KR20210009879A - Bulk-hetero junction structure active layer which perovskite particles are disperse for solar cells, and method for manufacturing the same - Google Patents

Bulk-hetero junction structure active layer which perovskite particles are disperse for solar cells, and method for manufacturing the same Download PDF

Info

Publication number
KR20210009879A
KR20210009879A KR1020190087009A KR20190087009A KR20210009879A KR 20210009879 A KR20210009879 A KR 20210009879A KR 1020190087009 A KR1020190087009 A KR 1020190087009A KR 20190087009 A KR20190087009 A KR 20190087009A KR 20210009879 A KR20210009879 A KR 20210009879A
Authority
KR
South Korea
Prior art keywords
bis
poly
phenyl
phthalocyanine
active layer
Prior art date
Application number
KR1020190087009A
Other languages
Korean (ko)
Inventor
김태근
이병룡
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020190087009A priority Critical patent/KR20210009879A/en
Priority to PCT/KR2020/000302 priority patent/WO2021010555A1/en
Publication of KR20210009879A publication Critical patent/KR20210009879A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H01L51/0077
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L51/424
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • Y10S977/812Perovskites and superconducting composition, e.g. BaxSr1-xTiO3

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to an active layer for a photovoltaic cell of a bulk-hetero junction structure. More specifically, according to the present invention, the active layer has the effect of improving the photoelectric conversion efficiency of a solar cell since perovskite particles are distributed in a bulk-hetero structure of a hole transport material (HTM) and an electron transport material (ETM).

Description

페로브스카이트 입자가 분산된 벌크이종접합 구조의 태양전지용 활성층 및 이의 제조방법{BULK-HETERO JUNCTION STRUCTURE ACTIVE LAYER WHICH PEROVSKITE PARTICLES ARE DISPERSE FOR SOLAR CELLS, AND METHOD FOR MANUFACTURING THE SAME}The active layer for a solar cell with a bulk heterojunction structure in which perovskite particles are dispersed, and a manufacturing method thereof {BULK-HETERO JUNCTION STRUCTURE ACTIVE LAYER WHICH PEROVSKITE PARTICLES ARE DISPERSE FOR SOLAR CELLS, AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 벌크이종접합 구조의 태양전지용 활성층에 관한 것으로, 보다 상세하게는 정공수송물질(HTM)과 전자수송물질(ETM)의 벌크이종접합구조에 페로브스카이트 입자가 분포되어 효율이 개선된 태양전지용 활성층에 관한 것이다.The present invention relates to an active layer for a solar cell having a bulk heterojunction structure, and more particularly, perovskite particles are distributed in a bulk heterojunction structure of a hole transport material (HTM) and an electron transport material (ETM), thereby improving efficiency. It relates to an active layer for solar cells.

Si 태양전지의 경우 기존 화석연료나 원자력발전에 비해 여전히 발전단가가 높아 새로운 구조나 물질의 차세대 태양전지에 대한 연구가 관심을 받고 있다. 대표적으로 유기태양전지, 페로브스카이트 태양전지, 박막형 태양전지 등 다양한 차세대 태양전지가 많은 연구가 되고 있다. 페로브스카이트 물질(perovskite material)은 AMX3 구조체(A, M은 양이온, X는 음이온)로서 이온결정이면서 직접형 띠간격(direct band gap)을 갖는 유/무기 복합물질이다In the case of Si solar cells, the cost of power generation is still higher than that of conventional fossil fuels or nuclear power generation, so research on next-generation solar cells with new structures or materials is drawing attention. Representatively, various next-generation solar cells such as organic solar cells, perovskite solar cells, and thin-film solar cells are being studied. The perovskite material is an AMX3 structure (A, M is a cation, X is an anion), which is an organic/inorganic composite material that is ionic crystal and has a direct band gap.

그 중에서도 페로브스카이트 태양전지(perovskite solar cell)는 높은 광 흡수도와 긴 확산거리로 인해 기존 Si 태양전지를 대체할 만큼의 효율을 보여주고 있으며, flexible 하며 매우 값싼 재료를 사용하기 때문에 실용화 측면 폭발적인 관심을 받고 있다. 페로브스카이트 태양전지의 가장 큰 단점은 내구성이었지만, 지속적으로 개선되고 있으며 대변적의 높은 효율을 개발하기 위해 많은 연구가 되고 있다. 일반적인 페로브스카이트 태양전지는 "투명전극/정공수송층/페로브스카이트/전자수송층/금속전극"의 순서로 적층된 구조를 갖는다.Among them, perovskite solar cells show high light absorption and long diffusion distances, so they are efficient enough to replace existing Si solar cells. They are flexible and use very inexpensive materials. I am getting attention. The biggest drawback of perovskite solar cells was durability, but it is continuously improving, and a lot of research is being conducted to develop high efficiency of large volume. A typical perovskite solar cell has a structure stacked in the order of "transparent electrode/hole transport layer/perovskite/electron transport layer/metal electrode".

페로브스카이트 태양전지의 경우 다양한 구조로 연구가 진행되고 있는데 초기에는 염료감응형 태양전지(dye-sensitized solar cell)와 같은 형태로 TiO2 나노입자(nanoparticle)에 양자점(quantum dot) 형태로 붙여 매우 낮은 효율을 보고하였다. 하지만, 성균관대학교에서 고체 형태의 페로브스카이트를 개발함에 따라 급격한 효율 개선이 이루어지고 있다. 고체 형태의 기존 페로브스카이트 구조는 도 1과 같다. 도 1의 TiO2 나노입자의 경우, 페로브스카이트에서 만들어진 전하를 추출하기 위해 사용되는데 접촉 면적을 넓히기 위해 TiO2 나노입자를 3차원(3D)구조의 mesoporous형태로 사용하여 전하 추출효율을 높여 고효율을 달성하였다. 하지만, 도 2의 TEM 이미지와 같이 여전히 음극쪽에만 3D구조를 갖는 형태로 접촉 면적이 매우 적다. 또한, 나노입자를 3D구조로 mesoporous형태로 만들기 위해서 까다로운 공정 및 높은 온도의 열처리가 필요하기 때문에 새로운 공정 방법이 연구 개발 되어야한다. 따라서 최근에는 도 3과 같이 TiO2, SnO2, 그리고 ZnO 등의 colloidal nanoparticles을 낮은 온도에서 solution 방식으로 제작하여 planer형태의 구조가 많은 연구가 되고 있다. 그러나 더욱 접촉 면적이 적어 전하를 추출하는데 한계가 있다.In the case of perovskite solar cells, research is being conducted in various structures, but at the beginning, they are attached to TiO 2 nanoparticles in the form of quantum dots in the same form as a dye-sensitized solar cell. It reported very low efficiency. However, as Sungkyunkwan University develops a solid form of perovskite, there is a rapid improvement in efficiency. The existing perovskite structure in solid form is shown in FIG. 1. In the case of the TiO 2 nanoparticles of FIG. 1, it is used to extract the electric charge made from the perovskite. In order to increase the contact area, the TiO 2 nanoparticles are used in a mesoporous form of a three-dimensional (3D) structure to increase the charge extraction efficiency. High efficiency was achieved. However, as in the TEM image of FIG. 2, the contact area is very small since the 3D structure is still formed only on the cathode side. In addition, in order to make nanoparticles mesoporous in a 3D structure, a difficult process and high temperature heat treatment are required, so a new process method must be researched and developed. Therefore, recently, as shown in FIG. 3, colloidal nanoparticles such as TiO 2 , SnO 2 , and ZnO are fabricated in a solution method at a low temperature, and thus, many studies have been conducted on a planer structure. However, since the contact area is smaller, there is a limit to extracting electric charges.

이러한 문제를 해결하기 위해 페로브스카이트 활성층(active layer) 합성시 TiO2 나노입자를 삽입하는 등 다양한 연구가 진행되고 있으나 여전히 효율이 낮은 문제가 있다.In order to solve this problem, various studies such as inserting TiO 2 nanoparticles when synthesizing a perovskite active layer have been conducted, but there is still a problem of low efficiency.

대한민국 특허공개공보 제10-2019-0049125호(2019.05.09.자 공개)Korean Patent Publication No. 10-2019-0049125 (published on May 9, 2019)

본 발명은 페로브스카이트 입자가 분포된 3차원 전하추출이 가능한 태양전지용 활성층을 제공하여, 종래의 페로브스카이트 활성층의 효율을 개선함에 그 목적이 있다.An object of the present invention is to improve the efficiency of a conventional perovskite active layer by providing an active layer for a solar cell capable of extracting a three-dimensional charge in which perovskite particles are distributed.

해결하고자 하는 과제의 달성을 위하여, 본 발명의 일 형태에 따른 태양전지용 활성층은 정공수송물질(HTM)과 전자수송물질(ETM)이 벌크 이종접합(Bulk hetero Junction) 구조를 형성하는 활성층(active layer); 및 상기 벌크 이종접합구조의 활성층 내부에 분산된 페로브스카이트 입자;를 포함하는 것을 본 발명의 일 측면으로 한다.In order to achieve the problem to be solved, the active layer for a solar cell according to one embodiment of the present invention is an active layer in which a hole transport material (HTM) and an electron transport material (ETM) form a bulk hetero junction structure. ); And perovskite particles dispersed in the active layer of the bulk heterojunction structure as an aspect of the present invention.

상기 정공수송물질(HTM)은 PEDOT:PSS(poly(3,4- ethylenedioxythiophene): polystyrene sulfonate), P3HT(poly(3-hexylthiophene-2,5-diyl)), PTAA(poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′',7′'-di-2-thienyl-2′',1′',3′'-benzothiadiazole)]), PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine)), PANI(Polyaniline), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine (α-form), Copper(II) Phthalocyanine (β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3-b]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine 또는 Tris[4'-(2-thienyl)-4-biphenylyl]amine(Zinc Phthalocyanine)일 수 있으며, 이에 제한되는 것은 아니다.The hole transport material (HTM) is PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate), P3HT (poly(3-hexylthiophene-2,5-diyl)), PTAA (poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole- alt -3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4 -dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di( 2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2, 1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'', 7''-di-2-thienyl-2',1'',3''-benzothiadiazole)]), PFB (poly(9,9'-dioctylfluorene-co-bis-N,N'-(4- butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)), PANI ( Polyaniline ), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4- methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino) -2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1, 7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II ) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine (α-form), Copper(II) Phthalocyanine (β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3 -b ]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophene) It may be -2-yl)phenyl]amine or Tris[4'-(2-thienyl)-4-biphenylyl]amine (Zinc Phthalocyanine), but is not limited thereto.

상기 전자수송물질(ETM)은 PCBM([6,6]-phenyl-C61-butyric acid methyl ester), Fullerene C60 (pure), Fullerene C70, N,N'-Bis(4-methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C60MC12, N,N'-Di-n-octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C71-butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C61-butyric Acid n-Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide일 수 있으며, 이에 제한되는 것은 아니다.The electron transport material (ETM) is PCBM ([6,6]-phenyl-C 61 -butyric acid methyl ester), Fullerene C 60 (pure), Fullerene C 70, N,N'-Bis(4-methoxyphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C 60 MC 12, N,N'-Di- n -octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3 ,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA( Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C 71 -butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C 61 -butyric Acid n -Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9 ,10- It may be perylenetetracarboxylic Diimide, but is not limited thereto.

페로브스카이트 입자는 FAPbI3(Formamidinium-lead-iodide), MAPbI3(Methylammonium lead iodide), FAPbI3-xClx, MAPbI3-xClx, (FAPbI3-xClx)1-x(MAPbI3-xClx)x, FAPbI3-xBrx, MAPbI3-xBrx, (FAPbI3-xBrx)1-x(MAPbI3-xBrx)x, MAPbI3-xClx, MAPbBr3, MAPb(I,Br)3, MASnX3 또는 MASn0.5Pb0.5I3일 수 있다.Perovskite particles are FAPbI 3 (Formamidinium-lead-iodide), MAPbI 3 (Methylammonium lead iodide), FAPbI 3-x Cl x , MAPbI 3-x Cl x , (FAPbI 3-x Cl x ) 1-x (MAPbI 3-x Cl x ) x, FAPbI 3-x Br x , MAPbI 3-x Br x , (FAPbI 3-x Br x ) 1-x (MAPbI 3-x Br x ) x, MAPbI 3-x Cl x , MAPbBr3, MAPb(I,Br) 3 , MASnX 3 or MASn 0.5 Pb 0.5 I 3 may be .

본 발명의 일 형태에 따른 유기태양전지는 상기 태양전지용 활성층을 포함하는 것을 본 발명의 다른 측면으로 한다.Another aspect of the present invention is that the organic solar cell according to one embodiment of the present invention includes the active layer for a solar cell.

본 발명의 일 형태에 따른 태양전지용 활성층의 제조방법은 정공수송물질(HTM)과 전자수송물질(ETM)을 혼합시켜 제1 용액을 제조하는 단계; 상기 제1 용액에 페로브스카이트 입자(particle)를 추가하여 제2 용액을 제조하는 단계; 및 상기 제2 용액을 열처리하는 단계를 포함하는 것을 본 발명의 또 다른 측면으로 한다.A method of manufacturing an active layer for a solar cell according to an aspect of the present invention includes preparing a first solution by mixing a hole transport material (HTM) and an electron transport material (ETM); Preparing a second solution by adding perovskite particles to the first solution; And heat-treating the second solution as another aspect of the present invention.

상기 정공수송물질(HTM)은 PEDOT:PSS(poly(3,4- ethylenedioxythiophene): polystyrene sulfonate), P3HT(poly(3-hexylthiophene-2,5-diyl)), PTAA(poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′',7′'-di-2-thienyl-2′',1′',3′'-benzothiadiazole)]), PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine)), PANI(Polyaniline), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3-b]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine 또는 Tris[4'-(2-thienyl)-4-biphenylyl]amine(Zinc Phthalocyanine)일 수 있으며, 이에 제한되는 것은 아니다.The hole transport material (HTM) is PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate), P3HT (poly(3-hexylthiophene-2,5-diyl)), PTAA (poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole- alt -3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4 -dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di( 2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2, 1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'', 7''-di-2-thienyl-2',1'',3''-benzothiadiazole)]), PFB (poly(9,9'-dioctylfluorene-co-bis-N,N'-(4- butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)), PANI ( Polyaniline ), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4- methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino) -2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1, 7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II ) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3 -b ]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophene) It may be -2-yl)phenyl]amine or Tris[4'-(2-thienyl)-4-biphenylyl]amine (Zinc Phthalocyanine), but is not limited thereto.

상기 전자수송물질(ETM)은 PCBM([6,6]-phenyl-C61-butyric acid methyl ester), Fullerene C60 (pure), Fullerene C70, N,N'-Bis(4-methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C60MC12, N,N'-Di-n-octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C71-butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C61-butyric Acid n-Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide일 수 있으며, 이에 제한되는 것은 아니다.The electron transport material (ETM) is PCBM ([6,6]-phenyl-C 61 -butyric acid methyl ester), Fullerene C 60 (pure), Fullerene C 70, N,N'-Bis(4-methoxyphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C 60 MC 12, N,N'-Di- n -octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3 ,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA( Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C 71 -butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C 61 -butyric Acid n -Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9 ,10- It may be perylenetetracarboxylic Diimide, but is not limited thereto.

페로브스카이트 입자는 FAPbI3(Formamidinium-lead-iodide), MAPbI3(Methylammonium lead iodide), FAPbI3-xClx, MAPbI3-xClx, (FAPbI3-xClx)1-x(MAPbI3-xClx)x, FAPbI3-xBrx, MAPbI3-xBrx, (FAPbI3-xBrx)1-x(MAPbI3-xBrx)x, MAPbI3-xClx, MAPbBr3, MAPb(I,Br)3, MASnX3 또는 MASn0.5Pb0.5I3일 수 있다.Perovskite particles are FAPbI 3 (Formamidinium-lead-iodide), MAPbI 3 (Methylammonium lead iodide), FAPbI 3-x Cl x , MAPbI 3-x Cl x , (FAPbI 3-x Cl x ) 1-x (MAPbI 3-x Cl x ) x, FAPbI 3-x Br x , MAPbI 3-x Br x , (FAPbI 3-x Br x ) 1-x (MAPbI 3-x Br x ) x, MAPbI 3-x Cl x , MAPbBr3, MAPb(I,Br) 3 , MASnX 3 or MASn 0.5 Pb 0.5 I 3 may be .

상기 제2 용액의 스핀코팅(spin-coating) 후 열처리는 수행하는 것일 수 있다.Heat treatment after spin-coating of the second solution may be performed.

본 발명의 일 형태에 따르면, 기존에 유기태양전지의 광 흡수층을 동시에 사용할 경우 탠덤(tandem) 구조와 같이 여러 가지 파장의 빛을 흡수할 수 있을 뿐만 아니라 이동도가 높은 유기 정공수송물질(HTM)과 전자수송물질(ETM)을 벌크 이종접합(bulk-hetero junction) 물질로 사용함으로써, 높은 광전변환 효율의 페로브스카이트 태양전지를 구현할 수 가능하다. According to one aspect of the present invention, when the light absorbing layer of an organic solar cell is used simultaneously, an organic hole transport material (HTM) having high mobility as well as being capable of absorbing light of various wavelengths like a tandem structure By using an electron transport material (ETM) as a bulk-hetero junction material, it is possible to implement a perovskite solar cell with high photoelectric conversion efficiency.

또한, 양극(anode) 쪽과 음극(cathode) 쪽에 모두 완벽한 3차원 구조를 형성하여 접촉 면적이 극대화함으로써, 태양전지의 광전변환 효율을 향샹시킬 수 있다.In addition, by forming a perfect three-dimensional structure on both the anode side and the cathode side to maximize the contact area, it is possible to improve the photoelectric conversion efficiency of the solar cell.

도 1은 종래의 mesoporous TiO2를 이용한 고효율 페로브스카이트 태양전지 구조를 도시한 것이다.
도 2은 종래의 메조포러스(mesoporous) TiO2를 이용한 고효율 페로브스카이트 태양전지구조(a)와 TEM 이미지(b)를 도시한 것이다.
도 3은 종래 colloidal nanoparticle TiO2를 이용한 고효율 페로브스카이트 태양전지구조의 TEM 이미지를 도시한 것이다.
도 4는 본 발명의 활성층 및 활성층이 적용된 태양전지 구조를 도시한 것이다.
도 5는 종래 유기태양전지의 활성층(a)과 본 발명의 활성층(b)의 모식도를 도시한 것이다.
도 6은 본 발명의 활성층 제조방법의 순서도를 도시한 것이다.
도 7은 본 발명의 활성층 제조방법의 모식도를 도시한 것이다.
1 shows a structure of a high-efficiency perovskite solar cell using a conventional mesoporous TiO 2 .
2 shows a high-efficiency perovskite solar cell structure (a) and a TEM image (b) using a conventional mesoporous TiO 2 .
3 shows a TEM image of a high-efficiency perovskite solar cell structure using a conventional colloidal nanoparticle TiO2.
Figure 4 shows the structure of a solar cell to which the active layer and the active layer of the present invention are applied.
5 is a schematic diagram showing an active layer (a) of a conventional organic solar cell and an active layer (b) of the present invention.
6 shows a flow chart of the method for manufacturing an active layer of the present invention.
7 shows a schematic diagram of a method for manufacturing an active layer of the present invention.

이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and contents described in the accompanying drawings, but the present invention is not limited or limited by the embodiments.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.The terms used in the present specification are for describing exemplary embodiments and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase. As used in the specification, "comprises" and/or "comprising" refers to the presence of one or more other components, steps, actions and/or elements, and/or elements, steps, actions and/or elements mentioned. Or does not exclude additions.

본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.As used herein, "embodiment", "example", "side", "example" and the like should be construed as having any aspect or design described better or advantageous than other aspects or designs. Is not.

아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.The terms used in the description below have been selected as general and universal in the related technical field, but there may be other terms depending on the development and/or change of technology, customs, preferences of technicians, and the like. Therefore, terms used in the following description should not be understood as limiting the technical idea, but should be understood as exemplary terms for describing embodiments.

또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, detailed meanings will be described in the corresponding description. Therefore, terms used in the following description should be understood based on the meaning of the term and the contents throughout the specification, not just the name of the term.

한편, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되지 않는다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.Meanwhile, terms such as first and second may be used to describe various components, but the components are not limited by terms. The terms are used only for the purpose of distinguishing one component from another.

또한, 막, 층, 영역, 구성 요청 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 다른 부분의 바로 위에 있는 경우 뿐만 아니라, 그 중간에 다른 막, 층, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.In addition, when a part such as a film, layer, region, configuration request, etc. is said to be "on" or "on" another part, not only if it is directly above another part, but also another film, layer, region, component in the middle This includes cases where such as are interposed.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly defined specifically.

한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Meanwhile, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms used in the present specification are terms used to properly express an embodiment of the present invention, which may vary depending on the intention of users or operators, or customs in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the contents throughout the present specification.

도 4를 참조하면, 본 발명의 일 형태에 따른 태양전지용 활성층은 정공수송물질(HTM, Hole Transport Material)과 전자수송물질(ETM, Electron Transport Material)이 벌크 이종접합(Bulk hetero Junction) 구조를 형성하는 활성층(active layer); 및 상기 벌크 이종접합구조의 활성층 내부에 분산된 페로브스카이트 입자(perovskite particle)를 포함한다.4, in the active layer for a solar cell according to one embodiment of the present invention, a hole transport material (HTM) and an electron transport material (ETM) form a bulk heterojunction structure. An active layer; And perovskite particles dispersed in the active layer of the bulk heterojunction structure.

본 발명에서의 활성층(active layer)는 광전변환층(photoelectric conversion layer)으로서, 광자(photon)가 자유 캐리어(carrier)로 변환되는 장소를 의미하며, 엑시톤 생성(exciton generation), 엑시톤 확산(exciton diffusion), 엑시톤 분리(exciton dissociation) 및 전하 수송(charge transfer), 캐리어 수집(carrier collection)의 일련의 과정이 진행되는 장소이다.The active layer in the present invention is a photoelectric conversion layer, which means a place where photons are converted into free carriers, and excitons generation and exciton diffusion ), exciton dissociation, charge transfer, and carrier collection.

도 4 및 도 5를 참조하면, 본 발명의 태양전지용 활성층(100)은 정공수송물질(HTM)(110)과 전자수송물질(ETM)(130)이 벌크이종접합(bulk hetero junction)구조를 이루고 있으며, 벌크이종접합 구조를 이루고 있는 활성층 내에 페로브스카이트 입자(particle)(150)가 분산되어 있다.4 and 5, in the active layer 100 for a solar cell of the present invention, a hole transport material (HTM) 110 and an electron transport material (ETM) 130 form a bulk hetero junction structure. In addition, perovskite particles 150 are dispersed in an active layer constituting a bulk heterojunction structure.

정공수송물질(HTM)(110)은 PEDOT:PSS(poly(3,4- ethylenedioxythiophene): polystyrene sulfonate), P3HT(poly(3-hexylthiophene-2,5-diyl)), PTAA(poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′',7′'-di-2-thienyl-2′',1′',3′'-benzothiadiazole)]), PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine)), PANI(Polyaniline), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine (α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3-b]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine 또는 Tris[4'-(2-thienyl)-4-biphenylyl]amine(Zinc Phthalocyanine)일 수 있으며, 이에 제한되는 것은 아니다.Hole transport material (HTM) 110 is PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate), P3HT (poly(3-hexylthiophene-2,5-diyl)), PTAA (poly(tertiary arylamine)) ), PCBTDPP (Poly[N-90-heptadecanyl-2,7carbazole- alt -3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1 ,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2- di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[ 2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'',7''-di-2-thienyl-2'',1'',3''-benzothiadiazole)]),PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)), PANI ( Polyaniline ), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di- 4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-( diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1, 1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead (II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine (α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2) ,3- b ]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5 -phenylthiophen-2-yl)phenyl]amine or Tris[4'-(2-thienyl)-4-biphenylyl]amine (Zinc Phthalocyanine), but is not limited thereto.

상기 전자수송물질(ETM)(130)은 PCBM([6,6]-phenyl-C61-butyric acid methyl ester), Fullerene C60 (pure), Fullerene C70, N,N'-Bis(4-methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C60MC12, N,N'-Di-n-octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C71-butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C61-butyric Acid n-Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide일 수 있으며, 이에 제한되는 것은 아니다.The electron transport material (ETM) 130 is PCBM ([6,6]-phenyl-C 61 -butyric acid methyl ester), Fullerene C 60 (pure), Fullerene C 70, N,N'-Bis(4- methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6- diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C 60 MC 12, N,N'-Di- n -octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'- Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II) , ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C 71 -butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10- Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C 61 -butyric Acid n -Octyl Ester), 3,4,9,10- Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3, 4, It may be 9,10-perylenetetracarboxylic Diimide, but is not limited thereto.

페로브스카이트 입자(150)는 이종접합구조 내에 분산되어 형성됨으로써, 3차원 컨택(contact) 구조를 형성하며, 종래와 대비하여 일부 영역만이 아닌 3차원 구조를 양극(anode) 쪽과 음극(cathode) 쪽에 모두 구현함으써 접촉 면적을 극대화함과 동시에, 이로 인하여 광전변환 효율을 향상시킨다.The perovskite particles 150 are dispersed and formed in the heterojunction structure, thereby forming a three-dimensional contact structure, and compared to the prior art, the three-dimensional structure of not only a partial area is formed on the anode side and the cathode ( The contact area is maximized by implementing both on the cathode) side and at the same time, the photoelectric conversion efficiency is improved.

페로브스카이트 입자(150)는 FAPbI3(Formamidinium-lead-iodide), MAPbI3(Methylammonium lead iodide), FAPbI3-xClx, MAPbI3-xClx, (FAPbI3-xClx)1-x(MAPbI3-xClx)x, FAPbI3-xBrx, MAPbI3-xBrx, (FAPbI3-xBrx)1-x(MAPbI3-xBrx)x, MAPbI3-xClx, MAPbBr3, MAPb(I,Br)3, MASnX3 또는 MASn0.5Pb0.5I3일 수 있다.Perovskite particles 150 are FAPbI 3 (Formamidinium-lead-iodide), MAPbI 3 (Methylammonium lead iodide), FAPbI 3-x Cl x , MAPbI 3-x Cl x , (FAPbI 3-x Cl x ) 1-x (MAPbI 3-x Cl x ) x, FAPbI 3-x Br x , MAPbI 3-x Br x , (FAPbI 3-x Br x ) 1-x (MAPbI 3-x Br x ) x, MAPbI 3-x Cl x , MAPbBr3, MAPb(I,Br) 3 , MASnX 3 or MASn 0.5 Pb 0.5 I 3 may be .

또한, 본 발명에 일 형태에 따른 유기태양전지(10)는 상기 활성층을 포함할 수 있으며, 보다 상세하게는 제1 전극(200); 상기 투명전극 상에 배치되는 활성층(100); 및 상기 활성층 상에 배치되는 제2 전극(300)을 포함할 수 있다.In addition, the organic solar cell 10 according to an embodiment of the present invention may include the active layer, and in more detail, the first electrode 200; An active layer 100 disposed on the transparent electrode; And a second electrode 300 disposed on the active layer.

제1 전극(200)과 제2 전극(300)은 각각 음극(anode) 또는 양극(cathode)일 수 있으며, 제1 전극(200)이 음극인 경우 제2 전극(300)은 양극에 해당하며, 제1 전극(200) 양극인 경우 제2 전극(300)은 음극에 해당할 수 있다. 상기 양극은 투명한 양극(transparent cathode)일 수 있다.The first electrode 200 and the second electrode 300 may be a cathode or an anode, respectively, and when the first electrode 200 is a cathode, the second electrode 300 corresponds to an anode, When the first electrode 200 is an anode, the second electrode 300 may correspond to a cathode. The anode may be a transparent cathode.

상기 음극(Anode)은 금(Au), 은(Ag), 알루미늄(Al) 그래핀(graphene), 탄소(Carbon), 흑연(graphite), 단일벽 탄소나노튜브(SWCNT, Single Wall Carbon Nano Tube) 또는 다중벽 탄소나노튜브(MWCNT, Multi Wall Carbon Nano Tube)일 수 있다.The anode is gold (Au), silver (Ag), aluminum (Al) graphene, carbon, graphite, single wall carbon nanotube (SWCNT) Alternatively, it may be a multi-wall carbon nanotube (MWCNT).

상기 양극(Cathode)은 ITO(Indium Tin Oxide), FTO(Fluorine doped Tin Oxide), GZO(Gallium-Zinc Oxide), IZO(Indium Zinc Oxide), IGZO(Indium-Gallium-Zinc Oxide), 그래핀(Graphene), 이황화몰리브덴(MoS2), 탄일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT), 금속메쉬(metal mesh), 산화물(Oxide)/금속(Metal)/산화물(Oxide) 구조(OMO), OMO 메쉬일 수 있으며, 상기 금속메쉬는 Ag, Al, Cu, Ni, Fe, Ti 또는 In일 수 있다.The cathode is ITO (Indium Tin Oxide), FTO (Fluorine doped Tin Oxide), GZO (Gallium-Zinc Oxide), IZO (Indium Zinc Oxide), IGZO (Indium-Gallium-Zinc Oxide), graphene (Graphene). ), molybdenum disulfide (MoS 2 ), single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), metal mesh, oxide/metal/oxide structures ( OMO), may be an OMO mesh, and the metal mesh may be Ag, Al, Cu, Ni, Fe, Ti, or In.

도 6 및 도 7을 참조하면, 본 발명의 일 형태에 따른 정공수송물질(HTM)과 전자수송물질(ETM)을 혼합시켜 제1 용액을 제조하는 단계(S100); 상기 제1 용액에 페로브스카이트 입자(particle)를 추가하여 제2 용액을 제조하는 단계(S200); 및 상기 제2 용액을 열처리하는 단계(S300)를 포함하는 태양전지용 활성층의 제조방법.6 and 7, preparing a first solution by mixing a hole transport material (HTM) and an electron transport material (ETM) according to an embodiment of the present invention (S100); Preparing a second solution by adding perovskite particles to the first solution (S200); And heat-treating the second solution (S300).

상기 정공수송물질(HTM)은 PEDOT:PSS(poly(3,4- ethylenedioxythiophene): polystyrene sulfonate), P3HT(poly(3-hexylthiophene-2,5-diyl)), PTAA(poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′',7′'-di-2-thienyl-2′',1′',3′'-benzothiadiazole)]), PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine)), PANI(Polyaniline), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3-b]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine 또는 Tris[4'-(2-thienyl)-4-biphenylyl]amine(Zinc Phthalocyanine)일 수 있으며, 이에 제한되는 것은 아니다.The hole transport material (HTM) is PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate), P3HT (poly(3-hexylthiophene-2,5-diyl)), PTAA (poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole- alt -3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4 -dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di( 2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2, 1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'', 7''-di-2-thienyl-2',1'',3''-benzothiadiazole)]), PFB (poly(9,9'-dioctylfluorene-co-bis-N,N'-(4- butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)), PANI ( Polyaniline ), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4- methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino) -2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1, 7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II ) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3 -b ]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophene) -2-yl)phenyl]amine or Tris[4'-(2-thienyl)-4-biphenylyl]amine (Zinc Phthalocyanine), but is not limited thereto.

상기 전자수송물질(ETM)은 PCBM([6,6]-phenyl-C61-butyric acid methyl ester), Fullerene C60 (pure), Fullerene C70, N,N'-Bis(4-methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C60MC12, N,N'-Di-n-octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C71-butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C61-butyric Acid n-Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide일 수 있으며, 이에 제한되는 것은 아니다.The electron transport material (ETM) is PCBM ([6,6]-phenyl-C 61 -butyric acid methyl ester), Fullerene C 60 (pure), Fullerene C 70, N,N'-Bis(4-methoxyphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C 60 MC 12, N,N'-Di- n -octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3 ,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA( Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C 71 -butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C 61 -butyric Acid n -Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9 ,10- It may be perylenetetracarboxylic Diimide, but is not limited thereto.

상기 페로브스카이트 입자는 FAPbI3(Formamidinium-lead-iodide), MAPbI3(Methylammonium lead iodide), FAPbI3-xClx, MAPbI3-xClx, (FAPbI3-xClx)1-x(MAPbI3-xClx)x, FAPbI3-xBrx, MAPbI3-xBrx, (FAPbI3-xBrx)1-x(MAPbI3-xBrx)x, MAPbI3-xClx, MAPbBr3, MAPb(I,Br)3, MASnX3 또는 MASn0.5Pb0.5I3일 수 있다.The perovskite particles are FAPbI 3 (Formamidinium-lead-iodide), MAPbI 3 (Methylammonium lead iodide), FAPbI 3-x Cl x , MAPbI 3-x Cl x , (FAPbI 3-x Cl x ) 1-x (MAPbI 3-x Cl x ) x, FAPbI 3-x Br x , MAPbI 3-x Br x , (FAPbI 3-x Br x ) 1-x (MAPbI 3-x Br x ) x, MAPbI 3-x Cl x , MAPbBr3, MAPb(I,Br) 3 , MASnX 3 or MASn 0.5 Pb 0.5 I 3 may be .

S300 단계는, 상기 제2 용액의 스핀코팅(spin-coating) 후 열처리는 수행하는 것일 수 있다.In step S300, heat treatment after spin-coating of the second solution may be performed.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention more specifically, and the scope of the present invention is not limited by these examples.

실시예.페로브스카이트 입자가 분산된 벌크 이종접합 구조 활성층(또는 유기태양전지)의 제조Example. Preparation of bulk heterojunction structure active layer (or organic solar cell) in which perovskite particles are dispersed

비커 내에 전자수송물질(HTM)과 정공수송물질ETM)을 첨가하여 혼합시킨 후, 페로브스카이트 입자(particle)를 추가 후 교반하여 혼합용액을 제조한다. 제조된 혼합용액을 spin-coating 방식으로 (전극코팅 상에) 코팅한 후 열처리하여 활성층을 제조한다.After the electron transport material (HTM) and the hole transport material ETM) are added and mixed in the beaker, perovskite particles are added and stirred to prepare a mixed solution. The prepared mixed solution is coated (on the electrode coating) in a spin-coating method and then heat treated to prepare an active layer.

한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are only presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is apparent to those of ordinary skill in the art that other modified examples based on the technical idea of the present invention may be implemented.

Claims (10)

정공수송물질(HTM)과 전자수송물질(ETM)이 벌크 이종접합(Bulk hetero Junction) 구조를 형성하는 활성층(active layer); 및
상기 벌크 이종접합구조의 활성층 내부에 분산된 페로브스카이트 입자;를 포함하는 태양전지용 활성층.
An active layer in which a hole transport material (HTM) and an electron transport material (ETM) form a bulk hetero junction structure; And
The active layer for a solar cell comprising; perovskite particles dispersed in the active layer of the bulk heterojunction structure.
제 1 항에 있어서,
상기 페로브스카이트 입자는,
FAPbI3(Formamidinium-lead-iodide), MAPbI3(Methylammonium lead iodide), FAPbI3-xClx, MAPbI3-xClx, (FAPbI3-xClx)1-x(MAPbI3-xClx)x, FAPbI3-xBrx, MAPbI3-xBrx, (FAPbI3-xBrx)1-x(MAPbI3-xBrx)x, MAPbI3-xClx, MAPbBr3, MAPb(I,Br)3, MASnX3 또는 MASn0.5Pb0.5I3인 것을 특징으로 하는 태양전지용 활성층.
The method of claim 1,
The perovskite particles,
FAPbI 3 (Formamidinium-lead-iodide), MAPbI 3 (Methylammonium lead iodide), FAPbI 3-x Cl x , MAPbI 3-x Cl x , (FAPbI 3-x Cl x ) 1-x (MAPbI 3-x Cl x ) x, FAPbI 3-x Br x , MAPbI 3-x Br x , (FAPbI 3-x Br x ) 1-x (MAPbI 3-x Br x ) x, MAPbI 3-x Cl x , MAPbBr3, MAPb(I,Br) 3 , MASnX 3 or MASn 0.5 Pb 0.5 I 3 Active layer for solar cells made of.
제 1 항에 있어서,
상기 정공수송물질(HTM) PEDOT:PSS(poly(3,4- ethylenedioxythiophene): polystyrene sulfonate), P3HT(poly(3-hexylthiophene-2,5-diyl)), PTAA(poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′',7′'-di-2-thienyl-2′',1′',3′'-benzothiadiazole)]), PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine)), PANI(Polyaniline), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3-b]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine 또는 Tris[4'-(2-thienyl)-4-biphenylyl]amine(Zinc Phthalocyanine))인 것을 특징으로 하는 태양전지용 활성층.
The method of claim 1,
The hole transport material (HTM) PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate), P3HT (poly(3-hexylthiophene-2,5-diyl)), PTAA (poly(tertiary arylamine)), PCBTDPP (Poly[N-90-heptadecanyl-2,7carbazole- alt -3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4- dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2 ,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1] -b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'',7 ''-Di-2-thienyl-2',1'',3''-benzothiadiazole)]), PFB (poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl )-bis-N,N'-phenyl-1,4-phenylenediamine)), PANI( Polyaniline ), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino) )-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)- 2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7 ,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3- b ]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-) 2-yl)phenyl]amine or Tris[4'-(2-thienyl)-4-biphenylyl]amine (Zinc Phthalocyanine)).
제 1 항에 있어서,
상기 전자수송물질(ETM)은 PCBM([6,6]-phenyl-C61-butyric acid methyl ester), Fullerene C60 (pure), Fullerene C70, N,N'-Bis(4-methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C60MC12, N,N'-Di-n-octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C71-butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C61-butyric Acid n-Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide인 것을 특징으로 하는 태양전지용 활성층.
The method of claim 1,
The electron transport material (ETM) is PCBM ([6,6]-phenyl-C 61 -butyric acid methyl ester), Fullerene C 60 (pure), Fullerene C 70, N,N'-Bis(4-methoxyphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C 60 MC 12, N,N'-Di- n -octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3 ,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA( Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C 71 -butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C 61 -butyric Acid n -Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9 ,10- Active layer for a solar cell, characterized in that the perylenetetracarboxylic Diimide.
제 1 항 내지 제 4 항 중 어느 한 항의 활성층을 포함하는 유기태양전지.
An organic solar cell comprising the active layer of any one of claims 1 to 4.
정공수송물질(HTM)과 전자수송물질(ETM)을 혼합시켜 제1 용액을 제조하는 단계;
상기 제1 용액에 페로브스카이트 입자(particle)를 추가하여 제2 용액을 제조하는 단계; 및
상기 제2 용액을 열처리하는 단계를 포함하는 태양전지용 활성층의 제조방법.
Preparing a first solution by mixing a hole transport material (HTM) and an electron transport material (ETM);
Preparing a second solution by adding perovskite particles to the first solution; And
A method of manufacturing an active layer for a solar cell comprising the step of heat-treating the second solution.
제 6 항에 있어서,
상기 정공수송물질(HTM)은 PEDOT:PSS(poly(3,4- ethylenedioxythiophene): polystyrene sulfonate), P3HT(poly(3-hexylthiophene-2,5-diyl)), PTAA(poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT(Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′',7′'-di-2-thienyl-2′',1′',3′'-benzothiadiazole)]), PFB(poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine)), PANI(Polyaniline), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino)-2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3-b]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine 또는 Tris[4'-(2-thienyl)-4-biphenylyl]amine(Zinc Phthalocyanine)인 것을 특징으로 하는 태양전지용 활성층의 제조방법.
The method of claim 6,
The hole transport material (HTM) is PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate), P3HT (poly(3-hexylthiophene-2,5-diyl)), PTAA (poly(tertiary arylamine)), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole- alt -3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4 -dione]), PDPPDBTE( Poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di( 2,2'-bithiophen-5-yl) ethene]), PCPDTBT(Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2, 1-b:3,4-b']dithiophene-2,6-diyl]]), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'', 7''-di-2-thienyl-2',1'',3''-benzothiadiazole)]), PFB (poly(9,9'-dioctylfluorene-co-bis-N,N'-(4- butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)), PANI ( Polyaniline ), spiro-OMeTAD(2,2',7,7'-Tetrakis-(N,N-di-4- methoxyphenylamino)-9,9'-spirobifluorene), [5,15-Bis(phenylethynyl)-10,20-bis[(triisopropylsilyl)ethynyl]porphyrinato]magnesium(II), 2,4-Bis[4-(diethylamino) -2-hydroxyphenyl]squaraine, 2,4-Bis[8-hydroxy-1,1, 7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-yl]squaraine,Chloroaluminum Phthalocyanine, Tetracene, α-Octithiophene, Pentacene, Lead(II ) Phthalocyanine, Zinc Phthalocyanine, Copper(II) Phthalocyanine(α-form), Copper(II) Phthalocyanine(β-form), Phthalocyanine Blue, α-Quaterthiophene, α-Quinquethiophene, Quinacridone(5,12-Dihydroquino[2,3 -b ]acridine-7,14-dione), 6T(α-Sexithiophene), α-Septithiophene, TiOPc(Titanyl Phthalocyanine), Tris[4-(2-thienyl)phenyl]amine, Tris[4-(5-phenylthiophene) -2-yl)phenyl]amine or Tris[4'-(2-thienyl)-4-biphenylyl]amine (Zinc Phthalocyanine), characterized in that the manufacturing method of the active layer for a solar cell.
제 6 항에 있어서,
상기 전자수송물질(ETM)은 PCBM([6,6]-phenyl-C61-butyric acid methyl ester), Fullerene C60 (pure), Fullerene C70, N,N'-Bis(4-methoxyphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C60MC12, N,N'-Di-n-octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA(Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C71-butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C61-butyric Acid n-Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide인 것을 특징으로 하는 태양전지용 활성층의 제조방법.
The method of claim 6,
The electron transport material (ETM) is PCBM ([6,6]-phenyl-C 61 -butyric acid methyl ester), Fullerene C 60 (pure), Fullerene C 70, N,N'-Bis(4-methoxyphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(3,5-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Bis(2,6-diisopropylphenyl)- 3,4,9,10-perylenetetracarboxylic Diimide, Bis-PCBM, C 60 MC 12, N,N'-Di- n -octyl-3,4,9,10-perylenetetracarboxylic Diimide, N,N'-Dimethyl-3 ,4,9,10-perylenetetracarboxylic Diimide, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine Copper(II), ICBA( Indene-C60 bisadduct), [70]PCBM([6,6]-Phenyl-C 71 -butyric Acid Methyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, 3,4,9,10-Perylenetetracarboxylic Diimide, PCBB([6,6]-Phenyl-C61-butyric Acid Butyl Ester),PCBO([6,6]-Phenyl-C 61 -butyric Acid n -Octyl Ester), 3,4,9,10-Perylenetetracarboxylic Dianhydride, PTCBI(3,4,9,10-Perylenetetracarboxylic Bisbenzimidazole ), 1,6,7,12-Tetrakis(4-tert-butylphenoxy)-N,N'-bis(2,6-diisopropylphenyl)-3,4,9 ,10- A method of manufacturing an active layer for a solar cell, characterized in that it is perylenetetracarboxylic Diimide.
제 6 항에 있어서,
상기 페로브스카이트 입자는,
FAPbI3(Formamidinium-lead-iodide), MAPbI3(Methylammonium lead iodide), FAPbI3-xClx, MAPbI3-xClx, (FAPbI3-xClx)1-x(MAPbI3-xClx)x, FAPbI3-xBrx, MAPbI3-xBrx, (FAPbI3-xBrx)1-x(MAPbI3-xBrx)x, MAPbI3-xClx, MAPbBr3, MAPb(I,Br)3, MASnX3 또는 MASn0.5Pb0.5I3인 것을 특징으로 하는 태양전지용 활성층의 제조방법.
The method of claim 6,
The perovskite particles,
FAPbI 3 (Formamidinium-lead-iodide), MAPbI 3 (Methylammonium lead iodide), FAPbI 3-x Cl x , MAPbI 3-x Cl x , (FAPbI 3-x Cl x ) 1-x (MAPbI 3-x Cl x ) x, FAPbI 3-x Br x , MAPbI 3-x Br x , (FAPbI 3-x Br x ) 1-x (MAPbI 3-x Br x ) x, MAPbI 3-x Cl x , MAPbBr3, MAPb(I,Br) 3 , MASnX 3 or MASn 0.5 Pb 0.5 I 3 Method for producing an active layer for solar cells.
제 6 항에 있어서,
상기 제2 용액의 스핀코팅(spin-coating) 후 열처리는 수행하는 것을 특징으로 하는 태양전지용 활성층의 제조방법.
The method of claim 6,
A method of manufacturing an active layer for a solar cell, characterized in that heat treatment is performed after spin-coating the second solution.
KR1020190087009A 2019-07-18 2019-07-18 Bulk-hetero junction structure active layer which perovskite particles are disperse for solar cells, and method for manufacturing the same KR20210009879A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190087009A KR20210009879A (en) 2019-07-18 2019-07-18 Bulk-hetero junction structure active layer which perovskite particles are disperse for solar cells, and method for manufacturing the same
PCT/KR2020/000302 WO2021010555A1 (en) 2019-07-18 2020-01-08 Active layer for solar cell having bulk heterojunction structure with perovskite particles dispersed therein, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190087009A KR20210009879A (en) 2019-07-18 2019-07-18 Bulk-hetero junction structure active layer which perovskite particles are disperse for solar cells, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20210009879A true KR20210009879A (en) 2021-01-27

Family

ID=74210521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190087009A KR20210009879A (en) 2019-07-18 2019-07-18 Bulk-hetero junction structure active layer which perovskite particles are disperse for solar cells, and method for manufacturing the same

Country Status (2)

Country Link
KR (1) KR20210009879A (en)
WO (1) WO2021010555A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853063B (en) * 2022-05-30 2023-05-12 天津理工大学 Method for preparing perovskite/molybdenum disulfide heterojunction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049125A (en) 2017-11-01 2019-05-09 주식회사 엘지화학 Organic-inorganic complex solar cell and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048350B1 (en) * 2008-12-17 2011-07-14 한양대학교 산학협력단 Method for fabricating hybrid heterostructure composites of nanoparticles, solar cell using hybrid heterostructure composites of nanoparticles and fabrication method thereof
KR101743481B1 (en) * 2015-09-30 2017-06-20 광주과학기술원 Solar cell of hybrid type and method for fabricating thereof
CN106654020B (en) * 2017-01-24 2019-01-08 中国科学院上海硅酸盐研究所 Bulk heterojunction perovskite thin film and preparation method thereof and solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049125A (en) 2017-11-01 2019-05-09 주식회사 엘지화학 Organic-inorganic complex solar cell and method for manufacturing same

Also Published As

Publication number Publication date
WO2021010555A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
Jeon et al. Single-walled carbon nanotubes in solar cells
Liu et al. Integrated perovskite/bulk‐heterojunction organic solar cells
Cai et al. Polymer solar cells: recent development and possible routes for improvement in the performance
Abdulrazzaq et al. Organic solar cells: a review of materials, limitations, and possibilities for improvement
Li et al. Polymer solar cells
US9295133B2 (en) Solution processable material for electronic and electro-optic applications
JP5461775B2 (en) Photosensitive optoelectronic device
CN101548404B (en) Organic photosensitive devices using SubPc compounds
TWI709249B (en) Organic photosensitive devices with exciton-blocking charge carrier filters
EP2926387B1 (en) Organic photovoltaic device with hybrid heterojunction between a planar and a graded layer
US9431621B2 (en) Metal oxide charge transport material doped with organic molecules
KR101183041B1 (en) Organic semiconductor device, organic solar cell and display panel
CN103650187A (en) Organic photovoltaic cell incorporating electron conducting exciton blocking layers
JP7281216B2 (en) Hybrid planar mixed heterojunctions for organic photovoltaic devices
KR20150038353A (en) Organic optoelectronics with electrode buffer layers
Liu et al. From binary to multicomponent photoactive layer: a promising complementary strategy to efficient hybrid solar cells
Koleilat et al. Surpassing the exciton diffusion limit in single-walled carbon nanotube sensitized solar cells
Luo et al. Hybrid solar cells based on blends of poly (3-hexylthiophene) and surface dye-modified, ultrathin linear-and branched-TiO2 nanorods
Arbouch et al. Organic photovoltaic cells: Operating principles, recent developments and current challenges–review
Byeon et al. Flexible organic photodetectors with mechanically robust zinc oxide nanoparticle thin films
WO2021010555A1 (en) Active layer for solar cell having bulk heterojunction structure with perovskite particles dispersed therein, and method for manufacturing same
Liu et al. Overcoming Defect-Induced Charge Recombination Loss in Organic Solar Cells by Förster Resonance Energy Transfer
Saini et al. Nanostructured Solar Cells as Sustainable Optoelectronic Device
Li et al. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property
Ryu et al. Influence of n-type chemical doping layer on the performance of organic photovoltaic solar cells