KR20210010311A - Method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression - Google Patents

Method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression Download PDF

Info

Publication number
KR20210010311A
KR20210010311A KR1020200063916A KR20200063916A KR20210010311A KR 20210010311 A KR20210010311 A KR 20210010311A KR 1020200063916 A KR1020200063916 A KR 1020200063916A KR 20200063916 A KR20200063916 A KR 20200063916A KR 20210010311 A KR20210010311 A KR 20210010311A
Authority
KR
South Korea
Prior art keywords
mfi
expression
equation
risk
multiple myeloma
Prior art date
Application number
KR1020200063916A
Other languages
Korean (ko)
Other versions
KR102360297B1 (en
Inventor
김병수
박용
이병현
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20210010311A publication Critical patent/KR20210010311A/en
Application granted granted Critical
Publication of KR102360297B1 publication Critical patent/KR102360297B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method of providing information for predicting the prognosis of multiple myeloma using PD-L1 expression, and a method of providing information necessary to determine whether or not autologous hematopoietic stem cell transplantation can be performed in a patient with multiple myeloma. According to the method, it is possible to more reasonably predict the prognosis of multiple myeloma and determine a treatment method.

Description

PD-L1 발현을 이용한 다발골수종 예후 예측을 위한 정보 제공 방법{Method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression}A method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression}

본 발명은 PD-L1 발현을 이용한 다발골수종 예후 예측을 위한 정보 제공 방법에 관한 것으로서, 더욱 상세하게는 PD-L1의 발현 수준을 측정하여 위험도를 결정하고, 이외의 공지된 위험인자와 결합된 점수 체계에 의해 다발골수종의 예후 예측을 보다 정확하게 수행할 수 있는 정보를 제공하는 방법에 관한 것이다.The present invention relates to a method for providing information for predicting the prognosis of multiple myeloma using PD-L1 expression, and in more detail, determining the risk by measuring the expression level of PD-L1, and scores combined with other known risk factors It relates to a method of providing information that can more accurately predict the prognosis of multiple myeloma by a system.

PD-L1은 대표적인 면역 회피 인자로 다양한 암종에서 예후 인자 및 치료의 타켓으로 연구가 진행되어 왔다. 고형암 중에서는 폐암, 유방암, 대장암 등 많은 암종에서 암세포에서 발현되는 PD-L1이 환자의 예후에 미치는 영향에 대한 연구 결과들이 있으며, 혈액암 중에서는 특히 림프종에서 관련 연구가 많이 진행되어 왔다.PD-L1 is a representative immune evasion factor and has been studied as a prognostic factor and a target for treatment in various carcinomas. Among solid cancers, there are research results on the effect of PD-L1 expressed in cancer cells on the prognosis of patients in many carcinomas such as lung cancer, breast cancer, and colon cancer, and among hematologic cancers, a lot of related studies have been conducted, especially in lymphoma.

하지만 다발골수종(multiple myeloma)에서는 PD-L1 발현이 좋지 않은 예후와 관련이 있다는 기존의 연구 결과는 있지만 예후 인자로 확립된 바는 없으며 이를 이용한 예후 예측 모델은 개발되어 있지 않다. 다발골수종은 골수에서 항체를 생산하는 세포의 한 종류인 형질세포(plasma cell)가 비정상적으로 증식하는 혈액질환으로 특히 뼈를 침윤하는 것이 특징이고 면역장애, 조혈장애 및 신장장애를 일으키는 치명적인 질환이다.However, in multiple myeloma, there are existing studies that show that PD-L1 expression is associated with poor prognosis, but it has not been established as a prognostic factor, and a prognostic model using this has not been developed. Multiple myeloma is a blood disease in which plasma cells, a type of antibody-producing cells in the bone marrow, proliferate abnormally. In particular, it is characterized by infiltrating bones and is a fatal disease that causes immune disorders, hematopoietic disorders and kidney disorders.

기존 연구들에서는 PD-L1 발현을 순환하는 형질세포 혹은 골수유래 혈액에서 획득한 형질세포에서 유세포분석법으로 측정하거나 혈장 내의 soluble PD-L1을 측정하여 사용하였다. 직접적으로 환자의 골수 샘플에서 면역조직화학법(면역형광염색 포함)으로 형질세포에서 발현되는 PD-L1을 측정하여 예후를 분석한 연구는 제한적이다.In previous studies, PD-L1 expression was measured in plasma cells circulating or obtained from bone marrow-derived blood by flow cytometry or by measuring soluble PD-L1 in plasma. There are limited studies to analyze the prognosis by directly measuring PD-L1 expressed in plasma cells by immunohistochemistry (including immunofluorescence staining) in bone marrow samples from patients.

암 조직에서 정량적 면역형광분석을 통해 특정 단백질(표지자) 발현을 측정하는 방법들은 현재 개발되어 있으며 대표적으로 AQUA (Automated Quantitative Analysis) 방법(method)이 고형암에서 단백질(표지자)의 발현을 측정하는 방법으로 사용되고 있다. 하지만 다발골수종은 골수에서 유래하는 혈액질환으로 암과 주변 조직의 경계를 구분하는 것이 명확하지 않아 AQUA 방법을 적용하기에는 제한이 있다.Methods for measuring the expression of specific proteins (markers) through quantitative immunofluorescence analysis in cancer tissues are currently being developed, and representatively, the AQUA (Automated Quantitative Analysis) method is a method that measures the expression of proteins (markers) in solid cancer. Is being used. However, multiple myeloma is a blood disease originating from the bone marrow, and it is not clear to distinguish the boundary between cancer and surrounding tissues, so the application of the AQUA method is limited.

본 발명에서는 AQUA 방법을 참고하여 각각의 형질세포 영역을 기준으로 마스크(mask)를 만들어 MFI의 합을 구하였고 이를 이용하여 점수체계를 만들어 PD-L1의 발현을 측정하였다. 면역조직화학염색을 이용한 분석은 판독자에 따라 결과 해석에 차이가 있을 수 있으나 본 기술은 면역형광염색을 이용하여 이미지 프로그램에 의해 정해진 프로토콜에 따라 분석이 진행되어 일관된 예측이 가능한 장점이 있다.In the present invention, referring to the AQUA method, a mask was created based on each plasma cell region to obtain the sum of MFI, and a score system was created using this to measure the expression of PD-L1. The analysis using immunohistochemical staining may differ in the interpretation of the results depending on the reader, but this technique has the advantage of enabling consistent prediction by using immunofluorescence staining to perform the analysis according to the protocol set by the image program.

본 발명자들은 골수 내 형질세포에서 측정한 PD-L1의 MFI 점수체계에 의한 PD-L1 발현 정도가 multivariable Cox regression analysis를 통해 환자의 생존에 영향을 미치는 유의한 인자임을 확인하였고, Contal and O`Quigley method를 이용하여 PD-L1 발현의 optimal cut-off value (7.65)를 결정하였다. 이를 기준으로 cut-off value (7.65)보다 낮은 발현을 저위험군으로 높은 발현을 고위험군으로 구분하여 PD-L1 발현의 고위험군이 저위험군에 비해 예후가 좋지 않음을 확인하였다. 이후 least absolute shrinkage and selection operator (lasso) 변수 선택을 이용한 Cox regression analysis로 nomogram 모형을 수립하였고 이를 기반으로 저위험, 중간위험, 고위험군으로 분류하는 PD-L1 기반 새로운 다발골수종 예후 예측 모델을 개발하였다.The present inventors confirmed that the expression level of PD-L1 according to the MFI scoring system of PD-L1 measured in plasma cells in the bone marrow is a significant factor affecting the survival of patients through multivariable Cox regression analysis, and Contal and O`Quigley The optimal cut-off value (7.65) of PD-L1 expression was determined using the method. Based on this, expressions lower than the cut-off value (7.65) were classified as low-risk groups and high-risk groups, and it was confirmed that the high-risk group of PD-L1 expression had a poorer prognosis than the low-risk group. After that, a nomogram model was established by Cox regression analysis using least absolute shrinkage and selection operator (lasso) variable selection, and based on this, a new PD-L1-based multiple myeloma prognosis prediction model was developed, which classified into low-, medium-, and high-risk groups.

새로운 예후 예측 모델은 기존의 예후 예측 모델과 비교하여 전체적으로 높은 예후 판별력을 보였으며, 특히 진단 후 24개월 이전에 사망한 고위험군의 환자를 예측하는데 기존의 예후 예측 모델에 비해 현저한 이점을 보였다. 이를 바탕으로 생존율이 낮을 것으로 예상되는 고위험군 환자들에게는 초기부터 적극적으로 치료를 하여 예후 개선에 도움을 줄 수 있으며, 새로운 예후 예측 모델의 고위험군 환자에서 조혈모세포 이식이 생존율을 높이는 방법이 될 수 있음을 확인하였다.The new prognosis prediction model showed a high overall prognosis discrimination ability compared to the existing prognosis prediction model. In particular, it showed a remarkable advantage over the existing prognosis prediction model in predicting high-risk patients who died before 24 months after diagnosis. Based on this, it was found that high-risk patients who are expected to have low survival rates can be actively treated from the beginning to help improve the prognosis, and that hematopoietic stem cell transplantation in high-risk patients with a new prognosis prediction model can be a way to increase the survival rate. Confirmed.

Contal and O'Quigley, An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data An. 30, 253-270 (1999)Contal and O'Quigley, An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data An. 30, 253-270 (1999)

본 발명자들은 PD-L1의 MFI를 이용한 점수체계를 바탕으로 lasso 변수 선택과 Cox regression analysis에 의해 수립된 PD-L1 발현과 임상인자를 결합한 모형이 예후 판별력이 높음을 확인하였다.The present inventors confirmed that the model combining PD-L1 expression and clinical factors established by lasso variable selection and Cox regression analysis based on the score system using the MFI of PD-L1 has high prognostic discrimination.

이에, 본 발명의 목적은 PD-L1의 발현을 기반으로 한 다발성 골수종의 예후 예측을 위한 정보 제공 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method of providing information for predicting the prognosis of multiple myeloma based on the expression of PD-L1.

본 발명의 다른 목적은 다발성 골수종의 자가 조혈모세포이식 여부를 결정하는데 필요한 정보를 제공하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method of providing information necessary to determine whether multiple myeloma is autologous hematopoietic stem cell transplantation.

본 발명은 PD-L1 발현을 이용한 다발골수종(multiple myeloma) 예후 예측을 위한 정보 제공 방법에 관한 것으로, 본 발명에 따른 방법은 PD-L1 발현을 측정하여 다발골수종의 예후 예측의 정확성을 높이고, 기존의 예후 예측 모델에 대비해서도 유의하게 높은 판별력을 나타낸다. The present invention relates to a method of providing information for predicting the prognosis of multiple myeloma using PD-L1 expression, and the method according to the present invention increases the accuracy of predicting the prognosis of multiple myeloma by measuring PD-L1 expression. It also shows significantly higher discriminant power compared to the predictive model of prognosis.

본 발명자들은 PD-L1의 MFI (mean fluorescence intensity)를 이용한 점수체계를 바탕으로 lasso 변수 선택과 Cox regression analysis에 의해 수립된 PD-L1 발현과 임상인자를 결합한 모형이 예후 판별력이 높음을 확인하였다. The present inventors confirmed that the model combining PD-L1 expression and clinical factors established by lasso variable selection and Cox regression analysis based on the scoring system using MFI (mean fluorescence intensity) of PD-L1 has high prognostic discrimination.

이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 다발성 골수종(multiple myeloma)의 예후 예측을 위한 정보 제공 방법을 제공한다:According to an aspect of the present invention, the present invention provides a method of providing information for predicting the prognosis of multiple myeloma, comprising the following steps:

골수 형질세포를 포함하는 시료에서 CD138 및 PD-L1의 발현 정도를 정량적으로 측정하여 하기 식1에 따른 PD-L1의 정규화 MFI(normalized mean fluorescence intensity)를 도출하는 단계:Deriving normalized mean fluorescence intensity (MFI) of PD-L1 according to Equation 1 below by quantitatively measuring the expression levels of CD138 and PD-L1 in a sample containing bone marrow plasma cells:

식1 Equation 1

Normalized MFI = (MFI in plasma cell compartments - Background intensity) / MFI from isotype-matched control; Normalized MFI = (MFI in plasma cell compartments-Background intensity) / MFI from isotype-matched control;

하기 식2에 따른 PD-L1 발현 MFI 측정값을 도출하는 단계:Step of deriving the PD-L1 expression MFI measurement value according to Equation 2:

식2Equation 2

PD-L1 expression MFI = Sum of normalized MFIs in all plasma cell compartments / Total number of plasma cells; 및PD-L1 expression MFI = Sum of normalized MFIs in all plasma cell compartments / Total number of plasma cells; And

상기 식2에 따른 PD-L1 발현 MFI 측정값이 7.65 미만이면 저위험군, 7.65 이상이면 고위험군으로 분류하는 단계.If the measured value of PD-L1 expression MFI according to Equation 2 is less than 7.65, classifying it as a low-risk group, and if it is 7.65 or more, classifying it as a high-risk group.

본 발명의 일 구현 예에서, 상기 발현량 측정 단계는 골수 형질세포에서의 PD-L1 발현량을 확인하기 위하여 면역형광염색을 수행하고, 형질세포의 영역 내에서 식1에 따라 PD-L1의 정규화된 MFI를 계산하고, 이를 식2에 따라 모두 더한 후, 이를 상기 형질세포의 영역 수로 나눈 값을 도출한다.In one embodiment of the present invention, in the step of measuring the expression level, immunofluorescence staining is performed to confirm the expression level of PD-L1 in bone marrow plasma cells, and normalization of PD-L1 according to Equation 1 in the plasma cell region The resulting MFI is calculated, added all according to Equation 2, and then a value obtained by dividing it by the number of regions of the plasma cell is derived.

본 명세서상의 "형질세포의 영역 수"는 샘플 내에서 측정을 위한 형질세포의 영역을 설정하였을 때 그 개수를 의미하며, 형질세포의 수와 의미하는 개수는 동일하다.In the present specification, the "number of regions of plasma cells" refers to the number of plasma cells for measurement in a sample, and the number of plasma cells is the same.

본 발명의 일구현예에서, 상기 CD138은 형질세포(plasma cell)를 검출하기 위한 마커이다. 상기 PD-L1의 정규화된 MFI는 상기 CD138의 검출로 인한 형질세포 내부 영역에서의 PD-L1의 발현량을 나타낸다. In one embodiment of the present invention, the CD138 is a marker for detecting plasma cells. The normalized MFI of the PD-L1 represents the expression level of PD-L1 in the region inside the plasma cells due to the detection of the CD138.

본 발명의 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 다발성 골수종의 예후 예측을 위한 정보 제공 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method of providing information for predicting the prognosis of multiple myeloma comprising the following steps:

Figure pat00001
Figure pat00001

i) 상기 식1 및 식2에 따른 PD-L1 발현 MFI 측정값(0~35), ii) 정상치 상한(422 IU/L) 초과의 혈중 LDH(serum lactate dehydrogenase) 여부, iii) high risk cytogenetics (karyotype에서 t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality 혹은 FISH에서 IGH/FGFR3 rearrangement, IGH/MAF rearrangement, TP53 mutation) 여부, iv) 연령 70세 이상 여부를 기준으로 상기 노모그램(nomogram)에서 상응하는 점수(points, 0~100)를 가산하는 점수 배점 단계; 및 i) PD-L1 expression MFI measured value (0~35) according to Equations 1 and 2 above, ii) Whether serum lactate dehydrogenase (LDH) exceeds the upper limit of normal (422 IU/L), iii) high risk cytogenetics ( In karyotype, t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality or FISH in IGH/FGFR3 rearrangement, IGH/MAF rearrangement, TP53 mutation), iv) age 70 or older. A score scoring step of adding corresponding points (points, 0 to 100) from the nomogram; And

상기 각 가산된 점수를 합산하여 총점(total points)을 구한 후 상기 노모그램에서 상응하는 1년, 2년, 또는 4년 전체 생존기간에 대한 확률을 도출하는 단계.Calculating total points by summing each of the added scores, and then deriving a probability for a corresponding 1 year, 2 year, or 4 year total survival period from the nomogram.

본 발명의 일구현예에 있어서, 상기 1년 전체 생존기간에 대한 확률은 0.9 내지 0.6이다. 본 발명의 다른 구현예에 있어서, 상기 2년 전체 생존기간에 대한 확률은 0.9 내지 0.4 이다. 본 발명의 또 다른 구현예에 있어서, 상기 4년 전체 생존기간에 대한 확률은 0.8 내지 0.2 이다.In one embodiment of the present invention, the probability for the entire 1-year survival period is 0.9 to 0.6. In another embodiment of the present invention, the probability for the 2 year overall survival is 0.9 to 0.4. In another embodiment of the present invention, the probability for the total survival period of 4 years is 0.8 to 0.2.

본 발명의 일구현예에 있어서, 상기 혈중 LDH의 정상치 상한 값은 검사 기관, 방법에 따라 차이가 있을 수 있는 수치로, 본 발명자가 소속된 기관의 참고치(238-422 IU/L)의 상한 값인 422 IU/L 를 기준으로 적용하였다.In one embodiment of the present invention, the upper limit value of the normal value of LDH in blood is a value that may vary depending on the testing institution and method, and is the upper limit value of the reference value (238-422 IU/L) of the institution to which the present inventor belongs. 422 IU/L was applied as a standard.

본 발명의 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 다발성 골수종의 자가 조혈모세포이식 여부를 결정하는데 필요한 정보를 제공하는 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method of providing information necessary to determine whether or not to autologous hematopoietic stem cell transplantation of multiple myeloma comprising the following steps:

Figure pat00002
Figure pat00002

i) 상기 식1 및 식2에 따른 PD-L1 발현 MFI 측정값(0~35), ii) 정상치 상한(422 IU/L) 초과의 혈중 LDH(serum lactate dehydrogenase) 여부, iii) high risk cytogenetics (karyotype에서 t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality, FISH에서 IGH/FGFR3 rearrangement, IGH/MAF rearrangement, 및 TP53 mutation으로 이루어진 군으로부터 1종 이상 양성인 경우) 여부, iv) 연령 70세 이상 여부를 기준으로 상기 nomogram에서 상응하는 점수(points, 0~100)를 가산하는 점수 배점 단계; i) PD-L1 expression MFI measured value (0~35) according to Equations 1 and 2 above, ii) Whether serum lactate dehydrogenase (LDH) exceeds the upper limit of normal (422 IU/L), iii) high risk cytogenetics ( t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality in karyotype, IGH/FGFR3 rearrangement in FISH, IGH/MAF rearrangement, and TP53 mutation) iv) a score distribution step of adding a corresponding score (points, 0-100) from the nomogram based on whether the age is 70 years or older;

상기 각 가산된 점수를 합산하여 총점(total points)을 구한 후 50점 미만이면 저위험군, 50 내지 100점이면 중간위험군, 100점을 초과하면 고위험군으로 분류하는 분류 단계; 및A classification step of classifying each of the added scores into a low-risk group if it is less than 50 points, a medium-risk group if it is 50 to 100 points, and a high-risk group if it exceeds 100 points; And

총점이 100점을 초과하는 고위험군으로 분류된 환자에게 자가조혈모세포 이식시 생존율이 향상된다는 정보를 제공하는 단계.Providing information that the survival rate is improved when autologous hematopoietic stem cells are transplanted to patients classified as high-risk groups with a total score exceeding 100 points.

본 발명은 PD-L1 발현을 이용한 다발골수종 예후 예측을 위한 정보 제공 방법 및 다발성 골수종 환자의 자가 조혈모세포이식 여부를 결정하는데 필요한 정보를 제공하는 방법에 관한 것으로서, 상기 방법에 의하면 다발골수종의 예후 예측 및 치료방법의 결정을 보다 합리적으로 수행할 수 있다.The present invention relates to a method for providing information for predicting the prognosis of multiple myeloma using PD-L1 expression, and to a method for providing information necessary for determining whether or not autologous hematopoietic stem cell transplantation in a patient with multiple myeloma, according to the method, predicts the prognosis of multiple myeloma. And the determination of the treatment method can be performed more reasonably.

도 1은 다발골수종 환자의 골수 내 형질세포에서 PD-L1이 발현되는 것을 확인한 공초점현미경 사진이다.
도 2는 PD-L1의 발현을 측정하기 위해 형질세포의 영역을 정하고 MFI를 측정하는 방법을 나타낸 사진이다.
도 3a는 PD-L1 MFI(mean fluorescence intensity) 측정값 및 위험군에 따른 PD-L1 발현 정도를 보여주기 위해 대표적으로 선정한 사진이다.
도 3b는 PD-L1 MFI(mean fluorescence intensity) 측정값에 따른 PD-L1 발현 분포를 보여주는 그래프이다.
도 4a는 전체 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 전체생존율(overall survival)을 나타낸 그래프이다.
도 4b는 autologous stem cell transplantation (ASCT)를 받은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 전체생존율을 나타낸 그래프이다.
도 4c는 ASCT를 받지 않은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 전체생존율을 나타낸 그래프이다.
도 4d는 VTD (bortezomib, thalidomide 및 dexamethasone), TD (thalidomide 및 dexamethasone), RD (lenalidomide 및 dexamethasone) 요법으로 치료를 받은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 전체생존율을 나타낸 그래프이다.
도 4e는 VMP (bortezomib(Velcade) plus melphalan 및 prednisone) 요법으로 치료를 받은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 전체생존율을 나타낸 그래프이다.
도 4f는 ASCT를 받은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 무진행생존율(progression-free survival)을 나타낸 그래프이다.
도 4g는 ASCT를 받지 않은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 무진행생존율을 나타낸 그래프이다.
도 4h는 VTD, TD, RD 요법으로 치료를 받은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 무진행생존율을 나타낸 그래프이다.
도 4i는 VMP 요법으로 치료를 받은 환자군에서 PD-L1 MFI 측정값에 의한 PD-L1 발현에 기반한 위험군에 따른 무진행생존율을 나타낸 그래프이다.
도 5는 다변수 콕스회귀분석(multivariable Cox regression)을 통해 얻어진 유의한 위험인자를 나타낸 표이다. PD-L1 발현에 대한 위험인자는 PD-L1 MFI 측정값에 대한 optimal cut-off value를 이용한 이분형 변수로 정의되었다.
도 6a는 lasso 변수 선택과 Cox regression analysis에 의해 수립된 PD-L1 발현과 임상인자가 결합된 nomogram 모형이다. PD-L1 발현에 대한 위험인자는 PD-L1 MFI 측정값을 이용한 연속형 변수로 정의되었다.
도 6b는 수립된 nomogram 모형에 대한 calibration 그래프이다.
도 6c는 수립된 nomogram의 total score를 기준으로 세 그룹으로 나누어 카플란-메이어(Kaplan-Meier) 생존곡선으로 각 그룹의 생존을 비교한 그래프이다.
도 6d는 수립된 nomogram 모형을 평가하기 위한 time-dependent AUC 분석 그래프이다.
도 6e는 수립된 nomogram 모형을 test 하기 위해 test cohort에 적용하여 calibration한 그래프이다.
도 6f는 수립된 nomogram 모형을 test 하기 위해 test cohort에 적용하여 카플란-메이어(Kaplan-Meier) 생존곡선으로 각 그룹의 생존을 비교한 그래프이다.
도 6g는 수립된 nomogram 모형을 test 하기 위해 test cohort에 적용하여 time-dependent AUC를 분석한 그래프이다.
도 7a는 nomogram total score를 기준으로 세 그룹으로 구분한 새로운 예후 예측 모형에서 카플란-메이어(Kaplan-Meier) 생존곡선으로 각 그룹의 생존을 비교한 그래프이다.
도 7b는 기존의 R-ISS를 기준으로 카플란-메이어(Kaplan-Meier) 생존곡선으로 각 그룹의 생존을 비교한 그래프이다.
도 7c는 새로운 예후 예측 모형과 R-ISS의 성능을 time-dependent AUC 분석을 이용하여 비교한 그래프이다.
도 8a 내지 도 8f는 새로운 예후 예측 모형에서 위험군별 치료법에 대한 전체생존율과 무진행생존율을 나타낸 그래프이다.
1 is a confocal micrograph confirming that PD-L1 is expressed in plasma cells in the bone marrow of a patient with multiple myeloma.
2 is a photograph showing a method of determining a region of plasma cells and measuring MFI to measure the expression of PD-L1.
Figure 3a is a photo representatively selected to show the PD-L1 MFI (mean fluorescence intensity) measurement value and the expression level of PD-L1 according to the risk group.
3B is a graph showing the distribution of PD-L1 expression according to the measured value of PD-L1 MFI (mean fluorescence intensity).
4A is a graph showing overall survival according to risk groups based on PD-L1 expression based on PD-L1 MFI measurements in all patient groups.
Figure 4b is a graph showing the overall survival rate according to the risk group based on the expression of PD-L1 by the measured value of PD-L1 MFI in the patient group undergoing autologous stem cell transplantation (ASCT).
Figure 4c is a graph showing the overall survival rate according to the risk group based on PD-L1 expression by the PD-L1 MFI measurement value in the patient group not receiving ASCT.
Figure 4d is the overall risk group based on PD-L1 expression based on PD-L1 MFI measurements in patients treated with VTD (bortezomib, thalidomide and dexamethasone), TD (thalidomide and dexamethasone), and RD (lenalidomide and dexamethasone) therapy. It is a graph showing the survival rate.
Figure 4e is a graph showing the overall survival rate according to the risk group based on the PD-L1 expression by the PD-L1 MFI measurement value in the patient group treated with the VMP (bortezomib (Velcade) plus melphalan and prednisone) therapy.
FIG. 4F is a graph showing progression-free survival according to risk groups based on PD-L1 expression based on PD-L1 MFI measurements in the patient group receiving ASCT.
Figure 4g is a graph showing the progression-free survival rate according to the risk group based on PD-L1 expression by the measured value of PD-L1 MFI in the patient group who did not receive ASCT.
4H is a graph showing progression-free survival rates according to risk groups based on PD-L1 expression by PD-L1 MFI measurements in patient groups treated with VTD, TD, and RD therapy.
Figure 4i is a graph showing the progression-free survival rate according to the risk group based on the expression of PD-L1 by the measured value of PD-L1 MFI in the patient group treated with VMP therapy.
5 is a table showing significant risk factors obtained through multivariable Cox regression. The risk factor for PD-L1 expression was defined as a binary variable using the optimal cut-off value for the PD-L1 MFI measurement value.
6A is a nomogram model in which PD-L1 expression and clinical factors established by lasso variable selection and Cox regression analysis are combined. Risk factors for PD-L1 expression were defined as continuous variables using PD-L1 MFI measurements.
Figure 6b is a calibration graph for the established nomogram model.
6C is a graph comparing the survival of each group with a Kaplan-Meier survival curve divided into three groups based on the total score of the established nomogram.
6D is a graph of time-dependent AUC analysis for evaluating the established nomogram model.
Figure 6e is a graph calibrated by applying to the test cohort to test the established nomogram model.
6F is a graph comparing the survival of each group by applying a test cohort to test the established nomogram model with a Kaplan-Meier survival curve.
6G is a graph showing a time-dependent AUC analysis applied to a test cohort to test the established nomogram model.
7A is a graph comparing the survival of each group with a Kaplan-Meier survival curve in a new prognosis prediction model divided into three groups based on a nomogram total score.
Figure 7b is a graph comparing the survival of each group based on the existing R-ISS Kaplan-Meier survival curve.
7C is a graph comparing the performance of a new prognosis prediction model and R-ISS using time-dependent AUC analysis.
8A to 8F are graphs showing the overall survival rate and progression-free survival rate for treatments by risk group in a new prognostic prediction model.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)%이다.Throughout this specification, "%" used to indicate the concentration of a specific substance is (weight/weight)% for solids/solids, (weight/volume)% for solids/liquids, and Liquid/liquid is (vol/vol)%.

실시예Example 1: 골수 샘플의 준비 1: Preparation of bone marrow sample

실험에 사용된 환자의 샘플은 2011년 1월부터 2019년 10월까지 고려대학교 안암병원 혈액종양내과에서 골수검사 후 다발골수종으로 진단된 환자 126명(후향적 83명, 전향적 43명)으로부터 얻었다. 모든 샘플은 진단 시 사용된 골수 파라핀 셀 블록(cell block)으로 IRB 승인 후 프로토콜에 따라 준비하였으며 각 샘플당 적어도 2개 이상의 절편을 제작하여 확인하였다.Samples of patients used in the experiment were obtained from 126 patients (83 retrospective, 43 prospective) diagnosed as multiple myeloma after bone marrow examination at the Department of Hematology and Oncology at Korea University Anam Hospital from January 2011 to October 2019. . All samples were prepared according to the protocol after IRB approval as a bone marrow paraffin cell block used for diagnosis, and at least two or more sections were prepared and confirmed for each sample.

실시예Example 2: 2: 면역형광염색을Immunofluorescence staining 통한 PD-L1 발현의 확인 Confirmation of PD-L1 expression through

준비된 골수 파라핀 셀 블록에서 4-5um 두께의 절편을 잘라 슬라이드를 제작하였고 60℃에서 1시간 동안 건조한 후 자일렌(xylene)으로 15분 동안 3회, 100%, 95%, 70% 에탄올(ethanol)로 각각 5분 동안 2회 처리한 후 흐르는 물로 세척하여 탈파라핀화를 시행하였다. 이후 압력 쿠커를 이용하여 pH 6.0의 버퍼(sodium citrate buffer) 내에서 10분 동안 끓인 후 흐르는 물로 냉각시켜 항원성을 복원하였고, 0.5% 트리톤(triton) X-100를 이용하여 세포막 투과화 과정을 진행하였다.The prepared bone marrow paraffin cell block was cut from a 4-5 μm thick section to make a slide, dried at 60° C. for 1 hour, 3 times for 15 minutes with xylene, 100%, 95%, 70% ethanol Deparaffinization was performed by washing with running water after treatment twice for 5 minutes each. After that, it was boiled for 10 minutes in a pH 6.0 buffer (sodium citrate buffer) using a pressure cooker, and then cooled with flowing water to restore antigenicity, and the cell membrane permeation process was performed using 0.5% Triton X-100. I did.

이후 5% 세럼(normal donkey serum)으로 실온에서 1시간 동안 블로킹(blocking) 후 PBS로 세척하고, 일차항체(goat CD138 Ab (R&D Systems), mouse anti-PD-L1 mAb [ABM4E54] (Abcam))를 사용하여 4℃에서 오버나잇(overnight)으로 배양하였다. 이후 PBS로 5분 동안 3회 세척하고 이차항체(alexa flour 488 conjugated donkey anti-goat IgG (Invitrogen), alexa flour 647 conjugated donkey anti-mouse IgG (Invitrogen))를 사용하여 실온에서 1시간 동안 배양 후 PBS로 5분 동안 3회 세척하고 DAPI가 포함된 마운트제(mountant, ProLong™ Diamond Antifade Mountant with DAPI (Invitrogen))를 이용하여 처리하였다.After blocking with 5% serum (normal donkey serum) for 1 hour at room temperature, washing with PBS, primary antibody (goat CD138 Ab (R&D Systems), mouse anti-PD-L1 mAb [ABM4E54] (Abcam)) It was incubated at 4° C. overnight. After washing 3 times with PBS for 5 minutes and incubating for 1 hour at room temperature using secondary antibodies (alexa flour 488 conjugated donkey anti-goat IgG (Invitrogen), alexa flour 647 conjugated donkey anti-mouse IgG (Invitrogen)), then PBS Washed three times for 5 minutes and treated with a mountant containing DAPI (ProLong™ Diamond Antifade Mountant with DAPI (Invitrogen)).

도 1에서 확인할 수 있듯이, 공초점현미경을 이용하여 다발골수종 환자의 골수 내 형질세포에서 PD-L1이 발현되는 것을 확인하였다. CD138, PD-L1의 이미지(8 bit raw)를 이미지 분석 프로그램(Celleste?? Image Analysis Software (Invitrogen))을 이용하여 분석하였다.As can be seen in FIG. 1, it was confirmed that PD-L1 was expressed in plasma cells in the bone marrow of patients with multiple myeloma using a confocal microscope. Images of CD138 and PD-L1 (8 bit raw) were analyzed using an image analysis program (Celleste® Image Analysis Software (Invitrogen)).

샘플 당 3개 이상(평균 5개)의 필드에서 분석을 진행하였다. 도 2와 같이 CD138 발현을 기준으로 형질세포의 영역을 정하고 이미지 분석 프로그램(Celleste?? Image Analysis Software (Invitrogen))을 이용하여 각각의 형질세포 영역 내 PD-L1의 정규화된(normalized) MFI(mean fluorescence intensity)를 계산하여 더한 후 전체 형질세포의 영역 수로 나눈 값을 기준으로 반정량화된 PD-L1 발현MFI(PD-L1 expression MFI)을 측정하였다.Analysis was carried out in at least 3 fields per sample (average 5). As shown in Figure 2, the region of plasma cells was determined based on the expression of CD138, and using an image analysis program (Celleste?? Image Analysis Software (Invitrogen)). PD-L1 expression MFI (PD-L1 expression) is semi-quantitative based on the value divided by the total number of plasma cells after calculating and adding the normalized mean fluorescence intensity (MFI) of PD-L1 in each plasma cell region. MFI) was measured.

상기 정규화된 MFI(normalized mean fluorescence intensity)를 계산하는 수식은 식1과 같고, 이로부터 PD-L1 발현 MFI를 계산하는 수식은 식2와 같았다.The equation for calculating the normalized mean fluorescence intensity (MFI) is the same as Equation 1, and the equation for calculating the PD-L1 expression MFI from this is the same as Equation 2.

식1 Equation 1

Normalized MFI = (MFI in plasma cell compartments - Background intensity) / MFI from isotype-matched controlNormalized MFI = (MFI in plasma cell compartments-Background intensity) / MFI from isotype-matched control

식2Equation 2

PD-L1 expression (MFI) = Sum of normalized MFIs in all plasma cell compartments / Total number of plasma cellsPD-L1 expression (MFI) = Sum of normalized MFIs in all plasma cell compartments / Total number of plasma cells

상기 식1의 MFI from isotype-matched control은 동형대조군의 MFI 관찰값으로서 PD-L1을 타겟팅하지 않으나, 상기 PD-L1의 MFI를 측정하기 위하여 사용된 항체와 동일한 isotype 및 subclass를 가진 항체를 이용한 대조군의 MFI를 말한다.The MFI from isotype-matched control in Equation 1 does not target PD-L1 as the MFI observation value of the isotype control group, but a control using an antibody having the same isotype and subclass as the antibody used to measure the MFI of PD-L1 Says MFI.

도 3a 및 3b에서 확인할 수 있듯이, PD-L1 발현에 대한 MFI 측정값이 7.65 미만인 경우 저위험군, 7.65 이상인 경우 고위험군인 것으로 분류하였다(Reference: Contal and O'Quigley, An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput . Stat. Data An. 30, 253-270 (1999)).As can be seen in Figures 3a and 3b, if the MFI measured value for PD-L1 expression was less than 7.65, it was classified as a low-risk group, and if it was 7.65 or more, it was classified as a high-risk group (Reference: Contal and O'Quigley, An application of changepoint methods in studying the effect of age on survival in breast cancer . Comput. Stat. Data An. 30, 253-270 (1999)).

실시예Example 3: PD-L1 3: PD-L1 발현에 대한 생존 분석Survival analysis for expression

전체 환자를 i) 자가조혈모세포이식(ASCT)을 받은 환자와 ii) 받지 않은 환자, iii) frontline으로 면역조절제인 탈리도마이드(thalidomide) 및 레날리도마이드(lenalidomide)가 포함된 VTD (bortezomib, thalidomide 및 dexamethasone), TD (thalidomide 및 dexamethasone), RD (lenalidomide 및 dexamethasone) 요법으로 치료 받은 환자와 iv) 면역조절제가 포함되지 않은 VMP (bortezomib(Velcade) plus melphalan 및 prednisone) 요법으로 치료를 받은 환자로 나누어 전체생존율(overall survival)과 무진행생존율(progression-free survival)에 대한 분석을 시행하여 도 4a 내지 4i로 나타내었다. All patients were i) patients who received autologous hematopoietic stem cell transplant (ASCT) and ii) patients who did not, iii) bortezomib, thalidomide, and VTDs containing the immunomodulators thalidomide and lenalidomide as a frontline. dexamethasone), TD (thalidomide and dexamethasone), RD (lenalidomide and dexamethasone) therapy, and iv) VMP (bortezomib(Velcade) plus melphalan and prednisone) therapy without immunomodulators. Analysis of overall survival and progression-free survival were performed, and are shown in FIGS. 4A to 4I.

상기 도 4a 내지 도 4i의 생존곡선은 카플란-메이어(Kaplan-Meier) 생존분석을 이용하여 작성하였고 로그순위 검정(log-rank test)으로 두 군의 생존율을 비교하였다.The survival curves of FIGS. 4A to 4I were prepared using Kaplan-Meier survival analysis, and the survival rates of the two groups were compared with a log-rank test.

도 4a 내지 도 4i에서 확인할 수 있듯이, 분석 결과 ASCT를 받은 그룹에서는 PD-L1 발현의 고위험군과 저위험군 간에 생존에 차이가 없었지만(p>0.05), 이외 전체 환자, ASCT 받은 그룹, 면역조절제 치료 그룹, 면역조절제가 포함되지 않은 치료 그룹 모두에서는 고위험군에서 전체생존율과 무진행생존율이 좋지 않았다(p<0.05).As can be seen from FIGS. 4A to 4I, as a result of the analysis, in the group receiving ASCT, there was no difference in survival between the high-risk group and the low-risk group of PD-L1 expression (p>0.05), but all other patients, the group receiving ASCT, the group receiving the immunomodulatory agent In all treatment groups without immunomodulators, the overall survival rate and progression-free survival rate were poor in the high-risk group (p<0.05).

실시예Example 4: PD-L1 기반 새로운 예후 예측 모델 4: PD-L1 based new prognostic prediction model

도 5 및 6a에서 나타나는 바와 같이 lasso (least absolute shrinkage and selection operator) 변수 선택과 Cox regression analysis에 의해 PD-L1 발현과 임상인자가 결합된 nomogram 모형을 수립하였고 이 과정에서 과적합을 피하기 위해 leave-one-out cross validation (LOOCV)에 의해 lasso의 lambda 값을 결정하였다. 5 and 6A, a nomogram model was established in which PD-L1 expression and clinical factors were combined by lasso (least absolute shrinkage and selection operator) variable selection and Cox regression analysis, and to avoid overfitting in this process, leave- Lasso's lambda value was determined by one-out cross validation (LOOCV).

구체적으로 상기 임상인자는 70세 이상의 연령, 2 이상의 ECOG Performance Status, 3 mg/dL 이상의 혈청 M-단백질, non-IgG isotype, 100 이상의 serum Free Light Chain ratio, 60% 이상의 BM plasma cell, 5.5 mg/L 이상의 b2-microglobulin, 3.5 g/dL 이상의 알부민, 정상치 상한(422 IU/L) 초과의 LDH, 세포유전학적 고위험군(chromosome 1 abnormality), PD-L1 고위험군이 분석되었다.Specifically, the clinical factors are 70 years of age or older, ECOG Performance Status of 2 or more, serum M-protein of 3 mg/dL or more, non-IgG isotype, serum free light chain ratio of 100 or more, BM plasma cell of 60% or more, 5.5 mg/d. L or higher b2-microglobulin, 3.5 g/dL or higher albumin, LDH above the upper limit of normal (422 IU/L), cytogenetic high risk group (chromosome 1 abnormality), and PD-L1 high risk group were analyzed.

단변수 분석에서는 정상치 상한 초과의 LDH, 세포유전학적 고위험군, 및 PD-L1 고위험군이라는 임상인자가 유의한 것으로 나타났고, Cox regression analysis을 활용한 다변수 분석에서는 70세 이상의 고령, 정상치 상한 초과의 LDH, 세포유전학적 고위험군(karyotype에서 t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality, FISH에서 IGH/FGFR3 rearrangement, IGH/MAF rearrangement, 및 TP53 mutation으로 이루어진 군으로부터 1종 이상 양성인 경우), 및 PD-L1 고위험군의 임상인자가 유의한 것으로 분석되었다(도 5).In univariate analysis, clinical factors such as LDH above the upper limit of normal, high cytogenetic risk, and high risk of PD-L1 were found to be significant, and in multivariate analysis using Cox regression analysis, the elderly aged 70 years or older, LDH above the upper limit of normal. , Cytogenetic high risk group (1 type from the group consisting of t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality in karyotype, IGH/FGFR3 rearrangement, IGH/MAF rearrangement, and TP53 mutation in FISH If abnormality is positive), and the clinical factors of the PD-L1 high risk group were analyzed to be significant (Fig. 5).

상기 분석으로 선택된 임상인자 및 PD-L1 고발현 여부의 영향력을 점수화한 points, 각전수의 누적합계인 total points, 및 1년 전체생존율, 2년 전체생존율, 4년 전체생존율에 대한 확률을 계산한 노모그램을 작성하였다(도 6a).The points obtained by scoring the influence of the clinical factor selected by the above analysis and the presence of high PD-L1 expression, total points, the cumulative total of each number, and the probability for the 1-year overall survival rate, 2-year overall survival rate, and 4-year overall survival rate were calculated. A nomogram was created (FIG. 6A).

다음으로, 도 6b에서와 같이 1년, 2년, 4년 전체생존율에 대해 1000회 bootstrap을 이용하여 calibration을 시행하였고 calibration이 잘 되는 것을 확인하였다. 도 6c에서와 같이 수립된 nomogram의 total score를 기준으로 50미만을 저위험군, 50 내지 100을 중간위험군, 100 초과를 고위험군으로 하는 세 그룹으로 나누어 카플란-메이어(Kaplan-Meier) 생존곡선으로 각 그룹의 생존을 비교하였고, 로그 순위 분석 결과, P <0.001로 세 군의 전체생존율이 통계적으로 유의하게 구분되는 것을 확인하였다. Next, as shown in Fig. 6b, calibration was performed using bootstrap 1000 times for the overall survival rates of 1, 2, and 4 years, and it was confirmed that the calibration was successful. Based on the total score of the nomogram established as in Fig. 6c, each group is divided into three groups with a low risk group of less than 50, a medium risk group of 50 to 100, and a high risk group of more than 100 as a Kaplan-Meier survival curve. The survival of the three groups was compared, and as a result of log ranking analysis, it was confirmed that the overall survival rates of the three groups were statistically significantly classified as P <0.001.

도 6d에서와 같이 수립된 nomogram 모형을 평가하기 위해 1000회 bootstrap을 이용하여 time-dependent AUC 분석을 시행하였고 1-4년 AUC 값이 0.6 이상, 1년, 2년 AUC는 0.8 이상으로 확인되어 전체적으로 모형 성능이 양호하며 특히 1년, 2년 생존 평가에 우수함을 확인하였다(0.9-1.0 = excellent; 0.8-0.9 = very good; 0.7-0.8 = good; 0.6-0.7= sufficient; 0.5-0.6 = bad; < 0.5 = not useful (Muller et al., 2005)). To evaluate the nomogram model established as in FIG. 6D, time-dependent AUC analysis was performed using 1000 bootstraps, and the 1-4 year AUC value was 0.6 or more, and the 1 year and 2 year AUC was 0.8 or more. It was confirmed that the model performance was good and was particularly excellent in the 1-year and 2-year survival evaluation (0.9-1.0 = excellent; 0.8-0.9 = very good; 0.7-0.8 = good; 0.6-0.7= sufficient; 0.5-0.6 = bad; <0.5 = not useful (Muller et al., 2005)).

도 6e에서와 같이 수립된 nomogram 모형을 prospective (test) cohort에 적용하여 test 하였고 nomogram에 의해 예측된 생존 확률과 관찰된 생존 확률이 서로 calibration이 잘 되는 것을 확인하였다. 도 6f에서와 같이 수립된 nomogram 모형을 prospective (test) cohort에 적용하여 카플란-메이어(Kaplan-Meier) 생존곡선으로 각 그룹의 생존을 비교하였고 P = 0.029로 세 군의 전체생존율이 통계적으로 유의하게 구분되는 것을 확인하였다. 도 6f에서와 같이 수립된 nomogram 모형의 성능을 평가하기 위해 prospective (test) cohort에 적용하여 time-dependent AUC를 분석하였고 6개월 AUC 0.724, 12개월 AUC 0.740으로 측정되어 test set에서도 본 발명의 nomogram이 다발성 골수종의 예후 판별에 우수함을 확인하였다.The nomogram model established as in FIG. 6E was applied to the prospective (test) cohort and tested, and it was confirmed that the predicted survival probability and the observed survival probability by the nomogram were well calibrated. The nomogram model established as in FIG. 6f was applied to the prospective (test) cohort to compare the survival of each group with a Kaplan-Meier survival curve, and the overall survival rate of the three groups was statistically significant with P = 0.029. It was confirmed that it was distinguished. In order to evaluate the performance of the nomogram model established as in FIG. 6f, time-dependent AUC was analyzed by applying it to a prospective (test) cohort, and a 6-month AUC of 0.724 and a 12-month AUC of 0.740 were measured, so that the nomogram of the present invention was obtained in the test set. It was confirmed to be excellent in determining the prognosis of multiple myeloma.

상기 cohort 환자의 샘플은 2011년 1월부터 2019년 10월까지 고려대학교 안암병원 혈액종양내과에서 골수검사 후 다발골수종으로 진단된 환자 126명(후향적 83명, 전향적 43명)의 결과로부터 얻었다. 후향적 83명은 2011년 1월부터 2018년 4월까지, 전향적 43명은 2018년 5월부터 2019년 10월까지 진단된 환자들의 결과였다.The sample of the cohort patient was obtained from the results of 126 patients (83 retrospective, 43 prospective) diagnosed as multiple myeloma after bone marrow examination at the Department of Hematology and Oncology at Korea University Anam Hospital from January 2011 to October 2019. . The results were from patients diagnosed retrospectively from January 2011 to April 2018 and 43 prospectively from May 2018 to October 2019.

실시예Example 5: 기존의 예후 예측 모델과의 비교 분석 5: Comparative analysis with existing prognostic models

새로운 본 발명의 다발성 골수종의 예후 예측 모델과 종래 예후 예측 모델인 R-ISS(Revised multiple myeloma International Staging System)간의 예후 판별력과 일치도를 비교하였다.The prognostic discrimination ability and degree of agreement between the novel multiple myeloma prognosis prediction model of the present invention and the conventional prognostic prediction model R-ISS (Revised multiple myeloma International Staging System) were compared.

도 7a 및 7b에서 확인할 수 있듯이, R-ISS 대비 본 발명의 새로운 예후 예측 모델로부터 도출할 수 있는 각 군별 생존곡선의 통계적 유의성을 확인하였다. 또한 표 1에서와 같이 Harrell’s c-index (Reference: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med . 15, 361-387 (1996).)를 이용하여 새로운 예후 예측 모델이 기존의 R-ISS 모델보다 예후 예측에 높은 판별력을 보이는 것을 확인하였고, 도 7c에서와 같이 time-dependent AUC 분석에서 본 발명의 새로운 예후 예측 모형이 R-ISS에 비해 높은 판별력을 보이는 것을 확인하였다.As can be seen in Figures 7a and 7b, the statistical significance of the survival curve for each group that can be derived from the new prognosis prediction model of the present invention compared to the R-ISS was confirmed. In addition, as in Table 1, Harrell's c-index (Reference: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med . 15, 361-387 (1996).) It was confirmed that the new prognostic prediction model showed higher discriminant power in predicting prognosis than the existing R-ISS model, and in the time-dependent AUC analysis as shown in FIG. I confirmed what was seen.

구분division Harrell's CHarrell's C 95% CI95% CI DifferenceDifference 95% CI95% CI PP 본 발명의 예후 예측모델Prognosis prediction model of the present invention 0.7750.775 0.717-0.8330.717-0.833 0.1250.125 0.037-0.2130.037-0.213 0.0050.005 R-ISSR-ISS 0.6500.650 0.568-0.7320.568-0.732 -- -- --

CI, Confidence Interval; R-ISS, Revised International Staging SystemCI, Confidence Interval; R-ISS, Revised International Staging System

표 2에서 확인할 수 있듯이, R-ISS의 stage I 환자의 21.4%는 새로운 모델에서 중간위험군으로, R-ISS의 stage II 환자의 32.9%, 32.9%는 새로운 모델에서 각각 저위험군, 고위험군으로, R-ISS stage III 환자의 48.5%는 새로운 모델의 중간위험군으로 재분류되었고 이 차이는 통계적으로 유의하였다. 재분류에 의해 계산된 NRI (Net Reclassification Improvement)는 0.337으로 새로운 모형이 R-ISS에 비해 민감도와 특이도 측면에서 우수한 것으로 판단되었다.As can be seen in Table 2, 21.4% of R-ISS stage I patients were in the middle-risk group in the new model, 32.9% and 32.9% of stage II patients in the R-ISS were in the low-risk group and high-risk group, respectively, and R -48.5% of ISS stage III patients were reclassified into the intermediate risk group of the new model, and this difference was statistically significant. The NRI (Net Reclassification Improvement) calculated by reclassification was 0.337, which was judged to be superior to the R-ISS in terms of sensitivity and specificity.

TotalTotal R-ISSR-ISS -- -- 본 발명의 예후 예측모델Prognosis prediction model of the present invention Stage IStage I Stage IIStage II Stage IIIStage III totaltotal PP 저위험군Low risk group 11 (78.6%)11 (78.6%) 26 (32.9%)26 (32.9%) 0 (0.0%)0 (0.0%) 37 (29.4%)37 (29.4%) <0.001<0.001 중위험군Medium risk 3 (21.4%)3 (21.4%) 27 (34.2%)27 (34.2%) 16 (48.5%)16 (48.5%) 46 (36.5%)46 (36.5%) -- 고위험군High risk group 00 26 (32.9%)26 (32.9%) 17 (51.5%)17 (51.5%) 43 (34.1%)43 (34.1%) --

실시예Example 6: 새로운 예후 예측 모델의 6: New prognosis prediction model 각 군별For each group 치료법에 대한 효과 분석 Analysis of the effectiveness of the treatment

새로운 예후 예측 모델의 저위험군, 중간위험군, 고위험군에서 카플란-메이어(Kaplan-Meier) 생존곡선과 다변수 콕스 회귀분석을 시행하여 전체생존율에 대한 자가조혈모세포이식과 frontline 면역조절제 투약 여부가 생존에 미치는 영향을 분석하였다. 도 8과 표 3에서 확인할 수 있듯이, 저위험군과 중간위험군에서는 frontline 면역조절제 투약과 자가조혈모세포 이식이 생존에 영향을 주지 않았으나 고위험군에서는 자가조혈모세포 이식이 높은 전체생존 및 무진행생존과 관련이 있는 것으로 확인되었다.Kaplan-Meier survival curves and multivariate Cox regression analysis were performed in the low-, medium-, and high-risk groups of the new prognostic prediction model to determine the effect of autologous hematopoietic stem cell transplantation and administration of frontline immunomodulators on survival. The impact was analyzed. As can be seen in FIG. 8 and Table 3, administration of frontline immunomodulators and autologous hematopoietic stem cell transplantation did not affect survival in the low-risk group and the middle-risk group, but in the high-risk group, autologous hematopoietic stem cell transplantation was associated with high overall survival and progression-free survival. Was confirmed.

따라서 본 발명의 새로운 예후 예측 모델을 이용하면 다발골수종의 예후 예측뿐만 아니라 고위험군 환자의 자가 조혈모세포이식 여부를 결정하는데 도움을 줄 수 있을 것으로 생각된다.Therefore, it is believed that the use of the new prognostic prediction model of the present invention may help to predict the prognosis of multiple myeloma as well as determine whether to autologous hematopoietic stem cell transplantation in high-risk patients.

Figure pat00003
Figure pat00003

Claims (3)

다음의 단계를 포함하는 다발성 골수종(multiple myeloma)의 예후 예측을 위한 정보 제공 방법:
골수 형질세포를 포함하는 시료에서 CD138 및 PD-L1의 발현 정도를 정량적으로 측정하여 하기 식1에 따른 PD-L1의 정규화 MFI(normalized mean fluorescence intensity)를 도출하는 단계:
식1
Normalized MFI = (MFI in plasma cell compartments - Background intensity) / MFI from isotype-matched control;
하기 식2에 따른 PD-L1 발현 MFI 측정값을 도출하는 단계:
식2
PD-L1 expression MFI = Sum of normalized MFIs in all plasma cell compartments / Total number of plasma cells; 및
상기 식2에 따른 PD-L1 발현 MFI 측정값이 7.65 미만이면 저위험군, 7.65 이상이면 고위험군으로 분류하는 단계.
Information providing method for predicting the prognosis of multiple myeloma, including the following steps:
Deriving normalized mean fluorescence intensity (MFI) of PD-L1 according to Equation 1 below by quantitatively measuring the expression levels of CD138 and PD-L1 in a sample containing bone marrow plasma cells:
Equation 1
Normalized MFI = (MFI in plasma cell compartments-Background intensity) / MFI from isotype-matched control;
Step of deriving the PD-L1 expression MFI measurement value according to Equation 2:
Equation 2
PD-L1 expression MFI = Sum of normalized MFIs in all plasma cell compartments / Total number of plasma cells; And
If the measured value of PD-L1 expression MFI according to Equation 2 is less than 7.65, classifying it as a low-risk group, and if it is 7.65 or more, classifying it as a high-risk group.
다음의 단계를 포함하는 다발성 골수종의 예후 예측을 위한 정보 제공 방법:
Figure pat00004

i) 제1항의 식1 및 식2에 따른 PD-L1 발현 MFI 측정값(0~35), ii) 정상치 상한 초과의 혈중 LDH(serum lactate dehydrogenase) 여부, iii) high risk cytogenetics (karyotype에서 t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality, FISH에서 IGH/FGFR3 rearrangement, IGH/MAF rearrangement, 및 TP53 mutation으로 이루어진 군으로부터 1종 이상 양성인 경우) 여부, iv) 연령 70세 이상 여부를 기준으로 상기 nomogram에서 상응하는 점수(points, 0~100)를 가산하는 점수 배점 단계; 및
상기 각 가산된 점수를 합산하여 총점(total points)을 구한 후 상기 노모그램에서 상응하는 1년, 2년, 또는 4년 전체 생존기간에 대한 확률을 도출하는 단계.
A method of providing information for predicting the prognosis of multiple myeloma comprising the following steps:
Figure pat00004

i) PD-L1 expression MFI measured value (0~35) according to Equation 1 and Equation 2 in Clause 1, ii) Serum lactate dehydrogenase (LDH) in blood above the upper limit of normal, iii) high risk cytogenetics (t(in karyotype) 4;14), t(14;16), 17p deletion, chromosome 1 abnormality, FISH in the case of at least one positive from the group consisting of IGH/FGFR3 rearrangement, IGH/MAF rearrangement, and TP53 mutation), iv) age 70 A score distribution step of adding a corresponding score (points, 0 to 100) from the nomogram based on whether or not they are aged or older; And
Calculating total points by summing each of the added scores, and then deriving a probability for a corresponding 1 year, 2 year, or 4 year total survival period from the nomogram.
다음의 단계를 포함하는 다발성 골수종 환자의 자가 조혈모세포이식 여부를 결정하는데 필요한 정보를 제공하는 방법:
Figure pat00005

i) 제1항의 식1 및 식2에 따른 PD-L1 발현 MFI 측정값(0~35), ii) 정상치 상한 초과의 혈중 LDH(serum lactate dehydrogenase) 여부, iii) high risk cytogenetics (karyotype에서 t(4;14), t(14;16), 17p deletion, chromosome 1 abnormality, FISH에서 IGH/FGFR3 rearrangement, IGH/MAF rearrangement, 및 TP53 mutation으로 이루어진 군으로부터 1종 이상 양성인 경우) 여부, iv) 연령 70세 이상 여부를 기준으로 상기 nomogram에서 상응하는 점수(points, 0~100)를 가산하는 점수 배점 단계;
상기 각 가산된 점수를 합산하여 총점(total points)을 구한 후 50점 미만이면 저위험군, 50 내지 100점이면 중간위험군, 100점을 초과하면 고위험군으로 분류하는 분류 단계; 및
총점이 100점을 초과하는 고위험군으로 분류된 환자에게 자가조혈모세포 이식시 생존율이 향상된다는 정보를 제공하는 단계.
A method of providing the information necessary to determine whether a patient with multiple myeloma has autologous hematopoietic stem cell transplantation, including the following steps:
Figure pat00005

i) PD-L1 expression MFI measured value (0~35) according to Equation 1 and Equation 2 in Clause 1, ii) Serum lactate dehydrogenase (LDH) in blood above the upper limit of normal, iii) high risk cytogenetics (t(in karyotype) 4;14), t(14;16), 17p deletion, chromosome 1 abnormality, FISH in the case of at least one positive from the group consisting of IGH/FGFR3 rearrangement, IGH/MAF rearrangement, and TP53 mutation), iv) age 70 A score distribution step of adding a corresponding score (points, 0 to 100) from the nomogram based on whether or not they are aged or older;
A classification step of classifying each of the added scores into a low-risk group if it is less than 50 points, a medium-risk group if it is 50 to 100 points, and a high-risk group if it exceeds 100 points; And
Providing information that the survival rate is improved when autologous hematopoietic stem cells are transplanted to patients classified as high-risk groups with a total score exceeding 100 points.
KR1020200063916A 2019-07-19 2020-05-27 Method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression KR102360297B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190087805 2019-07-19
KR20190087805 2019-07-19

Publications (2)

Publication Number Publication Date
KR20210010311A true KR20210010311A (en) 2021-01-27
KR102360297B1 KR102360297B1 (en) 2022-02-09

Family

ID=74238559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200063916A KR102360297B1 (en) 2019-07-19 2020-05-27 Method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression

Country Status (1)

Country Link
KR (1) KR102360297B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158950A2 (en) 2021-01-25 2022-07-28 주식회사 엘지화학 Separator for lithium secondary battery and lithium secondary battery having same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160086496A (en) * 2015-01-09 2016-07-20 순천대학교 산학협력단 Selection method of predicting genes for ovarian cancer prognosis
WO2019097082A1 (en) * 2017-11-20 2019-05-23 Julius-Maximilians-Universität Würzburg Cd19cart cells eliminate myeloma cells that express very low levels of cd19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160086496A (en) * 2015-01-09 2016-07-20 순천대학교 산학협력단 Selection method of predicting genes for ovarian cancer prognosis
WO2019097082A1 (en) * 2017-11-20 2019-05-23 Julius-Maximilians-Universität Würzburg Cd19cart cells eliminate myeloma cells that express very low levels of cd19

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Contal and O'Quigley, An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data An. 30, 253-270 (1999)
Hidetoshi Sumimoto et al, PLoS ONE (2016), vol 11(11): e0166626. doi:10.1371/journal, pp 1-18. *
S Yousef et al, Blood Cancer Journal (2015), vol 5, e285, pp 1-3. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158950A2 (en) 2021-01-25 2022-07-28 주식회사 엘지화학 Separator for lithium secondary battery and lithium secondary battery having same

Also Published As

Publication number Publication date
KR102360297B1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
Dawood et al. Defining breast cancer prognosis based on molecular phenotypes: results from a large cohort study
Balic et al. Circulating tumor cells: from bench to bedside
Smith et al. ER and PR expression and survival after endometrial cancer
Huang et al. Clinicopathological and prognostic significance of circulating tumor cells in patients with gastric cancer: A meta‐analysis
US10180431B2 (en) Methods for detecting human papillomavirus and providing prognosis for head and neck squamous cell carcinoma
US20100099093A1 (en) Biomarkers for the Identification Monitoring and Treatment of Head and Neck Cancer
Wanitsuwan et al. Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancers
Bulian et al. Multicentre validation of a prognostic index for overall survival in chronic lymphocytic leukaemia
Zou et al. A four‐factor immune risk score signature predicts the clinical outcome of patients with spinal chordoma
Liu et al. Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma
Brcic et al. Prognostic impact of PD-1 and PD-L1 expression in malignant pleural mesothelioma: an international multicenter study
Melody et al. Decoding bone marrow fibrosis in myelodysplastic syndromes
EP2473854B1 (en) Systems and methods for treating, diagnosing and predicting the response to therapy of breast cancer
Nicolazzo et al. Baseline CD44v6-positive circulating tumor cells to predict first-line treatment failure in patients with metastatic colorectal cancer
Failing et al. Human leukocyte antigen expression in paired primary lung tumors and brain metastases in non-small cell lung cancer
Nishikawa et al. Reliability of IDH1-R132H and ATRX and/or p53 immunohistochemistry for molecular subclassification of Grade 2/3 gliomas
KR102360297B1 (en) Method for providing the information for prediction of multiple myeloma prognosis using PD-L1 expression
Collins et al. Development of a patient-derived explant model for prediction of drug responses in endometrial cancer
Papadopoulos et al. Value of p53 expression, cellular proliferation, and DNA content as prognostic indicators in renal cell carcinoma
CN116206681A (en) Method for evaluating prognostic gene pair value of immune infiltration cell model
Pezzuto et al. Evaluation of prognostic histological parameters proposed for pleural mesothelioma in diffuse malignant peritoneal mesothelioma. A short report
Yeo et al. Accurate isolation and detection of circulating tumor cells using enrichment-free multiparametric high resolution imaging
Kazakydasan et al. Prognostic significance of VEGF‐C in predicting micrometastasis and isolated tumour cells in N0 oral squamous cell carcinoma
Yaghjyan et al. Reliability of CD44, CD24, and ALDH1A1 immunohistochemical staining: Pathologist assessment compared to quantitative image analysis
JP2016513809A (en) How to determine the prognosis of colorectal cancer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right