KR20210001722A - A D-lactate dehydrogenase with high substrate preference for phenylpyruvate - Google Patents

A D-lactate dehydrogenase with high substrate preference for phenylpyruvate Download PDF

Info

Publication number
KR20210001722A
KR20210001722A KR1020190078219A KR20190078219A KR20210001722A KR 20210001722 A KR20210001722 A KR 20210001722A KR 1020190078219 A KR1020190078219 A KR 1020190078219A KR 20190078219 A KR20190078219 A KR 20190078219A KR 20210001722 A KR20210001722 A KR 20210001722A
Authority
KR
South Korea
Prior art keywords
lactate dehydrogenase
acid
phenylpyruvate
producing
microorganism
Prior art date
Application number
KR1020190078219A
Other languages
Korean (ko)
Inventor
이진원
연영주
유영제
이회석
박지수
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020190078219A priority Critical patent/KR20210001722A/en
Publication of KR20210001722A publication Critical patent/KR20210001722A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01028D-Lactate dehydrogenase (1.1.1.28)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

D-lactate dehydrogenase catalyzes the reduction of pyruvic acid into D-lactic acid, and thus generally shows a higher substrate preference for pyruvic acid than for phenylpyruvic acid. Unlike the existing D-lactate dehydrogenase, however, D-lactate dehydrogenase derived from Pediococcus claussenii, which has been identified through the present invention, shows a high preference for phenylpyruvic acid rather than pyruvic acid, and thus a catalytic efficiency (kcat/Km) ratio is about 1.7 times higher. In addition, in the case of applying D-lactate dehydrogenase derived from Oenococcus oeni, Weissella confuse and Weissella koreensis under in vitro conditions, it has been confirmed that a conversion rate is up to 60% based on the 12-hour enzymatic reaction, whereas D-lactate dehydrogenase derived from Pediococcus claussenii, identified through the present invention, can produce D-3-phenyllactic acid at 100% conversion rate from phenylpyruvic acid based on the same reaction time.

Description

페닐피루브산에 대한 높은 기질선호도를 보이는 D형 젖산 탈수소효소 및 그 유전자{A D-lactate dehydrogenase with high substrate preference for phenylpyruvate}D-lactate dehydrogenase with high substrate preference for phenylpyruvate and its gene {A D-lactate dehydrogenase with high substrate preference for phenylpyruvate}

본 발명은 페닐피루브산 (phenylpyruvate)에 높은 기질선호도를 보이는 페디오코쿠스 클라우제니 (Pediococcus claussenii) 유래 D형-젖산탈수소효소 (D-lactate dehydrogenase) 및 이를 이용한 D-3-페닐젖산 (D-3-phenyllactate)의 생산에 관한 것이다.The present invention is derived from Pediococcus claussenii showing a high substrate preference for phenylpyruvate D-lactate dehydrogenase (D-lactate dehydrogenase) and D-3-phenyl lactic acid (D-3- phenyllactate).

히드록시산 (Hydroxy acid)은 고부가가치 화합물 합성, 화장품, 연료첨가제, 의약품 중간체 등 다양한 응용분야를 갖고 있다. 이 중 D-3-페닐젖산 (D-3-phenyllactate)은 항생제와 심혈관 질환 치료제인 Danshensu, 구충제인 PF1022A, 혈당강하제인 Englitazone의 중간체 및 히드록시산계 바이오폴리에스터 화합물의 단량체 원료로서 의약품 및 화학산업 분야에서 유용하게 사용될 수 있다. 3-페닐젖산은 페닐피루브산으로부터 D형-젖산탈수소효소의 촉매작용을 통한 환원반응을 통해 생합성될 수 있다. 그러나 D형-젖산탈수소효소의 주요 기질은 피루브산 (pyruvate)이기 때문에 일반적으로 페닐피루브산보다는 피루브산에 높은 촉매활성 및 기질선호도를 나타낸다. 따라서, 피루브산보다 페닐피루브산에 높은 기질선호도를을 보이는 D형-젖산탈수소효소의 발굴은 페닐피루브산으로부터 D-3-페닐젖산을 생산하는 생합성 공정의 효율을 높이는 데에 중요한 의미를 지닌다.Hydroxy acid has various applications such as synthesis of high value-added compounds, cosmetics, fuel additives, and pharmaceutical intermediates. Among them, D-3-phenyllactate is a monomer raw material for antibiotics and cardiovascular disease treatment Danshensu, anthelmintic PF1022A, blood glucose lowering agent Englitazone, and hydroxy acid-based biopolyester compound as a monomer raw material. It can be usefully used in the field. 3-phenyllactic acid can be biosynthesized from phenylpyruvate through a reduction reaction through a catalytic action of D-lactic acid dehydrogenase. However, since the main substrate of D-lactic acid dehydrogenase is pyruvate, it generally exhibits higher catalytic activity and substrate preference for pyruvate than phenylpyruvate. Therefore, the discovery of D-lactic acid dehydrogenase, which shows higher substrate preference to phenylpyruvate than pyruvic acid, has an important meaning in increasing the efficiency of the biosynthetic process for producing D-3-phenyllactic acid from phenylpyruvate.

본 발명의 목적은 페닐젖산에 대해 높은 기질선호도 및 활성을 나타내는 신규 D형-젖산탈수소효소를 발굴하고 이를 이용하여 페닐피루브산으로부터 D-3-페닐젖산을 생산하는 생합성 효율을 높이는 데에 있다.An object of the present invention is to discover a novel D-lactic acid dehydrogenase that exhibits high substrate preference and activity for phenyl lactic acid and to increase the biosynthetic efficiency of producing D-3-phenyl lactic acid from phenyl pyruvic acid using this.

D-3-페닐젖산은 젖산균 (lactic acid bacteria) 대사경로에서 발견되는 대사산물의 한 종류이며, 또한 D형-젖산탈수소효소는 2-히드록시산탈수소효소 (2-hydroxyacid dehydrogenase)의 일종이다. 따라서, 본 발명에서는 아미노산 서열 유사성에 기초하여 추정된 4종 젖산균 (Oenococcus oeni, Weissella confusa, Weissella koreensisPediococcus claussenii) 유래 D형-젖산탈수소효소 후보들의 합성유전자를 확보하였으며, 각 균주 유래의 합성유전자들을 대장균 재조합 단백질 형태로 발현하여 분리정제한 후 페닐피루브산에 대한 효소활성, 동력학적 매개변수 (kinetic parameters) 및 합성반응의 전환율을 비교하여 D-3-페닐젖산 생산에 높은 촉매활성과 전환 효율을 나타내는 신규 D형-젖산탈수소효소를 발굴하였다.D-3-phenyllactic acid is a kind of metabolite found in the metabolic pathway of lactic acid bacteria, and D-lactic acid dehydrogenase is a kind of 2-hydroxyacid dehydrogenase. Therefore, in the present invention, synthetic genes of D-lactic acid dehydrogenase candidates derived from four types of lactic acid bacteria ( Oenococcus oeni , Weissella confusa , Weissella koreensis and Pediococcus claussenii ) estimated based on amino acid sequence similarity were obtained, and synthetic genes derived from each strain E. coli recombinant protein was expressed in the form of recombinant protein and purified, and then the enzyme activity, kinetic parameters and conversion rate of the synthesis reaction were compared to show high catalytic activity and conversion efficiency for the production of D-3-phenyllactic acid. A new type D-lactic acid dehydrogenase was discovered.

D형-젖산탈수소효소는 피루브산을 D-젖산으로 환원하는 반응을 촉매하기 때문에 일반적으로 페닐피루브산보다는 피루브산에 높은 기질선호도를 보인다. 그러나 본 발명을 통해 발굴된 Pediococcus claussenii 유래 D형-젖산탈수소효소는 기존 D형-젖산탈수소효소와는 달리 피루브산보다 페닐피루브산에 대해 높은 선호도를 보이며, 촉매효율 (catalytic efficiency, kcat/Km) 비율 기준으로 약 1.7배 높은 특성을 나타냈다. 또한, in vitro 조건에서 Oenococcus oeni, Weissella confusaWeissella koreensis 유래 D형-젖산탈수소효소를 적용한 경우는 12시간 효소반응 기준 최대 60% 수준의 전환율을 보인 반면, 본 발명을 통해 발굴된 Pediococcus claussenii 유래 D형-젖산탈수소효소는 동일 반응시간 기준 페닐피루브산으로부터 D-3-페닐젖산을 100% 전환율로 생산할 수 있음을 확인하였다.Since D-lactic acid dehydrogenase catalyzes the reaction of reducing pyruvic acid to D-lactic acid, it generally shows higher substrate preference for pyruvate than phenylpyruvate. However, the D-lactate dehydrogenase derived from Pediococcus claussenii discovered through the present invention shows a higher preference for phenylpyruvate than pyruvate, unlike the existing D-lactate dehydrogenase, and the catalytic efficiency (kcat/Km) ratio is based. It showed about 1.7 times higher characteristics. In addition, in the case of applying the D-lactic acid dehydrogenase derived from Oenococcus oeni , Weissella confusa, and Weissella koreensis in in vitro conditions, the conversion rate was up to 60% based on the 12 hour enzymatic reaction, whereas the D derived from Pediococcus claussenii discovered through the present invention It was confirmed that the type-lactic acid dehydrogenase can produce D-3-phenyllactic acid at 100% conversion rate from phenylpyruvate based on the same reaction time.

도 1은 D형-젖산탈수소효소의 상대적인 비활성 비교. (위), 피루브산, wcHADH 활성 428 U mg-1; (아래), 페닐피루브산, pcHADH 활성 591 U mg-1.
도 2는 효소에 의한 페닐피루브산의 D형-페닐젖산 전환. ■, pcHADH; ▼, wcHADH; ●, ooHADH.
Figure 1 is a comparison of the relative specific activity of D-lactic acid dehydrogenase. (Top), pyruvate, wcHADH activity 428 U mg -1 ; (Bottom), phenylpyruvate, pcHADH activity 591 U mg -1 .
Figure 2 is an enzyme conversion of phenylpyruvate to D-phenyllactic acid. ■, pcHADH; ▼, wcHADH; ●, ooHADH.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)%이다.Throughout this specification, "%" used to indicate the concentration of a specific substance is (weight/weight)% for solids/solids, (weight/volume)% for solids/liquids, and Liquid/liquid is (vol/vol)%.

본 발명은 페닐피루브산을 환원시켜 페닐젖산을 생산하는 것을 목표로 한다. 이에 본 발명에서는 새로운 D형-젖산탈수소효소를 스크리닝하여 피루브산보다 페닐피루브산에 기질선호도가 높은 Pediococcus claussenii 유래 D형-젖산탈수소효소를 발굴하고 페닐피루브산의 환원반응에 대한 활성을 측정하였다.The present invention aims to produce phenyl lactic acid by reducing phenyl pyruvic acid. Accordingly, in the present invention, a novel D-lactate dehydrogenase was screened to discover a D-lactate dehydrogenase derived from Pediococcus claussenii, which has a higher substrate preference for phenylpyruvate than pyruvate, and the activity of phenylpyruvate on the reduction reaction was measured.

구체적으로, 본 발명의 상기 D형-젖산탈수소효소는 서열목록 1의 아미노산 서열을 포함하는 것을 특징으로 한다.Specifically, the D-lactic acid dehydrogenase of the present invention is characterized in that it comprises the amino acid sequence of SEQ ID NO: 1.

[서열목록 1][SEQ ID NO: 1]

MKITAYGIRE DERPYLNEWQ EKNNIEVQAV SELLDSETLE LAKGSDGVVA FQQKPYTDDI MKITAYGIRE DERPYLNEWQ EKNNIEVQAV SELLDSETLE LAKGSDGVVA FQQKPYTDDI

FSKMNRFGIH AFSLRNVGVD NLSFNALKEN NVMLSNVPAY SPNAIAELSV TQLMALIRRI FSKMNRFGIH AFSLRNVGVD NLSFNALKEN NVMLSNVPAY SPNAIAELSV TQLMALIRRI

PDFQAKMKRG DFRWEPTIAL ELNQMTVGVI GTGRIGRAAI DIFKGFGAKV ICYDVFLNPE PDFQAKMKRG DFRWEPTIAL ELNQMTVGVI GTGRIGRAAI DIFKGFGAKV ICYDVFLNPE

LEKEGAYVDT VEELYKSVDV VTLHVPALKD NYHMLDDKAF NSMKDGVFVL NYSRGSLIDT LEKEGAYVDT VEELYKSVDV VTLHVPALKD NYHMLDDKAF NSMKDGVFVL NYSRGSLIDT

AALIRGLDSG KIAGVGLDTY ENEVGIFEID HEDQPIDDEM FNNLNARRNV MITPHAAFYT AALIRGLDSG KIAGVGLDTY ENEVGIFEID HEDQPIDDEM FNNLNARRNV MITPHAAFYT

TNAVKNMVQV ALDNNRSLIE NGTSQNQVDL GTNAVKNMVQV ALDNNRSLIE NGTSQNQVDL G

그리고, 본 발명은 상기 D형-젖산탈수소효소를 암호화하는 유전자 역시 발명의 범위로 하며, 특히 서열목록 2의 유전자 서열을 포함하는 것을 특징으로 한다. 당 유전자 서열은 NCBI 데이터베이스에 등록되었다. (MH920335)In addition, the present invention is characterized in that the gene encoding the D-lactic acid dehydrogenase is also within the scope of the invention, and particularly includes the gene sequence of SEQ ID NO: 2. Sugar gene sequences were registered in the NCBI database. (MH920335)

[서열목록 2][SEQ ID NO: 2]

ATGAAAATTA CCGCGTATGG CATCCGTGAA GATGAACGCC CGTACCTGAA TGAATGGCAG ATGAAAATTA CCGCGTATGG CATCCGTGAA GATGAACGCC CGTACCTGAA TGAATGGCAG

GAGAAAAACA ATATTGAAGT GCAAGCCGTT AGTGAACTGC TGGATTCCGA AACCCTGGAA GAGAAAAACA ATATTGAAGT GCAAGCCGTT AGTGAACTGC TGGATTCCGA AACCCTGGAA

CTGGCGAAAG GCTCAGACGG TGTGGTTGCC TTTCAGCAAA AACCGTATAC GGATGACATT CTGGCGAAAG GCTCAGACGG TGTGGTTGCC TTTCAGCAAA AACCGTATAC GGATGACATT

TTCTCGAAAA TGAATCGTTT TGGCATCCAT GCGTTCAGTC TGCGCAACGT TGGTGTCGAT TTCTCGAAAA TGAATCGTTT TGGCATCCAT GCGTTCAGTC TGCGCAACGT TGGTGTCGAT

AACCTGTCCT TTAATGCGCT GAAAGAAAAC AATGTTATGC TGTCAAACGT CCCGGCCTAC AACCTGTCCT TTAATGCGCT GAAAGAAAAC AATGTTATGC TGTCAAACGT CCCGGCCTAC

TCGCCGAATG CAATTGCTGA ACTGTCAGTG ACCCAGCTGA TGGCGCTGAT TCGTCGCATC TCGCCGAATG CAATTGCTGA ACTGTCAGTG ACCCAGCTGA TGGCGCTGAT TCGTCGCATC

CCGGATTTTC AAGCCAAAAT GAAACGTGGC GACTTCCGCT GGGAACCGAC GATCGCGCTG CCGGATTTTC AAGCCAAAAT GAAACGTGGC GACTTCCGCT GGGAACCGAC GATCGCGCTG

GAACTGAATC AGATGACCGT GGGCGTTATT GGCACGGGTC GTATCGGTCG CGCGGCCATT GAACTGAATC AGATGACCGT GGGCGTTATT GGCACGGGTC GTATCGGTCG CGCGGCCATT

GATATCTTTA AAGGCTTCGG TGCAAAAGTG ATTTGCTATG ACGTTTTCCT GAACCCGGAA GATATCTTTA AAGGCTTCGG TGCAAAAGTG ATTTGCTATG ACGTTTTCCT GAACCCGGAA

CTGGAAAAAG AAGGTGCTTA TGTCGATACC GTGGAAGAAC TGTACAAAAG CGTCGACGTC CTGGAAAAAG AAGGTGCTTA TGTCGATACC GTGGAAGAAC TGTACAAAAG CGTCGACGTC

GTGACGCTGC ATGTTCCGGC ACTGAAAGAT AACTATCACA TGCTGGATGA CAAAGCTTTT GTGACGCTGC ATGTTCCGGC ACTGAAAGAT AACTATCACA TGCTGGATGA CAAAGCTTTT

AATTCTATGA AAGACGGCGT CTTCGTGCTG AACTACAGCC GTGGTTCTCT GATTGATACC AATTCTATGA AAGACGGCGT CTTCGTGCTG AACTACAGCC GTGGTTCTCT GATTGATACC

GCAGCTCTGA TCCGCGGCCT GGACTCCGGT AAAATCGCGG GCGTGGGTCT GGATACGTAT GCAGCTCTGA TCCGCGGCCT GGACTCCGGT AAAATCGCGG GCGTGGGTCT GGATACGTAT

GAAAACGAAG TTGGTATCTT CGAAATCGAT CATGAAGACC AGCCGATTGA TGACGAAATG GAAAACGAAG TTGGTATCTT CGAAATCGAT CATGAAGACC AGCCGATTGA TGACGAAATG

TTCAACAATC TGAACGCCCG TCGCAATGTG ATGATCACCC CGCACGCGGC CTTTTACACC TTCAACAATC TGAACGCCCG TCGCAATGTG ATGATCACCC CGCACGCGGC CTTTTACACC

ACGAACGCAG TTAAAAATAT GGTTCAGGTC GCTCTGGATA ACAATCGTAG CCTGATTGAA ACGAACGCAG TTAAAAATAT GGTTCAGGTC GCTCTGGATA ACAATCGTAG CCTGATTGAA

AACGGCACCT CTCAGAATCA AGTGGATCTG GGT AACGGCACCT CTCAGAATCA AGTGGATCTG GGT

나아가, 본 발명은 상기 유전자를 포함하는 재조합 프라스미드 역시 본 발명의 범위로 한다.Furthermore, in the present invention, the recombinant plasmid containing the gene is also within the scope of the present invention.

이하, 본 발명의 실시예에 대하여 설명한다.Hereinafter, an embodiment of the present invention will be described.

실시예Example

시약reagent

Pediococcus claussenii, Oenococcus oeni, Weissella confusa 및 Weissella koreensis D형-젖산탈수소효소 유전자 (이하 각 pcHADH, ooHADH, wcHADH, wkHADH로 표기)는 C-terminal His-tag을 포함하여 코돈 최적화 후 GenScript (New Jersey, USA)에서 상업적으로 합성하였다. 제한효소 (NdeI, XhoI) 는 Enzynomics (대전, 대한민국)에서 구입하였다. 수용 Escherichia coli Top10 및 E. coli BL21(DE3)은 Invitrogen (Carlsbad, CA, USA)에서 구입하였다. 유전자 서열분석은Cosmogenetech (서울, 대한민국)에서 진행하였다. 페닐피루브산 염 (소듐 페닐피루베이트) 은 Tokyo Chemical Industry (Tokyo, Japan)에서 구매하였다. 이외의 모든 시약은 Sigma-Aldrich (St Louis, USA)에서 구매하였다. Pediococcus claussenii, Oenococcus oeni, Weissella confusa, and Weissella koreensis D-Lactate Dehydrogenase Genes (hereinafter referred to as pcHADH, ooHADH, wcHADH, wkHADH) were codon-optimized, including C-terminal His-tag, and GenScript (New Jersey, USA). ) Was commercially synthesized. Restriction enzymes (NdeI, XhoI) were purchased from Enzynomics (Daejeon, Korea). Accepted Escherichia coli Top10 and E. coli BL21 (DE3) were purchased from Invitrogen (Carlsbad, CA, USA). Gene sequencing was performed at Cosmogenetech (Seoul, Korea). Phenylpyruvate salt (sodium phenylpyruvate) was purchased from Tokyo Chemical Industry (Tokyo, Japan). All other reagents were purchased from Sigma-Aldrich (St Louis, USA).

효소의 발현 및 정제Expression and purification of enzymes

각각의 유전자는 단백질 발현을 위해 수용 E. coli BL21 (DE3)로 형질전환 후 16시간 동안 lysogeny broth에서 100 μg/ml 암피실린과 함께 37 °C 배양하고 0.8 mM isopropyl

Figure pat00001
-D-1-thiogalactopyranoside (IPTG) 로 20 °C 에서 24시간 동안 유도하였다. 단백질 발현을 유도한 세포는 Ni-NTA 컬럼을 이용하여 정제하였으며, 순도는 12% SDS-PAGE로 측정하였다. 효소 농도는 Bradford 분석법 (Bradford, 1976)을 이용하여 측정하였다.For protein expression, each gene was transformed with E. coli BL21 (DE3) for protein expression, incubated at 37 °C with 100 μg/ml ampicillin in lysogeny broth for 16 hours and 0.8 mM isopropyl
Figure pat00001
-D-1-thiogalactopyranoside (IPTG) was induced at 20 °C for 24 hours. Cells induced protein expression were purified using a Ni-NTA column, and the purity was measured by 12% SDS-PAGE. The enzyme concentration was measured using the Bradford assay (Bradford, 1976).

효소의 활성 및 동력학 분석Enzyme activity and kinetics analysis

네 효소의 in vitro 활성을 분석하기 위해 30 °C 에서 340nm UV 분광광도계 (Molecular Devices, USA)를 사용하여 NADH의 산화속도를 측정함으로써 피루브산 및 페닐피루브산의 환원을 모니터링하였다. 15.0 nM 효소, 0.200 mM NADH을 첨가한 50 mM 소듐 아세테이트 (pH 5.5)에서 1.25 mM 피루브산 또는 페닐피루브산을 기질로 하여 비활성 (specific activity)을 측정하고, 각 기질에 대한 K M k cat 값을 측정하였다.To analyze the in vitro activity of the four enzymes, the reduction of pyruvate and phenylpyruvate was monitored by measuring the oxidation rate of NADH using a 340 nm UV spectrophotometer (Molecular Devices, USA) at 30 °C. In 50 mM sodium acetate (pH 5.5) with 15.0 nM enzyme and 0.200 mM NADH, specific activity was measured using 1.25 mM pyruvic acid or phenylpyruvate as a substrate, and K M and k cat values for each substrate were measured. I did.

In vitroIn vitro 페닐젖산 전환 효소반응 및 HPLC 분석 Phenyllactic acid conversion enzyme reaction and HPLC analysis

페닐피루브산의 페닐젖산 전환은 8.59 nM D형-젖산탈수소효소, 20 mM 페닐피루브산, 1,5 mM NADH, 30 mM 소듐 포메이트, 1 unit Candida boidinii 포메이트 탈수소효소를 첨가한 50 mM 소듐 아세테이트 버퍼 (pH6.5)에서 12시간 동안 진행되었다. 정해진 시간 간격으로 수득후 99 °C에서 효소를 비활성화하고 원심분리 후 0.2 μM PVDF 필터 (GE Healthcare, Pittsburgh, USA)로 필터링하고 HPLC로 분석하였다. HPLC 분석은 Bio-Rad Aminex® HPX-87H Ion exclusion column (300 mm x 7.8 mm)가 장착된 YL9100 HPLC 시스템 (YL instruments, 안양, 대한민국)에서 진행되었으며 5 mM 황산이 0.6 ml min-1 의 속도로 이동상으로 사용되었다. 페닐피루브산과 페닐젖산은 37 °C, 210 nm UV detector에서 각각 19.42분과 41.28분에 감지되었다. 또한 Daicel Chiralcel OJ-H column (250 mm x 0.46 mm, 5 μm) 및 헥산, 이소프로판올, trifluoroacetic acid가 90:10:0.1 (v:v) 비율인 이동상을 이용하여 261 nm UV detector에서 페닐젖산의 광학순수성을 측정하였다. 이 경우 D형-페닐젖산은 30분, L형-페닐젖산은 34분, 페닐피루브산은 38분에서 각각 감지되었다.The conversion of phenylpyruvate to phenyllactic acid was 8.59 nM D-lactic acid dehydrogenase, 20 mM phenylpyruvate, 1,5 mM NADH, 30 mM sodium formate, 1 unit Candida boidinii formate dehydrogenase in 50 mM sodium acetate buffer ( pH6.5) for 12 hours. After obtaining at predetermined time intervals, the enzyme was inactivated at 99 °C, centrifuged, filtered with a 0.2 μM PVDF filter (GE Healthcare, Pittsburgh, USA) and analyzed by HPLC. HPLC analysis was performed on a YL9100 HPLC system (YL instruments, Anyang, Korea) equipped with a Bio-Rad Aminex® HPX-87H Ion exclusion column (300 mm x 7.8 mm), and 5 mM sulfuric acid at a rate of 0.6 ml min -1 It was used as a mobile phase. Phenylpyruvate and phenyllactic acid were detected at 37 °C and 210 nm UV detector at 19.42 and 41.28 minutes, respectively. In addition, using a Daicel Chiralcel OJ-H column (250 mm x 0.46 mm, 5 μm) and a mobile phase with a 90:10:0.1 (v:v) ratio of hexane, isopropanol, and trifluoroacetic acid, the optical of phenyllactic acid in a 261 nm UV detector. Purity was measured. In this case, D-phenyllactic acid was detected at 30 minutes, L-phenyllactic acid was detected at 34 minutes, and phenylpyruvate at 38 minutes, respectively.

효소의 활성 스크리닝Enzyme activity screening

pcHADH, ooHADH, wcHADH, wkHADH의 활성을 스크리닝하기 위해 피루브산 및 페닐피루브산을기질로 삼아 각각의 비활성 (specific activity)을 측정하였다 (그림 1). 그 결과 wkHADH을 제외한 pcHADH, ooHADH, wcHADH이 각 기질에 대해 촉매활성을 나타냈으며, 피루브산 대해서는 wcHADH가 428 U mg-1 로 가장 높은 비활성을 보인 것에 비해 페닐피루브산에 대해서는 pcHADH가 591 U mg-1 로 네 효소중 가장 높은 비활성을 보였다.To screen the activities of pcHADH, ooHADH, wcHADH, and wkHADH, specific activities of each were measured using pyruvic acid and phenylpyruvate as substrates (Figure 1). As a result, pcHADH, ooHADH, and wcHADH except wkHADH showed catalytic activity for each substrate, and wcHADH for pyruvate showed the highest specific activity at 428 U mg -1 , whereas pcHADH for phenylpyruvate showed 591 U mg -1 . It showed the highest specific activity among the four enzymes.

효소의 동력학적 분석Enzyme kinetics analysis

각 효소의 동력학적 분석을 위해 K M k cat 의 값을 구한 결과, 표 1과 같이 pcHADH에서 가장 높은 촉매효율 (1,348 s-1 mM-1)을 보였으며 기존에 알려진 D-형 젖산탈수소효소들보다 높은 효율을 보여주었다 (표 2). 특히 pcHADH의 경우 피루브산보다 페닐피루브산에 대해 더 높은 기질선호도 (165%)를 보임으로서 피루브산이 경쟁적 억제를 할 수 있는 전세포 반응에서 페닐피루브산을 더 효율적으로 전환할 것으로 기대된다.As a result of calculating the values of K M and k cat for the kinetic analysis of each enzyme, as shown in Table 1, pcHADH showed the highest catalytic efficiency (1,348 s -1 mM -1 ), and the previously known D-type lactate dehydrogenase Showed higher efficiency than those (Table 2). In particular, pcHADH shows a higher substrate preference (165%) for phenylpyruvate than pyruvate, so it is expected that pyruvate will convert phenylpyruvate more efficiently in a whole cell reaction capable of competitive inhibition.

2-HADH2-HADH Kinetic parameters for substratesKinetic parameters for substrates

Figure pat00002


(%)
Figure pat00002


(%) PyruvatePyruvate PPAPPA k cat (s-1) k cat (s -1 ) K m (mM) K m (mM) k cat/K m
(s-1 mM-1)
k cat / K m
(s -1 mM -1 )
k cat (s-1) k cat (s -1 ) K m (mM) K m (mM) k cat/K m
(s-1 mM-1)
k cat / K m
(s -1 mM -1 )
ooHADHooHADH 674 ± 22674 ± 22 1.12 ± 0.041.12 ± 0.04 602 ± 1.43602 ± 1.43 77.8 ± 5.3677.8 ± 5.36 15.6 ± 0.5315.6 ± 0.53 5.00 ± 0.185.00 ± 0.18 0.830.83 wcHADHwcHADH 1,434 ± 2401,434 ± 240 1.28 ± 0.241.28 ± 0.24 1,124 ± 23.61,124 ± 23.6 457 ± 15.1457 ± 15.1 20.3 ± 0.6020.3 ± 0.60 22.5 ± 0.0722.5 ± 0.07 2.002.00 pcHADHpcHADH 459 ± 30459 ± 30 0.56 ± 0.010.56 ± 0.01 813 ± 46.1813 ± 46.1 472 ± 33.8472 ± 33.8 0.35 ± 0.050.35 ± 0.05 1,348 ± 99.21,348 ± 99.2 165165

Bacterial origin of
enzymes
Bacterial origin of
enzymes
PyruvatePyruvate PPAPPA ReferenceReference
k cat
(s-1)
k cat
(s -1 )
K m
(mM)
K m
(mM)
k cat/K m
(s-1 mM-1)
k cat / K m
(s -1 mM -1 )
k cat
(s-1)
k cat
(s -1 )
K m
(mM)
K m
(mM)
k cat/K m
(s-1 mM-1)
k cat / K m
(s -1 mM -1 )
L. bulgaricus ATCC11842 L. bulgaricus ATCC11842 NRNR NRNR NRNR 11.311.3 11.411.4 1.001.00 Zheng, 2013Zheng, 2013 P. pentosaceus ATCC25745 P. pentosaceus ATCC25745 320320 0.490.49 658658 173173 1.731.73 100100 Yu, 2012Yu, 2012 S. inulinus CASD S. inulinus CASD 8.858.85 3.403.40 22.6022.60 4.944.94 3.323.32 1.491.49 Wang, 2016Wang, 2016 P. acidilactici DSM20284 P. acidilactici DSM20284 287287 0.090.09 3,1573,157 305305 2.922.92 105105 Mu, 2012Mu, 2012 L. plantarum SK002 L. plantarum SK002 NRNR 0.060.06 NRNR NRNR 5.405.40 NRNR Jia, 2010Jia, 2010 B. coagulans SDM B. coagulans SDM 23.623.6 2.202.20 1111 16.516.5 4.404.40 3.903.90 Zheng, 2011Zheng, 2011 L. fermentum JN248 L. fermentum JN248 NRNR NRNR NRNR 123123 1.681.68 73.073.0 Chen, 2017Chen, 2017 Lactobacillus sp. CGMCC 9967Lactobacillus sp. CGMCC 9967 NRNR NRNR NRNR 47.347.3 0.820.82 57.757.7 Xu, 2016Xu, 2016 W. fluorescens TK1 W. fluorescens TK1 NRNR NRNR NRNR 150150 0.400.40 380380 Fujii, 2011Fujii, 2011 L. pentosus JCM1558 L. pentosus JCM1558 321321 0.120.12 2,6752,675 4040 0.800.80 50.050.0 Tokuda, 2003Tokuda, 2003

NR: 보고된 바 없음 (Not Reported)NR: Not Reported

페닐피루브산에서 페닐젖산으로의 효소적 전환Enzymatic conversion of phenylpyruvate to phenyllactic acid

페닐피루브산에 대해 활성을 보이는 세 효소 (pcHADH, ooHADH, wcHADH)를 분리정제한 후 각각 페닐피루브산을 기질로 NADH 재생 시스템을 도입한 in vitro 효소반응을 진행한 결과, 각 반응에서 모두 광학적으로 순수한 D형-페닐젖산이 생산되는 것을 확인할 수 있었다 (그림 2). 4시간 반응후 99% 이상의 D형-페닐젖산이 pcHADH에 의해 효소전환 되었으나 wcHADH와 ooHADH의 경우 12시간까지도 각각 약 60%, 25%의 전환율 수준에 그쳤다. 이를 통해, pcHADH가 D형-페닐젖산에 대해 높은 촉매 활성 및 전환효율을 구비하였음을 확인할 수 있었다.After separating and purifying the three enzymes (pcHADH, ooHADH, wcHADH) showing activity against phenylpyruvate, each reaction proceeded with an in vitro enzymatic reaction in which a NADH regeneration system was introduced using phenylpyruvate as a substrate. It was confirmed that type-phenyllactic acid was produced (Figure 2). After the reaction for 4 hours, more than 99% of D-phenyllactic acid was enzymatically converted by pcHADH, but for wcHADH and ooHADH, the conversion rate was only about 60% and 25%, respectively, up to 12 hours. Through this, it was confirmed that pcHADH had high catalytic activity and conversion efficiency for D-phenyllactic acid.

<110> Industry-University Cooperation Foundation Sogang University <120> A D-lactate dehydrogenase with high substrate preference for phenylpyruvate <130> PN190220 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 331 <212> PRT <213> Unknown <220> <223> Pediococcus claussenii <400> 1 Met Lys Ile Thr Ala Tyr Gly Ile Arg Glu Asp Glu Arg Pro Tyr Leu 1 5 10 15 Asn Glu Trp Gln Glu Lys Asn Asn Ile Glu Val Gln Ala Val Ser Glu 20 25 30 Leu Leu Asp Ser Glu Thr Leu Glu Leu Ala Lys Gly Ser Asp Gly Val 35 40 45 Val Ala Phe Gln Gln Lys Pro Tyr Thr Asp Asp Ile Phe Ser Lys Met 50 55 60 Asn Arg Phe Gly Ile His Ala Phe Ser Leu Arg Asn Val Gly Val Asp 65 70 75 80 Asn Leu Ser Phe Asn Ala Leu Lys Glu Asn Asn Val Met Leu Ser Asn 85 90 95 Val Pro Ala Tyr Ser Pro Asn Ala Ile Ala Glu Leu Ser Val Thr Gln 100 105 110 Leu Met Ala Leu Ile Arg Arg Ile Pro Asp Phe Gln Ala Lys Met Lys 115 120 125 Arg Gly Asp Phe Arg Trp Glu Pro Thr Ile Ala Leu Glu Leu Asn Gln 130 135 140 Met Thr Val Gly Val Ile Gly Thr Gly Arg Ile Gly Arg Ala Ala Ile 145 150 155 160 Asp Ile Phe Lys Gly Phe Gly Ala Lys Val Ile Cys Tyr Asp Val Phe 165 170 175 Leu Asn Pro Glu Leu Glu Lys Glu Gly Ala Tyr Val Asp Thr Val Glu 180 185 190 Glu Leu Tyr Lys Ser Val Asp Val Val Thr Leu His Val Pro Ala Leu 195 200 205 Lys Asp Asn Tyr His Met Leu Asp Asp Lys Ala Phe Asn Ser Met Lys 210 215 220 Asp Gly Val Phe Val Leu Asn Tyr Ser Arg Gly Ser Leu Ile Asp Thr 225 230 235 240 Ala Ala Leu Ile Arg Gly Leu Asp Ser Gly Lys Ile Ala Gly Val Gly 245 250 255 Leu Asp Thr Tyr Glu Asn Glu Val Gly Ile Phe Glu Ile Asp His Glu 260 265 270 Asp Gln Pro Ile Asp Asp Glu Met Phe Asn Asn Leu Asn Ala Arg Arg 275 280 285 Asn Val Met Ile Thr Pro His Ala Ala Phe Tyr Thr Thr Asn Ala Val 290 295 300 Lys Asn Met Val Gln Val Ala Leu Asp Asn Asn Arg Ser Leu Ile Glu 305 310 315 320 Asn Gly Thr Ser Gln Asn Gln Val Asp Leu Gly 325 330 <210> 2 <211> 993 <212> DNA <213> Unknown <220> <223> Pediococcus claussenii <400> 2 atgaaaatta ccgcgtatgg catccgtgaa gatgaacgcc cgtacctgaa tgaatggcag 60 gagaaaaaca atattgaagt gcaagccgtt agtgaactgc tggattccga aaccctggaa 120 ctggcgaaag gctcagacgg tgtggttgcc tttcagcaaa aaccgtatac ggatgacatt 180 ttctcgaaaa tgaatcgttt tggcatccat gcgttcagtc tgcgcaacgt tggtgtcgat 240 aacctgtcct ttaatgcgct gaaagaaaac aatgttatgc tgtcaaacgt cccggcctac 300 tcgccgaatg caattgctga actgtcagtg acccagctga tggcgctgat tcgtcgcatc 360 ccggattttc aagccaaaat gaaacgtggc gacttccgct gggaaccgac gatcgcgctg 420 gaactgaatc agatgaccgt gggcgttatt ggcacgggtc gtatcggtcg cgcggccatt 480 gatatcttta aaggcttcgg tgcaaaagtg atttgctatg acgttttcct gaacccggaa 540 ctggaaaaag aaggtgctta tgtcgatacc gtggaagaac tgtacaaaag cgtcgacgtc 600 gtgacgctgc atgttccggc actgaaagat aactatcaca tgctggatga caaagctttt 660 aattctatga aagacggcgt cttcgtgctg aactacagcc gtggttctct gattgatacc 720 gcagctctga tccgcggcct ggactccggt aaaatcgcgg gcgtgggtct ggatacgtat 780 gaaaacgaag ttggtatctt cgaaatcgat catgaagacc agccgattga tgacgaaatg 840 ttcaacaatc tgaacgcccg tcgcaatgtg atgatcaccc cgcacgcggc cttttacacc 900 acgaacgcag ttaaaaatat ggttcaggtc gctctggata acaatcgtag cctgattgaa 960 aacggcacct ctcagaatca agtggatctg ggt 993 <110> Industry-University Cooperation Foundation Sogang University <120> A D-lactate dehydrogenase with high substrate preference for phenylpyruvate <130> PN190220 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 331 <212> PRT <213> Unknown <220> <223> Pediococcus claussenii <400> 1 Met Lys Ile Thr Ala Tyr Gly Ile Arg Glu Asp Glu Arg Pro Tyr Leu 1 5 10 15 Asn Glu Trp Gln Glu Lys Asn Asn Ile Glu Val Gln Ala Val Ser Glu 20 25 30 Leu Leu Asp Ser Glu Thr Leu Glu Leu Ala Lys Gly Ser Asp Gly Val 35 40 45 Val Ala Phe Gln Gln Lys Pro Tyr Thr Asp Asp Ile Phe Ser Lys Met 50 55 60 Asn Arg Phe Gly Ile His Ala Phe Ser Leu Arg Asn Val Gly Val Asp 65 70 75 80 Asn Leu Ser Phe Asn Ala Leu Lys Glu Asn Asn Val Met Leu Ser Asn 85 90 95 Val Pro Ala Tyr Ser Pro Asn Ala Ile Ala Glu Leu Ser Val Thr Gln 100 105 110 Leu Met Ala Leu Ile Arg Arg Ile Pro Asp Phe Gln Ala Lys Met Lys 115 120 125 Arg Gly Asp Phe Arg Trp Glu Pro Thr Ile Ala Leu Glu Leu Asn Gln 130 135 140 Met Thr Val Gly Val Ile Gly Thr Gly Arg Ile Gly Arg Ala Ala Ile 145 150 155 160 Asp Ile Phe Lys Gly Phe Gly Ala Lys Val Ile Cys Tyr Asp Val Phe 165 170 175 Leu Asn Pro Glu Leu Glu Lys Glu Gly Ala Tyr Val Asp Thr Val Glu 180 185 190 Glu Leu Tyr Lys Ser Val Asp Val Val Thr Leu His Val Pro Ala Leu 195 200 205 Lys Asp Asn Tyr His Met Leu Asp Asp Lys Ala Phe Asn Ser Met Lys 210 215 220 Asp Gly Val Phe Val Leu Asn Tyr Ser Arg Gly Ser Leu Ile Asp Thr 225 230 235 240 Ala Ala Leu Ile Arg Gly Leu Asp Ser Gly Lys Ile Ala Gly Val Gly 245 250 255 Leu Asp Thr Tyr Glu Asn Glu Val Gly Ile Phe Glu Ile Asp His Glu 260 265 270 Asp Gln Pro Ile Asp Asp Glu Met Phe Asn Asn Leu Asn Ala Arg Arg 275 280 285 Asn Val Met Ile Thr Pro His Ala Ala Phe Tyr Thr Thr Asn Ala Val 290 295 300 Lys Asn Met Val Gln Val Ala Leu Asp Asn Asn Arg Ser Leu Ile Glu 305 310 315 320 Asn Gly Thr Ser Gln Asn Gln Val Asp Leu Gly 325 330 <210> 2 <211> 993 <212> DNA <213> Unknown <220> <223> Pediococcus claussenii <400> 2 atgaaaatta ccgcgtatgg catccgtgaa gatgaacgcc cgtacctgaa tgaatggcag 60 gagaaaaaca atattgaagt gcaagccgtt agtgaactgc tggattccga aaccctggaa 120 ctggcgaaag gctcagacgg tgtggttgcc tttcagcaaa aaccgtatac ggatgacatt 180 ttctcgaaaa tgaatcgttt tggcatccat gcgttcagtc tgcgcaacgt tggtgtcgat 240 aacctgtcct ttaatgcgct gaaagaaaac aatgttatgc tgtcaaacgt cccggcctac 300 tcgccgaatg caattgctga actgtcagtg acccagctga tggcgctgat tcgtcgcatc 360 ccggattttc aagccaaaat gaaacgtggc gacttccgct gggaaccgac gatcgcgctg 420 gaactgaatc agatgaccgt gggcgttatt ggcacgggtc gtatcggtcg cgcggccatt 480 gatatcttta aaggcttcgg tgcaaaagtg atttgctatg acgttttcct gaacccggaa 540 ctggaaaaag aaggtgctta tgtcgatacc gtggaagaac tgtacaaaag cgtcgacgtc 600 gtgacgctgc atgttccggc actgaaagat aactatcaca tgctggatga caaagctttt 660 aattctatga aagacggcgt cttcgtgctg aactacagcc gtggttctct gattgatacc 720 gcagctctga tccgcggcct ggactccggt aaaatcgcgg gcgtgggtct ggatacgtat 780 gaaaacgaag ttggtatctt cgaaatcgat catgaagacc agccgattga tgacgaaatg 840 ttcaacaatc tgaacgcccg tcgcaatgtg atgatcaccc cgcacgcggc cttttacacc 900 acgaacgcag ttaaaaatat ggttcaggtc gctctggata acaatcgtag cctgattgaa 960 aacggcacct ctcagaatca agtggatctg ggt 993

Claims (12)

서열번호 1의 아미노산 서열로 이루어진 D형-젖산탈수소효소(D-lactate dehydrogenase)를 포함하는 D-3-페닐젖산(D-3-phenyllactate) 생산용 조성물.A composition for producing D-3-phenyllactate containing D-lactate dehydrogenase (D-lactate dehydrogenase) consisting of the amino acid sequence of SEQ ID NO: 1. 서열번호 2의 염기서열로 표시되는 유전자가 형질도입된 D-3-페닐젖산(D-3-phenyllactate) 생산용 미생물.A microorganism for producing D-3-phenyllactate transduced with the gene represented by the nucleotide sequence of SEQ ID NO: 2. 제2항에 있어서, 상기 유전자는 페디오코쿠스 클라우제니(Pediococcus claussenii)로부터 유래한 것인, D-3-페닐젖산 생산용 미생물.The microorganism for producing D-3- phenyllactic acid according to claim 2, wherein the gene is derived from Pediococcus claussenii . 제2항에 있어서, 미생물은 대장균(Escherichia coli)인 것인, D-3-페닐젖산 생산용 미생물.The microorganism for producing D-3-phenyllactic acid according to claim 2, wherein the microorganism is Escherichia coli . 서열번호 2의 염기서열로 표시되는 유전자가 형질도입된 D-3-페닐젖산(D-3-phenyllactate) 생산용 미생물 또는 이의 배양액을 포함하는 D-3-페닐젖산 생산용 조성물.A composition for producing D-3-phenyllactic acid comprising a microorganism for producing D-3-phenyllactate or a culture solution thereof transduced with the gene represented by the nucleotide sequence of SEQ ID NO: 2. 제5항에 있어서, 상기 유전자는 페디오코쿠스 클라우제니(Pediococcus claussenii)로부터 유래한 것인, D-3-페닐젖산 생산용 조성물.The composition for producing D-3- phenyllactic acid according to claim 5, wherein the gene is derived from Pediococcus claussenii . 제5항에 있어서, 미생물은 대장균(Escherichia coli)인 것인, D-3-페닐젖산 생산용 조성물.The composition for producing D-3-phenyllactic acid according to claim 5, wherein the microorganism is Escherichia coli . 제5항에 있어서, 조성물은 기질로서 페닐피루브산을 추가적으로 포함하는 것인, D-3-페닐젖산 생산용 조성물.The composition for producing D-3-phenyllactic acid according to claim 5, wherein the composition further comprises phenylpyruvate as a substrate. 서열번호 2의 염기서열로 표시되는 유전자가 형질도입된 D-3-페닐젖산(D-3-phenyllactate) 생산용 미생물을 배양하는 배양 단계를 포함하는 D-3-페닐젖산 생산방법.D-3-phenyl lactic acid production method comprising a culture step of culturing a microorganism for producing D-3-phenyllactate transduced with the gene represented by the nucleotide sequence of SEQ ID NO: 2. 제9항에 있어서, 상기 유전자는 페디오코쿠스 클라우제니(Pediococcus claussenii)로부터 유래한 것인, D-3-페닐젖산 생산방법.The method of claim 9, wherein the gene is derived from Pediococcus claussenii . 제9항에 있어서, 미생물은 대장균(Escherichia coli)인 것인, D-3-페닐젖산 생산방법.The method for producing D-3-phenyllactic acid according to claim 9, wherein the microorganism is Escherichia coli . 제9항에 있어서, 배양 단계는 페닐피루브산을 기질로 하여 수행되는 것인, D-3-페닐젖산 생산방법.The method for producing D-3-phenyllactic acid according to claim 9, wherein the culturing step is performed using phenylpyruvate as a substrate.
KR1020190078219A 2019-06-28 2019-06-28 A D-lactate dehydrogenase with high substrate preference for phenylpyruvate KR20210001722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190078219A KR20210001722A (en) 2019-06-28 2019-06-28 A D-lactate dehydrogenase with high substrate preference for phenylpyruvate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190078219A KR20210001722A (en) 2019-06-28 2019-06-28 A D-lactate dehydrogenase with high substrate preference for phenylpyruvate

Publications (1)

Publication Number Publication Date
KR20210001722A true KR20210001722A (en) 2021-01-06

Family

ID=74128792

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190078219A KR20210001722A (en) 2019-06-28 2019-06-28 A D-lactate dehydrogenase with high substrate preference for phenylpyruvate

Country Status (1)

Country Link
KR (1) KR20210001722A (en)

Similar Documents

Publication Publication Date Title
US20210254109A1 (en) D-Glucaric Acid Producing Bacterium, and Method for Manufacturing D-Glucaric Acid
EP1748076B1 (en) Enzymatic process for producing hydroxycarboxylic acid
CN105543201A (en) Cephalosporin c acylase mutant
Yang et al. Pathway construction in Corynebacterium glutamicum and strain engineering to produce rare sugars from glycerol
WO2017143944A1 (en) Penicillin g acylase mutant
CN112941043B (en) Carbonyl reductase mutant and application thereof in preparation of chiral beta&#39; -hydroxy-beta-amino acid ester
JP2018509169A (en) Biocatalyst production of L-fucose
AU2013227067A1 (en) Hydrocarbon synthase gene, and use thereof
Li et al. Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration
EP3799600A1 (en) Microorganisms and method for producing glycolic acid from pentoses and hexoses
KR20150064802A (en) Yeast cell with inactivated glycerol-3-phosphate dehydrogenase and activated glyceraldehyde-3-phosphate dehydrogenase and method of producing lactate using the same
CN110387361A (en) Aldehyde ketone reductase and application thereof
CN108410831A (en) Ketone acid reductase, gene, engineering bacteria and the application in synthesis of chiral fragrance 2- hydroxy acids
KR20210001722A (en) A D-lactate dehydrogenase with high substrate preference for phenylpyruvate
KR101217064B1 (en) Engineered escherichia coli producing d-xylonic acid from d-xylose and method for d-xylonic acid production using the same
CN115896081A (en) Aspartase mutant and application thereof
Nakamura et al. Production of (R)-3-chloro-1, 2-propanediol from prochiral 1, 3-dichloro-2-propanol by Corynebacterium sp. strain N-1074
KR102200050B1 (en) D-lactate dehydrogenases with improved substrate preference for phenylpyruvic acid
KR20150065213A (en) Yeast cell having reduced ethanol productivity and use thereof
CN111996220B (en) Method for synthesizing spermidine by biological method
KR102212488B1 (en) A Novel Enzyme for Production of D-threonine, and A Method for Sterospecific Preparing D-threonine Using The Same
KR102018269B1 (en) Method of Producing 2-hydroxy-gamma-butyrolactone
WO2015019674A1 (en) Method for producing flavin adenine dinucleotide-binding glucose dehydrogenase originated from genus mucor
CN115948482B (en) Construction method and application of 2, 4-dihydroxybutyric acid biosynthesis pathway
WO2019200874A1 (en) Engineering bacteria and use thereof in production of danshensu

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application