KR20210020961A - 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치 - Google Patents

액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치 Download PDF

Info

Publication number
KR20210020961A
KR20210020961A KR1020210019367A KR20210019367A KR20210020961A KR 20210020961 A KR20210020961 A KR 20210020961A KR 1020210019367 A KR1020210019367 A KR 1020210019367A KR 20210019367 A KR20210019367 A KR 20210019367A KR 20210020961 A KR20210020961 A KR 20210020961A
Authority
KR
South Korea
Prior art keywords
signal
channel
input channel
downmix matrix
modified
Prior art date
Application number
KR1020210019367A
Other languages
English (en)
Other versions
KR102290417B1 (ko
Inventor
김선민
전상배
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200120307A external-priority patent/KR102217832B1/ko
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020210019367A priority Critical patent/KR102290417B1/ko
Publication of KR20210020961A publication Critical patent/KR20210020961A/ko
Application granted granted Critical
Publication of KR102290417B1 publication Critical patent/KR102290417B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/03Aspects of down-mixing multi-channel audio to configurations with lower numbers of playback channels, e.g. 7.1 -> 5.1
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Algebra (AREA)
  • Stereophonic System (AREA)

Abstract

높이 입력 채널 신호를 포함하는 복수의 입력 채널 신호를 수신하고, 복수의 입력 채널 신호에 기초하여 위상 정렬을 위한 파라미터를 생성하고, 복수의 입력 채널 신호의 제1 주파수 범위를 위상 정렬하기 위해, 위상 정렬을 위한 파라미터에 기초하여 제1 다운믹스 매트릭스를 수정하고, 복수의 입력 채널 신호의 모든 주파수 범위를 위상 정렬하기 위해, 위상 정렬을 위한 파라미터에 기초하여 제2 다운믹스 매트릭스를 수정하고, 수정된 제1 다운믹스 매트릭스 및 수정된 제2 다운믹스 매트릭스 중 하나에 기초하여 복수의 입력 채널 신호를 복수의 출력 채널 신호로 다운믹싱하는 단계를 포함하고, 제1 주파수 범위는 2.8 kHz 미만 및 10 kHz 초과를 포함하고, 높이 입력 채널 신호는 고도 정보에 기초하여 식별되고, 수정된 제1 다운믹스 매트릭스는 일반 장면을 위해 사용되고 수정된 제2 다운믹스 매트릭스는 고도로 디코릴레이트된(highly decorrelated) 광대역 장면을 위해 사용되고, 다운믹싱하는 것은 수신된 플래그에 따라 선택되는 수정된 제1 다운믹스 매트릭스 및 수정된 제2 다운믹스 매트릭스 중 하나에 의해 수행되는 것인, 오디오 신호 렌더링 방법이 개시된다.

Description

액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치 {Method and apparatus for 3D sound reproducing using active downmix}
본 발명은 입체 음향 재생 방법 및 장치에 관한 것으로, 특히 고도감을 제공하는 다채널 오디오 신호를 재생하는 방법 및 장치에 관한 것이다.
영상 및 음향 처리 기술의 발달에 힘입어 고화질 고음질의 컨텐츠가 다량 생산되고 있다. 고화질 고음질의 컨텐츠를 요구하던 사용자는 현실감 있는 영상 및 음향을 원하고 있으며, 이에 따라 입체 영상 및 입체 음향에 대한 연구가 활발히 진행되고 있다.
입체 음향은 복수 개의 스피커를 수평면상의 다른 위치에 배치하고, 각각의 스피커에서 동일한 또는 상이한 음향 신호를 출력함으로써 사용자가 공간감을 느끼도록 하는 기술이다. 그러나, 실제 음향은 수평면상의 다양한 위치에서 발생할 뿐만 아니라 상이한 고도에서도 발생할 수 있다. 따라서, 상이한 고도에서 발생하는 음향 신호를 수평면상에 배치된 스피커를 통해 재생하는 기술이 필요하다.
본 발명은 입체 음향 재생 방법 및 장치에 관한 것으로, 다운 믹스 방식에 따라 입체 음향을 재생하는 방법에 관한 것입니다.
실시 예에 의한 오디오 신호 렌더링 방법은 높이 입력 채널 신호를 포함하는 복수의 입력 채널 신호를 수신하는 단계, 상기 복수의 입력 채널 신호에 기초하여 위상 정렬을 위한 파라미터를 생성하는 단계, 상기 복수의 입력 채널 신호의 제1 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제1 다운믹스 매트릭스를 수정하는 단계, 상기 복수의 입력 채널 신호의 모든 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제2 다운믹스 매트릭스를 수정하는 단계 및 상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 기초하여 상기 복수의 입력 채널 신호를 복수의 출력 채널 신호로 다운믹싱하는 단계를 포함하고, 상기 제1 주파수 범위는 2.8 kHz 미만 및 10 kHz 초과를 포함하고, 상기 높이 입력 채널 신호는 고도 정보에 기초하여 식별되고, 상기 수정된 제1 다운믹스 매트릭스는 일반 장면을 위해 사용되고 상기 수정된 제2 다운믹스 매트릭스는 고도로 디코릴레이트된(highly decorrelated) 광대역 장면을 위해 사용되고, 상기 다운믹싱하는 단계는 수신된 플래그에 따라 선택되는 상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 의해 수행되는 것일 수 있다.
실시 예에 따른 오디오 신호 렌더링 장치는 프로세서 및 상기 프로세서에 의해 실행되는 적어도 하나의 인스트럭션을 저장하는 메모리를 포함하고, 상기 프로세서는 높이 입력 채널 신호를 포함하는 복수의 입력 채널 신호를 수신하고, 상기 복수의 입력 채널 신호에 기초하여 위상 정렬을 위한 파라미터를 생성하고, 상기 복수의 입력 채널 신호의 제1 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제1 다운믹스 매트릭스를 수정하고, 상기 복수의 입력 채널 신호의 모든 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제2 다운믹스 매트릭스를 수정하고, 및 상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 기초하여 상기 복수의 입력 채널 신호를 복수의 출력 채널 신호로 다운믹싱하고, 여기서, 상기 제1 주파수 범위는 2.8 kHz 미만 및 10 kHz 초과를 포함하고, 상기 높이 입력 채널 신호는 고도 정보에 기초하여 식별되고, 상기 수정된 제1 다운믹스 매트릭스는 일반 장면을 위해 사용되고 상기 수정된 제2 다운믹스 매트릭스는 고도로 디코릴레이트된(highly decorrelated) 광대역 장면을 위해 사용되고, 상기 다운믹싱은 수신된 플래그에 따라 선택되는 상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 의해 수행될 수 있다.
본 발명의 일 실시 예에 의하면, 액티브다운 믹스 방식에 따라 음향 신호 믹싱을 수행할 때, 고도감이 감소되지 않게 믹싱을 수행할 수 있다.
본 발명의 일 실시 예에 있어서, 액티브다운 믹스 방식에 의한 효과가 실질적으로 나타날 수 있는 저주파 신호에 대하여 액티브다운 믹스 방식을 적용함으로써 액티브다운 믹스 방식에 따라 믹싱되는 경우 발생될 수 있는 연산량 증가 및 고도감 저하를 최소화할 수 있다.
도 1 및 도 2는 본 발명의 일 실시 예에 의한 입체 음향 재생 장치의 내부 구조를 나타낸 블록도이다.
도 3은 본 발명의 일 실시 예에 있어서, 3D 렌더러 및 믹서의 내부 구조를 나타낸 블록도이다.
도 4 및 도 5는 본 발명의 일 실시 예에 의한 입체 음향 재생 방법을 도시한 순서도이다.
도 6은 본 발명의 일 실시 예에 의한 액티브다운 믹싱 방식의 일 예를 나타낸 예시도이다.
이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위한 용어로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
도 1 및 도 2는 본 발명의 일 실시 예에 의한 입체 음향 재생 장치의 내부 구조를 나타낸 블록도이다.
본 발명의 일 실시 예에 의한 입체 음향 재생 장치(100)는 재생될 채널로 다운 믹싱된 다채널 오디오 신호를 출력할 수 있다.
입체 음향이란, 음의 고저, 음색뿐만 아니라 방향이나 거리감까지 재생하여 임장감을 가지게 하고, 음원이 발생한 공간에 위치하지 않은 청취자에게 방향감, 거리감 및 공간감을 지각할 수 있게 하는 공간 정보를 부가한 음향을 의미한다.
이하 설명에서 오디오 신호의 채널은 음향이 출력되는 스피커의 개수를 의미할 수 있다. 채널 수가 많을수록, 음향이 출력되는 스피커의 개수가 많아질 수 있다. 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(100)는 채널 수가 많은 다채널 오디오 신호가 채널 수가 적은 환경에서 출력되고 재생될 수 있도록 다채널 오디오 신호를 재생될 채널로 렌더링하고 믹싱할 수 있다. 이때 다채널 오디오 신호는 고도 음향을 출력할 수 있는 채널을 포함할 수 있다.
고도 음향을 출력할 수 있는 채널은 고도감을 느낄 수 있도록 청취자의 머리 위에 위치한 스피커를 통해 음향 신호를 출력할 수 있는 채널을 의미할 수 있다. 수평면 채널은 청취자와 수평한 면에 위치한 스피커를 통해 음향 신호를 출력할 수 있는 채널을 의미할 수 있다.
상술된 채널 수가 적은 환경은 고도 음향을 출력할 수 있는 채널을 포함하지 않고, 수평면 채널에 따라 수평면 상에 배치된 스피커를 통해 음향을 출력할 수 있는 환경을 의미할 수 있다.
*또한, 이하 설명에서 수평면 채널(horizontal channel)은 수평면 상에 배치된 스피커를 통해 출력될 수 있는 오디오 신호를 포함하는 채널을 의미할 수 있다. 오버헤드 채널(Overhead channel)은 수평면이 아닌 고도 상에 배치되어 고도음을 출력할 수 있는 스피커를 통해 출력될 수 있는 오디오 신호를 포함하는 채널을 의미할 수 있다.
도 1을 참조하면, 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(100)는 렌더러(110) 및 믹서(120)를 포함할 수 있다. 그러나 도시된 구성요소가 모두가 필수구성요소인 것은 아니다. 도시된 구성요소보다 많은 구성요소에 의해 입체 음향 재생 장치(100)가 구현될 수도 있고, 그보다 적은 구성요소에 의해서도 입체 음향 재생 장치(100)가 구현될 수 있다.
이하 상기 구성요소들에 대해 차례로 살펴본다.
본 발명의 일 실시 예에 의한, 입체 음향 재생 장치(100)는 다채널 오디오 신호를 렌더링하고, 믹싱하여 재생될 채널로 출력할 수 있다. 예를 들면, 다채널 오디오 신호는 22.2 채널 신호이고, 재생될 채널은 5.1 또는 7.1 채널일 수 있다. 입체 음향 재생 장치(100)는 다채널 오디오 신호의 각 채널들을 대응시킬 채널을 정함으로써 렌더링을 수행하고 재생될 채널과 대응된 각 채널들의 신호를 합쳐 최종 신호로 출력함으로써 렌더링된 오디오 신호들을 믹싱할 수 있다.
렌더러(110)는 다채널 오디오 신호를 채널 및 주파수에 따라 렌더링할 수 있다. 렌더러(110)는 다채널 오디오 신호를 오버헤드 채널과 수평면 채널에 따른 신호를 각각 3D(dimensional) 렌더링 및 2D(dimensional) 렌더링할 수 있다.
렌더러(110)는 오버헤드 채널을 3D 렌더링하기 위해 HRTF(Head Related Transfer filter) 변형 필터를 통과한 오버헤드 채널을 주파수에 따라 각각 다른 방법으로 렌더링할 수 있다. HRTF 변형 필터는 두 귀간의 레벨 차이 및 두 귀 간에서 음향 시간이 도달하는 시간 차이 등의 단순한 경로 차이뿐만 아니라, 머리 표면에서의 회절, 귓바퀴에 의한 반사 등 복잡한 경로상의 특성이 음의 도래 방향에 따라 변화하는 현상에서 발생하는 음색의 변형을 적용시켜 다른 방향에서 도달하는 음향의 음색으로 변형시킨다. HRTF 변형 필터는 오디오 신호의 음질을 변화시킴으로써 입체 음향이 인식될 수 있도록 오버헤드 채널에 포함된 오디오 신호들을 처리할 수 있다.
렌더러(110)는 오버해드 채널 신호 중 저주파 신호에 대하여는 애드-투-클로지스트-채널(Add to the closest channel) 방법에 따라 렌더링하고, 고주파 신호에 대하여는 멀티채널 패닝(Multichannel panning) 방법에 따라 렌더링할 수 있다. 멀티 채널 패닝 방법에 의하면, 다채널 오디오 신호의 각 채널의 신호가 각 채널 신호에 렌더링될 채널마다 서로 다르게 설정된 게인 값이 적용되어 적어도 하나의 수평면 채널에 각각 렌더링될 수 있다. 게인 값이 적용된 각 채널의 신호들은 믹싱을 통해 합쳐짐으로써 최종 신호로 출력될 수 있다.
저주파 신호는 회절성이 강하므로, 멀티 채널 패닝 방법에 따라 다채널 오디오 신호의 각 채널을 여러 채널에 각각 나누어 렌더링하지 않고, 하나의 채널에만 렌더링하여도 청취자가 듣기에 비슷한 음질을 가질 수 있다. 따라서, 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(100)는 저주파 신호를 애드-투-클로지스트-채널 방법에 따라 랜더링함으로써 하나의 출력 채널에 여러 채널이 믹싱됨에 따라 발생될 수 있는 음질 열화를 방지할 수 있다. 즉, 하나의 출력 채널에 여러 채널이 믹싱되면 각 채널 신호 간의 간섭에 따라 음질이 증폭되거나 감소되어 열화될 수 있으므로, 하나의 출력 채널에 하나의 채널을 믹싱함으로써 음질 열화를 방지할 수 있다.
애드 투 클로지스트 채널 방법에 의하면, 다채널 오디오 신호의 각 채널은 여러 채널에 나누어 렌더링하는 대신 재생될 채널들 중 가장 가까운 채널에 렌더링될 수 있다.
또한, 입체 음향 재생 장치(100)는 주파수에 따라 다른 방법으로 렌더링을 수행함으로써 스위트 스팟(sweet spot)을 음질 열화 없이 넓힐 수 있다. 즉, 회절 특성이 강한 저주파 신호에 대하여는 애드 투 클로지스트 채널 방법에 따라 렌더링함으로써, 하나의 출력 채널에 여러 채널이 믹싱됨에 따라 발생될 수 있는 음질 열화를 방지할 수 있다. 스위트 스팟이란, 청취자가 왜곡되지 않은 입체 음향을 최적으로 청취할 수 있는 소정 범위를 의미한다. 스위트 스팟이 넓을수록 청취자는 넓은 범위에서 왜곡되지 않은 입체 음향을 최적으로 청취할 수 있고, 청취자가 스위트 스팟에 위치하지 않는 경우, 음질 또는 음상 등이 왜곡된 음향을 청취할 수 있다.
믹서(120)는 렌더러(110)에 의해 수평 채널과 대응된 각 채널들의 신호를 합쳐 최종 신호로 출력할 수 있다. 믹서(120)는 소정 구간별로 각 채널들의 신호를 믹싱할 수 있다. 예를 들면, 믹서(120)는 1 프레임 별로 각 채널들의 신호를 믹싱할 수 있다.
본 발명의 일 실시 예에 의한 믹서(120)는 주파수에 따라 렌더링된 신호들을 액티브다운 믹스(Active downmix) 방식으로 믹싱할 수 있다. 자세히 설명하면, 믹서(120)는 저주파 신호에 대하여는 액티브다운 믹스 방식으로 믹싱할 수 있다. 또한, 믹서(120)는 고주파 신호에 대하여는 재생될 각 채널들에 렌더링된 신호들의 파워 값에 기초하여 최종 신호의 진폭 또는 최종 신호에 적용될 게인(gain)을 결정하는 파워 보존 방식(Power preserving module)으로 믹싱할 수 있다. 더하여, 믹서(120)는 고주파 신호에 대하여, 파워 보존 방식에 한하지 않고, 각 신호의 위상이 보정되어 믹싱되는 방식을 제외한 다른 방법에 따라 믹싱할 수도 있다.
액티브다운 믹스 방식이란, 믹싱될 채널로 합해지는 신호들 간의 공분산 매트릭스(covariance matrix)를 사용하여 다운믹싱할 때 각 신호의 위상(phase)을 보정하여 믹싱하는 방법을 의미한다. 예를 들면, 다운믹싱되는 신호들 중 에너지가 가장 큰 신호를 기준으로 각 신호들의 위상이 보정될 수 있다. 액티브다운 믹스 방식에 의하면, 합해지는 신호들 간에 보강 간섭이 이루어질 수 있도록 각 신호의 위상이 보정됨으로써, 믹싱될 때 발생될 수 있는 상쇄 간섭으로 인한 음질의 왜곡을 방지할 수 있다. 특히, 액티브다운 믹스 방식에 따라 음향 신호를 믹싱하는 경우, 각 신호의 위상이 맞지 않아 상쇄 간섭이 발생됨으로 인해 믹싱된 음향 신호의 음색이 변화하거나 소리가 사라지는 현상을 방지할 수 있다.
한편, 오버헤드 채널 신호를 HRTF 변형 필터를 통과시키고 멀티 채널 패닝을 통하여 입체 음향 신호를 재생하는 가상 렌더링 기술은 좌우 써라운드 스피커(surround speaker)을 통해 동기가 맞는 음원이 재생됨으로써 고도감 있는 입체 음향이 출력될 수 있다. 특히, 좌우 써라운드 스피커를 통해 동기가 맞는 음원이 재생됨으로써 동일한 양이 입력 신호(binaural signal)가 제공됨에 따라 음상에 고도감이 부여될 수 있다.
그러나, 액티브다운 믹스 방식에 따라 신호들을 다운믹싱하는 경우, 신호들의 위상이 제각각 달라질 수 있으므로, 각 채널간 신호들의 동기가 어긋남에 따라 고도감이 제공되지 않을 수 있다. 예를 들면, 오버헤드 채널에 대한 신호들의 동기가 믹싱 과정에서 어긋나는 경우, 두 귀간 음향 시간이 도달하는 시간 차이에 따라 인식될 수 있는 고도감이 없어지므로, 액티브다운 믹스의 적용으로 인해 음질이 열화될 수 있다.
따라서, 믹서(120)는 회절성이 강한 저주파 신호에 대하여는 두 귀간 음향 시간이 도달하는 시간 차이가 거의 인식되지 않고, 저주파 성분에서 위상 중첩 현상이 두드러지는 점에서 액티브다운 믹스 방식에 따라 저주파 신호를 믹싱할 수 있다. 또한, 믹서(120)는 두 귀간 음향 시간이 도달하는 시간 차이에 따라 인식될 수 있는 고도감 정도가 강한 고주파 신호에 대하여는 위상이 보정되지 않는 믹싱 방식에 따라 믹싱할 수 있다. 예를 들면, 믹서(120)는 파워 보존 방식에 따라 상쇄 간섭이 발생됨에 의해 상쇄된 에너지를 보존시킴으로써 상쇄 간섭으로 인한 음질의 왜곡을 최소화하면서 고주파 신호를 믹싱할 수 있다.
더하여, 본 발명의 일 실시 예에 있어서, QMF(quadrature mirror filter) 필터뱅크에서 특정 크로스오버 주파수 이상의 밴드 성분은 고주파로 간주하고, 나머지는 저주파로 간주하는 방식으로 구현됨으로써 저주파 신호와 고주파 신호에 대해 각각 렌더링 및 믹싱이 수행될 수 있다. QMF 필터는 입력 신호를 저주파와 고주파로 나누어 출력하는 필터를 의미할 수 있다.
더하여, 액티브다운 믹스는 주파수 밴드 별로 수행될 수 있는데, 다운 믹스가 이루어지는 채널들 간 공분산(covariance)를 산출해야 하는 등의 매우 높은 연산량을 가지고 있어, 저주파 신호만 액티브다운 믹스로 믹싱하면 그 자체의 연산량을 줄일 수 있다. 예를 들어, 음향 신호 재생 장치(100)에서 48kHz로 샘플링된 신호를 QMF 필터뱅크에서 3kHz 이하의 소리만 액티브다운 믹스를 적용하고 그 이상의 주파수의 소리는 파워 보존 모듈을 적용하는 경우, 연산량이 약 1/3 정도로 감소될 수 있다.
뿐만 아니라, 실질적으로 녹음된 음원과 같은 경우에는 고주파 신호들일수록 한 채널 신호가 다른 채널과 위상이 같을 확률이 낮아 액티브다운 믹스에 의해 믹싱 시 불필요한 연산이 수행되기도 한다.
도 2를 참조하면, 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(200)는 음향 분석부(210), 렌더러(220), 믹서(230) 및 출력부(240)를 포함할 수 있다. 도 2의 입체 음향 재생 장치(200), 렌더러(220) 및 믹서(230)는 도 1의 입체 음향 재생 장치(100), 렌더러(210) 및 믹서(220)와 대응되고, 중복되는 설명은 생략하기로 한다. 그러나 도시된 구성요소가 모두가 필수구성요소인 것은 아니다. 도시된 구성요소보다 많은 구성요소에 의해 입체 음향 재생 장치(200)가 구현될 수도 있고, 그보다 적은 구성요소에 의해서도 입체 음향 재생 장치(200)가 구현될 수 있다.
이하 상기 구성요소들에 대해 차례로 살펴본다.
음향 분석부(210)는 다채널 오디오 신호를 분석하여 렌더링 모드를 선택하고, 다채널 오디오 신호에 포함된 일부 신호를 분리하여 출력할 수 있다. 음향 분석부(210)는 렌더링 모드 선택부(211)와 렌더링 신호 분리부(212)를 포함할 수 있다.
렌더링 모드 선택부(211)는 다채널 오디오 신호에 박수 소리나 빗(rain) 소리와 같이 트랜지언트(transient)한 신호가 많은지 여부를 소정 구간별로 판단할 수 있다. 이하 설명에서 박수(applause) 소리나 빗소리와 같이 트랜지언트(transient)한, 즉 순간적이고 일시적인 신호가 많은 오디오 신호를 어플라우즈(applause) 신호로 지칭하기로 한다.
본 발명의 일 실시 예에 의한 입체 음향 재생 장치(200)는 어플라우즈 신호를 분리하여, 어플라우즈 신호의 특징에 따라 채널 렌더링 및 믹싱을 처리할 수 있다.
렌더링 모드 선택부(211)는 어플라우즈 신호가 다채널 오디오 신호에 포함되어 있는지 여부에 따라 렌더링 모드를 일반(general) 모드 또는 어플라우즈 모드 중 하나로 선택할 수 있다. 렌더러(220)는 렌더링 모드 선택부(211)에 의해 선택된 모드에 따라 렌더링할 수 있다. 즉, 렌더러(220)는 선택된 모드에 따라 어플라우즈 신호에 대한 렌더링을 수행할 수 있다.
렌더링 모드 선택부(211)는 어플라우즈 신호가 다채널 오디오 신호에 포함되어 있지 않은 경우, 일반 모드를 선택할 수 있다. 일반 모드에 의하면, 오버헤드 채널 신호는 3D 렌더러(221)에 의해 렌더링될 수 있고, 수평 채널 신호는 2D 렌더러(222)에 의해 렌더링될 수 있다. 즉, 어플라우즈 신호의 고려 없이 렌더링이 수행될 수 있다.
렌더링 모드 선택부(211)는 어플라우즈 신호가 다채널 오디오 신호에 포함되어 있는 경우, 어플라우즈 모드를 선택할 수 있다. 어플라우즈 모드에 의하면, 어플라우즈 신호가 분리되고, 분리된 어플라우즈 신호에 대해 렌더링이 수행될 수 있다.
렌더링 모드 선택부(211)는 다채널 오디오 신호에 포함되어 있거나 다른 장치로부터 별도로 수신된 어플라우즈 비트 정보를 이용하여 어플라우즈 신호가 다채널 오디오 신호에 포함되어 있는지 여부를 소정 구간별로 판단할 수 있다. 어플라우즈 비트 정보는 MPEG 계열의 코덱에 의하면 bsTsEnable 또는 bsTempShapeEnableChannel 플래그 정보를 포함하여, 상술된 플래그 정보에 의해 렌더링 모드가 렌더링 모드 선택부(211)에 의해 선택될 수 있다.
또한, 렌더링 모드 선택부(211)는 판단하고자 하는 소정 구간의 다채널 오디오 신호의 특성에 기초하여 렌더링 모드를 선택할 수 있다. 즉, 렌더링 모드 선택부(211)는 소정 구간의 다채널 오디오 신호의 특성이 어플라우즈 신호를 포함하는 오디오 신호의 특성을 가지는지 여부에 따라 렌더링 모드를 선택할 수 있다.
렌더링 모드 선택부(211)는 소정 구간의 다채널 오디오 신호에 다수의 입력 채널에 토널(Tonal) 하지 않은 광대역(wideband) 신호가 존재하고, 그 신호의 레벨이 채널 별로 유사한지 여부, 짧은 구간의 임펄스(impulse) 형태가 반복되는지 여부 및 채널 간 연관성(correlation)이 낮은지 여부 중 적어도 하나의 조건에 기초하여 어플라우즈(applause) 신호가 다채널 오디오 신호에 포함되어 있는지 여부를 판단할 수 있다.
렌더링 모드 선택부(211)는 어플라우즈(applause) 신호가 현재 구간에서 다채널 오디오 신호에 포함되어 있는 것으로 판단한 경우, 렌더링 모드를 어플라우즈 모드로 선택할 수 있다.
렌더링 신호 분리부(212)는 렌더링 신호 선택부(211)에 의해 어플라우즈 모드가 선택된 경우, 다채널 오디오 신호에 포함된 어플라우즈 신호를 일반 음향 신호와 분리할 수 있다.
MPEG USAC 계열에서의 bsTsdEnable 플래그가 사용되는 경우, 해당 채널의 고도(elevation)에 관련 없이 플래그 정보에 따라 수평 채널 신호와 같이 2D 렌더링될 수 있다. 또한, 오버헤드 신호도 플래그 정보에 따라 수평 채널 신호로 가정되어 믹싱될 수 있다. 즉, 렌더링 신호 분리부(212)는 플래그 정보에 따라 소정 구간의 다채널 오디오 신호에 포함된 어플라우즈 신호를 분리할 수 있고, 분리된 어플라우즈 신호는 수평 채널 신호와 같이 2D 랜더링될 수 있다.
플래그가 사용되지 않는 경우, 렌더링 신호 분리부(212)는 채널들간의 신호를 분석하여 어플라우즈 신호 성분을 분리할 수 있다. 오버헤드 신호 중에서 분리된 어플라우즈 신호는 2D 렌더링되고, 어플라우즈 신호가 아닌 나머지 신호는 3D 렌더링될 수 있다.
렌더러(220)는 오버 헤드 신호를 3D 랜더링 방법에 따라 렌더링하는 3D 렌더러(221)와 수평면 채널 신호 또는 어플라우즈 신호를 2D 랜더링 방법에 따라 렌더링하는 2D 렌더러(222)를 포함할 수 있다.
3D 렌더러(221)는 오버 헤드 신호를 주파수에 따라 각각 다른 방법으로 렌더링할 수 있다. 3D 랜더러(221)는 저주파 신호는 애드 투 클로지스트 채널 방법으로 랜더링하고, 고주파 신호는 3D 랜더링 방법에 따라 랜더링할 수 있다. 이하에서, 3D 랜더링 방법은 오버헤드 신호를 랜더링하는 방법을 의미하는 것으로, 3D 랜더링 방법은 멀티 채널 패닝 방법을 포함할 수 있다.
2D 렌더러(222)는 수평면 채널 신호 또는 어플라우즈 신호를 2D 랜더링 방법, 애드 투 클로지스트 채널 방법 및 에너지 부스트(energy boost) 방법 중 적어도 하나의 방법에 따라 렌더링할 수 있다. 이하에서 2D 랜더링 방법은 수평면 채널 신호를 랜더링하는 방법을 의미하는 것으로, 2D 랜더링 방법은 다운믹스 수식(Downmix Equation) 또는 VBAP 방법을 포함할 수 있다.
믹서(230)는 렌더링된 신호들을 각 채널별로 연산하여 최종 신호를 출력할 수 있다. 본 발명의 일 실시 예에 의한 믹서(230)는 주파수에 따라 렌더링된 신호들을 액티브다운 믹스(Active downmix) 방식으로 믹싱할 수 있다. 따라서, 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(200)는 저주파 신호에 대하여 액티브다운 믹스 방식으로 믹싱함으로써 상쇄 간섭에 따라 발생될 수 있는 음색 왜곡을 감소시킬 수 있다. 또한, 입체 음향 재생 장치(200)는 저주파 신호를 제외한 고주파 신호에 대하여는 액티브다운 믹스 방식 외에 예를 들면, 파워 보존 모듈에 따라 믹싱함으로써 액티브다운 믹스의 적용으로 발생될 수 있는 고도감 저하를 방지할 수 있다.
출력부(240)는 믹서(230)에 의해 믹싱된 신호를 스피커를 통해 최종 출력시킬 수 있다. 이때 출력부(240)는 믹싱된 신호의 채널에 따라 각각 다른 스피커를 통해 음향 신호를 출력시킬 수 있다.
도 3은 본 발명의 일 실시 예에 있어서, 3D 렌더러 및 믹서의 내부 구조를 나타낸 블록도이다. 도 3의 3D 렌더러(301) 및 믹서(302)는 도 2의 3D 렌더러(221) 및 믹서(230)와 대응되며 중복되는 설명은 생략하기로 한다. 그러나 도시된 구성요소가 모두가 필수구성요소인 것은 아니다. 도시된 구성요소보다 많은 구성요소에 의해 3D 렌더러(301) 및 믹서(302)가 구현될 수도 있고, 그보다 적은 구성요소에 의해서도 3D 렌더러(301) 및 믹서(302)가 구현될 수 있다.
이하 상기 구성요소들에 대해 차례로 살펴본다.
도 5를 참조하면, 3D 렌더러(301)는 HRTF 변형 필터(310), LPF(320), HPF(330), 애드-투-클로지스트 채널(340) 및 멀티채널 패닝(350)을 포함할 수 있다.
HRTF 변형 필터(310)는 다채널 오디오 신호 중 오버헤드 채널 신호를 HRTF 변형 필터링할 수 있다.
LPF(320)는 HRTF 변형 필터링된 오버헤드 채널 신호 중 저주파 성분을 분리하여 출력할 수 있다.
HPF(320)는 HRTF 변형 필터링된 오버헤드 채널 신호 중 고주파 성분을 분리하여 출력할 수 있다.
애드 투 클로지스트 채널(340)는 오버헤드 채널 신호 중 저주파 성분을 각 채널 수평면에 투영하였을 경우 가장 가까운 채널로 렌더링할 수 있다.
멀티 채널 패닝(350)는 오버헤드 채널 신호 중 고주파 성분을 멀티 채널 패닝 방법에 따라 렌더링할 수 있다.
또한, 도 3을 참조하면, 믹서(302)는 액티브다운 믹스 모듈(360) 및 파워 보존 모듈(370)을 포함할 수 있다.
액티브다운 믹스 모듈(360)은 3D 렌더러(301)에 의해 렌더링된 신호 중 애드 투 클로지스트 채널(540)에 의해 렌더링된 오버헤드 채널 신호 중 저주파 성분에 대하여 액티브다운 믹싱 방식으로 믹싱할 수 있다. 액티브다운 믹스 모듈(360)은 보강 간섭을 유도하기 위해 각 채널별로 합해지는 신호들의 위상을 보정하는 액티브다운 믹스 방식에 따라 저주파 성분을 믹싱할 수 있다.
파워 보존 모듈(370)은 3D 렌더러(301)에 의해 렌더링된 신호 중 멀티 채널 패닝(350)에 의해 렌더링된 오버헤드 채널 신호 중 고주파 성분에 대하여 파워 보존 방식에 따라 믹싱할 수 있다. 파워 보존 모듈(370)은 고주파 성분에 대하여 각 채널들에 렌더링된 신호들의 파워 값에 기초하여 최종 신호의 진폭 또는 최종 신호에 적용될 게인(gain)을 결정하는 파워 보존 방식으로 믹싱할 수 있다. 본 발명의 일 실시 예에 의한 파워 보존 모듈(370)은 상술된 파워 보존 방식으로 고주파 성분의 신호를 믹싱할 수 있으나 이에 한하지 않고, 다른 방법에 따라 믹싱할 수도 있다.
믹서(302)는 액티브다운 믹스 모듈(360) 및 파워 보존 모듈(370)에 의해 믹싱된 신호들을 합하여 믹싱된 3D 음향 신호를 출력할 수 있다.
이하에서는 상술된 액티브다운 믹스 방식에 따라 입체 음향을 재생하는 방법에 대해 도 4 및 도 5를 참조하여 자세히 살펴보기로 한다.
도 4 및 도 5는 본 발명의 일 실시 예에 의한 입체 음향 재생 방법을 도시한 순서도이다.
도 4를 참조하면, 단계 S401에서, 입체 음향 재생 장치(100)는 재생하고자 하는 다채널 오디오 신호를 획득할 수 있다.
단계 S403에서, 입체 음향 재생 장치(100)는 각 채널별로 렌더링할 수 있다. 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(100)는 주파수에 따라 렌더링할 수 있으나, 이에 한하지 않고, 다양한 방법으로 렌더링할 수 있다.
단계 S405에서, 입체 음향 재생 장치(100)는 단계 S403에서 렌더링된 신호들을 주파수에 따라 액티브다운 믹스 방식으로 믹싱할 수 있다. 자세히 설명하면, 입체 음향 재생 장치(100)는 저주파 성분에 대하여는 액티브다운 믹스 방식으로 믹싱하고, 고주파 성분에 대하여는 다른 방식으로 믹싱할 수 있다. 예를 들면, 입체 음향 재생 장치(100)는 고주파 성분에 대하여는 각 채널별로 렌더링된 신호들의 파워값에 따라 결정된 게인을 적용함으로써 상쇄 간섭에 의해 상쇄된 에너지를 보존될 수 있도록 믹싱하는 파워 보존 방식으로 믹싱할 수 있다.
따라서, 본 발명의 일 실시 예에 의한 입체 음향 재생 장치(100)는 액티브다운 믹스 방식을 고주파 성분에 적용함에 따라 발생될 수 있는 고도감의 저하를 최소화할 수 있다.
도 5는 도 4에 도시된 입체 음향 재생 방법에서 주파수별로 렌더링하고 믹싱하는 방법이 더 상세히 도시된 순서도이다.
도 5를 참조하면, 단계 S501에서, 입체 음향 재생 장치(100)는 재생하고자 하는 다채널 오디오 신호를 획득할 수 있다. 이때, 입체 음향 재생 장치(100)는 어플라우즈 신호가 삽입되어 있는 경우, 어플라우즈 신호를 분리하여, 어플라우즈 신호의 특징에 따라 채널 렌더링 및 믹싱을 처리할 수 있다.
단계 S503에서, 입체 음향 재생 장치(100)는 단계 S501에서 획득한 입체 음향 신호를 오버헤드 채널 신호와 수평면 채널의 신호로 분리하여 렌더링 및 믹싱을 각각 수행할 수 있다. 즉, 입체 음향 재생 장치(100)는 오버헤드 채널 신호는 3D 렌더링 및 믹싱, 수평면 채널 신호는 2D 렌더링 및 믹싱 처리를 수행할 수 있다.
단계 S505에서, 입체 음향 재생 장치(100)는 고도감이 제공될 수 있도록 오버헤드 채널 신호를 HRTF 변형 필터로 필터링할 수 있다.
단계 S507에서, 입체 음향 재생 장치(100)는 오버헤드 채널 신호를 고주파와 저주파로 분리하여, 렌더링 및 믹싱 처리를 수행할 수 있다.
단계 S509에서, 입체 음향 재생 장치(100)는 오버헤드 채널 신호 중 고주파 신호에 대하여, 단계 S511에서, 3D 렌더링 방법에 따라 렌더링할 수 있다. 3D 렌더링 방법은 멀티 채널 패닝 방법을 포함할 수 있다. 멀티 채널 패닝(panning)이란 다채널 오디오 신호의 각 채널 신호들이 재생될 채널들에 배분되는 것을 의미할 수 있다. 이때, 패닝 계수가 적용된 각 채널 신호들이 재생될 채널들에 배분될 수 있다. 고주파 신호의 경우, 고도감이 올라갈수록 두 귀간의 레벨 차이(Interaural level difference, ILD)가 줄어드는 특성을 제공하기 위해 서라운드 채널에 신호가 배분될 수 있다. 또한, 프론트 채널과 패닝되는 다수의 채널의 개수에 의해 음향 신호의 방향이 정위될 수 있다.
단계 S513에서, 입체 음향 재생 장치(100)는 단계 S511에서 렌더링된 고주파 신호를 액티브다운 믹스 방식 이외의 방식으로 믹싱할 수 있다. 예를 들어, 입체 음향 재생 장치(100)는 렌더링된 고주파 신호를 파워 보존 모듈에 따라 믹싱할 수 있다.
또한, 단계 S515에서, 입체 음향 재생 장치(100)는 오버헤드 채널 신호 중 저주파 신호는 상술된 애드 투 클로지스트 채널 방법에 따라 렌더링할 수 있다. 하나의 채널에 많은 신호, 즉 다채널 오디오 신호의 여러 개의 채널 신호가 섞이게 되면 각기 다른 위상으로 인해 음질이 상쇄되거나 증폭됨에 따라 음질 열화가 발생될 수 있다. 애드 투 클로지스트 채널 방법에 의하면, 입체 음향 재생 장치(100)는 상술된 음질 열화의 발생을 방지하기 위해 각 채널 수평면에 투영하였을 경우 가장 가까운 채널로 매핑할 수 있다.
다채널 오디오 신호가 주파수 신호 또는 필터 뱅크 신호인 경우, 저주파에 해당하는 빈(bin) 또는 밴드(band)는 애드 투 클로지스트 채널 방법, 고주파에 해당하는 빈(bin) 또는 밴드(band)는 멀티 채널 패닝 방법에 따라 렌더링될 수 있다. 빈(bin) 또는 밴드(band)는 주파수 도메인에서의 소정 단위만큼의 신호 구간을 의미할 수 있다.
단계 S521에서, 입체 음향 재생 장치(100)는 단계 S519에서 렌더링된 수평면 채널의 신호를 파워 보존 모듈에 따라 믹싱할 수 있다.
단계 S523에서, 입체 음향 재생 장치(100)는 오버헤드 채널 신호와 수평면 채널 신호의 믹싱된 최종 신호를 출력할 수 있다.
도 6은 본 발명의 일 실시 예에 의한 액티브다운 믹싱 방식의 일 예를 나타낸 예시도이다.
신호(610)과 신호(620)이 믹싱되는 경우, 각 신호의 위상이 일치하지 않아 상쇄 간섭이 발생되어 음질이 왜곡될 수 있다. 따라서, 액티브다운 믹스 방식에 따라 에너지가 상대적으로 적은 신호(610)의 위상을 신호(620)에 맞추어 보정하고, 각 신호를 믹싱할 수 있다. 믹싱된 신호(630)를 참조하면, 신호(610)의 위상이 뒤로 시프트됨에 따라 보강 간섭이 발생될 수 있다.
본 발명의 일 실시 예에 의하면, 액티브다운 믹스 방식에 따라 음향 신호 믹싱을 수행할 때, 고도감이 감소되지 않게 믹싱을 수행할 수 있다.
본 발명의 일 실시 예에 있어서, 액티브다운 믹스 방식에 의한 효과가 실질적으로 나타날 수 있는 저주파 신호에 대하여 액티브다운 믹스 방식을 적용함으로써 액티브다운 믹스 방식에 따라 믹싱되는 경우 발생될 수 있는 연산량 증가 및 고도감 저하를 최소화할 수 있다.
본 발명의 일 실시 예에 의한 방법은 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터(정보 처리 기능을 갖는 장치를 모두 포함한다)가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 장치의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장 장치 등이 있다.
비록 상기 설명이 다양한 실시예들에 적용되는 본 발명의 신규한 특징들에 초점을 맞추어 설명되었지만, 본 기술 분야에 숙달된 기술을 가진 사람은 본 발명의 범위를 벗어나지 않으면서도 상기 설명된 장치 및 방법의 형태 및 세부 사항에서 다양한 삭제, 대체, 및 변경이 가능함을 이해할 것이다. 따라서, 본 발명의 범위는 상기 설명에서보다는 첨부된 특허청구범위에 의해 정의된다. 특허청구범위의 균등 범위 안의 모든 변형은 본 발명의 범위에 포섭된다.

Claims (2)

  1. 높이 입력 채널 신호를 포함하는 복수의 입력 채널 신호를 수신하는 단계;
    상기 복수의 입력 채널 신호에 기초하여 위상 정렬을 위한 파라미터를 생성하는 단계;
    상기 복수의 입력 채널 신호의 제1 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제1 다운믹스 매트릭스를 수정하는 단계;
    상기 복수의 입력 채널 신호의 모든 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제2 다운믹스 매트릭스를 수정하는 단계; 및
    상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 기초하여 상기 복수의 입력 채널 신호를 복수의 출력 채널 신호로 다운믹싱하는 단계를 포함하고,
    상기 제1 주파수 범위는 2.8 kHz 미만 및 10 kHz 초과를 포함하고,
    상기 높이 입력 채널 신호는 고도 정보에 기초하여 식별되고,
    상기 수정된 제1 다운믹스 매트릭스는 일반 장면을 위해 사용되고 상기 수정된 제2 다운믹스 매트릭스는 고도로 디코릴레이트된(highly decorrelated) 광대역 장면을 위해 사용되고,
    상기 다운믹싱하는 단계는 수신된 플래그에 따라 선택되는 상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 의해 수행되는 것인, 오디오 신호 렌더링 방법.
  2. 오디오 신호 렌더링 장치에 있어서,
    프로세서; 및
    상기 프로세서에 의해 실행되는 적어도 하나의 인스트럭션을 저장하는 메모리를 포함하고,
    상기 프로세서는
    높이 입력 채널 신호를 포함하는 복수의 입력 채널 신호를 수신하고,
    상기 복수의 입력 채널 신호에 기초하여 위상 정렬을 위한 파라미터를 생성하고,
    상기 복수의 입력 채널 신호의 제1 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제1 다운믹스 매트릭스를 수정하고,
    상기 복수의 입력 채널 신호의 모든 주파수 범위를 위상 정렬하기 위해, 상기 위상 정렬을 위한 파라미터에 기초하여 제2 다운믹스 매트릭스를 수정하고, 및
    상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 기초하여 상기 복수의 입력 채널 신호를 복수의 출력 채널 신호로 다운믹싱하고,
    여기서, 상기 제1 주파수 범위는 2.8 kHz 미만 및 10 kHz 초과를 포함하고,
    상기 높이 입력 채널 신호는 고도 정보에 기초하여 식별되고,
    상기 수정된 제1 다운믹스 매트릭스는 일반 장면을 위해 사용되고 상기 수정된 제2 다운믹스 매트릭스는 고도로 디코릴레이트된(highly decorrelated) 광대역 장면을 위해 사용되고,
    상기 다운믹싱은 수신된 플래그에 따라 선택되는 상기 수정된 제1 다운믹스 매트릭스 및 상기 수정된 제2 다운믹스 매트릭스 중 하나에 의해 수행되는, 오디오 신호 렌더링 장치.
KR1020210019367A 2020-09-18 2021-02-10 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치 KR102290417B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210019367A KR102290417B1 (ko) 2020-09-18 2021-02-10 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200120307A KR102217832B1 (ko) 2020-09-18 2020-09-18 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치
KR1020210019367A KR102290417B1 (ko) 2020-09-18 2021-02-10 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200120307A Division KR102217832B1 (ko) 2020-09-18 2020-09-18 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20210020961A true KR20210020961A (ko) 2021-02-24
KR102290417B1 KR102290417B1 (ko) 2021-08-17

Family

ID=74688741

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210019367A KR102290417B1 (ko) 2020-09-18 2021-02-10 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치

Country Status (1)

Country Link
KR (1) KR102290417B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071574A1 (en) * 2000-12-12 2002-06-13 Aylward J. Richard Phase shifting audio signal combining
KR20110052562A (ko) * 2008-07-15 2011-05-18 엘지전자 주식회사 오디오 신호의 처리 방법 및 이의 장치
KR20140004086A (ko) * 2010-10-22 2014-01-10 오렌지 반대 위상의 채널들에 대한 개선된 스테레오 파라메트릭 인코딩/디코딩

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071574A1 (en) * 2000-12-12 2002-06-13 Aylward J. Richard Phase shifting audio signal combining
KR20110052562A (ko) * 2008-07-15 2011-05-18 엘지전자 주식회사 오디오 신호의 처리 방법 및 이의 장치
KR20140004086A (ko) * 2010-10-22 2014-01-10 오렌지 반대 위상의 채널들에 대한 개선된 스테레오 파라메트릭 인코딩/디코딩

Also Published As

Publication number Publication date
KR102290417B1 (ko) 2021-08-17

Similar Documents

Publication Publication Date Title
KR102160254B1 (ko) 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치
US20220322026A1 (en) Method and apparatus for rendering acoustic signal, and computerreadable recording medium
US8675899B2 (en) Front surround system and method for processing signal using speaker array
KR101341523B1 (ko) 스테레오 신호들로부터 멀티 채널 오디오 신호들을생성하는 방법
KR101567461B1 (ko) 다채널 사운드 신호 생성 장치
KR102392773B1 (ko) 음향 신호의 렌더링 방법, 장치 및 컴퓨터 판독 가능한 기록 매체
KR102160248B1 (ko) 다채널 음향 신호의 정위 방법 및 장치
CN113170271A (zh) 用于处理立体声信号的方法和装置
WO2010113434A1 (ja) 音響再生装置及び音響再生方法
JP6660982B2 (ja) オーディオ信号レンダリング方法及び装置
US20210195361A1 (en) Method and device for audio signal processing for binaural virtualization
KR102217832B1 (ko) 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치
KR102290417B1 (ko) 액티브다운 믹스 방식을 이용한 입체 음향 재생 방법 및 장치
KR102443055B1 (ko) 입체 음향 재생 방법 및 장치
KR102380232B1 (ko) 입체 음향 재생 방법 및 장치
US11373662B2 (en) Audio system height channel up-mixing

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant