KR20210004825A - 나노 자성 입자 영상화 장치 및 방법 - Google Patents

나노 자성 입자 영상화 장치 및 방법 Download PDF

Info

Publication number
KR20210004825A
KR20210004825A KR1020200057723A KR20200057723A KR20210004825A KR 20210004825 A KR20210004825 A KR 20210004825A KR 1020200057723 A KR1020200057723 A KR 1020200057723A KR 20200057723 A KR20200057723 A KR 20200057723A KR 20210004825 A KR20210004825 A KR 20210004825A
Authority
KR
South Korea
Prior art keywords
sample
field
signal
imaging
measurement head
Prior art date
Application number
KR1020200057723A
Other languages
English (en)
Inventor
정재찬
최승민
홍효봉
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of KR20210004825A publication Critical patent/KR20210004825A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/316Accessories, mechanical or electrical features collimators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

나노 자성 입자 영상화 장치 및 방법이 개시된다. 본 발명의 일실시예에 따른 실시예에 따른 나노 자성 입자 영상화 장치는, 관통공 내부에 나노 자성 입자가 포함된 시료가 삽입된 측정헤드에서 각각 혼합 자기장을 발생시키는 신호 발생부와, 측정헤드에 위치하는 검출 코일을 이용하여 검출 신호를 획득하는 신호 검출부와, 측정헤드의 관통공 내부에 자기장을 인가하여, 관통공의 소정 영역에 필드프리 영역을 생성하는 필드프리 생성부와, 검출 신호를 기반으로 상기 나노 자성 입자의 3차원 위치를 영상화하는 3차원 영상 생성부 및 필드프리 영역이 시료에 중첩되도록 시료의 위치를 조절하고, 시료의 위치가 변경됨에 따라 검출 신호가 3차원 영상 생성부에 출력되도록 제어하는 제어부를 포함할 수 있다.

Description

나노 자성 입자 영상화 장치 및 방법{Apparatus and Method for Nano Magnetic Particle Imaging}
기재된 실시예는 시료에 포함된 특정 물체에 대한 영상화 기술에 관한 것으로, 특히 나노 자성 입자(Nano Magnetic Particle, NMP) 물질의 공간상의 분포를 영상화하는 기술에 관한 것이다.
현대 과학에서는 시료나 대상을 분해하지 않고 시료에 포함된 특정한 물체에 대한 2차원 및 3차원 영상을 획득하는 것이 매우 중요한 의미를 가지며, 이러한 분야에 대한 발전은 학술적인 의미뿐만 아니라 산업계 전반에 걸쳐 많은 영향을 끼쳐왔다. 예컨대, X-ray, MRI(Magnetic Resonance Imaging), PET(Positron Emission Tomography), CT(Computed Tomography) 등은 단순히 환자의 생체 내부에 대한 정보를 얻는데 그치지 않고, 자연과 과학에 대한 깊은 통찰을 가능하게 하였다.
다만, X-ray, MRI, PET 등의 장비들은 각 응용분야 별로 실제 얻고자 하는 선명한 영상을 확보하는 데에는 기술적인 한계가 있기 때문에, 흔히 조영제(image tracer)라고 불리는 약제가 사용되었으며, 최근에는 조영제의 독성이나 가격적인 부분을 어느 정도 해소할 수 있는 초상자성(super-paramagnetic) 특성을 갖는 NMP(Nano Magnetic Particle)가 주로 사용되고 있다.
나노 자성 입자(Nano Magnetic Particle, 이하 'NMP'로 기재함)의 경우 자화(magnetization)될 때 비선형적(Non-linear)으로 자화되는 특성이 있다. 예컨대 철과 같은 강자성 물질이 수백 nm이하로 분리되어 존재할 경우, 초상자성(super-para magnetic) 특성을 갖는다고 알려져 있다. 이러한 특성을 이용하여 NMP 물질의 양, 특성을 측정하는 경우 NMP 물질이 비선형적 자화가 되는 지점까지 자기장을 인가하여 신호의 왜곡 정도를 신호화하여 NMP 물질을 분석할 수 있게 된다. 이런 장비를 NMP 측정용 스펙트로미터 장비라 부른다.
이러한 스펙트로미터 장비를 영상화 장비로 확장하는 연구가 진행중에 있으며, 2차원 공간 영상화의 경우 스펙트로미터 장비의 측정 코일을 평면 측정용으로 변형하여 성공한 사례가 있으나, 아직까지 2차원 영상화로 제한되는 실정이다. 해외 연구 기관에서는 3차원 영상을 얻을 수 있는 MPI 장비를 개발하고 제품화되고 있긴 하나 측정 가능한 시료의 크기 대비 장비의 크기가 크고, 전력을 많이 소모하는 단점이 있다.
한국 공개 특허 제10-2009-0060143호, 2009년 6월 11일 공개(명칭: 자성 나노 입자와 주파수 혼합 자기 판독기를 이용한 생체물질의 정량적 검출방법)
실시예에 따르면, 스펙트로미터 장비를 이용하여 NMP 물질의 3차원 공간상의 분포를 측정하여 영상화하는 데 목적이 있다.
실시예에 따르면, 3차원 공간상의 분포를 측정하여 영상화하기 위한 장비 규모를 소형화하는데 목적이 있다.
실시예에 따르면, 3차원 공간상의 분포를 측정하여 영상화하기 위한 장비의 전력 소모를 감소시키는데 목적이 있다.
실시예에 따른 나노 자성 입자 영상화 장치는, 관통공 내부에 나노 자성 입자가 포함된 시료가 삽입된 측정헤드에서 각각 혼합 자기장을 발생시키는 신호 발생부와, 측정헤드에 위치하는 검출 코일을 이용하여 검출 신호를 획득하는 신호 검출부와, 측정헤드의 관통공 내부에 자기장을 인가하여, 관통공의 소정 영역에 필드프리 영역을 생성하는 필드프리 생성부와, 검출 신호를 기반으로 상기 나노 자성 입자의 3차원 위치를 영상화하는 3차원 영상 생성부 및 필드프리 영역이 시료에 중첩되도록 시료의 위치를 조절하고, 시료의 위치가 변경됨에 따라 검출 신호가 3차원 영상 생성부에 출력되도록 제어하는 제어부를 포함할 수 있다.
실시예에 따르면, 스펙트로미터 장비를 이용하여 NMP 물질의 3차원 공간상의 분포를 측정하여 영상화할 수 있다.
실시예에 따르면, 3차원 공간상의 분포를 측정하여 영상화하기 위한 장비 규모를 소형화할 수 있다. 스펙트로미터용 측정 코일을 이용하여 NMP 물질의 영상화가 가능하게 하여 기존의 장비에 비해 구조적으로 간단하고 상용화도 용이하다.
실시예에 따르면, 3차원 공간상의 분포를 측정하여 영상화하기 위한 장비의 전력 소모를 감소시킬 수 있다. 즉, 영구자석으로 자기장을 생성할 경우 전자기장을 인가하기 위해서 전력이 필요하지 않으며, 직류(DC) 코일로 구성한다고 하더라도 기존 장비 대비 더 적은 전력으로 시스템을 구성할 수 있는 장점을 가진다. 따라서, 기존의 MPI 장비에 비해 파워 소모량이 획기적으로 낮아짐으로 테이블 탑 형태의 영상화 장비를 구현할 수 있다.
도 1은 실시예에 따른 나노 자성 입자의 영상화 장치의 개략적인 블록 구성도이다.
도 2는 실시예에 따른 나도 자성 입자의 영상화 장치의 구조도의 일 예를 도시한 도면이다.
도 3은 실시예에 따른 필드프리 생성부의 사시도이다.
도 4는 실시예에 따라 영구 자석들 사이에 분포되는 자기장 측정 그래프의 예시도이다.
도 5는 실시예에 따른 시료 홀더 구동부를 설명하기 위한 측면도의 예시도이다.
도 6은 실시예에 따른 시료 홀더 구동부를 설명하기 위한 상면도의 예시도이다.
도 7은 실시예에 따른 자성 입자 영상화 방법을 설명하기 위한 순서도이다.
도 8은 실시예에 따른 실제 구동 환경의 일 예를 도시한 도면이다.
도 9은 실시예에 따른 사이노그램(Sinogram)의 예시도이다.
도 10은 실시예에 따른 나노 자성 입자의 3차원 분포 영상들의 예시도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
비록 "제1" 또는 "제2" 등이 다양한 구성요소를 서술하기 위해서 사용되나, 이러한 구성요소는 상기와 같은 용어에 의해 제한되지 않는다. 상기와 같은 용어는 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용될 수 있다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
본 명세서에서 사용된 용어는 실시예를 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 또는 "포함하는(comprising)"은 언급된 구성요소 또는 단계가 하나 이상의 다른 구성요소 또는 단계의 존재 또는 추가를 배제하지 않는다는 의미를 내포한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 해석될 수 있다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하에서는, 도 1 내지 도 11을 참조하여 실시예에 따른 나노 자성 입자 영상화 장치 및 방법이 상세히 설명된다.
도 1은 실시예에 따른 나노 자성 입자의 영상화 장치의 개략적인 블록 구성도이고, 도 2는 실시예에 따른 나도 자성 입자의 영상화 장치의 구조도의 일 예를 도시한 도면이다.
도 1 및 도 2를 참조하면, 실시예에 따른 나노 자성 입자 영상화 장치(1)는 신호 발생부(110), 신호 검출부(120), 필드프리 생성부(130) 및 3차원 영상 생성부(140)를 포함한다.
신호 발생부(110)는 나노 자성 입자가 포함된 시료(1)가 삽입된 측정헤드(220)에서 혼합 자기장을 발생시킨다.
예컨대, 측정헤드(220)는 각각 자기장을 발생시키는 두 개의 솔레노이드 코일(111, 112)을 이용하여 두 개의 자기장을 발생시킴으로써 혼합 자기장을 발생시킬 수 있다.
이 때, 측정헤드(220)는 도 2에 도시된 바와 같이 원통형 보빈 구조로 구현될 수 있고, 길이 방향으로 내부가 관통되어 관통공이 형성될 수 있다.
이 때, 두 개의 솔레노이드 코일(111, 112)은 저주파 코일과 고주파 코일일 수 있다. 이 때, 도 2에 도시된 바와 같이, 측정헤드(220)의 최외곽에 저주파 코일(111)이 위치하고, 저주파 코일의 안쪽에 고주파 코일(112)이 위치하고, 고주파 코일의 안쪽에 검출 코일이 위치할 수 있다. 즉, 측정헤드(220)에 저주파 코일(111)과 고주파 코일(112)을 하나씩 포함함으로써 저주파 신호에 의한 자기장과 고주파 신호에 의한 자기장을 발생시켜 혼합 자기장을 생성할 수 있다. 이 때, 실시예를 위한 혼합 자기장에 따라 저주파 코일(111)과 고주파 코일(112)을 캘리브레이션(Calibration)하는 과정을 수행할 수도 있다. 또한, 저주파 코일(111)은 저주파 전압에 상응하는 전력원으로부터 신호를 인가 받을 수 있고, 고주파 코일(112)은 고주파 전압에 상응하는 전력원으로부터 신호를 인가 받을 수 있다. 이 때, 저주파 코일과 고주파 코일은 원통형의 솔레노이드 코일(Solenoid Coil) 형태로 구성되어 있으며, 원통형 보빈(코일 감는 틀)위에 고주파 코일을 감고 그 위에 다시 저주파 코일이 감겨 있는 구조일 수 있다. 그리고, 신호검출을 위한 검출 코일(Detection Coil)은 저주파, 고주파 코일과는 별개의 보빈에 차분 검파 코일(Differential detection coil)에 상응하는 구조로 감기게 되며, 저주파, 고주파 코일 보빈이 검출 코일의 보빈 내부에 삽입될 수 있다. 이는, 코일이 감기는 방향이 동일하다는 의미일 수도 있다.
도 1에 도시된 신호 검출부(120)는, 도 2에 도시된 바와 같이 측정헤드(220)에 위치하는 검출 코일(120)로 구현될 수 있다. 이 때, 검출 신호는 검출 코일(120)이 출력하는 기전력에 상응할 수 있다. 이 때, 검출 코일(120)은 서로 다른 방향으로 감긴 두 개의 코일들이 연결된 차분 검파 코일(Differential detection coil)에 상응할 수 있다. 따라서, 검출 코일(120)에서는 서로 다른 방향으로 감긴 두 개의 코일들에서 검출된 신호들을 합한 것을 검출 신호로 획득할 수 있다.
실시예에 따라, 검출 코일(120)은 측정헤드(220)의 관통공 내부에 존재하는 시료(20)가 회전되거나, 수평 방향 및 수직 방향 중 하나의 방향에 상응하게 이동됨에 따라 검출 신호를 획득할 수 있다. 이 때, 도 2에 도시된 바와 같이, 수직 방향은 측정헤드(220)가 관통되는 Z 축 방향일 있고, 수평 방향은 X 축 방향일 수 있고, 회전 방향은 XY 평면에서 회전될 수 있다.
필드프리 생성부(130)는 측정헤드(220)의 관통공 내부에 자기장을 인가하여 비선형 자화 현상이 발생되지 않고 포화(Saturation)되도록 하여, 측정헤드(220) 관통공 내의 소정 영역에 자기장이 없는 필드프리 영역을 생성한다. 이때, 필드프리 영역은 점 형태의 필드프리 영역(Field Free Point, FFP) 또는 선 형태의 필드프리 영역(Field Free Line, FFL)으로 형성될 수 있다.
실시예에 따라, 필드프리 생성부(130)는 맥스웰 2페어의 영구 자석 또는 직류 전류(DC) 코일로 구현될 수 있다. 도 2에는 필드프리 생성부(130)가 영구 자석으로 구현된 것으로 도시되어 있으나, 이는 일 예일 뿐 본 발명은 이에 한정되지 않는다.
이때, DC 코일로 구현될 경우, 시료(10)가 삽입 가능하도록 개방형 구조로 구현될 수 있다. 이로써, 필드프리 생성부(130)가 영구 자석으로 구현될 경우, 전자기장을 인가하기 위해서 별도의 전력이 요구되지 않는다. 또한, 직류(DC) 코일로 구현될지라도 인가되는 전력은 크지 않다. 따라서, 나노 자성 입자의 3차원 영상화를 위한 전력 소모를 대폭 감소시킬 수 있다.
3차원 영상 생성부(140)는 검출 신호를 기반으로 나노 자성 입자의 3차원 위치를 영상으로 획득한다. 즉, 회전, 수평 방향 및 수직 방향에 상응하게 나노 자성 입자의 위치를 측정하고, 시료(20)가 이동하면서 측정된 위치 정보들을 이용하여 나노 자성 입자의 영상을 획득할 수 있다.
실시예에 따라, 3차원 영상 생성부(140)는 시료(20)가 측정헤드(220)의 관통공 내에서 FFP 또는 FFL에 중첩되도록 지속적으로 이동하면서 검출된 검출 신호들을 정렬하여 나타냄으로써 나노 자성 입자에 상응하는 3차원 영상 정보를 획득할 수 있다. 예컨대, 3차원 영상 정보는 등고선(contour plot) 형태의 입체적인 영상 정보를 포함할 수 있다. 3차원 영상 생성부(140)의 상세 동작에 대해서는 도 7을 참조하여 후술하기로 한다.
제어부(150)는 일종의 중앙처리장치로서 나노 자성 입자 영상화의 전체 과정을 제어한다. 즉, 제어부(150)는 신호 발생부(110), 신호 검출부(120), 필드프리 생성부(130) 및 3차원 영상 생성부(140) 등을 포함하는 구성 요소들을 제어하여 다양한 기능을 제공할 수 있다. 여기서, 제어부(150)는 프로세서(processor)와 같이 데이터를 처리할 수 있는 모든 종류의 장치를 포함할 수 있다. 여기서, '프로세서(processor)'는, 예컨대 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다.
또한, 도 2에 도시된 바와 같이, 실시예에 따른 나노 자성 입자 영상화 장치는 시료(20)를 놓아두는 시료 홀더(210)를 구비할 수 있다. 이 때, 시료 홀더(210)는 측정헤드(220)가 관통되는 방향, 즉, Z 축 방향으로 형성된 원기둥 형상일 수 있고, 시료(10)는 시료 홀더(210)의 상부면에 놓일 수 있으나, 이는 일 예일 뿐, 본 발명은 이에 한정되지 않는다.
또한, 도 1에 도시된 바와 같이, 실시예에 따른 나노 자성 입자 영상화 장치(1)는 시료(10)를 회전시키거나, 수평 방향 또는 수직 방향으로 선형 이동시키는 별도의 모듈인 시료 홀더 구동부(160)를 더 포함할 수도 있다. 시료 홀더 구동부(160)에 대한 상세한 설명을 도 5 및 도 6을 참조하여 후술하기로 한다.
그러나, 다른 실시예에 따라, 별도의 모듈없이 사용자의 수동 조작에 의해 시료를 이동시킬 수도 있다.
또한, 본 발명의 일실시예에 따른 나노 자성 입자 영상화 장치(1)는 나노 자성 입자의 영상을 출력하고, 나노 자성 입자 영상화를 위한 조작자의 제어 선택을 입력받을 수 있는 인터페이스부(170)를 포함하거나, 인터페이스부(170)와 연결될 수도 있다. 인터페이스부(170)는 입출력 기능을 모두 구비할 수 있다. 예컨대, 입력부(171)은 키보드, 마우스, 소리 인식 등의 다양한 방법을 통해 제공할 수 있고, 출력부(172)는 프로젝터, 다양한 디스플레이 패널, 소리, 진동 등을 통해 제공할 수 있다. 또한, 입력부(171) 및 출력부(172)가 일체화된 터치 패널의 형태로 구현될 수도 있다.
도 3은 실시예에 따른 필드프리 생성부의 사시도이고, 도 4는 실시예에 따라 영구 자석들 사이에 분포되는 자기장 측정 그래프의 예시도이다.
도 3을 참조하면, 필드프리 생성부(130)는 FFL(20)을 생성하기 위해, 맥스웰 2페어의 영구 자석들(130-1a, 130-1b, 130-2a, 130-2b)로 구현된다. 이때, 영구 자석들(130-1a, 130-1b)은 상호간에 N극이 마주보도록 배치되고, 영구 자석들(130-2a, 130-2b)은 상호간에 S극이 마주보도록 배치된다. 그러면, 영구 자석들(130-1a, 130-1b, 130-2a, 130-2b)의 중심에 FFL(20)이 생성된다.
도 4를 참조하면, 영구 자석들이 실제 배치된 상태에서 자기장 측정값이 영구 자석들 간의 중심점에서 최소가 되어 FFL이 생성됨을 보여준다.
도 5는 실시예에 따른 시료 홀더 구동부를 설명하기 위한 측면도의 예시도이고, 도 6은 실시예에 따른 시료 홀더 구동부를 설명하기 위한 상면도의 예시도이다.
도 5를 참조하면, 시료 홀더 구동부(160)는 측정헤드(220)의 관통공 내부에 삽입된 시료 홀더(210)(150)가 회전시키거나, 수평 방향 및 수직 방향 중 하나의 방향에 상응하게 이동시키도록 구동될 수 있다. 이를 위해, 시료 홀더 구동부(160)는 회전부(161), 수평 이동부(162) 및 수직 이동부(163)을 포함하여, 제어부(150)의 제어에 의해 시료 홀더(210)를 이동시킬 수 있다.
도 7은 실시예에 따른 자성 입자 영상화 방법을 설명하기 위한 순서도이고, 도 8은 실시예에 따른 실제 구동 환경의 일 예를 도시한 도면이고, 도 9은 실시예에 따른 사이노그램(Sinogram)의 예시도이고, 도 10은 실시예에 따른 나노 자성 입자의 3차원 분포 영상들의 예시도이다.
우선, 자성 입자 영상화 방법이 수행되기 위해, 도 8의 (a)에 도시된 바와 같이 시료 홀더(210)에 시료를 삽입시킨 후, 도 8의 (b)에 도시된 바와 같이 측정 헤더(220)를 시료 홀더(210)가 관통공을 통해 삽입되도록 끼워넣는다. 그런 후, 제어부(150)의 제어에 의해 측정 헤더(220)에 고주파 신호 및 저주파 신호를 인가하여 자기장이 형성되도록 한다. 이울러, 필드프리 생성부(130)가 영구 자석이 아닌 DC 코일로 구현될 경우, DC 코일에 소정의 전류가 인가되도록 할 수 있다. 이와 같은 자성 입자 영상화 장치의 초기 실험 세팅이 이루어진 상태에서 도 7에 도시된 자성 입자 영상화 방법이 수행될 수 있다.
우선, 제어부(150)는 시료 홀더(210)의 높이를 조절한다(S710). 즉, 시료의 수직 방향(Z 축 방향)의 위치를 조절하는 것이다. 우선, 초기 위치에는 FFL이 시료의 최고점 또는 최저점을 지나가도록 조절한다.
그런 후, 제어부(150)는 시료 홀더(210)를 소정 각도
Figure pat00001
만큼 회전시킨다(S720). 즉, 시료가 수평면(XY 평면)에서
Figure pat00002
만큼 회전된다.
제어부(150)는 시료 홀더(210)를 지속적으로 전방 선형 이동(Forward-Linear Movement)시킴과 아울러, 소정 단위 시간 간격으로 검출 코일(120)이 검출한 신호를 3차원 영상 생성부(140)에 출력되도록 할 수 있다(S730). 즉, 시료의 현재 높이 및 회전된 각도에서 수평축(X 축)으로 이동됨에 따라 FFL이 지나치면서 검출되는 신호가 획득되는 것이다.
그런 후, 제어부(150)는 시료 홀더(210)를 전방 선형 이동한 만큼 반대로 후방 선형 이동(Backward-Linear Movement)시켜 원 위치로 복귀되도록 한다(S740).
그러면, 3차원 영상 생성부(140))는 검출 코일(120)로부터 출력된 신호를 기반으로 소정 영상 신호를 표현할 수 있는 사이노그램(Sinogram)을 갱신한다(S750). 도 9에는 회전 각도 및 수평 이동 거리에 따른 사이노그램(Sinogram)의 일 예가 도시되어 있다. 이때, 사이노그램(Sinogram)이란 한 방향에서 획득한 투사 데이터를 투사 방향에 따라 순차적으로 배열한 것으로서 각 행이 갖는 화소값들은 해당 프로파일의 해당 위치에서의 크기(amplitude)와 같다. 이러한 사이노그램(Sinogram)은 주지된 기술로 상세한 설명을 생략하기로 한다.
그런 후, 제어부(150)는 회전된 각도
Figure pat00003
의 누적값이 180도 미만인지를 판단한다(S760).
S760의 판단 결과 회전된 각도
Figure pat00004
의 누적값이 180도 미만일 경우, 제어부(150)는 S720 내지 S750가 반복 수행되도록 제어한다. 반면, S750의 판단 결과 회전된 각도
Figure pat00005
의 누적값이 180도 미만이 아닐 경우, 제어부(150)는 생성된 사이노그램(Sinogram)을 역 라돈 변환(Inverse Radon Transformation)시켜, 시료의 현재 높이에서의 단면(XY 평면)에 대한 2차원 영상화가 이루어지도록 한다(S770). 이 때, 역 라돈 변환(inverses radon transform)은 CT 등에서 널리 사용되는 기법으로 "Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New York, NY, IEEE Press, 1988"에 공지된 기술이다.
이후, 제어부(150)는 시료 홀더(210)의 높이가 조절되어야 하는지 판단한다(S780). 즉, FFL이 시료의 최고점을 지나도록 한 후 시작했을 경우, FFL이 최저점에 도달했는지 또는 FFL이 시료의 최저점을 지나도록 한 후 시작했을 경우, FFL이 최고점에 도달했는지를 판단하는 것이다.
S780의 판단 결과 시료 홀더 높이 조절이 더 필요할 경우, 제어부(150)는 S710 내지 S770이 반복 수행되도록 제어한다. 반면, S780의 판단 결과 시료 홀더 높이 조절이 필요하지 않을 경우, 제어부(150)는 3차원 영상 생성부(140)를 제어하여, 3차원 영상 생성부(140)가 각 높이마다 생성된 2차원 영상들을 합성(composite)하여 3차원 영상이 재구성(S790)되도록 하여, 나도 자성 입자의 3차원 공간상의 분포를 영상화할 수 있다.
도 10을 참조하면, 시료가 1개일 경우(a), 시료가 2개일 경우(b), 2개의 시료가 근접되어 있을 경우(c) 및 시료가 3개일 경우(d)에 나도 자성 입자의 3차원 공간상의 분포를 영상화한 예들이 도시되어 있다.
이상에서 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
1: 나노 자성 입자 영상화 장치
110: 신호 발생부 120: 신호 검출부
130: 필드프리 생성부 140: 3차원 영상 생성부
150: 제어부 160: 시료 홀더 구동부
170: 인터페이스부
210: 시료 홀더(210) 220: 측정헤드

Claims (1)

  1. 관통공 내부에 나노 자성 입자가 포함된 시료가 삽입된 측정헤드에서 각각 혼합 자기장을 발생시키는 신호 발생부;
    측정헤드에 위치하는 검출 코일을 이용하여 검출 신호를 획득하는 신호 검출부;
    측정헤드의 관통공 내부에 자기장을 인가하여, 관통공의 소정 영역에 필드프리 영역을 생성하는 필드프리 생성부;
    상기 검출 신호를 기반으로 상기 나노 자성 입자의 3차원 위치를 영상화하는 3차원 영상 생성부; 및
    필드프리 영역이 시료에 중첩되도록 시료의 위치를 조절하고, 시료의 위치가 변경됨에 따라 검출 신호가 3차원 영상 생성부에 출력되도록 제어하는 제어부
    를 포함하는 것을 특징으로 하는 나노 자성 입자 영상화 장치.
KR1020200057723A 2019-07-04 2020-05-14 나노 자성 입자 영상화 장치 및 방법 KR20210004825A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190080895 2019-07-04
KR1020190080895 2019-07-04

Publications (1)

Publication Number Publication Date
KR20210004825A true KR20210004825A (ko) 2021-01-13

Family

ID=74142232

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200057723A KR20210004825A (ko) 2019-07-04 2020-05-14 나노 자성 입자 영상화 장치 및 방법

Country Status (1)

Country Link
KR (1) KR20210004825A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060143A (ko) 2007-12-06 2009-06-11 한국전자통신연구원 자성 나노 입자와 주파수 혼합 자기 판독기를 이용한 생체물질의 정량적 검출방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060143A (ko) 2007-12-06 2009-06-11 한국전자통신연구원 자성 나노 입자와 주파수 혼합 자기 판독기를 이용한 생체물질의 정량적 검출방법

Similar Documents

Publication Publication Date Title
EP2467056B1 (en) Apparatus and method for generating and moving a magnetic field having a field free line
CN111183364B (zh) 脉冲磁粒子成像系统和方法
Goodwill et al. Projection x-space magnetic particle imaging
Sattel et al. Single-sided device for magnetic particle imaging
US10261141B2 (en) Apparatus and methods for spatial encoding of FFL-based MPI devices
Konkle et al. Twenty-fold acceleration of 3D projection reconstruction MPI
Vogel et al. Micro-traveling wave magnetic particle imaging—sub-millimeter resolution with optimized tracer LS-008
Top et al. Trajectory analysis for field free line magnetic particle imaging
US11561270B2 (en) Apparatus and method for nano magnetic particle imaging
KR20210027049A (ko) 나노 자성 입자 영상화 장치 및 방법
Schomberg Magnetic particle imaging: Model and reconstruction
CN116626563A (zh) 一种梯度与视野自适应的三维磁粒子成像装置及方法
Le et al. Development of small-rabbit-scale three-dimensional magnetic particle imaging system with amplitude-modulation-based reconstruction
US10782371B2 (en) NMR apparatus with permanent magnets, magnetic field sensors, and magnetic coils
KR102545062B1 (ko) 나노 자성 입자 영상화 장치 및 방법
McDonough et al. 1-d imaging of a superparamagnetic iron oxide nanoparticle distribution by a single-sided ffl magnetic particle imaging scanner
KR20210004825A (ko) 나노 자성 입자 영상화 장치 및 방법
EP2689240A1 (en) Isolating active electron spin signals in epr
US11707202B2 (en) Apparatus for generating field-free region, apparatus and method for nano magnetic particle image
Moreira et al. Imaging ferromagnetic tracers with an AC biosusceptometer
CN116807440A (zh) 基于垂直磁化的各向同性x空间磁粒子成像设备及方法
JP2009284958A (ja) 磁気共鳴イメージング装置及びファントム
KR20140113385A (ko) 마그네틱 파티클 이미지 검출 장치
Li et al. Transverse MNP Signal-Based Isotropic Imaging for Magnetic Particle Imaging
KR20220106384A (ko) 3차원 소형 자석 어레이를 이용한 나노 자성 입자 영상화 장치