dew point temperature.
상기 결로 예측부는 시간(i)에 따른 창문 내측면의 표면 온도()에서 두 점 을 이용한 제1 직선방정식(Tangent of Tsurf)을 기설정된 시간 단위마다 주기적으로 생성하고, 시간(i)에 따른 이슬점 온도()에서 두 점 을 이용한 제2 직선방정식(Tangent of Tdew)을 기설정된 시간 단위마다 주기적으로 생성하는 것을 특징으로 하는 결로 예측 시스템.The method of claim 1,
The condensation prediction unit is the surface temperature of the inner side of the window over time (i) ) In two points A first linear equation using (Tangent of Tsurf) is periodically generated for each preset time unit, and the dew point temperature ( ) In two points Condensation prediction system, characterized in that the second linear equation (Tangent of Tdew) is periodically generated for each preset time unit.
상기 결로 예측부는 상기 각각의 제1 직선방정식으로부터 얻은 제1 직선과, 상기 각각의 제2 직선방정식으로부터 얻은 제2 직선의 시간에 따른 변화 패턴을 분석하며, 상기 제1 직선과 상기 제2 직선이 만나는 교차점을 결로 발생 지점으로 판단하고, 현재 시간에서 상기 결로 발생 지점까지 소요되는 결로 예측 시간()을 계산하는 것을 특징으로 하는 결로 예측 시스템.The method of claim 2,
The condensation prediction unit analyzes a change pattern over time of a first straight line obtained from each of the first linear equations and a second straight line obtained from each of the second linear equations, and the first straight line and the second straight line are Condensation prediction time ( Condensation prediction system, characterized in that to calculate ).
상기 창문 내측면의 표면 온도는 상기 제1 센서노드로부터 측정된 창문 내측면의 측정 표면 온도이고,
상기 클라이언트 서버는 시간대별 상기 실내 온도와 상기 실외 온도에 따른 상기 측정 표면 온도의 상관 관계를 기계 학습하여 상기 실내 온도와 상기 실외 온도에 대한 창문 내측면의 표면 온도를 추정하는 것을 특징으로 하는 결로 예측 시스템.The method of claim 1,
The surface temperature of the inner side of the window is the measured surface temperature of the inner side of the window measured from the first sensor node,
The client server machine learns the correlation between the indoor temperature and the measured surface temperature according to the outdoor temperature for each time period, and estimates the surface temperature of the inner surface of the window with respect to the indoor temperature and the outdoor temperature. system.
상기 클라이언트 서버는 하기의 수학식 3의 선형 회귀 모델을 이용하여 하기의 수학식 3의 파라미터인 선형 계수값(, , )의 최적값을 찾기 위해서 상기 실내 온도와 상기 실외 온도에 따른 상기 측정 표면 온도의 상관 관계를 기계 학습하고, 상기 기계 학습으로 얻어진 선형 계수값(, , )을 하기의 수학식 3에 대입하여 상기 창문 내측면의 표면 온도 추정치를 계산하는 기계 학습부를 더 포함하는 것을 특징으로 하는 결로 예측 시스템.
[수학식 3]
여기서, 은 시간(i)에 따른 창문 내측면의 표면 온도 추정치, 은 시간(i)에 따른 실내 온도, 은 시간(i)에 따른 실외 온도임.The method of claim 4,
The client server uses a linear regression model of Equation 3 below, which is a parameter of Equation 3 below ( , , In order to find the optimum value of ), the correlation between the indoor temperature and the measured surface temperature according to the outdoor temperature is machine-learned, and a linear coefficient value obtained by the machine learning ( , , And a machine learning unit that calculates an estimate of the surface temperature of the inner surface of the window by substituting) into Equation 3 below.
[Equation 3]
here, Is the estimate of the surface temperature of the inner side of the window over time (i), Is the room temperature over time (i), Is the outdoor temperature over time (i).
상기 기계 학습부는 상기 제1 센서노드에서 측정된 창문 내측면의 측정 표면 온도(Tsurf-real)와 상기 계산된 창문 내측면의 표면 온도 추정치(Tsurf-pred)의 시간에 따른 변화를 시간대별, 날짜별로 그래프로 각각 생성하고, 상기 측정 표면 온도와 상기 표면 온도 추정치의 차이값이 기설정된 기준값 이하일 때, 상기 선형 계수값(, , )을 선택하는 것을 특징으로 하는 결로 예측 시스템.The method of claim 5,
The machine learning unit determines the time-dependent variation of the measured surface temperature (Tsurf-real) of the inner side of the window measured by the first sensor node and the calculated Tsurf-pred of the inner side of the window. Each graph is generated for each, and when the difference between the measured surface temperature and the estimated surface temperature is less than or equal to a preset reference value, the linear coefficient value ( , , ) To select the condensation prediction system.
상기 창문 내측면의 표면 온도는 상기 계산된 창문 내측면의 표면 온도 추정치인 것을 특징으로 하는 결로 예측 시스템.The method of claim 5,
The condensation prediction system, characterized in that the surface temperature of the inner side of the window is the calculated surface temperature of the inner side of the window.
상기 클라이언트 서버는 결로가 발생하는 창문의 내측면에 부착된 제1 센서노드로부터 창문 내측면의 표면 온도를 무선 통신으로 수신하고, 실내의 일측에 부착된 제2 센서노드로부터 실내 온도와 습도 정보를 무선 통신으로 수신하고, 외부의 날씨 정보 서버로부터 실외 온도를 수신하는 단계;
상기 클라이언트 서버는 상기 표면 온도와 상기 습도 정보를 하기의 수학식 4와 수학식 5의 바렌부르크 공식(Barenbrug Formula)을 이용하여 이슬점 온도를 계산하며, 상기 창문 내측면의 표면 온도와 상기 계산한 이슬점 온도의 시간에 따른 변화 패턴을 모니터링하여 미래에 발생할 결로 발생의 시간을 계산하여 알리는 단계를 포함하는 것을 특징으로 하는 실내 결로 발생 시간을 예측하는 방법.
[수학식 4]
[수학식 5]
여기서, a는 17.27℃, b는 237.3℃, T는 창문 내측면의 표면 온도, 0℃ < T < 60℃, RH는 상기 제2 센서노드에서 측정된 실내 공간의 실내 습도, 1% < RH < 100%, Td는 이슬점 온도임.In the method for predicting the occurrence time of indoor condensation consisting of one or more sensor nodes and a client server,
The client server receives the surface temperature of the inner side of the window from a first sensor node attached to the inner side of the window where condensation occurs, and receives room temperature and humidity information from the second sensor node attached to one side of the room. Receiving through wireless communication and receiving an outdoor temperature from an external weather information server;
The client server calculates the dew point temperature by using the Barenbrug Formula of Equations 4 and 5 below to calculate the surface temperature and the humidity information, and the surface temperature and the calculated dew point of the inner surface of the window And calculating and reporting a time of occurrence of condensation occurring in the future by monitoring a change pattern of temperature over time.
[Equation 4]
[Equation 5]
Where a is 17.27°C, b is 237.3°C, T is the surface temperature of the inner side of the window, 0°C <T <60°C, RH is the indoor humidity of the indoor space measured by the second sensor node, 1% <RH < 100%, Td is the dew point temperature.
상기 결로 발생 시간을 계산하여 알리는 단계는,
시간(i)에 따른 창문 내측면의 표면 온도()에서 두 점 을 이용한 제1 직선방정식(Tangent of Tsurf)을 기설정된 시간 단위마다 주기적으로 생성하는 단계; 및
시간(i)에 따른 이슬점 온도()에서 두 점 을 이용한 제2 직선방정식(Tangent of Tdew)을 기설정된 시간 단위마다 주기적으로 생성하는 단계를 포함하는 것을 특징으로 하는 결로 예측 시스템.The method of claim 8,
The step of calculating and informing the condensation occurrence time,
The surface temperature of the inner side of the window over time ( ) In two points Periodically generating a first linear equation (Tangent of Tsurf) using a predetermined time unit; And
Dew point temperature over time (i) ( ) In two points And periodically generating a second linear equation (Tangent of Tdew) using a predetermined time unit.
상기 각각의 제1 직선방정식으로부터 얻은 제1 직선과, 상기 각각의 제2 직선방정식으로부터 얻은 제2 직선의 시간에 따른 변화 패턴을 분석하는 단계; 및
상기 제1 직선과 상기 제2 직선이 만나는 교차점을 결로 발생 지점으로 판단하고, 현재 시간에서 상기 결로 발생 지점까지 소요되는 결로 예측 시간()을 계산하는 단계를 포함하는 것을 특징으로 하는 결로 예측 시스템.The method of claim 9,
Analyzing a change pattern over time of a first straight line obtained from each of the first linear equations and a second straight line obtained from each of the second linear equations; And
The intersection of the first straight line and the second straight line is determined as a condensation point, and a condensation prediction time required from the current time to the point of condensation ( ). Condensation prediction system comprising the step of calculating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190105963A KR102406311B1 (en) | 2019-08-28 | 2019-08-28 | System and Method for Predicting Indoor Condensation Occurence Time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190105963A KR102406311B1 (en) | 2019-08-28 | 2019-08-28 | System and Method for Predicting Indoor Condensation Occurence Time |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210025927A true KR20210025927A (en) | 2021-03-10 |
KR102406311B1 KR102406311B1 (en) | 2022-06-08 |
Family
ID=75147897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190105963A KR102406311B1 (en) | 2019-08-28 | 2019-08-28 | System and Method for Predicting Indoor Condensation Occurence Time |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102406311B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116382370A (en) * | 2023-03-31 | 2023-07-04 | 杭州千岛净露水业有限公司 | Dew collector condensation temperature self-adaptive control calculation method and system |
US20230223154A1 (en) * | 2021-09-13 | 2023-07-13 | Robert E. Stirling | Apparatus and method for detection and mitigation of conditions that are favorable for transmission of respiratory diseases |
CN116818835A (en) * | 2023-08-30 | 2023-09-29 | 中储粮成都储藏研究院有限公司 | Dew condensation judging method based on granary temperature |
US12030368B2 (en) | 2020-07-02 | 2024-07-09 | Tiger Tool International Incorporated | Compressor systems and methods for use by vehicle heating, ventilating, and air conditioning systems |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001012784A (en) * | 1999-06-30 | 2001-01-19 | Kawasaki Steel Corp | Method and apparatus for predicting dew formation on article preserved in building |
KR20110018695A (en) * | 2009-08-18 | 2011-02-24 | 순천대학교 산학협력단 | Automatic control system and method for greenhouse environment |
KR101742059B1 (en) | 2015-12-17 | 2017-06-02 | 한국에너지기술연구원 | Method and thermo-graphic camera for predicting the occurrence of condensation and mold |
KR20190013017A (en) * | 2017-07-31 | 2019-02-11 | 고려대학교 산학협력단 | Method and device for equipment health monitoring based on sensor clustering |
-
2019
- 2019-08-28 KR KR1020190105963A patent/KR102406311B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001012784A (en) * | 1999-06-30 | 2001-01-19 | Kawasaki Steel Corp | Method and apparatus for predicting dew formation on article preserved in building |
KR20110018695A (en) * | 2009-08-18 | 2011-02-24 | 순천대학교 산학협력단 | Automatic control system and method for greenhouse environment |
KR101742059B1 (en) | 2015-12-17 | 2017-06-02 | 한국에너지기술연구원 | Method and thermo-graphic camera for predicting the occurrence of condensation and mold |
KR20190013017A (en) * | 2017-07-31 | 2019-02-11 | 고려대학교 산학협력단 | Method and device for equipment health monitoring based on sensor clustering |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12030368B2 (en) | 2020-07-02 | 2024-07-09 | Tiger Tool International Incorporated | Compressor systems and methods for use by vehicle heating, ventilating, and air conditioning systems |
US20230223154A1 (en) * | 2021-09-13 | 2023-07-13 | Robert E. Stirling | Apparatus and method for detection and mitigation of conditions that are favorable for transmission of respiratory diseases |
US12087450B2 (en) * | 2021-09-13 | 2024-09-10 | Robert E. Stirling | Apparatus and method for detection and mitigation of conditions that are favorable for transmission of respiratory diseases |
CN116382370A (en) * | 2023-03-31 | 2023-07-04 | 杭州千岛净露水业有限公司 | Dew collector condensation temperature self-adaptive control calculation method and system |
CN116818835A (en) * | 2023-08-30 | 2023-09-29 | 中储粮成都储藏研究院有限公司 | Dew condensation judging method based on granary temperature |
CN116818835B (en) * | 2023-08-30 | 2023-11-21 | 中储粮成都储藏研究院有限公司 | Dew condensation judging method based on granary temperature |
Also Published As
Publication number | Publication date |
---|---|
KR102406311B1 (en) | 2022-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102406311B1 (en) | System and Method for Predicting Indoor Condensation Occurence Time | |
US11808473B2 (en) | Action optimization device, method and program | |
Wang et al. | Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN) algorithm with WiFi probe technology | |
KR102653617B1 (en) | Air conditioner and method for operating the air conditioner | |
US9740545B2 (en) | Equipment evaluation device, equipment evaluation method and non-transitory computer readable medium | |
JP5572799B2 (en) | Air conditioning system controller | |
KR102012252B1 (en) | Actuator based on sensor actuator network and method for actuating thereof | |
US11112138B2 (en) | Air-conditioning control method and air-conditioning control device | |
US9983653B2 (en) | Central control apparatus for controlling facilities, facility control system including the same, and method of controlling facilities | |
KR102392806B1 (en) | System and Method for Predicting Indoor Surface Temperature and Indoor Condensation Using Machine Learning | |
KR101727296B1 (en) | wireless sensor network system and communication method based on a profile | |
JP2020154785A (en) | Prediction method, prediction program, and model learning method | |
KR101660487B1 (en) | Method and apparatus for forecasting an energy consumption based on consumption characteristic | |
CN114556027B (en) | Air conditioner control device, air conditioner system, air conditioner control method, and recording medium | |
JP2020067270A (en) | Air conditioning control program, air conditioning control method and air conditioning control device | |
KR102308895B1 (en) | Method for predicting a temperature-humidity index in a windowless laying hen houses which employing a cross type or tunnel type ventilation system | |
KR20180091983A (en) | THE SERVER AND METHOD FOR MANAGING INDOOR AIR QUALITY BASED ON IoT | |
JP6384791B2 (en) | Thermal insulation performance estimation device, program | |
KR102081425B1 (en) | Energy-based comfort index analysis system based on user satisfaction and method thereof | |
KR102222489B1 (en) | System and Method for Predicting Indoor Condensation Problem Using Surface Temperature Approximation | |
WO2020255677A1 (en) | Information processing device and method | |
JP2014135015A (en) | Room heat characteristic estimation device and program | |
Cardell-Oliver et al. | Robust sensor data collection over a long period using virtual sensing | |
Nivetha et al. | Wi-fi based occupancy detection in a building with indoor localization | |
US20220154961A1 (en) | Control method, computer-readable recording medium storing control program, and air conditioning control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |