KR20210015689A - PREPARATION METHOD OF MXene - Google Patents

PREPARATION METHOD OF MXene Download PDF

Info

Publication number
KR20210015689A
KR20210015689A KR1020200094650A KR20200094650A KR20210015689A KR 20210015689 A KR20210015689 A KR 20210015689A KR 1020200094650 A KR1020200094650 A KR 1020200094650A KR 20200094650 A KR20200094650 A KR 20200094650A KR 20210015689 A KR20210015689 A KR 20210015689A
Authority
KR
South Korea
Prior art keywords
mxene
maxine
alc
gac
reducing agent
Prior art date
Application number
KR1020200094650A
Other languages
Korean (ko)
Inventor
김연승
이동욱
서유경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20210015689A publication Critical patent/KR20210015689A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/045Carbides composed of metals from groups of the periodic table
    • H01L2924/04544th Group
    • H01L2924/04541TiC

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a preparation method of MXene including a step of reacting a MAX phase with an etchant containing a strong acid and a reducing agent. The MXene has high dispersibility and excellent electrical properties.

Description

맥신 (MXene) 제조 방법 {PREPARATION METHOD OF MXene}Maxine manufacturing method {PREPARATION METHOD OF MXene}

본 발명은 맥신 (MXene) 제조 방법 에 관한 것으로, 상세하게는 보다 효율적으로 높은 분산성 및 우수한 전기적 특성을 갖으며 특히 고온 고습 환경에 노출시에도 전기 전도도가 유지되는 특성을 갖는 맥신(MXene)을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method of manufacturing Maxine (MXene), and in detail, Maxine (MXene) having a property of maintaining electrical conductivity even when exposed to a high-temperature, high-humidity environment more efficiently and has high dispersibility and excellent electrical properties. It relates to a method that can be manufactured.

그래핀과 유사한 구조를 갖는 2차원 물질의 하나로 MAX 상 (MAX phase, M은 전이금속, A는 13 또는 14족 원소, X는 탄소 및/또는 질소)이 알려져 있으며, 이러한 MAX 상은 전기전도성, 내산화성, 기계가공성 등의 물성이 우수한 것으로도 알려져 있다. As one of the two-dimensional materials having a structure similar to graphene, the MAX phase (MAX phase, M is a transition metal, A is a group 13 or 14 element, X is carbon and/or nitrogen) is known, and these MAX phases have electrical conductivity and resistance. It is also known to have excellent physical properties such as oxidation and machinability.

최근 MAX 상인 3차원의 티타늄-알루미늄 카바이드에서 불산 등의 강산을 사용하여 상기 A에 해당하는 알루미늄 층을 선택적으로 제거함으로써, 완전히 다른 특성을 갖는 2차원의 구조로 변형시켜 "맥신(MXene)"이라 불리는 2차원 물질이 소개된 바 있다. 맥신(MXene)은 그래핀과 같은 유사한 전기전도성과 강도를 가지는데, 이러한 특성으로 인하여 다양한 분야에서 적용하려는 시도가 있다. Recently, by selectively removing the aluminum layer corresponding to A using a strong acid such as hydrofluoric acid from the three-dimensional titanium-aluminum carbide, which is a MAX merchant, it is transformed into a two-dimensional structure with completely different characteristics, and is called "MXene" A two-dimensional material called a has been introduced. Maxine (MXene) has similar electrical conductivity and strength as graphene, but due to these characteristics, there are attempts to apply it in various fields.

상술한 바와 같이, 고순도 맥신을 제조하기 위해 HF, LiF/HCl 등의 강산을 사용하게 되는데, 이러한 강산을 사용하여 맥신(MXene)을 제조하면 부산물로 HCl, LiCl, Li3AlF6, AlF3등이 생성된다. 이러한 부산물이 MXene 층에 존재하게 되면 저항으로 작용하여 전기 전도도가 크게 저하되거나 전자파 차례 물성 등이 저하될 수 있다. As described above, strong acids such as HF and LiF/HCl are used to prepare high-purity Maxine. When Maxine is prepared using these strong acids, HCl, LiCl, Li 3 AlF 6 , AlF 3 etc. Is created. When these by-products are present in the MXene layer, they act as resistance, and the electrical conductivity may be greatly reduced or the physical properties of electromagnetic waves may be deteriorated.

또한, LiF에 포함된 Li 원소는 원소크기가 작아 MXene의 층사이에 intercalation 되어 박리를 유도한다고 알려져 있으며, 또한 환원 전위가 낮아 에칭 과정에서 MXene이 oxide로 완전히 산화됨으로써 유발될 수 있는 물성 손실을 방지 가능할 것으로 여겨진다.In addition, Li element contained in LiF is known to induce exfoliation by intercalation between layers of MXene due to its small element size. Also, its reduction potential is low, preventing loss of physical properties that may be caused by complete oxidation of MXene to oxide in the etching process. It is believed to be possible.

본 발명은, 보다 효율적으로 높은 분산성 및 우수한 전기적 특성을 갖으며 특히 고온 고습 환경에 노출시에도 전기 전도도가 유지되는 특성을 갖는 맥신(MXene)을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method capable of producing Maxine (MXene) having a property of more efficiently maintaining high dispersibility and excellent electrical properties, and in particular maintaining electrical conductivity even when exposed to a high temperature and high humidity environment.

본 명세서에서는, 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키는 단계를 포함하는, 맥신 (MXene) 제조 방법이 제공된다. In the present specification, there is provided a method of manufacturing Maxine (MXene) comprising reacting a MAX phase with an etching solution containing a strong acid and a reducing agent.

이하 발명의 구체적인 구현예에 맥신(MXene) 제조 방법에 대해서 보다 구체적으로 설명하기로 한다. Hereinafter, a method for manufacturing Maxine (MXene) will be described in more detail in a specific embodiment of the present invention.

발명의 일 구현예에 따르면, 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키는 단계를 포함하는, 맥신 (MXene) 제조 방법이 제공될 수 있다. According to an embodiment of the present invention, a method of manufacturing Maxine (MXene) may be provided, comprising reacting a MAX phase with an etching solution containing a strong acid and a reducing agent.

맥스상(MAX phase)을 강산으로 처리하는 이전의 맥신(MXene)의 제조 방법에 따르면, 제공되는 맥신의 층간 구조가 불균일할 뿐만 아니라 이들의 물 및 기타 용매에서 분산성이 낮고, 초기 전기전도도 낮을 뿐만 아니라 고온 다습 환경에서 전기 전도도가 크게 저하되는 한계가 있었다. According to the previous manufacturing method of Maxine, which treats the MAX phase with a strong acid, the interlayer structure of Maxine provided is not only non-uniform, but also its dispersibility in water and other solvents is low, and the initial electrical conductivity is low. In addition, there is a limit in that the electrical conductivity is greatly reduced in a high temperature and high humidity environment.

이에, 본 발명자는 맥신(MXene)을 보다 용이하게 제공할 수 있는 방법에 대하여 연구를 진행하여, 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시킴으로서, 보다 높은 효율로 짧은 시간 내에 높은 분산성 및 우수한 전기적 특성을 갖는 맥신(MXene)을 제공할 수 있으며, 이러한 맥신(MXene)이 우수한 전기 전도성 및 전자파 차폐 효과를 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다. Accordingly, the present inventors proceeded with research on a method that can more easily provide Maxine, and reacted with an etchant containing a strong acid and a reducing agent in the MAX phase. It is possible to provide MXene having high dispersibility and excellent electrical properties, and it has been confirmed through an experiment that this Maxine can implement excellent electrical conductivity and electromagnetic wave shielding effect, and the invention has been completed.

보다 구체적으로, 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키면, 맥스상을 맥신으로 산화시킬 수 있는 동시에 산화단계를 조절함으로서 맥스상이 옥사이드로 완전히 산화되는 것을 방지할 수 있다. 이와 같이 제조되는 맥신은 보다 균일하고 명확하게 구분되는 층상 구조를 가질 수 있으며, 또한 -25 mV 이상, 또는 -25 내지 -45 mV, 또는 -28 내지 - 40 mV, 또는 -30 내지 -37 mV 정도의 제타포텐셩을 가져서 물 또는 다른 유기 용매에 대한 높은 분산성을 가질 수 있다. More specifically, when the MAX phase is reacted with an etching solution containing a strong acid and a reducing agent, the max phase can be oxidized to maxine and at the same time, by controlling the oxidation step, the max phase can be prevented from being completely oxidized to oxide. Maxine produced in this way may have a more uniform and clearly distinguished layered structure, and also -25 mV or more, or -25 to -45 mV, or -28 to -40 mV, or -30 to -37 mV It can have a high dispersibility in water or other organic solvents by having the zetapotent.

뿐만 아니라, 이와 같이 제조되는 맥신은 이를 구성하는 전이금속, 탄소간의 결합에 기인하여 높은 초기 전기전도도를 가지면서도, 산화안정성이 우수하여, 고온 다습한 환경에서도 전도도가 안정적으로 유지되는 특성을 가질 수 있다. In addition, the Maxine manufactured in this way has high initial electrical conductivity due to the bonding between the transition metal and carbon constituting it, and has excellent oxidation stability, so that it can have the characteristics of stably maintaining conductivity even in a high temperature and high humidity environment. have.

상기 MAX 상은 M은 전이금속, A는 13 또는 14족 원소, X는 탄소 및/또는 질소로 정의될 수 있으며, 이러한 MAX 상의 구체적인 예로는 Ti2CdC, Sc2InC, Ti2AlC, Ti2GaC, Ti2InC, Ti2TlC, V2AlC, V2GaC, Cr2GaC, Ti2AlN, Ti2GaN, Ti2InN, V2GaN, Cr2GaN, Ti2GeC, Ti2SnC, Ti2PbC, V2GeC, Cr2AlC, Cr2GeC, V2PC, V2AsC, Ti2SC, Zr2InC, Zr2TlC, Nb2AlC, Nb2GaC, Nb2InC, Mo2GaC, Zr2InN, Zr2TlN, Zr2SnC, Zr2PbC, Nb2SnC, Nb2PC, Nb2AsC, Zr2SC, Nb2SC, Hf2InC, Hf2TlC, Ta2AlC, Ta2GaC, Hf2SnC, Hf2PbC, Hf2SnN, Hf2SC, Ti3AlC2, V3AlC2, Ti3SiC2, Ti3GeC2, Ti3SnC2, Ta3AlC2, Ti4AlN3, V4AlC3, Ti4GaC3, Ti4SiC3, Ti4GeC3, Nb4AlC3 및 Ta4AlC3 등을 들 수 있다. The MAX phase may be defined as M is a transition metal, A is a group 13 or 14 element, and X is carbon and/or nitrogen, and specific examples of such MAX phase include Ti 2 CdC, Sc 2 InC, Ti 2 AlC, and Ti 2 GaC. , Ti 2 InC, Ti 2 TlC, V 2 AlC, V 2 GaC, Cr 2 GaC, Ti 2 AlN, Ti 2 GaN, Ti 2 InN, V 2 GaN, Cr 2 GaN, Ti 2 GeC, Ti 2 SnC, Ti 2 PbC, V 2 GeC, Cr 2 AlC, Cr 2 GeC, V 2 PC, V 2 AsC, Ti 2 SC, Zr 2 InC, Zr 2 TlC, Nb 2 AlC, Nb 2 GaC, Nb 2 InC, Mo 2 GaC , Zr 2 InN, Zr 2 TlN, Zr 2 SnC, Zr 2 PbC, Nb 2 SnC, Nb 2 PC, Nb 2 AsC, Zr 2 SC, Nb 2 SC, Hf 2 InC, Hf 2 TlC, Ta 2 AlC, Ta 2 GaC, Hf 2 SnC, Hf 2 PbC, Hf 2 SnN, Hf 2 SC, Ti 3 AlC 2 , V 3 AlC 2 , Ti 3 SiC 2 , Ti 3 GeC 2 , Ti 3 SnC 2 , Ta 3 AlC 2 , Ti 4 AlN 3 , V 4 AlC 3 , Ti 4 GaC 3 , Ti 4 SiC 3 , Ti 4 GeC 3 , Nb 4 AlC 3 and Ta 4 AlC 3 .

상기 환원제는 다이보레인(diborane), 수소화붕소나트륨 (NaBH4), 히드라진(Hydrazine), 요오드화수소(HI), 요오드화칼륨(KI), 요오드화나트륨(NaI), 옥살산(oxalic acid), 포름산(formic acid), 아스코르브산(ascorbic acid), 아이산(phosphorous acid) 으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다. 상술한 바와 같이, 이러한 환원제는 맥스상이 맥신으로 산화되는 과정에서 옥사이드로의 추가적인 산화가 되는 것을 방지할 수 있다. The reducing agent is diborane (diborane), sodium borohydride (NaBH4), hydrazine (Hydrazine), hydrogen iodide (HI), potassium iodide (KI), sodium iodide (NaI), oxalic acid, formic acid (formic acid) ), ascorbic acid, and phosphorous acid may contain at least one compound selected from the group consisting of. As described above, such a reducing agent can prevent additional oxidation to oxide during the process of oxidizing the max phase to maxine.

또한, 상기 에칭액은 상기 강산 대비 상기 환원제를 1 내지 30 몰%, 또는 5 내지 20몰%로 포함할 수 있다. 상기 에칭액 중 환원제의 함량이 상기 강산의 사용량 대비 너무 낮은 경우, 맥신이 과도하게 산화되어 전기전도도가 낮은 옥사이드 생성량이 증가할 수 있다. In addition, the etching solution may contain 1 to 30 mol%, or 5 to 20 mol% of the reducing agent relative to the strong acid. When the content of the reducing agent in the etching solution is too low compared to the amount of the strong acid, the amount of oxide generated with low electrical conductivity may increase due to excessive oxidation of Maxine.

또한, 상기 에칭액 중 환원제의 함량이 상기 강산의 사용량 대비 너무 높은 경우, 맥스상이 분산성이 우수한 맥신으로 산화되지 않아 공정성이 용이하도록 분산액을 제조하지 못하거나 이로 인해 균일한 코팅층을 제조하지 못할 수 있다. In addition, if the content of the reducing agent in the etching solution is too high compared to the amount of the strong acid, the max phase is not oxidized to maxine with excellent dispersibility, so that the dispersion may not be prepared to facilitate fairness, or a uniform coating layer may not be prepared due to this. .

한편, 상기 강산의 종류는 크게 한정되지 않지만, 예를 들어 불화 수소 및/또는 염화 수소를 포함할 수 있다. 또한, 상기 강산의 농도는 크게 한정되지 않지만, 예를 들어 1 내지 50 wt% 일 수 있다. On the other hand, the type of the strong acid is not largely limited, but may include, for example, hydrogen fluoride and/or hydrogen chloride. In addition, the concentration of the strong acid is not largely limited, but may be, for example, 1 to 50 wt%.

상기 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키는 단계는 그리 높지 않은 온도 범위에서 수행될 수 있으며, 예를 들어 10 ℃ 내지 80 ℃의 온도에서 수행될 수 있다. The step of reacting the MAX phase with an etching solution containing a strong acid and a reducing agent may be performed in a temperature range that is not very high, and may be performed at a temperature of, for example, 10° C. to 80° C.

이에 따라, 상기 구현예의 고순도의 맥신 (MXene) 제조 방법은 상기 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키는 단계 이후에, 상기 제조된 맥신 (MXene)을 50 내지 80℃의 온도로 가열하는 단계; 및 상기 가열 단계된 맥신 (MXene)을 상온으로 냉각 이후 물로 세척하는 단계를 더 포함할 수 있다. Accordingly, after the step of reacting the MAX phase with an etchant containing a strong acid and a reducing agent, the manufacturing method of the high purity Maxine (MXene) of the embodiment, the prepared Maxine (MXene) of 50 to 80 ℃ Heating to temperature; And after cooling the heated Maxine (MXene) to room temperature may further include washing with water.

상기 제조된 맥신 (MXene)을 50 내지 80℃의 온도로 가열하는 단계는 맥스상이 맥신으로 산화될 수 있도록 활성화 에너지를 부여하는 역할을 할 수 있다. Heating the prepared Maxine (MXene) to a temperature of 50 to 80°C may serve to impart activation energy so that the Max phase can be oxidized to Maxine.

상기 가열 단계된 맥신 (MXene)을 상온으로 냉각 이후 물로 세척하는 단계를 통하여 상기 제조된 맥신에 포함된 다양한 불순물을 제거할 수 있다. 상기 맥신 (MXene)은 염산(HCl), 염화 리튬(LiCl), 불화 알루미늄 리튬(Li3AlF6) 또는 불화 알루미늄(AlF3)을 포함한 부산물을 포함할 수 있다. Various impurities included in the prepared Maxine may be removed by cooling the heated Maxine (MXene) to room temperature and then washing it with water. The Maxine (MXene) may contain by-products including hydrochloric acid (HCl), lithium chloride (LiCl), lithium aluminum fluoride (Li3AlF6), or aluminum fluoride (AlF3).

상기 제조된 맥신 (MXene)의 분산액으로부터 제조된 필름은 5.78 *104 이상, 또는 1.0 * 105 S/m 이상의 전기 전도도를 가질 수 있다. The film prepared from the dispersion of the prepared Maxine (MXene) may have an electrical conductivity of 5.78 *10 4 or more, or 1.0 * 10 5 S/m or more.

또한, 상기 제조된 맥신을 85℃, 85 RH%의 조건에서 7일간 노출 이후에도 전기 전도도가 4.0 * 103 이상, 또는 1.0 * 104 S/m 이상일 수 있다.In addition, even after exposure of the prepared Maxine for 7 days at 85° C. and 85 RH%, the electrical conductivity is 4.0 * 10 3 or more, Or 1.0 * 10 4 S/m or more.

본 발명에 따르면, 보다 효율적으로 높은 분산성 및 우수한 전기적 특성을 갖으며 특히 고온 고습 환경에 노출시에도 전기 전도도가 유지되는 특성을 갖는 맥신(MXene)을 제조할 수 있는 방법이 제공된다. According to the present invention, there is provided a method capable of producing Maxine (MXene) having a property of more efficiently maintaining high dispersibility and excellent electrical properties, and particularly maintaining electrical conductivity even when exposed to a high temperature and high humidity environment.

이와 같이 제공되는 고순도의 맥신은 우수한 전기 전도성, 분산성 및 전자파 차폐 효과를 구현할 수 있으며, 이에 따라 다양한 산업 분야에 재료로서 용이하게 적용될 수 있다.The high-purity Maxine provided as described above can implement excellent electrical conductivity, dispersibility, and electromagnetic wave shielding effects, and thus can be easily applied as a material in various industrial fields.

도1은 실시예 1및 비교예 1 각각에서 제조된 맥신(MXene)의 SEM 이미지를 나타낸 것이다.
도2은 실시예 1및 비교예 1 각각에서 제조된 맥신(MXene)의 XPS Ti 2p spectra를 나타낸 것이다.
1 shows SEM images of Maxine manufactured in Example 1 and Comparative Example 1, respectively.
Figure 2 shows the XPS Ti 2p spectra of Maxine (MXene) prepared in each of Example 1 and Comparative Example 1.

발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. Embodiments of the invention will be described in more detail in the following examples. However, the following examples are merely illustrative of embodiments of the invention, and the contents of the present invention are not limited by the following examples.

[실시예 및 비교예: 맥신 (MXene)의 제조][Examples and Comparative Examples: Preparation of Maxine (MXene)]

실시예1Example 1

1g 의 MAX phase (Ti3AlC2) 를 NaBH4 이 녹아 있는 20 mL 의 HF(2M)/HCl(8M) 수용액[HF 대비 NaBH4 10 mol%]에 넣고 65 ℃에서 24 시간 동안 교반하였다. 이후 수득된 MXene을 진공 건조하였다. 이후 MXene 필름을 제작하기 위하여 수득한 MXene을 증류수에 투입 후 1 시간 동안 paint shaker로 혼합하여 5 wt%의 MXene 분산액을 제조하였고, 이 분산액을 PEN film 위에 코팅하였다. 코팅한 MXene film을 고온다습한 chamber (85 °C, 85 %) 내에서 7일 동안 보관한 이후 전도도를 측정함으로써 제조된 film이 산화안정성을 확인하였다.Of 1g MAX phase (Ti 3 AlC 2 ) put in HF (2M) / HCl (8M ) aqueous solution of 20 mL with NaBH 4 dissolved [HF compared NaBH 4 10 mol%] was stirred at 65 ℃ for 24 hours. Then, the obtained MXene was vacuum dried. Then, to prepare the MXene film, the obtained MXene was added to distilled water and mixed with a paint shaker for 1 hour to prepare a 5 wt% MXene dispersion, and this dispersion was coated on the PEN film. After storing the coated MXene film in a high temperature and high humidity chamber (85 °C, 85%) for 7 days, the conductivity was measured to confirm the oxidation stability of the prepared film.

실시예2Example 2

NaBH4 이 녹아 있는 20 mL 의 HF(2M)/HCl(8M) 수용액[HF 대비 NaBH4 1 mol%]를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 5 wt%의 MXene 분산액을 제조하였고, 이 분산액을 PEN film 위에 코팅하였다. A 5 wt% MXene dispersion was prepared in the same manner as in Example 1, except that 20 mL of HF(2M)/HCl(8M) aqueous solution [1 mol% of NaBH 4 compared to HF] was used in which NaBH 4 was dissolved. , This dispersion was coated on the PEN film.

코팅한 MXene film을 고온다습한 chamber (85 °C, 85 %) 내에서 7일 동안 보관한 이후 전도도를 측정함으로써 제조된 film이 산화안정성을 확인하였다.After storing the coated MXene film in a high temperature and high humidity chamber (85 °C, 85%) for 7 days, the conductivity was measured to confirm the oxidation stability of the prepared film.

실시예3Example 3

NaBH4 이 녹아 있는 20 mL 의 HF(2M)/HCl(8M) 수용액[HF 대비 NaBH4 20 mol%]를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 5 wt%의 MXene 분산액을 제조하였고, 이 분산액을 PEN film 위에 코팅하였다. A 5 wt% MXene dispersion was prepared in the same manner as in Example 1, except that NaBH 4 was dissolved in 20 mL of HF(2M)/HCl(8M) aqueous solution [20 mol% of NaBH 4 compared to HF] was used. , This dispersion was coated on the PEN film.

코팅한 MXene film을 고온다습한 chamber (85 °C, 85 %) 내에서 7일 동안 보관한 이후 전도도를 측정함으로써 제조된 film이 산화안정성을 확인하였다.After storing the coated MXene film in a high temperature and high humidity chamber (85 °C, 85%) for 7 days, the conductivity was measured to confirm the oxidation stability of the prepared film.

비교예1Comparative Example 1

NaBH4 를 사용하지 않은 점을 제외하고 실시예1과 동일한 방법으로 맥신(MXene) 분말 및 MXene 필름을 제조하였다. Maxine (MXene) in the same manner as in Example 1 except that NaBH 4 was not used. Powder and MXene films were prepared.

[실험예][Experimental Example]

1.One. 제타포텐셜 (mV)의 측정Measurement of Zeta Potential (mV)

상기 실시예 및 비교예의 맥신 분산액을 증류수에 20 배 희석한 용액의 제타포텐셜을 제타포텐쇼미터(ZS90, MALVERN社)로 측정하였다. The zeta potential of the solution obtained by diluting the Maxine dispersions of Examples and Comparative Examples 20 times in distilled water was measured with a zeta potentiometer (ZS90, MALVERN).

2. 전기 전도도 측정2. Electrical conductivity measurement

4-point probe를 통하여 상기 실시예 및 비교예의 맥신(MXene)의 전기전도도를 측정하고, 고온다습(85℃, 85 RH%)한 환경에서 7일간 노출 이후에 다시 전기전도도를 측정하였다. The electrical conductivity of the Maxine (MXene) of Examples and Comparative Examples was measured through a 4-point probe, and the electrical conductivity was measured again after 7 days exposure in an environment of high temperature and high humidity (85°C, 85 RH%).

3. 모폴로지 관찰3. Morphology observation

SEM을 통하여 상기 실시예 및 비교예의 맥신(MXene)의 모폴로지를 관찰하였다. The morphology of Maxine (MXene) of the Example and Comparative Example was observed through SEM.

실시예 및 비교예에서 제조된 (MXene)의 물성 비교Comparison of physical properties of (MXene) prepared in Examples and Comparative Examples 물성Properties 실시예 1Example 1 실시예2Example 2 실시예3Example 3 비교예 1Comparative Example 1 제타포텐셜 (mV)Zeta potential (mV) -35.7-35.7 -27.7-27.7 -44.1-44.1 -24.0-24.0 전기전도도
(제조 직후) [S/m]
Electrical conductivity
(Right after manufacturing) [S/m]
2.04 *105 2.04 *10 5 9.98 *104 9.98 *10 4 5.78 *104 5.78 *10 4 0.998 * 105 0.998 * 10 5
전기전도도 (고온다습 7일후) [S/m]Electrical conductivity (after 7 days of high temperature and humidity) [S/m] 1.59 * 104 1.59 * 10 4 0.75 * 104 0.75 * 10 4 4.43 * 103 4.43 * 10 3 0.232 * 104 0.232*10 4

상기 표1에 나타난 바와 같이, 실시예에서 제조된 MXene은 물을 비롯한 용매에서 분산성이 우수하여 (Zeta potential -25.0 내지 -45.0 mV) 공정이 용이하고, 이로부터 제조된 MXene 필름은 높은 전기전도도를 가지며, 또한 상기 실시예들의 MXene은 산화에 안정적이기 때문에 고온다습(85℃, 85 RH%)한 환경에서도 전도도가 안정적으로 유지된다는 특징을 지니는 것으로 확인되었다. As shown in Table 1, the MXene prepared in Examples has excellent dispersibility in solvents including water (Zeta potential -25.0 to -45.0 mV), so the process is easy, and the MXene film prepared therefrom has high electrical conductivity. In addition, since the MXene of the above embodiments is stable against oxidation, it was confirmed that it has a characteristic that the conductivity is stably maintained even in an environment of high temperature and high humidity (85° C., 85 RH%).

이에 반하여 비교예1에서 제조된 MXene은 물을 비롯한 용매에서 상대적으로 낮은 분산성을 가질 것으로 보이며(Zeta potential -24.0 mV), 고온 다습 환경에서 전기 전도도가 크게 저하된다는 점이 확인되었다. On the other hand, it was confirmed that the MXene prepared in Comparative Example 1 would have relatively low dispersibility in solvents including water (Zeta potential -24.0 mV), and the electrical conductivity was significantly reduced in a high temperature and high humidity environment.

그리고, 도1에 나타난 바와 같이, 실시예1에서 얻어진 맥신이 비교예1에서 얻어진 맥신에 비하여 층과 층 사이의 입자가 명확하게 구분이 되는 점이 확인되었다. And, as shown in FIG. 1, it was confirmed that the Maxine obtained in Example 1 was clearly distinguished between layers and particles compared to the Maxine obtained in Comparative Example 1.

또한, 도2에 나타난 바와 같이, 실시예1과 비교예1에서 얻어진 맥신이 일반적인 맥신에서 관찰되다시피, 각각 XPS Ti 2p spectra에서 455와 456 eV의 binding energy에서 보이는 Ti(II) 와 Ti(III)가 관찰되는 것을 알 수 있다. 그러나 실시예1에서는 비교예1의 분산성과 전기전도성이 없는 TiO2에서 기인한 Ti(IV) (459 eV binding energy)가 관찰되는 것을 알 수 있다. 이를 통해 실시예1 에서 얻어진 맥신이 비교예1에서 얻어진 맥신에 비하여 비교예 대비 TiO2 (Ti(IV)) 산화가 적게 나타남을 확인할 수 있다.In addition, as shown in Figure 2, as observed in the general Maxine obtained in Example 1 and Comparative Example 1, Ti(II) and Ti(III) seen at binding energies of 455 and 456 eV in XPS Ti 2p spectra, respectively. ) Is observed. However, in Example 1, it can be seen that Ti(IV) (459 eV binding energy) caused by TiO 2 without the dispersibility and electrical conductivity of Comparative Example 1. Through this, it can be seen that the Maxine obtained in Example 1 exhibited less TiO 2 (Ti(IV)) oxidation than the Maxine obtained in Comparative Example 1.

이에 따라 실시예에서 얻어진 맥신의 분산성과 이로부터 얻어진 맥신 코팅층의 전기전도도가 비교예1에 비하여 우수하고 고온다습한 환경에서도 전기전도도가 안정적으로 유지됨을 확인할 수 있다.Accordingly, it can be seen that the dispersibility of the Maxine obtained in Example and the electrical conductivity of the Maxine coating layer obtained therefrom were superior to that of Comparative Example 1, and the electrical conductivity was stably maintained even in a high temperature and high humidity environment.

Claims (7)

맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키는 단계를 포함하는, 맥신 (MXene) 제조 방법.
Max phase (MAX phase) comprising the step of reacting with an etching solution containing a strong acid and a reducing agent, Maxine (MXene) manufacturing method.
제1항에 있어서,
상기 환원제는 다이보레인(diborane), 수소화붕소나트륨 (NaBH4), 히드라진(Hydrazine), 요오드화수소(HI), 요오드화칼륨(KI), 요오드화나트륨(NaI), 옥살산(oxalic acid), 포름산(formic acid), 아스코르브산(ascorbic acid), 아이산(phosphorous acid) 으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는, 맥신 (MXene) 제조 방법.
The method of claim 1,
The reducing agent is diborane, sodium borohydride (NaBH 4 ), hydrazine (Hydrazine), hydrogen iodide (HI), potassium iodide (KI), sodium iodide (NaI), oxalic acid, formic acid (formic acid), ascorbic acid, phosphorous acid, containing at least one compound selected from the group consisting of, Maxine (MXene) production method.
제1항에 있어서,
상기 에칭액은 상기 강산 대비 상기 환원제를 1 내지 30 몰%로 포함하는, 맥신 (MXene) 제조 방법.
The method of claim 1,
The etching solution comprises 1 to 30 mol% of the reducing agent relative to the strong acid, Maxine (MXene) manufacturing method.
제1항에 있어서,
상기 맥스상(MAX phase)을 강산 및 환원제가 포함된 에칭액과 반응시키는 단계는 10℃ 내지 80℃의 온도에서 수행되는, 맥신 (MXene) 제조 방법.
The method of claim 1,
The step of reacting the MAX phase with an etching solution containing a strong acid and a reducing agent is performed at a temperature of 10°C to 80°C, Maxine (MXene) manufacturing method.
제1항에 있어서,
상기 맥스상(MAX phase)은 Ti2CdC, Sc2InC, Ti2AlC, Ti2GaC, Ti2InC, Ti2TlC, V2AlC, V2GaC, Cr2GaC, Ti2AlN, Ti2GaN, Ti2InN, V2GaN, Cr2GaN, Ti2GeC, Ti2SnC, Ti2PbC, V2GeC, Cr2AlC, Cr2GeC, V2PC, V2AsC, Ti2SC, Zr2InC, Zr2TlC, Nb2AlC, Nb2GaC, Nb2InC, Mo2GaC, Zr2InN, Zr2TlN, Zr2SnC, Zr2PbC, Nb2SnC, Nb2PC, Nb2AsC, Zr2SC, Nb2SC, Hf2InC, Hf2TlC, Ta2AlC, Ta2GaC, Hf2SnC, Hf2PbC, Hf2SnN, Hf2SC, Ti3AlC2, V3AlC2, Ti3SiC2, Ti3GeC2, Ti3SnC2, Ta3AlC2, Ti4AlN3, V4AlC3, Ti4GaC3, Ti4SiC3, Ti4GeC3, Nb4AlC3 및 Ta4AlC3로 이루어진 군에서 선택된 적어도 어느 하나인, 맥신 (MXene) 제조 방법.
The method of claim 1,
The MAX phase is Ti 2 CdC, Sc 2 InC, Ti 2 AlC, Ti 2 GaC, Ti 2 InC, Ti 2 TlC, V 2 AlC, V 2 GaC, Cr 2 GaC, Ti 2 AlN, Ti 2 GaN, Ti 2 InN, V 2 GaN, Cr 2 GaN, Ti 2 GeC, Ti 2 SnC, Ti 2 PbC, V 2 GeC, Cr 2 AlC, Cr 2 GeC, V 2 PC, V 2 AsC, Ti 2 SC, Zr 2 InC, Zr 2 TlC, Nb 2 AlC, Nb 2 GaC, Nb 2 InC, Mo 2 GaC, Zr 2 InN, Zr 2 TlN, Zr 2 SnC, Zr 2 PbC, Nb 2 SnC, Nb 2 PC, Nb 2 AsC, Zr 2 SC, Nb 2 SC, Hf 2 InC, Hf 2 TlC, Ta 2 AlC, Ta 2 GaC, Hf 2 SnC, Hf 2 PbC, Hf 2 SnN, Hf 2 SC, Ti 3 AlC 2 , V 3 AlC 2 , Ti 3 SiC 2 , Ti 3 GeC 2 , Ti 3 SnC 2 , Ta 3 AlC 2 , Ti 4 AlN 3 , V 4 AlC 3 , Ti 4 GaC 3 , Ti 4 SiC 3 , Ti 4 GeC 3 , Nb 4 AlC 3 and at least any one selected from the group consisting of Ta 4 AlC 3 Maxine (MXene) production method.
제1항에 있어서,
상기 강산은 불화 수소 및 염화 수소로 이루어진 군에서 선택된 1종 이상을 포함하는, 맥신 (MXene) 제조 방법.
The method of claim 1,
The strong acid contains at least one selected from the group consisting of hydrogen fluoride and hydrogen chloride, Maxine (MXene) production method.
제1항에 있어서,
상기 제조된 맥신 (MXene)을 50 내지 80℃의 온도로 가열하는 단계; 및 상기 가열 단계된 맥신 (MXene)을 상온으로 냉각 이후 물로 세척하는 단계를 더 포함하는, 맥신 (MXene) 제조 방법.
The method of claim 1,
Heating the prepared Maxine (MXene) to a temperature of 50 to 80°C; And washing the heated Maxine (MXene) with water after cooling to room temperature.
KR1020200094650A 2019-07-31 2020-07-29 PREPARATION METHOD OF MXene KR20210015689A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190093311 2019-07-31
KR20190093311 2019-07-31

Publications (1)

Publication Number Publication Date
KR20210015689A true KR20210015689A (en) 2021-02-10

Family

ID=74561061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200094650A KR20210015689A (en) 2019-07-31 2020-07-29 PREPARATION METHOD OF MXene

Country Status (1)

Country Link
KR (1) KR20210015689A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220124367A (en) * 2021-03-03 2022-09-14 주식회사 이노맥신 Preparation method of MAX precursor and XMene nano ink
KR20230000514A (en) 2021-06-24 2023-01-03 한국교통대학교산학협력단 Synthesis, preparation method of organic-dispersible two dimensional MXene Materials by organic base-hydrogen peroxide adducts
WO2023048081A1 (en) * 2021-09-24 2023-03-30 株式会社村田製作所 Two-dimensional particle, electrically conductive film, electrically conductive paste, and method for producing two-dimensional particle
KR20230109215A (en) 2022-01-12 2023-07-20 한국교통대학교산학협력단 MXene­PVA­Catechol polymer material and manufacturing method thereof
KR20230140118A (en) 2022-03-29 2023-10-06 영남대학교 산학협력단 Surface-modified mxene particles improving dispersibility in alcohol, Colloidal Mxene ink having excellent aggregation-resistance, and Manufacturing method thereof
KR20230140119A (en) 2022-03-29 2023-10-06 영남대학교 산학협력단 Colloidal Mxene ink for electro hydrodynamic printing and Manufacturing method thereof
KR20230148671A (en) 2022-04-18 2023-10-25 한국전력공사 Manufacturing methode of mxene using eco-friendly etchant
KR20240006997A (en) 2022-07-07 2024-01-16 한국교통대학교산학협력단 Two-dimensional MXene surface-modified with phosphate, the preparation method thereof, and MXene organic ink containing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220124367A (en) * 2021-03-03 2022-09-14 주식회사 이노맥신 Preparation method of MAX precursor and XMene nano ink
KR20230000514A (en) 2021-06-24 2023-01-03 한국교통대학교산학협력단 Synthesis, preparation method of organic-dispersible two dimensional MXene Materials by organic base-hydrogen peroxide adducts
WO2023048081A1 (en) * 2021-09-24 2023-03-30 株式会社村田製作所 Two-dimensional particle, electrically conductive film, electrically conductive paste, and method for producing two-dimensional particle
KR20230109215A (en) 2022-01-12 2023-07-20 한국교통대학교산학협력단 MXene­PVA­Catechol polymer material and manufacturing method thereof
KR20230140118A (en) 2022-03-29 2023-10-06 영남대학교 산학협력단 Surface-modified mxene particles improving dispersibility in alcohol, Colloidal Mxene ink having excellent aggregation-resistance, and Manufacturing method thereof
KR20230140119A (en) 2022-03-29 2023-10-06 영남대학교 산학협력단 Colloidal Mxene ink for electro hydrodynamic printing and Manufacturing method thereof
KR20230148671A (en) 2022-04-18 2023-10-25 한국전력공사 Manufacturing methode of mxene using eco-friendly etchant
KR20240006997A (en) 2022-07-07 2024-01-16 한국교통대학교산학협력단 Two-dimensional MXene surface-modified with phosphate, the preparation method thereof, and MXene organic ink containing the same

Similar Documents

Publication Publication Date Title
KR20210015689A (en) PREPARATION METHOD OF MXene
US10683208B2 (en) MXene nanosheet and manufacturing method thereof
Wei et al. Advances in the synthesis of 2D MXenes
US9972742B2 (en) Method for forming a transparent conductive film with metal nanowires having high linearity
KR20190094037A (en) PREPARATION METHOD OF MXene HAVING HIGH PURITY
KR102307994B1 (en) Manufacturing Method of Mxene Quantum Dot
JPH02501920A (en) Conductive titanium quasi-oxide
KR101931227B1 (en) Sulfur doped Reduced Graphene Oxide preparing method and the electromagnetic wave shielding material using the same and preparing method thereof
JP3473146B2 (en) Composition for forming conductive film and method for producing transparent conductive film-coated glass plate
CN107603058A (en) A kind of PVC/CPE composite pipes of graphene oxide enhancing and preparation method thereof
JPH0413289B2 (en)
KR20150089274A (en) Preparation method for edge-functionalized graphite via mechanic-chemical process and the graphite manufactured thereby
JP4243687B2 (en) Organic-inorganic hybrid thin film and method for producing the same
JP5552303B2 (en) Carbon material manufacturing method
JPH07242842A (en) Composition for forming transparent electrically-conductive film and transparent electrically-conductive film
Cheng et al. Metal‐Bonded Atomic Layers of Transition Metal Carbides (MXenes)
KR102353597B1 (en) electrode material comprising metal-organic unimolecular and Mxene, Preparing method of the same
CN108754399B (en) Titanium diboride coating resistant to high-temperature fluoride molten salt corrosion and preparation method thereof
CN116445014A (en) Cu doped titanium dioxide coating
KR102528394B1 (en) Preparation method of MAX precursor and XMene nano ink
KR102025364B1 (en) Compositions for preparing graphene and methods for preparing graphene using the same
JP2017019695A (en) Manufacturing method of thin graphite and thin graphite
Kumar et al. Structure, Composition, and Functionalization of MXenes
Pandey et al. Synthesis approaches of MXene based polymeric nano system for electromagnetic shielding Application-A review
JPS60112619A (en) Manufacture of modified alkali titanate

Legal Events

Date Code Title Description
A201 Request for examination