KR20210012383A - Method for hydrogen production using iron oxyhydroxide - Google Patents

Method for hydrogen production using iron oxyhydroxide Download PDF

Info

Publication number
KR20210012383A
KR20210012383A KR1020190090036A KR20190090036A KR20210012383A KR 20210012383 A KR20210012383 A KR 20210012383A KR 1020190090036 A KR1020190090036 A KR 1020190090036A KR 20190090036 A KR20190090036 A KR 20190090036A KR 20210012383 A KR20210012383 A KR 20210012383A
Authority
KR
South Korea
Prior art keywords
iron oxyhydroxide
hydrogen
hydrogen production
water
iron
Prior art date
Application number
KR1020190090036A
Other languages
Korean (ko)
Other versions
KR102258723B1 (en
Inventor
홍정수
김경환
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority to KR1020190090036A priority Critical patent/KR102258723B1/en
Publication of KR20210012383A publication Critical patent/KR20210012383A/en
Application granted granted Critical
Publication of KR102258723B1 publication Critical patent/KR102258723B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for producing hydrogen using iron oxyhydroxide. The method includes the steps of: (a) dipping a material including iron oxyhydroxide (FeOOH) in a mixed solution of water containing Fe^2+ and Fe^3+ with a lower alcohol; and (b) irradiating light to the material including iron oxyhydroxide and the mixed solution to produce gaseous hydrogen. According to the method for producing hydrogen using iron oxyhydroxide according to the present invention, it is possible to produce hydrogen through the decomposition of water and a lower alcohol by generating hydroxy radical (·OH) through the photo-Fenton reaction on the surface of the material including iron oxyhydroxide merely by carrying out light irradiation with no need for carrying out voltage application and light irradiation at the same time. In addition, since the iron oxyhydroxide supplied to the photo-Fenton reaction is regenerated through the reaction with a solution of Fe^2+ or oxygen in the air, it is possible to perform radical generation and hydrogen production semi-permanently. Further, since water treatment and energy production are allowed, with the proviso that iron oxyhydroxide contained in easily available corroded iron and an environment capable of irradiation are provided merely, the present invention shows significant advantages in terms of hydrogen production costs and process simplicity.

Description

옥시수산화철을 이용한 수소생산방법{METHOD FOR HYDROGEN PRODUCTION USING IRON OXYHYDROXIDE}Hydrogen production method using iron oxyhydroxide{METHOD FOR HYDROGEN PRODUCTION USING IRON OXYHYDROXIDE}

본 발명은 수소생산방법에 대한 것으로서, 보다 상세하게는 폐자원으로 취급되는 옥시수산화철을 이용해 수소를 생산하는 방법에 대한 것이다.The present invention relates to a hydrogen production method, and more particularly, to a method for producing hydrogen using iron oxyhydroxide treated as a waste resource.

대한민국은 에너지 자원 빈국으로 많은 양을 수입에 의존하고 있으며 에너지 소비량은 세계 10위 권 내로 세계 유가에 의해서 경제가 많은 영향을 많이 받고 있어 에너지 안보확보를 위해 지속 성장이 가능한 신재생에너지의 개발 이용이 시급할 뿐만 아니라, 대한민국은 세계 9위의 온실가스 배출국으로서 국제적으로 온실가스 배출량 감축에 대한 압력이 강화되고 있는 실정이다. Korea is a poor country in energy resources and relies heavily on imports for its energy consumption, which is within the top 10 in the world, and the economy is greatly affected by world oil prices, so it is difficult to develop and use renewable energy that can be sustainably grown to secure energy security. Not only is it urgent, but as the world's 9th-largest greenhouse gas emitter, the pressure to reduce greenhouse gas emissions is increasing internationally.

따라서, 이러한 지구 온난화와 같은 환경 문제와 에너지 의존성에 관한 문제를 동시에 해결할 수 있는 미래의 청정에너지로서 수소 에너지가 크게 주목받고 있다. Therefore, hydrogen energy is attracting great attention as a future clean energy capable of simultaneously solving environmental problems such as global warming and problems related to energy dependence.

수소 에너지는 중량당 발열량이 석유보다 3배 이상 높으면서도, 이산화탄소, NOx, SOx 등 환경에 악영향을 미칠 수 있는 물질들을 배출하지 않아 장차 화석에너지를 대체할 에너지로써 각광받고 있다. Hydrogen energy is in the spotlight as an energy to replace fossil energy in the future as it does not emit substances that can adversely affect the environment, such as carbon dioxide, NOx, and SOx, while the calorific value per weight is three times higher than that of petroleum.

한편, 수소를 제조하는 방법에는 여러 가지가 있으나, 현재는 물을 전기분해하는 방법보다는 탄화수소의 개질에 의한 생산이 경제적이고 생산량도 뛰어나다. On the other hand, there are various methods of producing hydrogen, but currently, production by reforming hydrocarbons is more economical than the method of electrolyzing water, and production is excellent.

그에 따라, 탄화수소의 개질 열분해 과정을 통한 수소생산방법은 이미 실용화되어 쓰이고 있지만 화석연료에 비해 아직까지 수소를 생산 단가가 매우 높고 저장의 문제가 동반되며 또한 이 기술 역시 이산화탄소와 같은 생성물을 같이 발생시킴으로써 환경문제에는 그다지 자유롭지 못하여 그 사용 용도가 매우 제한되어있는 실정이다.Accordingly, the hydrogen production method through the reforming pyrolysis process of hydrocarbons has already been put into practical use, but the production cost of hydrogen is still very high compared to fossil fuels, and the storage problem is accompanied. Also, this technology also generates products such as carbon dioxide. It is not so free to environmental problems that its use is very limited.

따라서, 전술한 종래 기술에 비해 경제적이고 친환경적인 수소생산방법의 개발이 필요한 실정이다.Therefore, there is a need to develop an economical and eco-friendly hydrogen production method compared to the above-described conventional technology.

한국 공개특허 제10-2018-0022606호(공개일: 2018.03.06)Korean Patent Application Publication No. 10-2018-0022606 (published date: 2018.03.06) 일본 공개특허 제2016-199439호(공개일: 2016.12.01)Japanese Patent Application Publication No. 2016-199439 (published date: 2016.12.01) 일본 공개특허 제2013-053060호(공개일: 2013.03.21)Japanese Patent Application Publication No. 2013-053060 (published date: 2013.03.21)

본 발명이 해결하고자 하는 기술적 과제는, 기존의 수소생산방법에 비해 보다 경제적이고 간단한 방법을 통해 수소 생산이 가능하고, 특히, 백금(Pt)과 같은 고가의 소재를 사용하지 않고 폐자원으로 여겨지던 옥시수산화철을 이용해 간단한 공정을 통해 경제적으로 수소를 생산할 수 있는 방법을 제공하는 것이다.The technical problem to be solved by the present invention is that hydrogen production is possible through a more economical and simpler method compared to the existing hydrogen production method, and in particular, it is considered as a waste resource without using expensive materials such as platinum (Pt). It is to provide a method that can economically produce hydrogen through a simple process using iron oxyhydroxide.

상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 옥시수산화철(FeOOH)으로 이루어진 소재를, Fe2+ 및 Fe3+를 포함하는 물 및 저급 알코올의 혼합 용액에 침지시키는 단계; 및 (b) 상기 옥시수산화철으로 이루어진 소재 및 상기 혼합 용액에 광(light)을 조사해 기체 수소를 생성시키는 단계;를 포함하는, 옥시수산화철을 이용한 수소생산방법을 제안한다. In order to achieve the above technical problem, the present invention comprises the steps of (a) immersing a material made of iron oxyhydroxide (FeOOH) in a mixed solution of water and lower alcohol containing Fe 2+ and Fe 3+ ; And (b) generating gaseous hydrogen by irradiating light to the material and the mixed solution made of the iron oxyhydroxide. It proposes a method for producing hydrogen using iron oxyhydroxide.

또한, 상기 옥시수산화철은 α-옥시수산화철, β-옥시수산화철, δ-옥시수산화철 또는 γ-옥시수산화철인 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법을 제안한다. In addition, the iron oxyhydroxide proposes a hydrogen production method using iron oxyhydroxide, characterized in that the iron oxyhydroxide is α-iron oxyhydroxide, β-iron oxyhydroxide, δ-iron oxyhydroxide or γ-iron oxyhydroxide.

또한, 상기 저급 알코올은 메탄올인 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법을 제안한다. In addition, a method for producing hydrogen using iron oxyhydroxide is proposed, wherein the lower alcohol is methanol.

또한, 상기 광은 자외선인 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법을 제안한다. In addition, it proposes a hydrogen production method using iron oxyhydroxide, characterized in that the light is ultraviolet light.

또한, 상기 단계 (b)에서 광 조사에 의해 생성된 하이드록시 라디칼(·OH)이 물 및 저급 알코올을 분해해 수소를 생성시키는 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법을 제안한다. In addition, a method for producing hydrogen using iron oxyhydroxide is proposed, wherein the hydroxy radical (·OH) generated by light irradiation in step (b) decomposes water and lower alcohol to generate hydrogen.

또한, 상기 단계 (b)에서 광 조사에 의해 하기 반응식으로 표시되는 광펜톤 반응(photo-Fenton reaction)에 따라 Fe3+이 Fe2+로 환원되고 하이드록시 라디칼(·OH)이 생성되며, 상기 하이드록시 라디칼이 물 및 저급 알코올을 분해해 수소를 생성시키는 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법을 제안한다: In addition, in the step (b), Fe 3+ is reduced to Fe 2+ and a hydroxy radical (OH) is generated according to the photo-Fenton reaction represented by the following reaction equation by light irradiation, A method for producing hydrogen using iron oxyhydroxide is proposed, characterized in that hydroxy radicals decompose water and lower alcohols to produce hydrogen:

Figure pat00001
Figure pat00001

(상기 식에서 hν는 광자 에너지임). (In the above formula, hν is the photon energy).

본 발명에 따른 옥시수산화철을 이용한 수소생산방법에 의하면, 전압 인가 및 광 조사를 동시에 수행할 필요없이 광 조사만을 실시하더라도 옥시수산화철만으로 이루어진 소재 표면에서 광펜톤 반응(photo-Fenton reaction)을 통해 하이드록시 라디칼(·OH)을 생성시켜 물 및 저급 알코올의 분해를 통해 수소를 생산할 수 있으며, 상기 광펜톤 반응에 제공된 옥시수산화철은 Fe2+의 용액 또는 대기 중의 산소와의 반응을 거쳐 재생되기 때문에 반영구적으로 라디칼 생성 및 수소 생산이 가능하다. According to the hydrogen production method using iron oxyhydroxide according to the present invention, even if only light irradiation is performed without voltage application and light irradiation at the same time, hydroxy by photo-Fenton reaction on the surface of a material consisting of only iron oxyhydroxide. Hydrogen can be produced through decomposition of water and lower alcohol by generating radicals (OH), and the iron oxyhydroxide provided in the photofenton reaction is semi-permanently regenerated through a reaction with Fe 2+ solution or oxygen in the atmosphere. Radical generation and hydrogen production are possible.

또한, 어디서나 쉽게 구할 수 있는 부식된 철에 포함된 옥시수산화철과 광 조사가 가능한 환경만 구비되어 있으면 수처리 및 에너지 생산이 가능하기 때문에 수소 생산 비용 및 프로세스 간편성 측면에서도 종래 기술 대비해 두드러진 장점을 가진다.In addition, since water treatment and energy production are possible only if an environment capable of light irradiation and iron oxyhydroxide contained in corroded iron that can be easily obtained anywhere is provided, it has a remarkable advantage compared to the conventional technology in terms of hydrogen production cost and process simplicity.

도 1은 본 발명에 따른 옥시수산화철을 이용한 수소생산방법의 각 단계를 순서대로 나타낸 흐름도이다.
도 2(a) 및 도 2(b)는 각각 본원 실시예에서 합성한 α-FeOOH에 대한 XRD 분석 결과 및 배율을 달리해 촬영한 주사전자현미경(SEM) 사진이다.
도 3(a) 및 도 3(b)는 각각 본원 실시예에서 합성한 β-FeOOH에 대한 XRD 분석 결과 및 배율을 달리해 촬영한 주사전자현미경(SEM) 사진이다.
도 4(a) 및 도 4(b)는 각각 본원 실시예에서 합성한 γ-FeOOH에 대한 XRD 분석 결과 및 배율을 달리해 촬영한 주사전자현미경(SEM) 사진이다.
도 5(a) 및 도 5(b)는 각각 본원 실시예에서 합성한 δ-FeOOH에 대한 XRD 분석 결과 및 배율을 달리해 촬영한 주사전자현미경(SEM) 사진이다.
도 6은 실시예에서 제조한 α-옥시수산화철, β-옥시수산화철, δ-옥시수산화철 및 γ-옥시수산화철 각각에 대한 자외선 조사 시간에 따른 수소생산량을 나타낸 그래프이다.
1 is a flowchart sequentially showing each step of a method for producing hydrogen using iron oxyhydroxide according to the present invention.
2(a) and 2(b) are scanning electron microscopy (SEM) pictures taken at different magnifications and XRD analysis results for α-FeOOH synthesized in the present example.
3(a) and 3(b) are scanning electron microscope (SEM) photographs taken at different magnifications and XRD analysis results for β-FeOOH synthesized in the present example.
4(a) and 4(b) are scanning electron microscope (SEM) photographs taken at different magnifications and XRD analysis results for γ-FeOOH synthesized in the present example.
5(a) and 5(b) are scanning electron microscope (SEM) photographs taken at different magnifications and XRD analysis results for δ-FeOOH synthesized in the present example.
6 is a graph showing the amount of hydrogen production according to UV irradiation time for α-iron oxyhydroxide, β-iron oxyhydroxide, δ-iron oxyhydroxide and γ-iron oxyhydroxide prepared in Examples.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiments according to the concept of the present invention can apply various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific form of disclosure, and it should be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of a set feature, number, step, action, component, part, or combination thereof, but one or more other features or numbers It is to be understood that the possibility of addition or presence of, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

도 1에 도시한 바와 같이, 본 발명에 따른 옥시수산화철을 이용한 수소생산방법은 (a) 옥시수산화철(FeOOH)으로 이루어진 소재를, Fe2+ 및 Fe3+를 포함하는 물 및 저급 알코올의 혼합 용액에 침지시키는 단계(S100) 및 (b) 상기 옥시수산화철으로 이루어진 소재 및 상기 혼합 용액에 광(light)을 조사해 기체 수소를 생성시키는 단계(S200)를 포함해 이루어지는 것을 특징으로 한다. As shown in Figure 1, the hydrogen production method using iron oxyhydroxide according to the present invention (a) a material made of iron oxyhydroxide (FeOOH), a mixed solution of water and lower alcohol containing Fe 2+ and Fe 3+ It characterized in that it comprises the steps (S100) and (b) irradiating light (light) to the material made of the iron oxyhydroxide and the mixed solution to generate gaseous hydrogen (S200).

상기 단계 (a)에서는 수소 생성을 위한 광 조사 단계를 실시하기에 앞서 Fe2+ 및 Fe3+를 함유하는 물/저급 알코올 혼합 용액을 준비해 옥시수산화철(FeOOH)으로 이루어진 소재를 상기 혼합 용액에 침지시킨다. In step (a), prior to performing the light irradiation step for hydrogen generation, a water/lower alcohol mixed solution containing Fe 2+ and Fe 3+ is prepared, and a material made of iron oxyhydroxide (FeOOH) is immersed in the mixed solution. Let it.

상기 옥시수산화철은 그 결정 구조에 따라 α-옥시수산화철, β-옥시수산화철, δ-옥시수산화철, γ-옥시수산화철 등으로 분류되지만, 본 발명에서 수소 생산을 위한 소재로서 사용하는 옥시수산화철을 채택함에 있어서 그 결정구조는 특별히 제한하지 않는다. The iron oxyhydroxide is classified into α-iron oxyhydroxide, β-iron oxyhydroxide, δ-iron oxyhydroxide, γ-iron oxyhydroxide, etc., depending on its crystal structure, but in adopting iron oxyhydroxide used as a material for hydrogen production in the present invention The crystal structure is not particularly limited.

또한, 상기 옥시수산화철로 이루어진 소재는 그 형상이 특별히 제한되지 않으며, 비표면적에 따른 수소 생산량 제어, 취급의 용이성 등을 고려해 분말 형태(0차원), 튜브 내지는 휘스커 형태(1차원), 박막 형태(2차원), 벌크 형태(3차원) 등 다양한 형태를 취할 수 있다. In addition, the shape of the material made of iron oxyhydroxide is not particularly limited, and in consideration of the control of hydrogen production according to the specific surface area, ease of handling, etc., in the form of a powder (0 dimensional), a tube or whisker (1 dimensional), a thin film ( It can take various forms, such as 2D) and bulk (3D).

한편, 상기 Fe2+ 및 Fe3+를 함유하는 물/저급 알코올 혼합 용액에 포함되는 저급 알코올은 탄소수 1 내지 6의 알코올인 것이 바람직하고, 보다 바람직하게는 메탄올일 수 있다. On the other hand, the lower alcohol included in the water/lower alcohol mixed solution containing Fe 2+ and Fe 3+ is preferably an alcohol having 1 to 6 carbon atoms, and more preferably methanol.

물을 분해하여 수소를 얻기 위해서는 이론적으로 1.2 eV의 에너지가 필요하지만 실제로는 과전압(overpotential) 때문에 그 이상의 에너지가 필요한 반면, 반면, 저급 알코올은 물에 비해 훨씬 낮은 에너지를 이용해 수소를 생성할 수 있다. In order to decompose water to obtain hydrogen, energy of 1.2 eV is theoretically required, but in practice more energy is required due to overpotential, whereas lower alcohols can generate hydrogen using much lower energy than water. .

일례로, 메탄올의 경우에는 광촉매 존재 하에서 가전자대에서 생성된 두 개의 하이드록시 라디칼(·OH)이 메탄올 한 분자와 만나면 아래와 같은 반응이 진행되어 수소가 생성되는데, 해당 반응에 필요한 에너지는 약 0.6 eV로서 물 분해의 경우에 비해 약 절반 정도의 에너지가 필요하며 그에 따라 메탄올 분해반응이 촉진되어 수소 생산량을 크게 증가시킬 수 있다. For example, in the case of methanol, when two hydroxy radicals (OH) generated in the valence band in the presence of a photocatalyst meet one molecule of methanol, the following reaction proceeds to generate hydrogen, and the energy required for the reaction is about 0.6 eV. As compared to the case of water decomposition, about half of the energy is required, and accordingly, methanol decomposition reaction is accelerated, and hydrogen production can be greatly increased.

Figure pat00002
Figure pat00002

다음으로, 상기 단계 (b)에서는 물 및 저급 알코올을 분해해 수소를 생산하기 위해서, 상기 옥시수산화철으로 이루어진 소재 및 상기 혼합 용액에 광(light)을 조사한다. Next, in the step (b), in order to produce hydrogen by decomposing water and lower alcohol, light is irradiated to the material made of iron oxyhydroxide and the mixed solution.

본 단계에서는 자외선 또는 가시광선 파장 범위에 속하는 광을 옥시수산화철으로 이루어진 소재 및 혼합 용액에 조사해 생성되는 하이드록시 라디칼(·OH)이 물 및 저급 알코올을 분해해 수소를 생성시키게 된다. In this step, hydroxy radicals (OH) generated by irradiating light in the wavelength range of ultraviolet or visible light to a material and a mixed solution made of iron oxyhydroxide decompose water and lower alcohols to generate hydrogen.

보다 구체적으로, 옥시수산화철으로 이루어진 소재 및 혼합 용액에 광을 조사하면, 하기 반응식으로 표시되는 광펜톤 반응(photo-Fenton reaction)에 따라 혼합 용액 내의 Fe3+이 Fe2+로 환원됨과 동시에 하이드록시 라디칼(·OH)이 생성되며, 상기 하이드록시 라디칼이 물 및 저급 알코올을 분해함으로써 수소를 발생시키게 된다. More specifically, when light is irradiated to a material made of iron oxyhydroxide and a mixed solution, Fe 3+ in the mixed solution is reduced to Fe 2+ according to the photo-Fenton reaction represented by the following reaction formula, and hydroxy A radical (·OH) is generated, and the hydroxy radical decomposes water and a lower alcohol to generate hydrogen.

Figure pat00003
(hν는 광자 에너지임)
Figure pat00003
(hν is photon energy)

특히, 본 단계에서는 종래 기술과 달리 전압 인가 및 광 조사를 동시에 수행할 필요없이 광 조사만을 실시하더라도 옥시수산화철만으로 이루어진 소재 표면에서 광펜톤 반응을 통해 하이드록시 라디칼(·OH)을 생성시켜 물 및 저급 알코올의 분해를 통해 수소를 생산할 수 있으며, 상기 광펜톤 반응에 제공된 옥시수산화철은 Fe2+의 용액 또는 대기 중의 산소와의 반응을 거쳐 재생되기 때문에 반영구적으로 라디칼 생성 및 수소 생산이 가능하다. In particular, in this step, unlike the prior art, it is not necessary to simultaneously apply voltage and light irradiation, and even if only light irradiation is performed, hydroxy radicals (OH) are generated through the photofenton reaction on the surface of the material consisting of only iron oxyhydroxide. Hydrogen can be produced through decomposition of alcohol, and since the iron oxyhydroxide provided in the photofenton reaction is regenerated through a reaction with a solution of Fe 2+ or oxygen in the atmosphere, radical generation and hydrogen production are possible semi-permanently.

또한, 어디서나 쉽게 구할 수 있는 부식된 철에 포함된 옥시수산화철과 광 조사가 가능한 환경만 구비되어 있으면 수처리 및 에너지 생산이 가능하기 때문에 수소 생산 비용 및 프로세스 간편성 측면에서도 종래 기술 대비해 두드러진 장점을 가진다.In addition, since water treatment and energy production are possible only if an environment capable of light irradiation and iron oxyhydroxide contained in corroded iron that can be easily obtained anywhere is provided, it has a remarkable advantage compared to the conventional technology in terms of hydrogen production cost and process simplicity.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to examples.

본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다. The embodiments according to the present specification may be modified in various forms, and the scope of the present specification is not construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely describe the present specification to those of ordinary skill in the art.

<실시예><Example>

1. 옥시수산화철의 제조1. Preparation of iron oxyhydroxide

(1) α-FeOOH의 합성(1) Synthesis of α-FeOOH

탈이온수(D.I. water) 100ml에 황산철(II) (FeSO4ㅇ7H2O) 3.00g을 포함하는 수용액에 pH 6.5ㅁ0.2로 조정하면서 암모니아 수용액을 적하하고 80℃에서 4시간 동안 aging시킨 후에, 60℃에서 12시간 동안 건조시키고, 탈이온수 세정 및 원심 분리를 3회 반복하고나서 60℃에서 24시간 동안 건조하는 과정을 끝으로 α-FeOOH를 얻었다(도 2a및 도 2b)An aqueous ammonia solution was added dropwise to an aqueous solution containing 3.00 g of iron (II) sulfate (FeSO 4 ㅇ7H 2 O) in 100 ml of DI water, while adjusting the pH to 6.5ㅁ0.2, and then aged at 80°C for 4 hours, After drying at 60° C. for 12 hours, washing with deionized water and centrifugation were repeated three times, and then drying at 60° C. for 24 hours, α-FeOOH was obtained (FIGS. 2A and 2B ).

(2) β-FeOOH의 합성(2) Synthesis of β-FeOOH

탈이온수(D.I. water) 40ml에 PEG (10000) 3.00g 및 염화철(III) (FeCl3ㅇ6H2O) 0.60g을 포함하는 수용액을 80℃에서 6시간 동안 수열처리(hydrothermal treatment)한 후, 탈이온수 세정 및 원심 분리를 3회 반복하고나서 60℃에서 24시간 동안 건조하는 과정을 끝으로 β-FeOOH를 얻었다(도 3a및 도 3b)An aqueous solution containing 3.00 g of PEG (10000) and 0.60 g of iron (III) chloride (FeCl 3 ㅇ6H 2 O) in 40 ml of DI water was subjected to hydrothermal treatment at 80° C. for 6 hours, followed by deionization. After repeating ion water washing and centrifugation three times, drying at 60° C. for 24 hours was completed to obtain β-FeOOH (FIGS. 3A and 3B ).

(3) γ-FeOOH의 합성(3) Synthesis of γ-FeOOH

탈이온수(D.I. water) 100ml에 EDTA 0.50g 및 염화철(II) (FeCl2ㅇ4H2O) 0.50g 을 포함하는 수용액에 pH 7.0으로 조정하면서 수산화나트륨(NaOH) 수용액을 적하한 후에, 탈이온수 세정 및 원심 분리를 3회 반복하고나서 60℃에서 24시간 동안 건조하는 과정을 끝으로 γ-FeOOH를 얻었다(도 4a및 도 4b)After dropping an aqueous solution of sodium hydroxide (NaOH) while adjusting the pH to 7.0 to an aqueous solution containing 0.50 g of EDTA and 0.50 g of iron (II) chloride (FeCl 2 ㅇ4H 2 O) to 100 ml of DI water, washing with deionized water And after repeating the centrifugation 3 times, drying at 60° C. for 24 hours was completed to obtain γ-FeOOH (FIGS. 4A and 4B).

(4) δ-FeOOH의 합성(4) Synthesis of δ-FeOOH

탈이온수(D.I. water) 100ml에 황산철(II)암모늄 (Fe(NH4)2(SO4)2ㅇ6H2O) 3.00g, 2M NaOH 100ml 및 30% 과산화수소(H2O2) 0.5ml 또는 1.5ml를 첨가한 후, 탈이온수 세정 및 원심 분리를 3회 반복하고나서 60℃에서 24시간 동안 건조하는 과정을 끝으로 δ-FeOOH를 얻었다(도 5a및 도 5b)Iron (II) ammonium sulfate (Fe(NH 4 ) 2 (SO 4 ) 2 ㅇ6H 2 O) 3.00 g in 100 ml of DI water, 100 ml of 2M NaOH and 0.5 ml of 30% hydrogen peroxide (H 2 O 2 ) or After adding 1.5 ml, washing with deionized water and centrifugation were repeated 3 times, and then drying at 60° C. for 24 hours was completed to obtain δ-FeOOH (FIGS. 5A and 5B ).

2. 합성한 옥시수산화철을 이용한 수소 생산2. Hydrogen production using synthesized iron oxyhydroxide

190ml 부피의 삼각비커에 탈이온수(D.I. water) 90ml와 메탄올 10ml를 첨가한 후, 상기 1.에서 합성한 각 결정상의 옥시수산화철을 50 mg 첨가했다. 삼각비커는 광섬유조명을 이용하여 비커내부를 외부와 차단시킴과 동시에 빛을 조사하는 역할을 수행한다. 사용되는 빛의 파장은 400nm 이하의 UV 파장을 사용하였다. After adding 90 ml of deionized water (D.I. water) and 10 ml of methanol to a 190 ml volume triangular beaker, 50 mg of iron oxyhydroxide synthesized in the above 1. The triangular beaker uses optical fiber lighting to block the inside of the beaker from the outside and simultaneously irradiates light. The wavelength of light used was a UV wavelength of 400 nm or less.

도 6은 상기 1.에서 합성한 옥시수산화철 각각에 대한 자외선 조사 시간에 따른 수소생산량을 측정한 결과로서, 이에 의하면 UV 조사 개시 후 48시간 경과 시점에서 γ-옥시수산화철, α-옥시수산화철, β-옥시수산화철 및 δ-옥시수산화철의 순으로 높은 수소생산량을 나타내는 것으로 확인되었다. 6 is a result of measuring the amount of hydrogen production according to the UV irradiation time for each of the iron oxyhydroxide synthesized in 1., according to this, γ-iron oxyhydroxide, α-iron oxyhydroxide, β- at 48 hours after the start of UV irradiation. It was found that the order of iron oxyhydroxide and δ-iron oxyhydroxide showed high hydrogen production.

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but may be manufactured in a variety of different forms, and a person of ordinary skill in the art to which the present invention pertains to other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented with. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting.

Claims (6)

(a) 옥시수산화철(FeOOH)으로 이루어진 소재를, Fe2+ 및 Fe3+를 포함하는 물 및 저급 알코올의 혼합 용액에 침지시키는 단계; 및
(b) 상기 옥시수산화철으로 이루어진 소재 및 상기 혼합 용액에 광(light)을 조사해 기체 수소를 생성시키는 단계;를 포함하는,
옥시수산화철을 이용한 수소생산방법.
(a) immersing a material made of iron oxyhydroxide (FeOOH) in a mixed solution of water and lower alcohol containing Fe 2+ and Fe 3+ ; And
(b) irradiating light to the material made of iron oxyhydroxide and the mixed solution to generate gaseous hydrogen; including,
Hydrogen production method using iron oxyhydroxide.
제1항에 있어서,
상기 옥시수산화철은 α-옥시수산화철, β-옥시수산화철, δ-옥시수산화철 또는 γ-옥시수산화철인 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법.
The method of claim 1,
The iron oxyhydroxide is a hydrogen production method using iron oxyhydroxide, characterized in that α-iron oxyhydroxide, β-iron oxyhydroxide, δ-iron oxyhydroxide, or γ-iron oxyhydroxide.
제1항에 있어서,
상기 저급 알코올은 메탄올인 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법.
The method of claim 1,
Hydrogen production method using iron oxyhydroxide, characterized in that the lower alcohol is methanol.
제1항에 있어서,
상기 광은 자외선인 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법.
The method of claim 1,
Hydrogen production method using iron oxyhydroxide, characterized in that the light is ultraviolet light.
제1항에 있어서,
상기 단계 (b)에서 광 조사에 의해 생성된 하이드록시 라디칼(·OH)이 물 및 저급 알코올을 분해해 수소를 생성시키는 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법.
The method of claim 1,
Hydrogen production method using iron oxyhydroxide, characterized in that the hydroxy radical (·OH) generated by light irradiation in the step (b) decomposes water and lower alcohol to produce hydrogen.
제5항에 있어서,
상기 단계 (b)에서 광 조사에 의해 하기 반응식으로 표시되는 광펜톤 반응(photo-Fenton reaction)에 따라 Fe3+이 Fe2+로 환원되고 하이드록시 라디칼(·OH)이 생성되며, 상기 하이드록시 라디칼이 물 및 저급 알코올을 분해해 수소를 생성시키는 것을 특징으로 하는 옥시수산화철을 이용한 수소생산방법:
Figure pat00004

(상기 식에서 hν는 광자 에너지임).
The method of claim 5,
In the step (b), Fe 3+ is reduced to Fe 2+ according to the photo-Fenton reaction represented by the following reaction formula by light irradiation, and a hydroxy radical (OH) is generated, and the hydroxy Hydrogen production method using iron oxyhydroxide, characterized in that radicals decompose water and lower alcohols to produce hydrogen:
Figure pat00004

(In the above equation, hν is photon energy).
KR1020190090036A 2019-07-25 2019-07-25 Method for hydrogen production using iron oxyhydroxide KR102258723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190090036A KR102258723B1 (en) 2019-07-25 2019-07-25 Method for hydrogen production using iron oxyhydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190090036A KR102258723B1 (en) 2019-07-25 2019-07-25 Method for hydrogen production using iron oxyhydroxide

Publications (2)

Publication Number Publication Date
KR20210012383A true KR20210012383A (en) 2021-02-03
KR102258723B1 KR102258723B1 (en) 2021-05-31

Family

ID=74572326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190090036A KR102258723B1 (en) 2019-07-25 2019-07-25 Method for hydrogen production using iron oxyhydroxide

Country Status (1)

Country Link
KR (1) KR102258723B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038898A (en) * 2001-10-03 2004-05-08 소니 가부시끼 가이샤 Method of recovering hydrogen from resin waste, process for producing hydrogen from resin waste, and apparatus for producing hydrogen from resin waste
KR20060057186A (en) * 2004-11-23 2006-05-26 김학수 A hydrogen generator using photocatalyst and preparation method of hydrogen using the same
JP2013053060A (en) 2011-08-09 2013-03-21 Jfe Steel Corp Method for generating hydrogen gas
KR20150028003A (en) * 2013-09-05 2015-03-13 한국과학기술연구원 Method for producing hydrogen by repeated sequential water splitting and methane splitting
JP2016199439A (en) 2015-04-13 2016-12-01 Jfeスチール株式会社 Hydrogen gas generation method
KR101823362B1 (en) * 2016-09-12 2018-01-31 한국기초과학지원연구원 Method for preparing iron oxide nanoparticles and the iron oxide by the same
KR20180022606A (en) 2016-08-23 2018-03-06 울산과학기술원 Photoelectrochemical cell and manufacturing method thereof, water electrolysis system and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038898A (en) * 2001-10-03 2004-05-08 소니 가부시끼 가이샤 Method of recovering hydrogen from resin waste, process for producing hydrogen from resin waste, and apparatus for producing hydrogen from resin waste
KR20060057186A (en) * 2004-11-23 2006-05-26 김학수 A hydrogen generator using photocatalyst and preparation method of hydrogen using the same
JP2013053060A (en) 2011-08-09 2013-03-21 Jfe Steel Corp Method for generating hydrogen gas
KR20150028003A (en) * 2013-09-05 2015-03-13 한국과학기술연구원 Method for producing hydrogen by repeated sequential water splitting and methane splitting
JP2016199439A (en) 2015-04-13 2016-12-01 Jfeスチール株式会社 Hydrogen gas generation method
KR20180022606A (en) 2016-08-23 2018-03-06 울산과학기술원 Photoelectrochemical cell and manufacturing method thereof, water electrolysis system and manufacturing method thereof
KR101823362B1 (en) * 2016-09-12 2018-01-31 한국기초과학지원연구원 Method for preparing iron oxide nanoparticles and the iron oxide by the same

Also Published As

Publication number Publication date
KR102258723B1 (en) 2021-05-31

Similar Documents

Publication Publication Date Title
Zhang et al. Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production
TWI542409B (en) Kit for wastewater treatment, method for manufacturing photocatalyst and use thereof
Giannakoudakis et al. Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors
KR102320127B1 (en) Photocatalyst Based on Carbon Nitride Nanocomposite and Manufacturing Method Thereof
Zhang Morphology genetic materials templated from nature species
KR102258723B1 (en) Method for hydrogen production using iron oxyhydroxide
TW201718087A (en) Composite photocatalyst, manufacturing method thereof, kits containing composite photocatalyst, and bactericide photocatalyst
Chebbi et al. Photocatalytic conversion of carbon dioxide, methane, and air for green fuels synthesis
Chung et al. Hydrogen production by cracking of ammonium hydroxide using liquid-phase plasma on the modified TiO2 photocatalysts
Ghasemi et al. Enhanced photodegradation of organic dyes using plasma-modified magnetic CuAl2O4/rGO nanocomposite under simulated sunlight irradiation
Lin et al. The Surface acidity of freshly synthesized microplastics particles in simple electrolyte
Salazar-Villanueva et al. Enhanced photocatalytic water splitting hydrogen production on TiO2 nanospheres: A theoretical-experimental approach
Gharedaghi et al. P‐Nitrophenol Degradation Using N‐Doped Reduced Graphene‐CdS Nanocomposites
Khan et al. Biogenic synthesis of a green tea stabilized PPy/SWCNT/CdS nanocomposite and its substantial applications, photocatalytic degradation and rheological behavior
Deng et al. Photocatalytic reduction of Cr (VI) under visible light over Bi2WO6 with different morphologies
Riaz et al. Historical background, development and preparation of nanomaterials
Le Electrochemical reduction of CO2 to methanol
Rubino et al. Ti/TiO2/Cu2O based electrodes as photocatalysts in PEC cells
KR20230018770A (en) Method for decomposing carbon dioxide using iron oxyhydroxide
TWI606864B (en) Paste for manufacturing photocatalyst and manufacturing method of photocatalyst
Yesupatham et al. Recent Developments in Copper‐Based Catalysts for Enhanced Electrochemical CO2 Reduction
Dat et al. An overall assessment of the pathway procedures, analytical approaches, and potentially essential applications of zinc oxide nanostructured materials
Hashemizadeh Novel CO2 capture and conversion into fuels via artificial photosynthesis by artificial inorganic leaves
Davies Photocatalysis of Methanol in a Carbon Dioxide Environment to Value-Added Chemicals by Nanostructured Metal
Karimi Estahbanati Photocatalytic valorization of biobased alcoholic wastes: a sustainable approach for the generation of green products

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant