KR20200145701A - 음성 신호를 이용한 발화 동영상 생성 방법 및 장치 - Google Patents

음성 신호를 이용한 발화 동영상 생성 방법 및 장치 Download PDF

Info

Publication number
KR20200145701A
KR20200145701A KR1020200070748A KR20200070748A KR20200145701A KR 20200145701 A KR20200145701 A KR 20200145701A KR 1020200070748 A KR1020200070748 A KR 1020200070748A KR 20200070748 A KR20200070748 A KR 20200070748A KR 20200145701 A KR20200145701 A KR 20200145701A
Authority
KR
South Korea
Prior art keywords
feature vector
video
person
speech
encoder
Prior art date
Application number
KR1020200070748A
Other languages
English (en)
Other versions
KR102346755B1 (ko
Inventor
채경수
황금별
박성우
장세영
Original Assignee
주식회사 머니브레인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 머니브레인 filed Critical 주식회사 머니브레인
Priority to US17/620,867 priority Critical patent/US20220399025A1/en
Priority to PCT/KR2020/007975 priority patent/WO2020256472A1/ko
Publication of KR20200145701A publication Critical patent/KR20200145701A/ko
Application granted granted Critical
Publication of KR102346755B1 publication Critical patent/KR102346755B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/02Methods for producing synthetic speech; Speech synthesisers
    • G10L13/027Concept to speech synthesisers; Generation of natural phrases from machine-based concepts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2368Multiplexing of audio and video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/439Processing of audio elementary streams
    • H04N21/4394Processing of audio elementary streams involving operations for analysing the audio stream, e.g. detecting features or characteristics in audio streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)

Abstract

음성 신호를 이용한 발화 동영상 생성 방법 및 장치가 개시된다. 개시되는 일 실시예에 따른 발화 동영상 생성 장치는, 하나 이상의 프로세서들, 및 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치로서, 소정 인물의 발화 동영상 중 비디오 부분인 인물 배경 영상을 입력 받고, 인물 배경 영상으로부터 영상 특징 벡터를 추출하는 제1 인코더, 발화 동영상 중 오디오 부분인 발화 오디오 신호를 입력 받고, 발화 오디오 신호로부터 음성 특징 벡터를 추출하는 제2 인코더, 제1 인코더에서 출력되는 영상 특징 벡터 및 제2 인코더에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성하는 조합부, 및 조합 벡터를 입력으로 하여 인물의 발화 동영상을 복원하는 디코더를 포함한다.

Description

음성 신호를 이용한 발화 동영상 생성 방법 및 장치{METHOD AND APPARATUS FOR GENERATING SPEECH VIDEO OF USING AUDIO SIGNAL}
본 발명의 실시예는 머신 러닝에 기반한 발화 동영상 생성 기술과 관련된다.
최근, 인공 지능 분야의 기술 발전에 따라 다양한 유형의 콘텐츠가 인공 지능 기술에 기초하여 생성되고 있다. 그 일 예로, 어떤 전달하고자 하는 음성 메시지가 있을 때, 그 음성 메시지를 유명 인물(예를 들어, 대통령 등)이 말하는 것과 같은 발화 동영상을 생성하여 사람들의 주의를 끌고자 하는 경우가 있다. 이는 유명 인물의 영상에서 유명 인물이 특정 메시지를 말하는 것처럼 입 모양 등을 특정 메시지에 맞게 생성하여 구현하게 된다.
이를 위하여, 종래에는 기존의 발화 영상에서 먼저 음성과 관련된 랜드마크 또는 키포인트를 생성하여 이에 대한 학습을 수행한 후, 학습된 모델을 이용하여 입력된 음성에 맞는 영상을 합성하는 방식을 사용하였다. 그러나, 이러한 종래 기술의 경우 학습을 위하여 키포인트를 추출하고 이를 표준 공간(화면 중심에서 정면을 바라보는 위치)으로 변환 및 역변환하는 과정이 필수적으로 요구되며, 키포인트를 합성하는 단계와 영상을 합성하는 단계가 필요한 바 그 절차가 복잡하다는 문제점이 있다.
한편, 키포인트를 사용하지 않는 방식의 경우, 얼굴 부분만 잘라 크기 및 위치를 정렬한 후 입력된 음성에 맞는 영상을 합성하는 방식을 사용하여, 인물의 자연스러운 움직임을 반영하지 못하기 때문에 결과물이 부자연스럽다는 문제점이 있다.
한국등록특허공보 제10-1177408호(2012.08.27)
개시되는 실시예는 발화 시 발생하는 움직임 또는 제스쳐를 반영할 수 있는 발화 동영상 생성 방법 및 장치를 제공하기 위한 것이다.
개시되는 실시예는 디코더로 입력되는 조합 벡터의 위상을 일정하게 하여 학습의 효율을 높일 수 있는 발화 동영상 생성 방법 및 장치를 제공하기 위한 것이다.
개시되는 일 실시예에 따른 발화 동영상 생성 장치는, 하나 이상의 프로세서들, 및 상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치로서, 소정 인물의 발화 동영상 중 비디오 부분인 인물 배경 영상을 입력 받고, 상기 인물 배경 영상으로부터 영상 특징 벡터를 추출하는 제1 인코더; 상기 발화 동영상 중 오디오 부분인 발화 오디오 신호를 입력 받고, 상기 발화 오디오 신호로부터 음성 특징 벡터를 추출하는 제2 인코더; 상기 제1 인코더에서 출력되는 영상 특징 벡터 및 상기 제2 인코더에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성하는 조합부; 및 상기 조합 벡터를 입력으로 하여 상기 인물의 발화 동영상을 복원하는 디코더를 포함한다.
상기 영상 특징 벡터는, 높이(Heigh)×폭(Width)×채널(Channel) 형태의 3차원 텐서이고, 상기 음성 특징 벡터는, 채널(Channel) 형태의 1차원 벡터이며, 상기 조합부는, 상기 음성 특징 벡터를 높이 방향으로 상기 영상 특징 벡터의 높이만큼 복사하고, 폭 방향으로 상기 영상 특징 벡터의 폭만큼 복사하여 상기 영상 특징 벡터와 동일한 형태의 텐서로 만들고, 상기 영상 특징 벡터와 동일한 형태의 음성 특징 벡터와 상기 영상 특징 벡터를 이어 붙여(Concatenate) 조합 벡터를 생성할 수 있다.
상기 제1 인코더로 입력되는 인물 배경 영상은, 상기 인물의 발화와 관련된 부분이 마스크로 가려지고, 상기 인물의 얼굴 및 상반신이 포함된 것일 수 있다.
상기 영상 특징 벡터는, 높이(Heigh)×폭(Width)×채널(Channel) 형태의 3차원 텐서이고, 상기 음성 특징 벡터는, 채널(Channel) 형태의 1차원 벡터이며, 상기 제2 인코더는, 상기 영상 특징 벡터의 높이(Heigh)×폭(Width)과 동일한 크기를 가지는 음성 특징 벡터를 출력하도록 마련되고, 상기 조합부는, 상기 음성 특징 벡터를 상기 영상 특징 벡터의 높이(Heigh)×폭(Width)과 대응되는 형태의 2차원 텐서로 재배열하고, 재배열된 음성 특징 벡터를 상기 영상 특징 벡터의 각 채널마다 곱하여 조합 벡터를 생성할 수 있다.
상기 제1 인코더로 입력되는 인물 배경 영상은, 상기 인물의 발화와 관련된 부분이 마스크로 가려지고, 상기 인물의 얼굴 및 상반신이 포함된 것일 수 있다.
상기 영상 특징 벡터는, 높이(Heigh)×폭(Width)×채널(Channel) 형태의 3차원 텐서이고, 상기 음성 특징 벡터는, 채널(Channel) 형태의 1차원 벡터이며, 상기 제2 인코더는, 상기 영상 특징 벡터의 채널(Channel)과 동일한 크기를 가지는 음성 특징 벡터를 출력하도록 마련되고, 상기 조합부는, 상기 음성 특징 벡터를 상기 영상 특징 벡터의 채널과 대응되는 형태의 3차원 텐서로 재배열하고, 재배열된 음성 특징 벡터를 상기 영상 특징 벡터의 각 높이 및 폭에 곱하여 조합 벡터를 생성할 수 있다.
상기 제1 인코더로 입력되는 인물 배경 영상은, 상기 인물의 발화와 관련된 부분이 마스크로 가려지고, 상기 인물의 얼굴 및 상반신이 포함된 것일 수 있다.
개시되는 일 실시예에 따른 발화 동영상 생성 방법은, 하나 이상의 프로세서들, 및 상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치에서 수행되는 방법으로서, 소정 인물의 발화 동영상 중 비디오 부분인 인물 배경 영상을 입력 받고, 상기 인물 배경 영상으로부터 영상 특징 벡터를 추출하는 동작; 상기 발화 동영상 중 오디오 부분인 발화 오디오 신호를 입력 받고, 상기 발화 오디오 신호로부터 음성 특징 벡터를 추출하는 동작; 상기 제1 인코더에서 출력되는 영상 특징 벡터 및 상기 제2 인코더에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성하는 동작; 및 상기 조합 벡터를 입력으로 하여 상기 인물의 발화 동영상을 복원하는 동작을 포함한다.
개시되는 실시예에 의하면, 발화와 관련된 부분을 마스킹 처리한 상태에서 얼굴 및 상반신이 포함된 인물 배경 영상을 입력으로 하여 학습하기 때문에, 사람의 발화 시 나타나는 얼굴 움직임, 목 움직임, 및 어깨 움직임 등과 같은 그 사람만의 독특한 제스쳐 또는 특징을 반영하여 발화 동영상을 생성할 수 있으며, 그로 인해 보다 자연스러운 발화 동영상을 생성할 수 있게 된다.
또한, 영상 특징 벡터와 음성 특징 벡터를 곱하여 조합 벡터를 생성함으로써, 디코더로 입력되는 특징 벡터들의 위상을 일정하게 하여 학습의 효율성을 높임과 동시에 비디오 부분과 오디오 부분의 공간적 연관성을 학습하도록 유도할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 발화 동영상 생성 장치의 구성을 나타낸 블록도
도 2는 본 발명의 일 실시예에 따른 발화 동영상 생성 장치를 통해 발화 동영상을 추론하는 상태를 나타낸 도면
도 3은 본 발명의 일 실시예에 따른 발화 동영상 생성 장치에서 조합 벡터를 생성하는 과정을 나타낸 도면
도 4는 본 발명의 조합부에서 영상 특징 벡터와 음성 특징 벡터를 곱하여 조합 벡터를 생성하는 일 실시예를 나타낸 도면
도 5는 본 발명의 조합부에서 영상 특징 벡터와 음성 특징 벡터를 곱하여 조합 벡터를 생성하는 다른 실시예를 나타낸 도면
도 6은 본 발명의 다른 실시예에 따른 발화 동영상 생성 장치의 구성을 나타낸 도면
도 7은 본 발명의 또 다른 실시예에 따른 발화 동영상 생성 장치의 구성을 나타낸 도면
도 8은 본 발명의 실시예에서 복수의 인물들에 대한 발화 동영상을 생성하는 신경망 구조를 나타낸 도면
도 9는 예시적인 실시예들에서 사용되기에 적합한 컴퓨팅 장치를 포함하는 컴퓨팅 환경을 예시하여 설명하기 위한 블록도
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.
이하의 설명에 있어서, 신호 또는 정보의 "전송", "통신", "송신", "수신" 기타 이와 유사한 의미의 용어는 일 구성요소에서 다른 구성요소로 신호 또는 정보가 직접 전달되는 것뿐만이 아니라 다른 구성요소를 거쳐 전달되는 것도 포함한다. 특히 신호 또는 정보를 일 구성요소로 "전송" 또는 "송신"한다는 것은 그 신호 또는 정보의 최종 목적지를 지시하는 것이고 직접적인 목적지를 의미하는 것이 아니다. 이는 신호 또는 정보의 "수신"에 있어서도 동일하다. 또한 본 명세서에 있어서, 2 이상의 데이터 또는 정보가 "관련"된다는 것은 하나의 데이터(또는 정보)를 획득하면, 그에 기초하여 다른 데이터(또는 정보)의 적어도 일부를 획득할 수 있음을 의미한다.
또한, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로 사용될 수 있다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
도 1은 본 발명의 일 실시예에 따른 발화 동영상 생성 장치의 구성을 나타낸 블록도이다. 도 1을 참조하면, 발화 동영상 생성 장치(100)는 제1 인코더(102), 제2 인코더(104), 조합부(106), 및 디코더(108)를 포함할 수 있다.
도 1에 도시된 발화 동영상 생성 장치(100)의 구성은, 기능적으로 구분되는 기능 요소들을 나타낸 것으로서, 본 발명에 따른 기능을 수행하기 위하여 상호 기능적으로 연결될 수 있으며, 어느 하나 이상의 구성이 실제 물리적으로는 서로 통합되어 구현될 수도 있다.
예시적인 실시예에서, 발화 동영상 생성 장치(100)는 합성곱 신경망(Convolutional Neural Network : CNN) 기반의 머신 러닝 기술로 구현될 수 있으나, 머신 러닝 기술이 이에 한정되는 것은 아니며 그 이외의 다양한 머신 러닝 기술이 적용될 수 있다. 이하에서는, 발화 동영상 생성을 위한 학습 과정을 위주로 설명하기로 한다.
제1 인코더(102)는 인물 배경 영상을 입력으로 하여 영상 특징 벡터를 추출하도록 학습되는 머신 러닝 모델일 수 있다. 이하, "벡터"는 "텐서"를 포함하는 의미로 사용될 수 있다.
여기서, 제1 인코더(102)로 입력되는 인물 배경 영상은 인물이 발화하는(말을 하는) 영상이다. 인물 배경 영상은 인물의 얼굴과 상반신이 포함된 영상일 수 있다. 즉, 인물 배경 영상은 해당 인물이 발화 할 때 나타나는 얼굴, 목, 및 어깨 등의 움직임이 보여지도록 얼굴뿐만 아니라 상반신이 포함된 영상일 수 있다.
제1 인코더(102)로 입력되는 인물 배경 영상에서 발화와 관련된 부분은 마스킹(Masking) 처리될 수 있다. 즉, 인물 배경 영상에서 발화와 관련된 부분(예를 들어, 입 및 입 주위 부분 등)은 마스크(M)로 가릴 수 있다. 또한, 마스킹 처리 시 인물 배경 영상에서 인물의 발화에 따른 얼굴 움직임, 목 움직임, 및 어깨 움직임 등과 관련된 부분은 마스킹 처리되지 않도록 할 수 있다. 그러면, 제1 인코더(102)에서는 인물 배경 영상에서 발화와 관련된 부분을 제외한 부분의 영상 특징 벡터를 추출하게 된다.
제1 인코더(102)는 하나 이상의 합성곱 층(Convolutional Layer) 및 하나 이상의 풀링 층(Pooling Layer)를 포함할 수 있다. 합성곱 층은 입력되는 인물 배경 영상에서 기 설정된 크기(예를 들어, 3×3 픽셀 크기)의 필터를 일정 간격으로 이동시키면서 해당 필터에 대응되는 픽셀들의 특징 값을 추출할 수 있다. 풀링 층은 합성곱 층의 출력을 입력으로 받아 다운 샘플링(Down Sampling)을 수행할 수 있다.
제2 인코더(104)는 발화 오디오 신호를 입력으로 하여 음성 특징 벡터를 추출하도록 학습되는 머신 러닝 모델이다. 여기서, 발화 오디오 신호는 제1 인코더(102)로 입력되는 인물 배경 영상(즉, 인물이 발화하는 영상) 중 오디오 부분에 해당한다. 다시 말하면, 인물이 발화하는 동영상에서 비디오 부분은 제1 인코더(102)로 입력되고, 오디오 부분은 제2 인코더(104)로 입력될 수 있다. 제2 인코더(104)는 하나 이상의 합성곱 층(Convolutional Layer) 및 하나 이상의 풀링 층(Pooling Layer)를 포함할 수 있으나, 제2 인코더(104)의 신경망 구조가 이에 한정되는 것은 아니다.
제1 인코더(102)로 입력되는 인물 배경 영상과 제2 인코더(104)로 입력되는 발화 오디오 신호의 시간은 서로 동기화 될 수 있다. 즉, 인물이 발화하는 동영상에서 동일한 시간 대의 구간 중 비디오는 제1 인코더(102)로 입력되고, 오디오는 제2 인코더(104)로 입력될 수 있다. 이때, 인물 배경 영상 및 발화 오디오 신호는 기 설정된 단위 시간(예를 들어, 하나의 프레임 또는 복수 개의 연속된 프레임 등)마다 제1 인코더(102) 및 제2 인코더(104)로 입력될 수 있다.
조합부(106)는 제1 인코더(102)에서 출력되는 영상 특징 벡터 및 제2 인코더(104)에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성할 수 있다. 예시적인 실시예에서, 조합부(106)는 영상 특징 벡터와 음성 특징 벡터를 연결(Concatenate)하여 조합 벡터를 생성할 수 있으나, 이에 한정되는 것은 아니다.
디코더(108)는 조합부(106)에서 출력되는 조합 벡터를 입력으로 하여 인물의 발화 동영상을 복원할 수 있다. 구체적으로, 디코더(108)는 제2 인코더(104)에서 출력되는 음성 특징 벡터(즉, 인물이 발화하는 동영상에서 오디오 부분의 특징)를 기반으로 제1 인코더(102)에서 출력되는 영상 특징 벡터(즉, 인물이 발화하는 동영상에서 비디오 부분으로, 발화 관련된 부분이 마스크로 가려진 부분의 특징)의 마스크(M)로 가려진 부분(즉, 발화와 관련된 부분)을 복원하도록 학습되는 머신 러닝 모델일 수 있다. 즉, 디코더(108)는 인물 배경 영상에서 발화와 관련된 부분이 마스킹 된 경우, 오디오 신호를 이용하여 마스킹 된 영역을 복원하도록 학습되는 모델일 수 있다.
예시적인 실시예에서, 디코더(108)는 제1 인코더(102)에서 출력되는 영상 특징 벡터와 제2 인코더(104)에서 출력되는 음성 특징 벡터가 조합된 조합 벡터에 역 합성곱(Deconvolution)을 수행한 후 업 샘플링(Up Sampling)을 수행하여 발화 동영상을 생성할 수 있다.
디코더(108)는 생성된 발화 동영상과 원래의 발화 동영상(즉, 정답값)을 비교하여, 생성된 발화 동영상(즉, 오디오 부분을 통해 발화 관련된 부분을 복원한 동영상)이 원래의 발화 동영상에 가까워지도록 학습 파라미터(예를 들어, 손실 함수, 소프트맥스 함수 등)를 조절할 수 있다.
도 2는 본 발명의 일 실시예에 따른 발화 동영상 생성 장치를 통해 발화 동영상을 추론하는 상태를 나타낸 도면이다.
도 2를 참조하면, 제1 인코더(102)는 인물 배경 영상을 입력받는다. 여기서, 인물 배경 영상은 학습 과정에서 사용된 인물 배경 영상일 수 있다. 인물 배경 영상은 인물의 얼굴과 상반이 포함된 영상일 수 있다. 또한, 인물 배경 영상은 발화와 관련된 부분이 마스크(M)로 가려질 수 있다. 제1 인코더(102)는 인물 배경 영상으로부터 영상 특징 벡터를 추출할 수 있다.
제2 인코더(104)는 발화 오디오 신호를 입력받는다. 여기서, 발화 오디오 신호는 제1 인코더(102)로 입력되는 인물 배경 영상과는 관련 없는 것일 수 있다. 예를 들어, 발화 오디오 신호는 인물 배경 영상 속 인물과는 다른 인물의 발화 오디오 신호일 수 있다. 그러나, 이에 한정되는 것은 아니며 발화 오디오 신호는 인물 배경 영상 속 인물이 발화한 것일 수도 있다. 이때, 해당 인물의 발화는 인물 배경 영상과는 관련 없는 배경 또는 상황에서 발화된 것일 수 있다. 제2 인코더(104)는 발화 오디오 신호로부터 음성 특징 벡터를 추출할 수 있다.
조합부(106)는 제1 인코더(102)에서 출력되는 영상 특징 벡터 및 제2 인코더(104)에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성할 수 있다.
디코더(108)는 조합 벡터를 입력으로 하여 발화 동영상을 복원하여 출력할 수 있다. 즉, 디코더(108)는 제2 인코더(104)에서 출력되는 음성 특징 벡터를 기반으로 인물 배경 영상의 발화와 관련된 부분을 복원하여 발화 동영상을 생성할 수 있다. 이 경우, 제2 인코더(104)로 입력되는 발화 오디오 신호는 인물 배경 영상과는 관련 없는 발화이나(예를 들어, 인물 배경 영상 속 인물이 발화한 것은 아니나), 인물 배경 영상 속 인물이 발화하는 것처럼 발화 동영상이 생성되게 된다.
개시되는 실시예에 의하면, 발화와 관련된 부분을 마스킹 처리한 상태에서 얼굴 및 상반신이 포함된 인물 배경 영상을 입력으로 하여 학습하기 때문에, 사람의 발화 시 나타나는 얼굴 움직임, 목 움직임, 및 어깨 움직임 등과 같은 그 사람만의 독특한 제스쳐 또는 특징을 반영하여 발화 동영상을 생성할 수 있으며, 그로 인해 보다 자연스러운 발화 동영상을 생성할 수 있게 된다.
또한, 발화 동영상 중 비디오 부분은 제1 인코더(102)로 입력하고, 오디오 부분은 제2 인코더(104)로 입력하며, 마스킹 처리된 발화와 관련된 부분을 오디오로부터 복원함으로써, 별도의 키포인트 예측 과정 없이 단일 신경망 모델을 통해 발화 동영상을 생성할 수 있게 된다.
또한, 얼굴뿐만 아니라 상반신도 포함된 발화 동영상을 생성하게 되므로, 해당 인물의 다른 신체 부분(예를 들어, 몸통이나 팔 다리 등)에 대해 추가적인 변환 또는 합성 과정 없이 자연스럽게 붙여 넣을 수 있게 된다.
도 3은 본 발명의 일 실시예에 따른 발화 동영상 생성 장치에서 조합 벡터를 생성하는 과정을 나타낸 도면이다.
도 3을 참조하면, 제1 인코더(102)에서 출력되는 영상 특징 벡터(A)는 높이(Heigh)×폭(Width)×채널(Channel) 형태의 데이터 구조(즉, 3차원 형태의 텐서)를 가지게 된다. 제1 인코더(102)는 인물 배경 영상이 입력되는 경우, 인물 배경 영상을 높이(Heigh) 및 폭(Width) 방향의 축으로 다운 샘플링 하여 압축된 형태의 영상 특징 벡터(A)(H, W, CI)를 출력하게 된다.
제2 인코더(104)에서 출력되는 음성 특징 벡터(B)는 채널(Channel) 형태의 데이터 구조(즉, 1차원 형태의 벡터)를 가지게 된다. 제2 인코더(104)는 발화 오디오 신호가 입력되는 경우, 발화 오디오 신호를 시간(Time) 축으로 다운 샘플링 하여 압축된 형태의 음성 특징 벡터(B)(CA)를 출력하게 된다.
여기서, 조합부(106)는 음성 특징 벡터(B)를 높이(Heigh) 방향으로 영상 특징 벡터(A)의 높이만큼 복사하고, 폭(Width) 방향으로 영상 특징 벡터(A)의 폭만큼 복사하여 영상 특징 벡터(A)와 동일한 형태의 벡터로 만들 수 있다((CA)→)(H, W, CA)). 즉, 조합부(106)는 음성 특징 벡터(B)를 영상 특징 벡터(A)와 동일한 높이(Heigh)×폭(Width)×채널(Channel) 형태의 텐서로 만들 수 있다.
다음으로, 조합부(106)는 음성 특징 벡터(B)(H, W, CA)와 영상 특징 벡터(A)(H, W, CI)를 이어 붙여(Concatenate) 조합 벡터(H, W, CI+CA)를 생성할 수 있다.
여기서는, 조합부(106)가 영상 특징 벡터(A)와 음성 특징 벡터(B)를 이어 붙여(Concatenate) 조합 벡터를 생성하는 것으로 설명하였으나, 이에 한정되는 것은 아니며 영상 특징 벡터(A)와 음성 특징 벡터(B)를 곱하여(Multiplicate) 조합 벡터를 생성할 수도 있다. 이 경우, 디코더(108)로 입력되는 특징 벡터들의 위상을 일정하게 하여 학습의 효율성을 높임과 동시에 비디오 부분과 오디오 부분의 공간적 연관성을 학습하도록 유도할 수 있게 된다.
도 4는 본 발명의 조합부(106)에서 영상 특징 벡터와 음성 특징 벡터를 곱하여 조합 벡터를 생성하는 일 실시예를 나타낸 도면이다.
도 4를 참조하면, 제2 인코더(104)에서는 영상 특징 벡터(A)의 높이(Heigh)×폭(Width)과 동일한 크기를 가지는 음성 특징 벡터(B)(CA)를 출력할 수 있다. 제2 인코더(104)는 영상 특징 벡터(A)의 높이(Heigh)×폭(Width)과 동일한 크기의 음성 특징 벡터(B)를 출력하도록 신경망 내의 파라미터를 조절(예를 들어, 필터 크기, 레이어의 개수, 파라미터의 개수 등을 조절)할 수 있다.
조합부(106)는 음성 특징 벡터(B)(CA)를 영상 특징 벡터(A)의 높이(Heigh)×폭(Width)과 대응되는 형태의 텐서로 재배열(Reshape) 할 수 있다. 즉, 조합부(106)는 1차원 형태의 음성 특징 벡터(B)(CA)를 높이(Heigh)×폭(Width)의 2차원 형태의 텐서(H, W)로 재배열하여 공간적인 형태로 변환할 수 있다.
여기서, 음성 특징 벡터(B)(CA)는 영상 특징 벡터(A)의 높이(Heigh)×폭(Width)과 동일한 크기로 생성되었으므로, 조합부(106)는 음성 특징 벡터(B)를 영상 특징 벡터(A)의 높이(Heigh)×폭(Width)과 동일한 형태의 2차원 텐서로 재배열 할 수 있게 된다.
다음으로, 조합부(106)는 영상 특징 벡터(A)의 각 채널(CI)마다 변환된 음성 특징 벡터(B)(즉, (H, W) 형태의 벡터)를 곱하여 조합 벡터(H, W, CI)를 생성할 수 있다. 이 경우, 음성 특징 벡터가 공간적인 형태의 표상을 학습하도록 유도할 수 있게 된다.
도 5는 본 발명의 조합부(106)에서 영상 특징 벡터와 음성 특징 벡터를 곱하여 조합 벡터를 생성하는 다른 실시예를 나타낸 도면이다.
도 5를 참조하면, 제2 인코더(104)에서는 영상 특징 벡터(A)의 채널(Channel)과 동일한 크기를 가지는 음성 특징 벡터(B)(CA)를 출력할 수 있다. 제2 인코더(104)는 영상 특징 벡터(A)의 채널(Channel)과 동일한 크기의 음성 특징 벡터(B)를 출력하도록 신경망 내의 파라미터를 조절(예를 들어, 필터 크기, 레이어의 개수, 파라미터의 개수 등을 조절)할 수 있다.
조합부(106)는 음성 특징 벡터(B)(CA)를 영상 특징 벡터(A)의 채널(Channel)과 대응되는 형태의 텐서로 재배열(Reshape) 할 수 있다. 즉, 조합부(106)는 1차원 형태의 음성 특징 벡터(B)(CA)를 1×1×채널(Channel)의 3차원 형태의 텐서(1, 1, CA)로 재배열하여 공간적인 형태로 변환할 수 있다.
다음으로, 조합부(106)는 영상 특징 벡터(A)의 각 높이 및 폭마다 변환된 음성 특징 벡터(B)(즉, (1, 1, CA) 형태의 텐서)를 곱하여 조합 벡터(H, W, CI)를 생성할 수 있다. 이 경우, 음성 특징 벡터가 영상 특징 벡터의 각 채널에 대하여 평균적인 발화 특징을 학습하게 되는 효과가 있다.
도 6은 본 발명의 다른 실시예에 따른 발화 동영상 생성 장치의 구성을 나타낸 도면이다. 여기서는, 도 1에 도시된 실시예와 차이가 나는 부분을 중점적으로 설명하기로 한다.
도 6을 참조하면, 발화 동영상 생성 장치(100)는 레지듀얼 블록(110)을 더 포함할 수 있다. 레지듀얼 블록(110)은 조합부(106)와 디코더(108) 사이에 하나 이상이 마련될 수 있다. 예시적인 실시예에서, 레지듀얼 블록(110)은 조합부(106)와 디코더(108) 사이에 복수 개가 순차적으로 연결(직렬로 연결)되어 마련될 수 있다.
레지듀얼 블록(110)은 하나 이상의 합성곱 층(Convolutional Layer)을 포함할 수 있다. 레지듀얼 블록(110)은 입력 값(즉, 조합부(106)에서 출력되는 조합 벡터)에 대해 컨볼루션을 수행하고, 컨볼루션을 수행한 결과 값에 다시 입력 값을 더하는 구조로 이루어질 수 있다. 레지듀얼 블록(110)은 레지듀얼 블록(110)의 입력 값과 출력 값의 차이의 최소화를 학습하도록 할 수 있다. 이를 통해, 발화 동영상 중 비디오와 오디오로부터 각각 추출한 영상 특징 벡터와 음성 특징 벡터를 유기적으로 조합하여 디코더(108)의 입력으로 사용할 수 있게 된다.
도 7은 본 발명의 또 다른 실시예에 따른 발화 동영상 생성 장치의 구성을 나타낸 도면이다. 여기서는, 도 1에 도시된 실시예와 차이가 나는 부분을 중점적으로 설명하기로 한다.
도 7을 참조하면, 발화 동영상 생성 장치(100)는 어텐션부(112), 발화 관련 부분 추출부(114), 및 복원 출력부(116)를 더 포함할 수 있다.
여기서, 어텐션부(112) 및 발화 관련 부분 추출부(114)는 디코더(108)의 출력 단에 각각 연결될 수 있다. 즉, 어텐션부(112) 및 발화 관련 부분 추출부(114)는 디코더(108)에서 출력하는 발화 동영상(이하에서는 1차 복원된 발화 동영상이라 지칭할 수 있음)을 입력으로 할 수 있다.
어텐션부(112)는 1차 복원된 발화 동영상의 각 픽셀 별로 주의 집중 가중치(Attention Weight)를 결정하여 어텐션 맵(Attention Map)을 출력할 수 있다. 주의 집중 가중치는 0 ~ 1 사이의 값일 수 있다.
구체적으로, 어텐션부(112)는 1차 복원된 발화 동영상의 각 픽셀 별로 복원 출력부(116)에서 발화 동영상의 2차 복원 시 제1 인코더(102)의 입력으로 사용된 인물 배경 영상(즉, 발화 관련 부분이 마스크로 가려진 영상)과 발화 관련 부분 추출부(114)에서 출력되는 발화 관련 영상 중 어느 부분을 사용할 것인지를 결정하기 위한 주의 집중 가중치를 설정할 수 있다.
발화 관련 부분 추출부(114)는 1차 복원된 발화 동영상에서 발화와 관련된 부분(즉, 발화 관련 부분)을 추출하여 발화 관련 영상을 출력할 수 있다. 예시적인 실시예에서, 발화 관련 부분 추출부(114)는 1차 복원된 발화 동영상에서 발화 관련 부분의 픽셀 값을 추출하고, 그 이외의 부분은 랜덤한 값(예를 들어, 사용되지 않는 값)으로 채워 발화 관련 영상을 생성할 수 있다.
복원 출력부(116)는 제1 인코더(102)의 입력으로 사용된 인물 배경 영상, 어텐션부(112)에서 출력되는 어텐션 맵, 및 발화 관련 부분 추출부(114)에서 출력되는 발화 관련 영상을 조합하여 최종 발화 동영상을 출력할 수 있다.
복원 출력부(116)는 어텐션 맵(픽셀 별 주의 집중 가중치 값을 포함)을 기반으로 발화와 관련되지 않은 부분은 인물 배경 영상을 사용하여 최종 발화 동영상을 복원하고, 발화와 관련된 부분은 발화 관련 영상을 사용하여 최종 발화 동영상을 복원하도록 할 수 있다.
예시적인 실시예에서, 복원 출력부(116)는 하기의 수학식 1을 통해 최종 발화 동영상(P)을 복원할 수 있다.
(수학식 1)
P = A·I + (1-A)·C
여기서, A는 각 픽셀의 어텐션 가중치를 나타내고, I는 인물 배경 영상의 각 픽셀 값을 나타내며, C는 발화 관련 영상의 각 픽셀 값을 나타낸다.
수학식 1에 의하면, A가 0에 가까울수록 최종 발화 동영상은 발화 관련 영상에 의해 영향을 받고, A가 1에 가까울수록 최종 발화 동영상은 인물 배경 영상에 의해 영향을 받게 된다. 따라서, 어텐션부(112)에서 각 픽셀 별로 주의 집중 가중치를 결정할 때 발화와 관련되지 않은 부분은 주의 집중 가중치가 1에 가깝도록 하고, 발화와 관련된 부분은 주의 집중 가중치가 0에 가깝도록 설정할 수 있다.
한편, 개시되는 실시예에서는 도 8에서 도시하는 바와 같이, 여러 인물들의 발화 동영상을 생성할 수도 있다. 도 8을 참조하면, 제1 인코더(102)로 복수의 인물들(예를 들어, A, B, C)의 인물 배경 영상이 각각 입력될 수 있다. 그리고, 제2 인코더(104)로 복수의 인물들(예를 들어, A, B, C)의 발화 오디오 신호가 입력될 수 있다.
또한, 인물 정보 임베딩부(118)는 복수의 인물들 각각에 대한 인물 식별 정보를 입력 받을 수 있다. 인물 정보 임베딩부(118)는 각 인물 식별 정보를 임베딩하여 임베딩 벡터를 생성할 수 있다.
조합부(106)는 각 인물에 대한 임베딩 벡터, 영상 특징 벡터, 및 음성 특징 벡터를 조합하여 조합 벡터를 생성할 수 있다. 디코더부(108)는 각 인물에 대한 조합 벡터를 기반으로 각 인물에 대한 발화 동영상을 복원할 수 있다.
이와 같이, 복수의 인물들의 발화 동영상을 하나의 단일 신경망 모델을 통해 학습하도록 함으로써, 복수의 인물들의 영상과 음성에서 공통적인 부분을 학습할 수 있으므로 보다 신속하고 효율적인 학습이 가능하게 된다.
도 9는 예시적인 실시예들에서 사용되기에 적합한 컴퓨팅 장치를 포함하는 컴퓨팅 환경(10)을 예시하여 설명하기 위한 블록도이다. 도시된 실시예에서, 각 컴포넌트들은 이하에 기술된 것 이외에 상이한 기능 및 능력을 가질 수 있고, 이하에 기술된 것 이외에도 추가적인 컴포넌트를 포함할 수 있다.
도시된 컴퓨팅 환경(10)은 컴퓨팅 장치(12)를 포함한다. 일 실시예에서, 컴퓨팅 장치(12)는 발화 동영상 생성 장치(100)일 수 있다.
컴퓨팅 장치(12)는 적어도 하나의 프로세서(14), 컴퓨터 판독 가능 저장 매체(16) 및 통신 버스(18)를 포함한다. 프로세서(14)는 컴퓨팅 장치(12)로 하여금 앞서 언급된 예시적인 실시예에 따라 동작하도록 할 수 있다. 예컨대, 프로세서(14)는 컴퓨터 판독 가능 저장 매체(16)에 저장된 하나 이상의 프로그램들을 실행할 수 있다. 상기 하나 이상의 프로그램들은 하나 이상의 컴퓨터 실행 가능 명령어를 포함할 수 있으며, 상기 컴퓨터 실행 가능 명령어는 프로세서(14)에 의해 실행되는 경우 컴퓨팅 장치(12)로 하여금 예시적인 실시예에 따른 동작들을 수행하도록 구성될 수 있다.
컴퓨터 판독 가능 저장 매체(16)는 컴퓨터 실행 가능 명령어 내지 프로그램 코드, 프로그램 데이터 및/또는 다른 적합한 형태의 정보를 저장하도록 구성된다. 컴퓨터 판독 가능 저장 매체(16)에 저장된 프로그램(20)은 프로세서(14)에 의해 실행 가능한 명령어의 집합을 포함한다. 일 실시예에서, 컴퓨터 판독 가능 저장 매체(16)는 메모리(랜덤 액세스 메모리와 같은 휘발성 메모리, 비휘발성 메모리, 또는 이들의 적절한 조합), 하나 이상의 자기 디스크 저장 디바이스들, 광학 디스크 저장 디바이스들, 플래시 메모리 디바이스들, 그 밖에 컴퓨팅 장치(12)에 의해 액세스되고 원하는 정보를 저장할 수 있는 다른 형태의 저장 매체, 또는 이들의 적합한 조합일 수 있다.
통신 버스(18)는 프로세서(14), 컴퓨터 판독 가능 저장 매체(16)를 포함하여 컴퓨팅 장치(12)의 다른 다양한 컴포넌트들을 상호 연결한다.
컴퓨팅 장치(12)는 또한 하나 이상의 입출력 장치(24)를 위한 인터페이스를 제공하는 하나 이상의 입출력 인터페이스(22) 및 하나 이상의 네트워크 통신 인터페이스(26)를 포함할 수 있다. 입출력 인터페이스(22) 및 네트워크 통신 인터페이스(26)는 통신 버스(18)에 연결된다. 입출력 장치(24)는 입출력 인터페이스(22)를 통해 컴퓨팅 장치(12)의 다른 컴포넌트들에 연결될 수 있다. 예시적인 입출력 장치(24)는 포인팅 장치(마우스 또는 트랙패드 등), 키보드, 터치 입력 장치(터치패드 또는 터치스크린 등), 음성 또는 소리 입력 장치, 다양한 종류의 센서 장치 및/또는 촬영 장치와 같은 입력 장치, 및/또는 디스플레이 장치, 프린터, 스피커 및/또는 네트워크 카드와 같은 출력 장치를 포함할 수 있다. 예시적인 입출력 장치(24)는 컴퓨팅 장치(12)를 구성하는 일 컴포넌트로서 컴퓨팅 장치(12)의 내부에 포함될 수도 있고, 컴퓨팅 장치(12)와는 구별되는 별개의 장치로 컴퓨팅 장치(12)와 연결될 수도 있다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100 : 발화 동영상 생성 장치
102 : 제1 인코더
104 : 제2 인코더
106 : 조합부
108 : 디코더
110 : 레지듀얼 블록
112 : 어텐션부
114 : 발화 관련 추출부
116 : 복원 출력부

Claims (8)

  1. 하나 이상의 프로세서들, 및
    상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치로서,
    소정 인물의 발화 동영상 중 비디오 부분인 인물 배경 영상을 입력 받고, 상기 인물 배경 영상으로부터 영상 특징 벡터를 추출하는 제1 인코더;
    상기 발화 동영상 중 오디오 부분인 발화 오디오 신호를 입력 받고, 상기 발화 오디오 신호로부터 음성 특징 벡터를 추출하는 제2 인코더;
    상기 제1 인코더에서 출력되는 영상 특징 벡터 및 상기 제2 인코더에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성하는 조합부; 및
    상기 조합 벡터를 입력으로 하여 상기 인물의 발화 동영상을 복원하는 디코더를 포함하는, 발화 동영상 생성 장치.
  2. 청구항 1에 있어서,
    상기 영상 특징 벡터는, 높이(Heigh)×폭(Width)×채널(Channel) 형태의 3차원 텐서이고, 상기 음성 특징 벡터는, 채널(Channel) 형태의 1차원 벡터이며,
    상기 조합부는,
    상기 음성 특징 벡터를 높이 방향으로 상기 영상 특징 벡터의 높이만큼 복사하고, 폭 방향으로 상기 영상 특징 벡터의 폭만큼 복사하여 상기 영상 특징 벡터와 동일한 형태의 텐서로 만들고, 상기 영상 특징 벡터와 동일한 형태의 음성 특징 벡터와 상기 영상 특징 벡터를 이어 붙여(Concatenate) 조합 벡터를 생성하는, 발화 동영상 생성 장치.
  3. 청구항 2에 있어서,
    상기 제1 인코더로 입력되는 인물 배경 영상은, 상기 인물의 발화와 관련된 부분이 마스크로 가려지고, 상기 인물의 얼굴 및 상반신이 포함된 것인, 발화 동영상 생성 장치.
  4. 청구항 1에 있어서,
    상기 영상 특징 벡터는, 높이(Heigh)×폭(Width)×채널(Channel) 형태의 3차원 텐서이고, 상기 음성 특징 벡터는, 채널(Channel) 형태의 1차원 벡터이며,
    상기 제2 인코더는, 상기 영상 특징 벡터의 높이(Heigh)×폭(Width)과 동일한 크기를 가지는 음성 특징 벡터를 출력하도록 마련되고,
    상기 조합부는,
    상기 음성 특징 벡터를 상기 영상 특징 벡터의 높이(Heigh)×폭(Width)과 대응되는 형태의 2차원 텐서로 재배열하고, 재배열된 음성 특징 벡터를 상기 영상 특징 벡터의 각 채널마다 곱하여 조합 벡터를 생성하는, 발화 동영상 생성 장치.
  5. 청구항 4에 있어서,
    상기 제1 인코더로 입력되는 인물 배경 영상은, 상기 인물의 발화와 관련된 부분이 마스크로 가려지고, 상기 인물의 얼굴 및 상반신이 포함된 것인, 발화 동영상 생성 장치.
  6. 청구항 1에 있어서,
    상기 영상 특징 벡터는, 높이(Heigh)×폭(Width)×채널(Channel) 형태의 3차원 텐서이고, 상기 음성 특징 벡터는, 채널(Channel) 형태의 1차원 벡터이며,
    상기 제2 인코더는, 상기 영상 특징 벡터의 채널(Channel)과 동일한 크기를 가지는 음성 특징 벡터를 출력하도록 마련되고,
    상기 조합부는,
    상기 음성 특징 벡터를 상기 영상 특징 벡터의 채널과 대응되는 형태의 3차원 텐서로 재배열하고, 재배열된 음성 특징 벡터를 상기 영상 특징 벡터의 각 높이 및 폭에 곱하여 조합 벡터를 생성하는, 발화 동영상 생성 장치.
  7. 청구항 6에 있어서,
    상기 제1 인코더로 입력되는 인물 배경 영상은, 상기 인물의 발화와 관련된 부분이 마스크로 가려지고, 상기 인물의 얼굴 및 상반신이 포함된 것인, 발화 동영상 생성 장치.
  8. 하나 이상의 프로세서들, 및
    상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치에서 수행되는 방법으로서,
    소정 인물의 발화 동영상 중 비디오 부분인 인물 배경 영상을 입력 받고, 상기 인물 배경 영상으로부터 영상 특징 벡터를 추출하는 동작;
    상기 발화 동영상 중 오디오 부분인 발화 오디오 신호를 입력 받고, 상기 발화 오디오 신호로부터 음성 특징 벡터를 추출하는 동작;
    상기 제1 인코더에서 출력되는 영상 특징 벡터 및 상기 제2 인코더에서 출력되는 음성 특징 벡터를 조합하여 조합 벡터를 생성하는 동작; 및
    상기 조합 벡터를 입력으로 하여 상기 인물의 발화 동영상을 복원하는 동작을 포함하는, 발화 동영상 생성 방법.
KR1020200070748A 2019-06-21 2020-06-11 음성 신호를 이용한 발화 동영상 생성 방법 및 장치 KR102346755B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/620,867 US20220399025A1 (en) 2019-06-21 2020-06-19 Method and device for generating speech video using audio signal
PCT/KR2020/007975 WO2020256472A1 (ko) 2019-06-21 2020-06-19 음성 신호를 이용한 발화 동영상 생성 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190074150 2019-06-21
KR1020190074150 2019-06-21

Publications (2)

Publication Number Publication Date
KR20200145701A true KR20200145701A (ko) 2020-12-30
KR102346755B1 KR102346755B1 (ko) 2022-01-03

Family

ID=74088335

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200070748A KR102346755B1 (ko) 2019-06-21 2020-06-11 음성 신호를 이용한 발화 동영상 생성 방법 및 장치

Country Status (1)

Country Link
KR (1) KR102346755B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509165A (zh) * 2021-03-23 2021-10-19 杭州电子科技大学 基于CAR2UNet网络的复数快速磁共振成像方法
WO2022045486A1 (ko) * 2020-08-25 2022-03-03 주식회사 딥브레인에이아이 발화 동영상 생성 방법 및 장치
WO2022265148A1 (ko) * 2021-06-16 2022-12-22 주식회사 딥브레인에이아이 발화 영상 제공 방법 및 이를 수행하기 위한 컴퓨팅 장치
WO2022270669A1 (ko) * 2021-06-25 2022-12-29 주식회사 딥브레인에이아이 발화 영상 제공 방법 및 이를 수행하기 위한 컴퓨팅 장치
WO2023277231A1 (ko) * 2021-06-30 2023-01-05 주식회사 딥브레인에이아이 발화 영상 제공 방법 및 이를 수행하기 위한 컴퓨팅 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060090687A (ko) * 2003-09-30 2006-08-14 코닌클리케 필립스 일렉트로닉스 엔.브이. 시청각 콘텐츠 합성을 위한 시스템 및 방법
KR101177408B1 (ko) 2010-09-16 2012-08-27 광운대학교 산학협력단 시청자의 시점에 따라 홀로그래픽 영상을 복원하는 다시점 기반 대화형 홀로그래픽 복원 장치 및 시스템
KR20140037410A (ko) * 2012-09-18 2014-03-27 김상철 단어 자동 번역에 기초한 입술 모양 변경 장치 및 방법
KR20190046371A (ko) * 2017-10-26 2019-05-07 에스케이텔레콤 주식회사 얼굴 표정 생성 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060090687A (ko) * 2003-09-30 2006-08-14 코닌클리케 필립스 일렉트로닉스 엔.브이. 시청각 콘텐츠 합성을 위한 시스템 및 방법
KR101177408B1 (ko) 2010-09-16 2012-08-27 광운대학교 산학협력단 시청자의 시점에 따라 홀로그래픽 영상을 복원하는 다시점 기반 대화형 홀로그래픽 복원 장치 및 시스템
KR20140037410A (ko) * 2012-09-18 2014-03-27 김상철 단어 자동 번역에 기초한 입술 모양 변경 장치 및 방법
KR20190046371A (ko) * 2017-10-26 2019-05-07 에스케이텔레콤 주식회사 얼굴 표정 생성 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONSTANTINOS VOUGIOUKAS et al., 'Realistic Speech-Driven Facial Animation with GANs', arXiv:1906.06337v1, 2019.06.14.* *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045486A1 (ko) * 2020-08-25 2022-03-03 주식회사 딥브레인에이아이 발화 동영상 생성 방법 및 장치
CN113509165A (zh) * 2021-03-23 2021-10-19 杭州电子科技大学 基于CAR2UNet网络的复数快速磁共振成像方法
CN113509165B (zh) * 2021-03-23 2023-09-22 杭州电子科技大学 基于CAR2UNet网络的复数快速磁共振成像方法
WO2022265148A1 (ko) * 2021-06-16 2022-12-22 주식회사 딥브레인에이아이 발화 영상 제공 방법 및 이를 수행하기 위한 컴퓨팅 장치
WO2022270669A1 (ko) * 2021-06-25 2022-12-29 주식회사 딥브레인에이아이 발화 영상 제공 방법 및 이를 수행하기 위한 컴퓨팅 장치
WO2023277231A1 (ko) * 2021-06-30 2023-01-05 주식회사 딥브레인에이아이 발화 영상 제공 방법 및 이를 수행하기 위한 컴퓨팅 장치
US11830120B2 (en) 2021-06-30 2023-11-28 Deepbrain Ai Inc. Speech image providing method and computing device for performing the same

Also Published As

Publication number Publication date
KR102346755B1 (ko) 2022-01-03

Similar Documents

Publication Publication Date Title
KR102360839B1 (ko) 머신 러닝 기반의 발화 동영상 생성 방법 및 장치
KR102346755B1 (ko) 음성 신호를 이용한 발화 동영상 생성 방법 및 장치
US20220358703A1 (en) Method and device for generating speech video on basis of machine learning
KR102643604B1 (ko) 발화 동영상 생성 방법 및 장치
US20220399025A1 (en) Method and device for generating speech video using audio signal
KR102346756B1 (ko) 발화 동영상 생성 방법 및 장치
US5826234A (en) Device and method for dubbing an audio-visual presentation which generates synthesized speech and corresponding facial movements
KR102437039B1 (ko) 영상 생성을 위한 학습 장치 및 방법
WO2022106654A2 (en) Methods and systems for video translation
KR102360840B1 (ko) 텍스트를 이용한 발화 동영상 생성 방법 및 장치
CN113554737A (zh) 目标对象的动作驱动方法、装置、设备及存储介质
US11972516B2 (en) Method and device for generating speech video by using text
KR102501773B1 (ko) 랜드마크를 함께 생성하는 발화 동영상 생성 장치 및 방법
JPH10247254A (ja) 唇動きパラメータ発生装置
KR20220111388A (ko) 영상 품질을 향상시킬 수 있는 영상 합성 장치 및 방법
KR102116315B1 (ko) 캐릭터의 음성과 모션 동기화 시스템
KR20220163623A (ko) 머신 러닝 기반의 립싱크 영상 생성을 위한 학습 방법 및 이를 수행하기 위한 립싱크 영상 생성 장치
US20230177664A1 (en) Device and method for synthesizing image capable of improving image quality
KR20220082279A (ko) 립싱크 영상 생성 장치 및 방법
KR102649818B1 (ko) 3d 립싱크 비디오 생성 장치 및 방법
KR20220013850A (ko) 발화 영상 생성 방법 및 장치
KR20200043660A (ko) 음성 합성 방법 및 음성 합성 장치
US20240046141A1 (en) Method for generating data using machine learning and computing device for executing the same
US20230178072A1 (en) Apparatus and method for generating lip sync image
KR102584484B1 (ko) 발화 합성 영상 생성 장치 및 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant