KR20200145661A - Quinolizidine compound and the manufacturing method thereof - Google Patents

Quinolizidine compound and the manufacturing method thereof Download PDF

Info

Publication number
KR20200145661A
KR20200145661A KR1020200049982A KR20200049982A KR20200145661A KR 20200145661 A KR20200145661 A KR 20200145661A KR 1020200049982 A KR1020200049982 A KR 1020200049982A KR 20200049982 A KR20200049982 A KR 20200049982A KR 20200145661 A KR20200145661 A KR 20200145661A
Authority
KR
South Korea
Prior art keywords
formula
compound
alkyl group
dcm
reaction
Prior art date
Application number
KR1020200049982A
Other languages
Korean (ko)
Other versions
KR102380870B9 (en
KR102380870B1 (en
Inventor
민선준
정아름
김윤정
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of KR20200145661A publication Critical patent/KR20200145661A/en
Application granted granted Critical
Publication of KR102380870B1 publication Critical patent/KR102380870B1/en
Publication of KR102380870B9 publication Critical patent/KR102380870B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

The present invention relates to a benzoquinolipidin and indoloquinolididine derivative compound manufactured by performing Aza-Michael reaction from tetrahydroisoquinoline or tryptoline and Mannich reaction using a DDQ oxidizing agent, and a method for manufacturing the same. The present invention provides a method for manufacturing a quinolididine derivative compound and the quinolididine derivative compound, wherein the method comprises the following steps: (a) manufacturing a compound having a structure of chemical formula 4 or 5 through an aza-Michael reaction by mixing a compound having a structure of formula 3 and a solvent with a cyclic compound having a structure of formula 1 or 2; and (b) manufacturing a compound having a structure of chemical formula 6 or 7 through an intramolecular oxidative Mannich reaction to the compound having the structure of chemical formula 4 or 5.

Description

퀴놀리지딘 화합물 및 그 제조방법 {Quinolizidine compound and the manufacturing method thereof}Quinolizidine compound and the manufacturing method thereof {Quinolizidine compound and the manufacturing method thereof}

본 발명은 퀴놀리지딘 화합물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 테트라하이드로아이소퀴놀린 또는 트립톨린(tryptoline)으로부터 Aza-Michael 반응과 DDQ 산화제를 이용한 만니히(Mannich) 반응을 수행하여 제조된 벤조퀴놀리지딘 및 인돌로퀴놀리지딘 유도체 화합물 및 그 제조방법에 관한 것이다.The present invention relates to a quinolizidine compound and a method for preparing the same, and more particularly, prepared by performing Aza-Michael reaction from tetrahydroisoquinoline or tryptoline and Mannich reaction using DDQ oxidizing agent. It relates to a benzoquinolididine and indoloquinolididine derivative compound and a method for preparing the same.

벤조퀴놀리지딘 및 인돌로퀴놀리지딘 유도체 화합물은 다양한 종류의 알칼로이드 천연물에서 흔히 발견되는 골격 구조이며, 이들은 약리작용을 하는 합성 화합물에 주로 사용된다. 예를 들면, 테트라베나진(tetrabenazine)은 헌팅턴병에 기인하는 무도병을 치료하기 위하여 임상적으로 사용되었으며, ipecac root에서 추출한 이메틴(Emetine)은 진핵세포의 ribosomal 단백질 합성을 저해하여 항원충제(anti-protozoal agent)로 사용되었다. 이러한 삼중고리를 가지는 화합물의 생물학적 유효성으로 인하여 Bischler-Napieralski 반응, Pictet-Spengler 반응, 고리 폐쇄 (ring-closing) 반응, 시클로 부가 (cycloadditions) 반응 및 금속 촉매반응 등을 이용한 제법이 개발되고 있다. Benzoquinolizidine and indoloquinolizidine derivative compounds are skeletal structures commonly found in various types of alkaloid natural products, and they are mainly used in synthetic compounds that have pharmacological action. For example, tetrabenazine has been used clinically to treat chorea caused by Huntington's disease, and Emetine extracted from the ipecac root inhibits the synthesis of ribosomal proteins in eukaryotic cells, and thus anti- protozoal agent). Due to the biological effectiveness of these tricyclic compounds, preparation methods using Bischler-Napieralski reaction, Pictet-Spengler reaction, ring-closing reaction, cycloadditions reaction, and metal catalysis have been developed.

이 방법들 중에서 디- 또는 테트라하이드로이소퀴놀린으로부터 출발하는 산화성 만니히 고리화를 통한 벤조[a]퀴놀리지딘의 형성은 효율 및 단계 경제성 때문에 최근 몇 년 동안 주목을 끌고 있다. 하지만 이 반응에 대해 보고된 예는 드물다. 왕(Wang)과 동료 연구자들은 분자 내 산화성 만니히(Mannich) 반응을 통해 금속이 없는 조건에서 벤젠 고리가 융합된 벤조[a]퀴놀리지딘(benzo[a]-quinolizidines)의 합성을 보고했다. Huo그룹은 트리스(4-브로모페닐)아미늄(TBPA)라디칼 양이온을 촉매제로 사용하여 벤조[a]-퀴놀리지딘의 고리구조를 구성하는 접근법을 개시했다. 가장 최근에는 Kantchev와 동료 연구원이 Ru-촉매 탈수 소화 반응 및 aza-Diels-Alder 반응을 거쳐 벤조[a]퀴놀리지딘-2-온(benzo[a]quinolizine-2-ones)을 효과적으로 제조 할 수 있음을 입증했다. 다만 이러한 과정은 삼중고리구조의 효과적인 구성을 촉진하고 있지만, 합성된 화합물은 아릴 고리와 융합되거나 아릴 치환체에 결합된 벤조[a]퀴놀리지딘으로 제한되고 있다. 또한 기존의 퀴놀리지딘 화합물의 합성 방법은 산을 사용하고 있어 그 반응조건이 까다롭거나, 값비싼 귀금속 촉매 또는 산화제를 사용함에 따라 그 제조비용이 상승하는 문제점을 가지고 있다.Among these methods, the formation of benzo[a]quinolizidine via oxidative Mannich cyclization starting from di- or tetrahydroisoquinoline has attracted attention in recent years because of its efficiency and step economy. However, few reported examples of this reaction. Wang and colleagues reported the synthesis of benzo[a]-quinolizidines fused with a benzene ring under metal-free conditions through an intramolecular oxidative Mannich reaction. The Huo group disclosed an approach to constructing the cyclic structure of benzo[a]-quinolizidine using a tris(4-bromophenyl)aminium (TBPA) radical cation as a catalyst. Most recently, Kantchev and colleagues have been able to effectively prepare benzo[a]quinolizine-2-ones through Ru-catalyzed dehydration reaction and aza-Diels-Alder reaction. Proved to be. However, this process promotes the effective construction of the tricyclic structure, but the synthesized compound is limited to benzo[a]quinolizidine fused to an aryl ring or bound to an aryl substituent. In addition, the conventional method for synthesizing a quinorizidine compound uses an acid, so that the reaction conditions are difficult, or the production cost thereof increases due to the use of an expensive noble metal catalyst or oxidizing agent.

대한민국 공개특허 제10-2013-0028756호Republic of Korea Patent Publication No. 10-2013-0028756 대한민국 등록특허 제10-0012135호Korean Patent Registration No. 10-0012135

전술한 문제를 해결하기 위하여, 본 발명은 테트라하이드로아이소퀴놀린 또는 트립톨린(tryptoline)으로부터 Aza-Michael 반응과 DDQ 산화제를 이용한 만니히(Mannich) 반응을 수행하여 제조된 벤조퀴놀리지딘 및 인돌로퀴놀리지딘 유도체 화합물 및 그 제조방법을 제공하고자 한다.In order to solve the above problem, the present invention is a benzoquinolipidin and indoloqui prepared by performing Aza-Michael reaction from tetrahydroisoquinoline or tryptoline and Mannich reaction using a DDQ oxidizing agent. It is intended to provide a nolizidine derivative compound and a method for preparing the same.

상술한 문제를 해결하기 위해, 본 발명은 다음의 단계를 포함하는 퀴놀리지딘 유도체 화합물의 제조방법을 제공한다:In order to solve the above problems, the present invention provides a method for preparing a quinolizidine derivative compound comprising the following steps:

(a) 화학식 1 또는 화학식 2의 구조를 가지는 고리형 화합물에 화학식 3의 구조를 가지는 화합물과 용매를 혼합하여 aza-Michael 반응을 통하여 화학식 4 또는 5의 구조를 가지는 화합물을 제조하는 단계; 및(a) preparing a compound having a structure of formula 4 or 5 through an aza-Michael reaction by mixing a compound having a structure of formula 3 and a solvent with a cyclic compound having a structure of formula 1 or 2; And

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기)(In Formula 1, R 1 and R 2 are each independently hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group)

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

(상기 화학식 2에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기)(In Formula 2, R 1 and R 2 are each independently hydrogen, a halogen element, a C1-C10 alkyl group, or a C1-C10 alkoxy group)

[화학식 3][Formula 3]

Figure pat00003
Figure pat00003

(상기 화학식 3에서, R3, R4 및 R5는 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R4 및 R5는 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Chemical Formula 3, R 3 , R 4 and R 5 are each independently hydrogen or a C1-C10 alkyl group, or R 4 and R 5 are a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*) Can form)

[화학식 4][Formula 4]

Figure pat00004
Figure pat00004

(상기 화학식 4에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Formula 4, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen Or a C1 ~ C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))

[화학식 5][Formula 5]

Figure pat00005
Figure pat00005

(상기 화학식 5에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7, 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기)(In Formula 5, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 , and R 8 are each independently Hydrogen or a C1-C10 alkyl group)

(b) 상기 제조된 화학식 4 또는 5의 구조를 가지는 화합물에 분자내 산화적 만니히반응을 통하여 화학식 6 또는 화학식 7의 구조를 가지는 유도체 화합물을 제조하는 단계.(b) preparing a derivative compound having a structure of Formula 6 or Formula 7 through an intramolecular oxidative Mannich reaction with the compound having a structure of Formula 4 or 5 above.

[화학식 6][Formula 6]

Figure pat00006
Figure pat00006

(상기 화학식 6에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Formula 6, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))

[화학식 7][Formula 7]

Figure pat00007
Figure pat00007

(상기 화학식 7에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소 또는 C1~C10의 알킬기)(In Formula 7, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen Or C1~C10 alkyl group)

본 발명의 일구현예로, 상기 화학식 1의 화합물은 하기의 화학식 8 내지 화학식 11의 구조를 가지는 화합물로 이루어지는 군으로부터 선택되는 1종이고, 화학식 2의 화합물은 하기의 화학식 12의 구조를 가지는 화합물일 수 있다.In one embodiment of the present invention, the compound of Formula 1 is one selected from the group consisting of compounds having a structure of Formula 8 to Formula 11 below, and the compound of Formula 2 is a compound having a structure of Formula 12 Can be

[화학식 8][Formula 8]

Figure pat00008
Figure pat00008

[화학식 9][Formula 9]

Figure pat00009
Figure pat00009

[화학식 10][Formula 10]

Figure pat00010
Figure pat00010

[화학식 11][Formula 11]

Figure pat00011
Figure pat00011

[화학식 12][Formula 12]

Figure pat00012
Figure pat00012

본 발명의 다른 구현예로, 상기 화학식 3의 화합물은 하기의 화학식 13 내지 화학식 16으로 이루어지는 군으로부터 선택되는 1종의 구조를 가지는 것일 수 있다:In another embodiment of the present invention, the compound of Formula 3 may have one structure selected from the group consisting of the following Formulas 13 to 16:

[화학식 13][Formula 13]

Figure pat00013
Figure pat00013

[화학식 14][Formula 14]

Figure pat00014
Figure pat00014

[화학식 15][Formula 15]

Figure pat00015
Figure pat00015

[화학식 16][Formula 16]

Figure pat00016
Figure pat00016

본 발명의 또다른 구현예로, 상기 화학식 4의 화합물은 하기의 화학식 17 내지 화학식 29로 이루어지는 군으로부터 선택되는 1종의 구조를 가지는 것이고, 상기 화학식 5의 화합물은 하기의 화학식 30 또는 31의 구조를 가지는 것일 수 있다:In another embodiment of the present invention, the compound of Formula 4 has one structure selected from the group consisting of Formulas 17 to 29 below, and the compound of Formula 5 has a structure of Formula 30 or 31 below. Can be to have:

[화학식 17][Formula 17]

Figure pat00017
Figure pat00017

[화학식 18][Formula 18]

Figure pat00018
Figure pat00018

[화학식 19][Formula 19]

Figure pat00019
Figure pat00019

[화학식 20][Formula 20]

Figure pat00020
Figure pat00020

[화학식 21][Formula 21]

Figure pat00021
Figure pat00021

[화학식 22][Formula 22]

Figure pat00022
Figure pat00022

[화학식 23][Formula 23]

Figure pat00023
Figure pat00023

[화학식 24][Formula 24]

Figure pat00024
Figure pat00024

[화학식 25][Formula 25]

Figure pat00025
Figure pat00025

[화학식 26][Formula 26]

Figure pat00026
Figure pat00026

[화학식 27][Formula 27]

Figure pat00027
Figure pat00027

[화학식 28][Formula 28]

Figure pat00028
Figure pat00028

[화학식 29][Chemical Formula 29]

Figure pat00029
Figure pat00029

[화학식 30][Formula 30]

Figure pat00030
Figure pat00030

[화학식 31][Formula 31]

Figure pat00031
Figure pat00031

본 발명의 또다른 구현예로, 상기 화학식 6의 화합물은 하기의 화학식 32 내지 화학식 44로 이루어지는 군으로부터 선택되는 1종의 구조를 가지며, 상기 화학식 7의 화합물은 하기의 화학식 45 또는 화학식 46의 구조를 가지는 것일 수 있다:In another embodiment of the present invention, the compound of Formula 6 has a structure selected from the group consisting of the following Formulas 32 to 44, and the compound of Formula 7 has a structure of Formula 45 or Formula 46 below. Can be to have:

[화학식 32][Formula 32]

Figure pat00032
Figure pat00032

[화학식 33][Formula 33]

Figure pat00033
Figure pat00033

[화학식 35][Formula 35]

Figure pat00034
Figure pat00034

[화학식 36][Formula 36]

Figure pat00035
Figure pat00035

[화학식 37][Formula 37]

Figure pat00036
Figure pat00036

[화학식 37][Formula 37]

Figure pat00037
Figure pat00037

[화학식 38][Formula 38]

Figure pat00038
Figure pat00038

[화학식 39][Formula 39]

Figure pat00039
Figure pat00039

[화학식 40][Formula 40]

Figure pat00040
Figure pat00040

[화학식 41][Formula 41]

Figure pat00041
Figure pat00041

[화학식 42][Formula 42]

Figure pat00042
Figure pat00042

[화학식 43][Formula 43]

Figure pat00043
Figure pat00043

[화학식 44][Formula 44]

Figure pat00044
Figure pat00044

[화학식 45][Formula 45]

Figure pat00045
Figure pat00045

[화학식 46][Chemical Formula 46]

Figure pat00046
Figure pat00046

본 발명의 또다른 구현예로, 상기 분자내 산화적 만니히 반응은 산화제로서 2,3-디클로로-5,6-디시아노-1,4-벤조퀴논(2,3-dichloro-5,6-dicyano-1,4-benzoquinone, DDQ)를 사용하는 것일 수 있다.In another embodiment of the present invention, the intramolecular oxidative Mannich reaction is 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (2,3-dichloro-5,6- dicyano-1,4-benzoquinone, DDQ) may be used.

본 발명의 또다른 구현예로, 상기 (a)~(b)단계는 하나의 반응기 내에서 수행되는 것을 특징으로 한다.In another embodiment of the present invention, steps (a) to (b) are characterized in that it is carried out in one reactor.

또한, 본 발명은 하기 화학식 6 또는 화학식 7의 구조를 가지는 퀴놀리지딘 유도체 화합물 또는 이의 입체이성질체.In addition, the present invention is a quinolipidin derivative compound or a stereoisomer thereof having a structure of the following formula (6) or (7)

[화학식 6][Formula 6]

Figure pat00047
Figure pat00047

(상기 화학식 6에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Formula 6, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))

[화학식 7][Formula 7]

Figure pat00048
Figure pat00048

(상기 화학식 7에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기)(In Formula 7, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group)

본 발명에 의한 퀴놀리지딘 제조방법은 기존의 제조방법과는 달리 고가의 귀금속 촉매 또는 산화제를 사용하지 않아 경제적으로 제조할 수 있으며, 제조시 산을 사용하지 않음에 따라 반응조건이 온화하여 용이하게 제조할 수 있으며 제조된 퀴놀리지딘 화합물은 다양한 약학적 조성물로 활용될 수 있어 다양한 질환의 치료제 개발에 유용하게 사용될 수 있다.The method for preparing quinolizidine according to the present invention can be economically manufactured because it does not use an expensive noble metal catalyst or an oxidizing agent, unlike the conventional manufacturing method. It can be prepared, and the prepared quinolizidine compound can be used in various pharmaceutical compositions, and thus can be usefully used in the development of therapeutic agents for various diseases.

도 1은 본 발명의 실시예에 의한 퀴놀리지딘 화합물의 합성방법을 간략히 도시한 것이다.
도 2는 본 발명의 실시예에 의해 화학식 4 또는 5의 화합물을 합성한 경우 수율과 이들의 구조를 나타낸 것이다.
도 3은 본 발명의 산화적 만니히 반응의 용매, 첨가제, 및 반응 온도에 따른 수율을 나타낸 것이다.
도 4는 본 발명의 실시예에 의해 화학식 6 또는 7의 화합물을 합성한 경우 수율과 이들의 구조를 나타낸 것이다.
도 5는 본 발명의 실시예에서 화학식 32(4a), 화학식 35(4d), 화학식38(4g) 및 화학식 41(4j)의 화합물이 하나의 반응기에서 제조한 과정을 간략히 도시한 것이다.
1 schematically shows a method of synthesizing a quinolizidine compound according to an embodiment of the present invention.
2 shows the yield and structures thereof when the compound of Formula 4 or 5 is synthesized according to an embodiment of the present invention.
3 shows the yield according to the solvent, additives, and reaction temperature of the oxidative Mannich reaction of the present invention.
4 shows the yield and structures thereof when the compound of Formula 6 or 7 is synthesized according to an embodiment of the present invention.
FIG. 5 schematically illustrates a process in which compounds of Formula 32(4a), Formula 35(4d), Formula 38(4g), and Formula 41(4j) are prepared in one reactor in an embodiment of the present invention.

본 발명은 벤조퀴놀리지딘 및 인돌로퀴놀리지딘 유도체 화합물과 이의 제조방법에 관한 것으로서, 더욱 상세하게는 테트라하이드로아이소퀴놀린 또는 트립톨린(tryptoline)으로부터 Aza-Michael 반응과 DDQ 산화제를 이용한 만니히(Mannich) 반응을 수행하여 제조된 벤조퀴놀리지딘 및 인돌로퀴놀리지딘 유도체 화합물의 제조방법과 상기 유도체 화합물을 제공한다.The present invention relates to a benzoquinolizidine and indoloquinolizidine derivative compound and a method for preparing the same, and more particularly, to Aza-Michael reaction from tetrahydroisoquinoline or tryptoline and Mannich using DDQ oxidizing agent ( Mannich) a method of preparing a benzoquinolizidine and an indoloquinolizidine derivative compound prepared by performing the reaction, and the derivative compound.

보다 상세하게, 본 발명은 다음의 단계를 포함하는 퀴놀리지딘 화합물의 제조방법을 제공한다:More specifically, the present invention provides a method for preparing a quinolizidine compound comprising the following steps:

(a) 화학식 1 또는 화학식 2의 구조를 가지는 고리형 화합물에 화학식 3의 구조를 가지는 화합물과 용매를 혼합하여 aza-Michael 반응을 통하여 화학식 4 또는 5의 구조를 가지는 화합물을 제조하는 단계;(a) preparing a compound having a structure of formula 4 or 5 through an aza-Michael reaction by mixing a compound having a structure of formula 3 and a solvent with a cyclic compound having a structure of formula 1 or 2;

[화학식 1][Formula 1]

Figure pat00049
Figure pat00049

(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기)(In Formula 1, R 1 and R 2 are each independently hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group)

[화학식 2][Formula 2]

Figure pat00050
Figure pat00050

(상기 화학식 2에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기)(In Formula 2, R 1 and R 2 are each independently hydrogen, a halogen element, a C1-C10 alkyl group, or a C1-C10 alkoxy group)

[화학식 3][Formula 3]

Figure pat00051
Figure pat00051

(상기 화학식 3에서, R3, R4 및 R5는 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R4 및 R5는 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Chemical Formula 3, R 3 , R 4 and R 5 are each independently hydrogen or a C1-C10 alkyl group, or R 4 and R 5 are a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*) Can form)

[화학식 4][Formula 4]

Figure pat00052
Figure pat00052

(상기 화학식 4에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Formula 4, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))

[화학식 5][Formula 5]

Figure pat00053
Figure pat00053

(상기 화학식 5에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기)(In Formula 5, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group)

(b) 상기 제조된 화학식 4 또는 5의 구조를 가지는 화합물에 분자내 산화적 만니히반응을 통하여 화학식 6 또는 화학식 7의 구조를 가지는 유도체 화합물을 제조하는 단계.(b) preparing a derivative compound having a structure of Formula 6 or Formula 7 through an intramolecular oxidative Mannich reaction with the compound having a structure of Formula 4 or 5 above.

[화학식 6][Formula 6]

Figure pat00054
Figure pat00054

(상기 화학식 6에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)(In Formula 6, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))

[화학식 7][Formula 7]

Figure pat00055
Figure pat00055

(상기 화학식 7에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기)(In Formula 7, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group)

상기 화학식 1 내지 7의 치환기 R1 내지 R8은 각각 독립적일 수 있으며, 상기 화학식 1 내지 7은 본 발명에 제시된 화학식들로 표시되는 화합물 외에도, 형성 가능한 입체 이성질체를 모두 포함할 수 있다.Substituents R 1 to R 8 of Formulas 1 to 7 may each be independent, and Formulas 1 to 7 may include all stereoisomers that can be formed in addition to the compounds represented by the formulas shown in the present invention.

본 발명에서 상기 할로겐 원소는 플루오린(F), 클로린(Cl), 브로민(Br), 또는 아이오딘(I)일 수 있다.In the present invention, the halogen element may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).

본 발명에서 상기 C1~C10의 알킬기는 치환 또는 치환되지 않은 알킬기로서, 메틸, 에틸, 프로필, 또는 부틸기일 수 있다. In the present invention, the C1 to C10 alkyl group is a substituted or unsubstituted alkyl group, and may be a methyl, ethyl, propyl, or butyl group.

본 발명에서 상기 C1~C10의 알콕시기는, 산소와 결합된 알킬기로서, 메톡시기, 또는 에톡시기일 수 있다.In the present invention, the C1 ~ C10 alkoxy group is an alkyl group bonded with oxygen, and may be a methoxy group or an ethoxy group.

본 발명의 일구현예로서, 상기 화학식 1의 화합물은 하기의 화학식 8 내지 화학식 11의 구조를 가지는 화합물로 이루어지는 군으로부터 선택되는 1종일 수 있으나, 이에 제한되는 것은 아니다.As an embodiment of the present invention, the compound of Formula 1 may be one selected from the group consisting of compounds having structures of Formulas 8 to 11 below, but is not limited thereto.

[화학식 8][Formula 8]

Figure pat00056
Figure pat00056

[화학식 9][Formula 9]

Figure pat00057
Figure pat00057

[화학식 10][Formula 10]

Figure pat00058
Figure pat00058

[화학식 11][Formula 11]

Figure pat00059
Figure pat00059

본 발명의 다른 구현예로서, 상기 화학식 2의 화합물은 하기의 화학식 12의 구조를 가지는 화합물인 것일 수 있으나, 이에 제한되는 것은 아니다.In another embodiment of the present invention, the compound of Formula 2 may be a compound having the structure of Formula 12 below, but is not limited thereto.

[화학식 12][Formula 12]

Figure pat00060
Figure pat00060

본 발명의 또다른 구현예로서, 상기 화학식 3의 화합물은 하기의 화학식 13 내지 화학식 16으로 이루어지는 군으로부터 선택되는 1종의 구조를 갖는 것일 수 있으나, 케톤 유도체를 포함하는 화합물이라면 이에 제한되는 것은 아니다. 화학식 16은 본 발명의 화학식 3의 치환기가 R3는 H이고, R4 및 R5가 이들이 부착된 탄소 및 상기 별표 표시된 탄소와 함께 6원환을 형성한 경우의 화합물이다.As another embodiment of the present invention, the compound of Formula 3 may have one structure selected from the group consisting of Formulas 13 to 16 below, but is not limited thereto if it is a compound containing a ketone derivative. . Formula 16 is a compound in the case where the substituent of Formula 3 of the present invention is R 3 is H, and R 4 and R 5 form a 6-membered ring together with the carbon to which they are attached and the carbon marked with an asterisk.

[화학식 13][Formula 13]

Figure pat00061
Figure pat00061

[화학식 14][Formula 14]

Figure pat00062
Figure pat00062

[화학식 15][Formula 15]

Figure pat00063
Figure pat00063

[화학식 16][Formula 16]

Figure pat00064
Figure pat00064

본 발명의 또다른 구현예로 상기 화학식 4의 화합물은 하기의 화학식 17 내지 화학식 29로 이루어지는 군으로부터 선택되는 1종의 구조를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 화학식 29는 본 발명의 화학식 4의 치환기가 R6는 H이고, R7 및 R8이 이들이 부착된 탄소 및 상기 별표 표시된 탄소와 함께 6원환을 형성한 경우의 화합물이다.In another embodiment of the present invention, the compound of Formula 4 may have one structure selected from the group consisting of Formulas 17 to 29 below, but is not limited thereto. Formula 29 is a compound in the case where the substituent of Formula 4 of the present invention is R 6 is H, and R 7 and R 8 form a 6-membered ring together with the carbon to which they are attached and the carbon marked with an asterisk.

[화학식 17][Formula 17]

Figure pat00065
Figure pat00065

[화학식 18][Formula 18]

Figure pat00066
Figure pat00066

[화학식 19][Formula 19]

Figure pat00067
Figure pat00067

[화학식 20][Formula 20]

Figure pat00068
Figure pat00068

[화학식 21][Formula 21]

Figure pat00069
Figure pat00069

[화학식 22][Formula 22]

Figure pat00070
Figure pat00070

[화학식 23][Formula 23]

Figure pat00071
Figure pat00071

[화학식 24][Formula 24]

Figure pat00072
Figure pat00072

[화학식 25][Formula 25]

Figure pat00073
Figure pat00073

[화학식 26][Formula 26]

Figure pat00074
Figure pat00074

[화학식 27][Formula 27]

Figure pat00075
Figure pat00075

[화학식 28][Formula 28]

Figure pat00076
Figure pat00076

[화학식 29][Chemical Formula 29]

Figure pat00077
Figure pat00077

본 발명의 또다른 구현예로 상기 화학식 5의 화합물은 하기의 화학식 30 또는 31의 구조를 가지는 것일 수 있으나 이에 제한되지는 않는다.In another embodiment of the present invention, the compound represented by Formula 5 may have a structure represented by Formula 30 or 31 below, but is not limited thereto.

[화학식 30][Formula 30]

Figure pat00078
Figure pat00078

[화학식 31][Formula 31]

Figure pat00079
Figure pat00079

본 발명의 또다른 구현예로서, 상기 화학식 6의 화합물은 하기의 화학식 32 내지 화학식 44로 이루어지는 군으로부터 선택되는 1종의 구조를 가질 수 있다. 상기 화합물은 하기에 구조식으로 제시된 화합물 외에도, 형성 가능한 모든 입체이성질체를 포함할 수 있다. 하기 화학식 44의 화합물은 본 발명의 화학식 6의 치환기가 R6는 H이고, R7 및 R8이 이들이 부착된 탄소 및 상기 별표 표시된 탄소와 함께 6원환을 형성한 경우의 화합물이다.As another embodiment of the present invention, the compound of Formula 6 may have one type of structure selected from the group consisting of Formulas 32 to 44 below. In addition to the compounds shown in the structural formula below, the compounds may include all stereoisomers that can be formed. The compound represented by the following formula (44) is a compound in which the substituent of formula (6) of the present invention is R6 is H, and R7 and R8 form a 6-membered ring together with the carbon to which they are attached and the carbon represented by the asterisk.

[화학식 32][Formula 32]

Figure pat00080
Figure pat00080

[화학식 33][Formula 33]

Figure pat00081
Figure pat00081

[화학식 35][Formula 35]

Figure pat00082
Figure pat00082

[화학식 36][Formula 36]

Figure pat00083
Figure pat00083

[화학식 37][Formula 37]

Figure pat00084
Figure pat00084

[화학식 37][Formula 37]

Figure pat00085
Figure pat00085

[화학식 38][Formula 38]

Figure pat00086
Figure pat00086

[화학식 39][Formula 39]

Figure pat00087
Figure pat00087

[화학식 40][Formula 40]

Figure pat00088
Figure pat00088

[화학식 41][Formula 41]

Figure pat00089
Figure pat00089

[화학식 42][Formula 42]

Figure pat00090
Figure pat00090

[화학식 43][Formula 43]

Figure pat00091
Figure pat00091

[화학식 44][Formula 44]

Figure pat00092
Figure pat00092

본 발명의 또다른 구현예로서, 상기 화학식 7의 화합물은 하기의 화학식 45 또는 화학식 46의 구조를 가질 수 있다. 본 발명의 화학식 7의 화합물은 하기 화학식 46의 구조로부터 형성 가능한 입체이성질체를 모두 포함할 수 있다.As another embodiment of the present invention, the compound of Formula 7 may have a structure of Formula 45 or Formula 46 below. The compound of Formula 7 of the present invention may include all stereoisomers that can be formed from the structure of Formula 46 below.

[화학식 45][Formula 45]

Figure pat00093
Figure pat00093

[화학식 46][Chemical Formula 46]

Figure pat00094
Figure pat00094

또한, 본 발명은 상기 화학식 6 또는 화학식 7의 구조를 가지는 퀴놀리지딘 유도체 화합물 또는 이의 입체이성질체를 제공할 수 있다. In addition, the present invention may provide a quinolizidine derivative compound or a stereoisomer thereof having the structure of Formula 6 or Formula 7.

본 발명의 분자내 산화적 만니히 반응은 산화제로서 2,3-디클로로-5, 6-디시아노-1,4-벤조퀴논(2, 3-dichloro- 5,6-dicyano-1,4-benzoquinone, DDQ)를 사용할 수 있고, 상기 (a)~(b)단계는 하나의 반응기 내에서 수행될 수 있다. The oxidative Mannich reaction in the molecule of the present invention is 2,3-dichloro-5, 6-dicyano-1,4-benzoquinone (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) as an oxidizing agent. , DDQ) may be used, and steps (a) to (b) may be performed in one reactor.

아울러, 본 발명의 퀴놀리지딘 유도체 화합물 또는 이의 입체이성질체는, 기존의 제조방법과는 달리 고가의 귀금속 촉매 또는 산화제를 사용하지 않아 경제적으로 제조될 수 있고, 온화한 반응 조건 하에서 생성된 것으로, 상기 퀴놀리지딘 유도체 화합물은 다양한 질환의 치료 또는 예방에 활용되는 약학적 조성물에 포함될 수 있다. In addition, the quinolizidine derivative compound or its stereoisomer of the present invention, unlike the conventional production method, can be economically produced without using an expensive noble metal catalyst or oxidizing agent, and is produced under mild reaction conditions. Nozidine derivative compounds may be included in pharmaceutical compositions used for the treatment or prevention of various diseases.

상기 질환의 종류에는 제한이 없으나, 본 발명의 퀴놀리지딘 유도체 화합물은 헌팅턴병 치료제로 널리 알려진 테트라베나진의 유사체로서, 본 발명은 상기 화학식 6 또는 화학식 7의 유도체 화합물 또는 이의 입체이성질체를 유효성분으로 포함하는 헌팅턴병 치료 또는 예방용 약학적 조성물을 제공할 수 있다.The type of the disease is not limited, but the quinolizidine derivative compound of the present invention is an analog of tetrabenazine widely known as a therapeutic agent for Huntington's disease, and the present invention includes the derivative compound of Formula 6 or Formula 7 or a stereoisomer thereof as an active ingredient. It is possible to provide a pharmaceutical composition for the treatment or prevention of Huntington's disease.

본 발명에 따른 약학적 조성물은 유효성분 이외에 약제학적으로 허용되는 담체를 포함할 수 있다. 이때, 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세 결정성셀룰로스, 폴리비닐피로리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필 히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일등을 포함하나, 이에 한정되는 것은 아니다. 또한, 상기성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.The pharmaceutical composition according to the present invention may include a pharmaceutically acceptable carrier in addition to the active ingredient. At this time, the pharmaceutically acceptable carrier is commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose , Polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate and mineral oil, but are not limited thereto. In addition, a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like may be additionally included in addition to the above components.

본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally (for example, intravenous, subcutaneous, intraperitoneal or topical application) according to a desired method, and the dosage is It depends on the degree, drug form, administration route and time, but may be appropriately selected by those skilled in the art.

본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 얄려진 요소에 따라 결정될 수 있다. 본 발명에 다른 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is the type, severity, drug activity of the patient, Sensitivity to drugs, time of administration, route of administration and rate of excretion, duration of treatment, factors including drugs used concurrently, and other factors well known in the medical field. The pharmaceutical composition according to the present invention may be administered as an individual therapeutic agent or administered in combination with another therapeutic agent, may be administered sequentially or simultaneously with a conventional therapeutic agent, and may be administered single or multiple. It is important to administer an amount capable of obtaining the maximum effect in a minimum amount without side effects in consideration of all the above factors, and this can be easily determined by a person skilled in the art.

구체적으로 본 발명의 약제학적 조성물의 유효량은 환자의 연령, 성별, 상태, 체중, 체내에 활성 성분의 흡수도, 불활성율 및 배설속도, 질병종류, 병용되는 약물에 따라 달라질 수 있으며, 일반적으로는 체중 1 kg 당 0.001 내지 150 ㎎, 바람직하게는 0.01 내지 100 ㎎을 매일 또는 격일 투여하거나, 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나 투여 경로, 비만의 중증도, 성별, 체중, 연령 등에 따라서 증감 될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.Specifically, the effective amount of the pharmaceutical composition of the present invention may vary depending on the patient's age, sex, condition, weight, absorption of the active ingredient in the body, inactivation rate and excretion rate, the type of disease, and the drug to be used in combination. 0.001 to 150 mg, preferably 0.01 to 100 mg per 1 kg of body weight may be administered daily or every other day, or divided into 1 to 3 times a day. However, since it may increase or decrease depending on the route of administration, the severity of obesity, sex, weight, age, etc., the dosage amount is not limited by any method.

본 발명의 다른 양태로서, 본 발명은 상기 약학적 조성물을 개체에 투여하는 단계를 포함하는 헌팅턴병의 치료 또는 예방 방법을 제공한다. 본 발명에서 "개체"란 질병의 치료 또는 예방을 필요로 하는 대상을 의미하고, 보다 구체적으로는, 인간 또는 비-인간인 영장류, 생쥐(mouse, 개, 고양이, 말 및 소 등의 포유류를 의미한다.In another aspect of the present invention, the present invention provides a method for treating or preventing Huntington's disease, comprising administering the pharmaceutical composition to an individual. In the present invention, "individual" refers to a subject in need of treatment or prevention of a disease, and more specifically, human or non-human primates, mice (mouse, dogs, cats, horses and cattle, etc. do.

이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components, unless otherwise stated.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention is intended to illustrate specific embodiments and to be described in detail in the detailed description, since various transformations can be applied and various embodiments can be provided. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention.

발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as include or have are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination of them described in the specification, and one or more other features, numbers, and steps. It is to be understood that it does not preclude the possibility of the presence or addition of, operations, components, parts or combinations thereof.

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement them. In addition, in describing the present invention, when it is determined that a detailed description of a related known function or a known configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, certain features presented in the drawings are enlarged or reduced or simplified for ease of description, and the drawings and their components are not necessarily drawn to scale. However, those skilled in the art will readily understand these details.

실시예 1Example 1

Ar 기체로 충진한 둥근 바닥 플라스크에 메틸 비닐 케톤(methyl vinyl ketone, 504.4 mg, 7.19 mmol, 화학식 13), CuBr (6.9 mg, 0.05 mmol)을 DCM (10 mL)에 녹인 후 0℃에서 5분 동안 교반하였다. 상기 혼합물에 1,2,3,4-테트라하이드로이소퀴놀린(1,2,3,4-tetrahydroisoquinoline, 638.4 mg, 4.79 mmol, 화학식 8)을 첨가한 다음, 0℃에서 30분간 교반한 후 상온(25℃)로 승온하고 64 시간동안 교반하였다. TLC를 이용하여 반응을 확인한 후 NH4Cl 수용액을 첨가해 반응을 종결하였다. 물(H2O)와 디클로로메탄(CH2Cl2, DCM)을 첨가하여 층을 나눈 후 DCM(3x25mL)를 이용하여 유기층을 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 n-hexane/EtOAc = 2:1의 전개용매 조건에서 분리하였다. 감압하에서 용매를 날린 후 노란색 고체인 화합물 3a(647 mg, 99%, 화학식 17)를 얻었다.In a round bottom flask filled with Ar gas, methyl vinyl ketone (504.4 mg, 7.19 mmol, Formula 13) and CuBr (6.9 mg, 0.05 mmol) were dissolved in DCM (10 mL) and then at 0°C for 5 minutes. Stirred. 1,2,3,4-tetrahydroisoquinoline (1,2,3,4-tetrahydroisoquinoline, 638.4 mg, 4.79 mmol, Formula 8) was added to the mixture, followed by stirring at 0° C. for 30 minutes and then at room temperature ( 25° C.) and stirred for 64 hours. After confirming the reaction by TLC, an aqueous NH 4 Cl solution was added to terminate the reaction. After dividing the layers by adding water (H 2 O) and dichloromethane (CH 2 Cl 2 , DCM), the organic layer was extracted using DCM (3x25mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. After the filtered solution was concentrated under reduced pressure, the obtained material was separated under a developing solvent condition of n-hexane/EtOAc = 2:1 by flash column chromatography using KANTO neutral silica gel. After blowing off the solvent under reduced pressure, a yellow solid compound 3a (647 mg, 99%, Chemical Formula 17) was obtained.

상기 화합물 3a의 분석결과는 하기와 같다.The analysis results of Compound 3a are as follows.

Rf = 0.3 (n-hexane/EtOAc = 10:1, v/v)R f = 0.3 (n-hexane/EtOAc = 10:1, v/v)

1H-NMR (400 MHz, CDCl3): δ 7.14-7.09 (m, 3H), 7.07-6.99 (m, 1H), 3.63 (s, 2H), 2.90-2.83 (m, 4H), 2.75-2.73 (m, 4H), 2.19 (s, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 7.14-7.09 (m, 3H), 7.07-6.99 (m, 1H), 3.63 (s, 2H), 2.90-2.83 (m, 4H), 2.75-2.73 (m, 4H), 2.19 (s, 3H).

13C-NMR (100 MHz, CDCl3): δ 208.0, 134.6, 134.2, 128.8, 126.7, 126.3, 125.8, 56.2, 52.7, 51.1, 41.8, 30.4, 29.2. 13 C-NMR (100 MHz, CDCl 3 ): δ 208.0, 134.6, 134.2, 128.8, 126.7, 126.3, 125.8, 56.2, 52.7, 51.1, 41.8, 30.4, 29.2.

실시예 2Example 2

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

Ar로 충진한 pressure tube에 상기 실시예 1에서 제조된 화합물 3a(4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-one, 20mg, 0.10mmol), 리튬퍼클로레이트(lithium perchlorate, 11mg, 0.10mmol), DDQ (28 mg, 0.12 mmol)을 무수 1,2-이클로로에탄(anhydrous 1,2-dichloroethane, 9.84 ml)에 녹인 후 80℃에서 6시간 동안 교반하였다. TLC를 이용하여 반응을 확인한 후 1M NaOH 수용액을 첨가해 반응을 종결시켰다. 물과 DCM를 첨가하여 층을 나눈 후 DCM(3x10mL)를 이용하여 유기층을 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 n-hexane/EtOAc/DCM = 1:1.5:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 4a (14mg, 71%, 화학식 32)를 얻었다.Compound 3a (4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-one, 20mg, 0.10mmol) prepared in Example 1 in a pressure tube filled with Ar, lithium perchlorate , 11mg, 0.10mmol), DDQ (28 mg, 0.12 mmol) were dissolved in anhydrous 1,2-dichloroethane (9.84 ml) and stirred at 80° C. for 6 hours. After confirming the reaction using TLC, 1M NaOH aqueous solution was added to terminate the reaction. After dividing the layer by adding water and DCM, the organic layer was extracted using DCM (3x10mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. After the filtered solution was concentrated under reduced pressure, the obtained material was separated by flash column chromatography using KANTO neutral silica gel under a developing solvent condition of n-hexane/EtOAc/DCM = 1:1.5:1, and the light yellow compound 4a (14mg , 71%, to obtain Chemical Formula 32).

상기 화합물 4a의 분석결과는 하기와 같다.The analysis results of compound 4a are as follows.

Rf = 0.33 (n-hexane/EtOAc = 4:1)Rf = 0.33 (n-hexane/EtOAc = 4:1)

1H NMR (400 MHz, CDCl3): δ 7.19-7.15 (m, 3H), 7.08-7.06 (m, 1H), 3.63 (d, J = 11.2 Hz, 1H), 3.32-3.12 (m, 3H), 2.97-2.87 (m, 1H), 2.84-2.56 (m, 4H), 2.49-2.45 (m, 2H). 1 H NMR (400 MHz, CDCl 3 ): δ 7.19-7.15 (m, 3H), 7.08-7.06 (m, 1H), 3.63 (d, J = 11.2 Hz, 1H), 3.32-3.12 (m, 3H) , 2.97-2.87 (m, 1H), 2.84-2.56 (m, 4H), 2.49-2.45 (m, 2H).

13C-NMR (100 MHz, CDCl3): δ 208.3, 136.5, 133.9, 129.1, 126.8, 126.4, 124.9, 61.8, 54.8, 50.8, 47.2, 41.1, 29.6. 13 C-NMR (100 MHz, CDCl 3 ): δ 208.3, 136.5, 133.9, 129.1, 126.8, 126.4, 124.9, 61.8, 54.8, 50.8, 47.2, 41.1, 29.6.

상기 화합물 4a의 산화적 만니히 반응을 최적화하기 위해 도 3에 나타낸 것과 같이 용매, 첨가제 및 반응 온도에 따른 수율을 확인하였다. 용매의 경우 DCE를 사용하는 것이 바람직했고, 60 내지 90℃의 온도에서 반응을 진행하는 것이 바람직했다. 첨가제로는 AcOH, L-proline, Cs2Co3, LiClO4의 첨가제를 사용하는 것이 바람직하며, 첨가제로 LiClO4를 사용하는 경우 가장 우수한 수율을 보였다.In order to optimize the oxidative Mannich reaction of the compound 4a, the yield according to the solvent, the additive, and the reaction temperature was confirmed as shown in FIG. 3. For the solvent, it was preferable to use DCE, and it was preferable to proceed the reaction at a temperature of 60 to 90°C. As an additive, it is preferable to use an additive of AcOH, L-proline, Cs2Co 3 , and LiClO 4 , and when LiClO 4 is used as an additive, the best yield is shown.

실시예 3Example 3

one-pot 과정을 이용한 화합물 4a의 합성Synthesis of compound 4a using one-pot process

25℃의 무수 1,2-디클로로 에탄 (0.7mL)과 메틸비닐케톤 (22.1 mg, 0.32 mmol, 화학식 13)의 혼합용액에 CuBr (0.3mg, 0.01mmol)을 첨가하였다. 상기 혼합물을 0℃에서 5 분 동안 교반하였다. 혼합물에 1,2,3,4-테트라 하이드로 퀴놀린(30mg, 0.23mmo, 화학식 8)를 첨가한 다음, 0℃에서 30분간 교반한 후 상온(25℃)로 승온하고, 정제과정 없이 감압하에 농축하였다. 생성된 잔유물에 무수 1,2- 디클로로 에탄 (21.8 mL)을 첨가한 다음, 리튬퍼클로레이트(24.0mg, 0.23mmol) 및 DDQ (63.9mg, 0.28mmol)를 순차적으로 첨가하고, 용액을 80℃로 가열하였다. 6 시간 후, 1M NaOH로 반응을 종결하고 DCM(3x20 mL)으로 추출하였다. 생성된 유기물을 물 및 염수로 세척한 다음, MgSO4로 건조시키고, 감압하에 농축시켰다. 생성된 잔류 물을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 n-hexane/EtOAc/DCM = 1:1.5:1의 전개용매 조건에서 분리하여 화합물 4a (30 mg, 67 %, 화학식 32)를 황색 고체로서 수득 하였다.CuBr (0.3mg, 0.01mmol) was added to a mixed solution of anhydrous 1,2-dichloroethane (0.7mL) and methylvinyl ketone (22.1 mg, 0.32 mmol, Formula 13) at 25°C. The mixture was stirred at 0° C. for 5 minutes. 1,2,3,4-tetrahydroquinoline (30mg, 0.23mmo, Formula 8) was added to the mixture, and then stirred at 0℃ for 30 minutes, then raised to room temperature (25℃), and concentrated under reduced pressure without purification. I did. Anhydrous 1,2-dichloroethane (21.8 mL) was added to the resulting residue, then lithium perchlorate (24.0 mg, 0.23 mmol) and DDQ (63.9 mg, 0.28 mmol) were sequentially added, and the solution was heated to 80°C. I did. After 6 hours, the reaction was terminated with 1M NaOH and extracted with DCM (3x20 mL). The resulting organic was washed with water and brine, then dried over MgSO 4 and concentrated under reduced pressure. The resulting residue was separated by flash column chromatography using KANTO neutral silica gel under the conditions of a developing solvent of n-hexane/EtOAc/DCM = 1:1.5:1 and compound 4a (30 mg, 67%, Formula 32) was yellow Obtained as a solid.

한 반응기 내에서의 aza-Michael/oxidative Mannich reaction에 따른 화합물 4a, 4d, 4g, 4j의 수율을 간략하게 도 5에 나타내었다. 도 5에 나타낸 것과 같이 우수한 수율이 확인되었다.The yields of compounds 4a, 4d, 4g, and 4j according to the aza-Michael/oxidative Mannich reaction in one reactor are briefly shown in FIG. 5. As shown in Figure 5, excellent yield was confirmed.

실시예 4Example 4

상기 실시예 1과 동일한 방법을 사용하여, 에틸 비닐 케톤(ethyl vinyl ketone, 691mg, 8.2mmol, 화학식 14), CuBr (7.0mg, 0.05mmol)을 DCM(15.1mL)에 녹인 후 0℃에서 5분 동안 교반하였다. 반응 혼합물에 1,2,3,4-테트라하이드로이소퀴놀린(643.5mg, 4.83mmol, 화학식 8)을 천천히 첨가하여 0℃에서 30분간 교반한 후 상온(25℃)로 승온하고 64 시간동안 교반하였다. 얻은 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc = 2:1의 전개용매 조건에서 노란색 액체인 화합물 3b (970 mg, 99%, 화학식 18)을 얻었다.Using the same method as in Example 1, ethyl vinyl ketone (691mg, 8.2mmol, Formula 14) and CuBr (7.0mg, 0.05mmol) were dissolved in DCM (15.1mL) for 5 minutes at 0°C. While stirring. 1,2,3,4-tetrahydroisoquinoline (643.5mg, 4.83mmol, Formula 8) was slowly added to the reaction mixture, stirred at 0°C for 30 minutes, then heated to room temperature (25°C) and stirred for 64 hours. . The obtained material was separated by flash column chromatography using KANTO neutral silica gel to obtain a yellow liquid compound 3b (970 mg, 99%, Formula 18) under the conditions of a developing solvent of n-hexane/EtOAc = 2:1.

상기 화합물 3b의 분석결과는 하기와 같다.The analysis results of Compound 3b are as follows.

Rf = 0.6 (n-hexane/EtOAc/DCM = 1:3:1, v/v)R f = 0.6 (n-hexane/EtOAc/DCM = 1:3:1, v/v)

1H-NMR (400 MHz, CDCl3): δ 7.13-7.09 (m, 3H), 7.02-7.00 (m, 1H), 3.63 (s, 2H), 2.90-2.82 (m, 4H), 2.75-2.69 (m, 4H), 2.49 (q, J = 7.3 Hz, 2H), 1.07 (t, J = 7.3 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 7.13-7.09 (m, 3H), 7.02-7.00 (m, 1H), 3.63 (s, 2H), 2.90-2.82 (m, 4H), 2.75-2.69 (m, 4H), 2.49 (q, J = 7.3 Hz, 2H), 1.07 (t, J = 7.3 Hz, 3H).

13C-NMR (100 MHz, CDCl3): δ 210.5, 134.6, 134.1, 128.7, 126.6, 126.2, 125.6, 56.1, 52.1, 51.0, 40.4, 36.3, 29.1, 7.8. 13 C-NMR (100 MHz, CDCl 3 ): δ 210.5, 134.6, 134.1, 128.7, 126.6, 126.2, 125.6, 56.1, 52.1, 51.0, 40.4, 36.3, 29.1, 7.8.

HRMS-ESI (m/z): [M+H]+ calc for C14H20NO 218.1545, found 218.1541.HRMS-ESI (m/z): [M+H]+ calc for C 14 H 20 NO 218.1545, found 218.1541.

상기 화합물 3b(화학식 18)과 이하 화합물 3c 내지 3m(화학식 19 내지 화학식 29) 및 화합물 5a(화학식 30 및 화학식 31)의 합성을 도식화하여 도 2에 나타내었다(Regent 및 반응조건:[a] CuBr (1.0 mol%), DCM, 0°C 내지 rt; [b] Et2O, rt, [c] THF, 50°C; [d] aq. 2 M NaOH, rt; [e] SiCl4 (2 mol%), 60°C; [f] NaHCO3 (3 equiv), EtOH, rt.).The synthesis of the compound 3b (Chemical Formula 18) and the following compounds 3c to 3m (Chemical Formula 19 to Chemical Formula 29) and compound 5a (Chemical Formula 30 and Chemical Formula 31) is shown in Fig. 2 (Regent and reaction conditions: [a] CuBr (1.0 mol%), DCM, 0°C to rt; [b] Et2O, rt, [c] THF, 50°C; [d] aq. 2 M NaOH, rt; [e] SiCl4 (2 mol%) , 60°C; [f] NaHCO3 (3 equiv), EtOH, rt.).

실시예 5Example 5

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

상기 실시예 2와 동일한 방법을 사용하여, Ar로 충진한 pressure tube에 상기 실시예 4에서 제조된 화합물(1-(3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 30mg, 0.14mmol, 화학식 18), lithium perchlorate(15mg, 0.14mmol), DDQ(39mg, 0.17mmol)을 anhydrous 1,2-dichloroethane (13.8ml)에 녹인 후 80℃에서 12시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc/DCM = 1:1:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 4b(8mg, 27%, 화학식 33)와 부분입체 이성질체 4b'(4mg, 13%)를 얻었다.Using the same method as in Example 2, the compound (1-(3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 30mg prepared in Example 4 was placed in a pressure tube filled with Ar. , 0.14mmol, Formula 18), lithium perchlorate (15mg, 0.14mmol), and DDQ (39mg, 0.17mmol) were dissolved in anhydrous 1,2-dichloroethane (13.8ml) and stirred at 80°C for 12 hours. The obtained material was separated in a developing solvent condition of n-hexane/EtOAc/DCM = 1:1:1 by flash column chromatography separation method using KANTO neutral silica gel, and the light yellow compound 4b (8mg, 27%, Chemical Formula 33) and Diastereomer 4b' (4mg, 13%) was obtained.

상기 화합물 4b와 4b'의 분석결과는 하기와 같다.The analysis results of the compounds 4b and 4b' are as follows.

Rf = 0.33 (n-hexane/EtOAc = 4:1)R f = 0.33 (n-hexane/EtOAc = 4:1)

4b: 1H NMR (400 MHz, CDCl 3 ) δ 7.18-7.10 (m, 3H), 7.03 (d, J = 6.9 Hz, 1H), 3.61 (s, 1H), 3.22-3.02 (m, 3H), 2.97-2.84 (m, 2H), 2.68 (m, 1H), 2.60-2.47 (m, 2H), 2.31 (m,1H), 0.94 (d, J = 7.1 Hz, 3H).4b: 1 H NMR (400 MHz, CDCl 3 ) δ 7.18-7.10 (m, 3H), 7.03 (d, J = 6.9 Hz, 1H), 3.61 (s, 1H), 3.22-3.02 (m, 3H), 2.97-2.84 (m, 2H), 2.68 (m, 1H), 2.60-2.47 (m, 2H), 2.31 (m,1H), 0.94 (d, J = 7.1 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 208.3, 135.9, 135.0, 129.0, 126.4, 126.3, 124.8, 65.2, 55.3, 51.3, 49.7, 38.4, 30.1, 12.4. 13 C-NMR (100 MHz, CDCl 3 ) δ 208.3, 135.9, 135.0, 129.0, 126.4, 126.3, 124.8, 65.2, 55.3, 51.3, 49.7, 38.4, 30.1, 12.4.

HRMS-ESI (m/z): [M+H]+ calc for C14H18NO 216.1388, found 216.1389.HRMS-ESI (m/z): [M+H]+ calc for C 14 H 18 NO 216.1388, found 216.1389.

4b': 1H NMR (400 MHz, CDCl3) δ 7.21-7.09 (m, 3H), 7.04 (d, J = 7.6 Hz, 1H), 3.76 (d, J = 9.6 Hz, 1H), 3.43-3.37 (m, 1H), 3.29 (td, J = 12.8, 3.6 Hz, 1H), 3.16-3.07 (m, 1H), 3.00-2.95 (m,2H), 2.89-2.81 (m, 2H), 2.80-2.71 (m, 1H), 2.38 (ddd, J = 13.8, 3.5, 2.3 Hz, 1H), 1.14 (d, J = 6.7 Hz, 3H).4b': 1 H NMR (400 MHz, CDCl 3 ) δ 7.21-7.09 (m, 3H), 7.04 (d, J = 7.6 Hz, 1H), 3.76 (d, J = 9.6 Hz, 1H), 3.43-3.37 (m, 1H), 3.29 (td, J = 12.8, 3.6 Hz, 1H), 3.16-3.07 (m, 1H), 3.00-2.95 (m,2H), 2.89-2.81 (m, 2H), 2.80-2.71 (m, 1H), 2.38 (ddd, J = 13.8, 3.5, 2.3 Hz, 1H), 1.14 (d, J = 6.7 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 210.3, 135.3, 133.8, 129.3, 128.7, 127.2, 125.0, 66.8, 54.2, 47.0, 44.7, 38.3, 29.2, 12.4. 13 C-NMR (100 MHz, CDCl 3 ) δ 210.3, 135.3, 133.8, 129.3, 128.7, 127.2, 125.0, 66.8, 54.2, 47.0, 44.7, 38.3, 29.2, 12.4.

상기 화합물 4b 및 4b' (화학식 33)와 이하 화합물 4c 내지 4m(화학식 34 내지 화학식 44) 및 화합물 6a 및 6b(화학식 45 및 화학식 46)의 합성을 도식화하여 도 4에 나타내었다(Regent 및 반응조건: [a] 3 (1.0 equiv), DDQ (1.25 equiv), LiClO4 (1.0 equiv), DCE (0.01 M), 80°C, 6 h; [b] 3 (1.0 equiv), DDQ (1.25 equiv), CsCO3 (3.0 equiv), DCE (0.01 M), 80 °C, 12 h; [c] 반응은 마이크로파의 조사하에 1.5 시간동안 수행되었다. [d] 상기 비율은 두 이성질체의 정제된 혼합물의 1H NMR 분석에 의해 결정된 것이다).The synthesis of the compounds 4b and 4b' (Formula 33) and the following compounds 4c to 4m (Formula 34 to Formula 44) and compounds 6a and 6b (Formula 45 and Formula 46) is shown in Figure 4 (Regent and reaction conditions : [a] 3 (1.0 equiv), DDQ (1.25 equiv), LiClO4 (1.0 equiv), DCE (0.01 M), 80°C, 6 h; [b] 3 (1.0 equiv), DDQ (1.25 equiv), CsCO3 (3.0 equiv), DCE (0.01 M), 80 °C, 12 h; [c] The reaction was carried out for 1.5 hours under microwave irradiation [d] The above ratio was 1H NMR analysis of a purified mixture of two isomers. Is determined by).

실시예 6Example 6

실시예 1과 동일한 방법을 사용하여, 3-메틸-3-부텐-2-온(3-methyl-3-buten-2-one, 572.0mg, 6.8mmol, 화학식 15), CuBr (6.0mg, 0.04mmol)을 DCM(12.5mL)에 녹인 후 0℃에서 5분 동안 교반하였다. 반응 혼합 물에 1,2,3,4-tetrahydroisoquinoline (532mg, 4.0mmol, 화학식 8)을 천천히 첨가하여 0℃에서 30분간 교반한 후 상온(25℃)로 승온하고 64 시간동안 교반하였다. 얻은 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc = 2:1의 전개용매 조건에서 노란색 액체인 화합물 3c (538 mg, 62%, 화학식 19)을 얻었다.Using the same method as in Example 1, 3-methyl-3-buten-2-one (3-methyl-3-buten-2-one, 572.0mg, 6.8mmol, Chemical Formula 15), CuBr (6.0mg, 0.04 mmol) was dissolved in DCM (12.5mL) and stirred at 0°C for 5 minutes. 1,2,3,4-tetrahydroisoquinoline (532mg, 4.0mmol, Formula 8) was slowly added to the reaction mixture, stirred at 0°C for 30 minutes, and then heated to room temperature (25°C) and stirred for 64 hours. The obtained material was separated by flash column chromatography using KANTO neutral silica gel to obtain a yellow liquid compound 3c (538 mg, 62%, Formula 19) under the conditions of a developing solvent of n-hexane/EtOAc = 2:1.

상기 화합물 3c의 분석결과는 하기와 같다.The analysis results of Compound 3c are as follows.

Rf = 0.74 (n-hexane/EtOAc/DCM = 1:3:1, v/v)R f = 0.74 (n-hexane/EtOAc/DCM = 1:3:1, v/v)

1H-NMR (400 MHz, CDCl3): δ 7.13-7.08 (m, 3H), 7.02-6.99 (m, 1H), 3.66 (d, J = 14.8 Hz, 1H), 3.59 (d, J = 14.8 Hz, 1H), 2.94-2.84 (m, 3H), 2.83-2.76 (m, 2H), 2.69-2.62 (m, 1H), 2.48-2.43 (m, 1H), 2.18 (s, 3H), 1.12 (d, J = 6.9 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 7.13-7.08 (m, 3H), 7.02-6.99 (m, 1H), 3.66 (d, J = 14.8 Hz, 1H), 3.59 (d, J = 14.8 Hz, 1H), 2.94-2.84 (m, 3H), 2.83-2.76 (m, 2H), 2.69-2.62 (m, 1H), 2.48-2.43 (m, 1H), 2.18 (s, 3H), 1.12 ( d, J = 6.9 Hz, 3H).

13C-NMR (100 MHz, CDCl3): δ 212.4, 134.8, 134.4, 128.7, 126.5, 126.1, 125.6, 61.3, 56.4, 51.1, 45.2, 29.2, 28.6, 15.1. 13 C-NMR (100 MHz, CDCl 3 ): δ 212.4, 134.8, 134.4, 128.7, 126.5, 126.1, 125.6, 61.3, 56.4, 51.1, 45.2, 29.2, 28.6, 15.1.

HRMS-ESI (m/z): [M+H]+ calc for C14H20NO 218.1545, found 218.1539.HRMS-ESI (m/z): [M+H]+ calc for C 14 H 20 NO 218.1545, found 218.1539.

실시예 7Example 7

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

상기 실시예 2와 동일한 방법을 사용하여, Ar로 충진한 pressure tube에 상기 실시예 4에서 제조된 화합물(4-(3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one, 30mg, 0.14mmol, 화학식 19), lithium perchlorate (15mg, 0.14mmol), DDQ(39mg, 0.17mmol)을 anhydrous 1,2-dichloroethane (13.8ml)에 녹인 후 80℃에서 12시간 동안 교반한다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc/DCM = 1:1:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 4c(20mg, 67%, 화학식 34)를 얻었다.Compound (4-(3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2- prepared in Example 4 in a pressure tube filled with Ar using the same method as in Example 2 above. One, 30mg, 0.14mmol, Formula 19), lithium perchlorate (15mg, 0.14mmol), and DDQ (39mg, 0.17mmol) were dissolved in anhydrous 1,2-dichloroethane (13.8ml) and stirred at 80℃ for 12 hours. The obtained material was separated in a developing solvent condition of n-hexane/EtOAc/DCM = 1:1:1 by flash column chromatography separation method using KANTO neutral silica gel to obtain a pale yellow compound 4c (20mg, 67%, Formula 34). Got it.

화합물 4c의 분석결과는 하기와 같다.The analysis results of compound 4c are as follows.

Rf = 0.44 (n-hexane/EtOAc = 4:1)R f = 0.44 (n-hexane/EtOAc = 4:1)

1H NMR (400 MHz, CDCl3) δ 7.16-7.14 (m, 3H), 7.07(m, 1H), 3.59 (d, J = 11.6 Hz, 1H), 3.28-3.13 (m, 3H), 3.02-2.94 (m, 1H), 2.92-2.66 (m, 2H), 2.65-2.48 (m, 2H), 2.40 (m, 1H), 1.07-1.03 (m, 3H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.16-7.14 (m, 3H), 7.07 (m, 1H), 3.59 (d, J = 11.6 Hz, 1H), 3.28-3.13 (m, 3H), 3.02- 2.94 (m, 1H), 2.92-2.66 (m, 2H), 2.65-2.48 (m, 2H), 2.40 (m, 1H), 1.07-1.03 (m, 3H).

13C-NMR (100 MHz, CDCl3) δ 210.2, 136.9, 134.1, 129.1, 126.7, 126.3, 125.0, 62.9, 62.8, 50.4, 47.1, 44.4, 29.9, 11.3. 13 C-NMR (100 MHz, CDCl 3 ) δ 210.2, 136.9, 134.1, 129.1, 126.7, 126.3, 125.0, 62.9, 62.8, 50.4, 47.1, 44.4, 29.9, 11.3.

HRMS-ESI (m/z): [M+H]+ calc for C14H18NO 216.1388, found 216.1386.HRMS-ESI (m/z): [M+H]+ calc for C 14 H 18 NO 216.1388, found 216.1386.

실시예 8Example 8

Ar 기체로 충진한 바이알에 6-메톡시-1,2,3,4-테트라하이드로이소퀴놀린(6-methoxy-1,2,3,4-tetrahydroisoquinoline, 29.3mg, 0.2mmol, 화학식 9), methyl vinyl ketone (25.1 mg, 0.4 mmol, 화학식 13)을 디에틸 이터(diethyl ether, 3.7ml)에 녹인 후 상온에서 48시간 동안 교반하였다. TLC를 이용하여 반응을 확인한 후 물과 DCM를 첨가하여 층을 나눈 후 DCM (3 x 10 mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란 색의 화합물 3d (32mg, 74%, 화학식 20)를 얻었다. In a vial filled with Ar gas, 6-methoxy-1,2,3,4-tetrahydroisoquinoline (6-methoxy-1,2,3,4-tetrahydroisoquinoline, 29.3mg, 0.2mmol, formula 9), methyl Vinyl ketone (25.1 mg, 0.4 mmol, Formula 13) was dissolved in diethyl ether (3.7ml) and stirred at room temperature for 48 hours. After confirming the reaction by TLC, water and DCM were added to divide the layer, followed by extraction with DCM (3 x 10 mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. The filtered solution was vacuum-concentrated, and the obtained material was separated by flash column chromatography using KANTO neutral silica gel under the developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1, and the light yellow compound 3d (32mg, 74%, formula (20) was obtained.

상기 화합물 3d의 분석결과는 하기와 같다.The analysis results of the compound 3d are as follows.

Rf = 0.7 (DCM/MeOH = 10:1)R f = 0.7 (DCM/MeOH = 10:1)

1H-NMR (400 MHz, CDCl3): δ 6.93 (d, J = 8.4 Hz, 1H), 6.69 (dd, J = 8.4, 2.5 Hz, 1H), 6.63 (d, J = 2.4 Hz, 1H), 3.77 (s, 3H), 3.59 (s, 2H) 2.89-2.82 (m, 4H), 2.77-2.72 (m, 4H), 2.20 (s, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 6.93 (d, J = 8.4 Hz, 1H), 6.69 (dd, J = 8.4, 2.5 Hz, 1H), 6.63 (d, J = 2.4 Hz, 1H) , 3.77 (s, 3H), 3.59 (s, 2H) 2.89-2.82 (m, 4H), 2.77-2.72 (m, 4H), 2.20 (s, 3H).

13C-NMR (100 MHz, CDCl3): δ 207.9, 158.0, 135.2, 127.5, 126.6, 113.1, 112.1, 55.5, 55.2, 52.5, 50.8, 41.7, 30.2, 29.3. 13 C-NMR (100 MHz, CDCl 3 ): δ 207.9, 158.0, 135.2, 127.5, 126.6, 113.1, 112.1, 55.5, 55.2, 52.5, 50.8, 41.7, 30.2, 29.3.

HRMS-ESI (m/z): [M+H]+ calc for C14H20NO2 234.1494, found 234.1491.HRMS-ESI (m/z): [M+H]+ calc for C 14 H 20 NO 2 234.1494, found 234.1491.

실시예 9Example 9

산화적 만니히 반응을 이용한 고리형성(CsCO3 첨가제 사용)Cyclic formation using oxidative Mannich reaction (using CsCO 3 additive)

Ar로 충진한 Pressure tube에 상기 실시예 8에서 제조된 화합물(4-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one, 32mg, 0.14mmol, 화학식 20), 세슘카보네이트(cesium carbonate, 133mg, 0.41mmol), DDQ(39mg, 0.17mmol)을 anhydrous 1,2-dichloroethane (13.6ml)에 녹인 후 80℃에서 12시간 동안 교반하였다. TLC를 이용하여 반응을 확인한 후 1M NaOH 수용액을 첨가해 반응을 종결시켰다. 물과 DCM를 첨가하여 층을 나눈 후 DCM (3 x 10 mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란색의 화합물 4d (19mg, 64%, 화학식 35)를 얻었다.Compound (4-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one, 32mg, 0.14mmol, Formula 20) prepared in Example 8 in a pressure tube filled with Ar , Cesium carbonate (133mg, 0.41mmol) and DDQ (39mg, 0.17mmol) were dissolved in anhydrous 1,2-dichloroethane (13.6ml) and stirred at 80°C for 12 hours. After confirming the reaction using TLC, 1M NaOH aqueous solution was added to terminate the reaction. After dividing the layer by adding water and DCM, extraction was performed using DCM (3 x 10 mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. After the filtered solution was concentrated under reduced pressure, the obtained material was separated by flash column chromatography using KANTO neutral silica gel under the developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1, and the light yellow compound 4d (19mg, 64 %, the formula 35) was obtained.

상기 화합물 4d의 분석결과는 하기와 같다.The analysis results of compound 4d are as follows.

Rf = 0.67 (DCM/MeOH= 10:1)R f = 0.67 (DCM/MeOH= 10:1)

1H NMR (400 MHz, CDCl3): δ 6.97 (d, J = 8.9 Hz, 1H), 6.73 (dd, J = 8.6, 2.6 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 3.76 (s, 3H), 3.52 (d, J = 11.5 Hz, 1H), 3.28-3.09 (m, 3H), 2.91 (m, 1H), 2.79-2.57 (m, 4H), 2.49-2.40 (m, 2H). 1 H NMR (400 MHz, CDCl 3 ): δ 6.97 (d, J = 8.9 Hz, 1H), 6.73 (dd, J = 8.6, 2.6 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 3.76 (s, 3H), 3.52 (d, J = 11.5 Hz, 1H), 3.28-3.09 (m, 3H), 2.91 (m, 1H), 2.79-2.57 (m, 4H), 2.49-2.40 (m, 2H).

13C-NMR (400 MHz, CDCl3): δ 208.6, 158.3, 135.4, 128.9, 126.0, 113.6, 112.6, 61.6, 55.4, 54.8, 50.9, 47.4, 41.2, 30.0. 13 C-NMR (400 MHz, CDCl 3 ): δ 208.6, 158.3, 135.4, 128.9, 126.0, 113.6, 112.6, 61.6, 55.4, 54.8, 50.9, 47.4, 41.2, 30.0.

실시예 10Example 10

one-pot 과정을 이용한 화합물 4d의 합성Synthesis of compound 4d using one-pot process

디에틸이터 (3.7 mL) 및 6-메톡시-1,2,3,4-테트라하이드로이소퀴놀린(30mg, 0.18mmol, 화학식 9)의 혼합 용액에 메틸 비닐 케톤 (26mg, 0.37mmol, 화학식 13)을 첨가하고 실온(25℃)에서 48시간 동안 교반하였다. TLC를 이용하여 반응을 확인한 후, 이를 감압하에 농축시켰다. 무수 1,2-디클로로 에탄 (18.5 mL)에 생성된 잔유물을 용해한 다음, 세슘카보네이트(181mg, 0.55mmol) 및 DDQ (52mg, 0.23mmol)를 순차적으로 첨가하였다. 반응 혼합물을 80℃에서 12 시간 동안 교반한 후, 1M NaOH 수용액으로 반응을 종결시키고 DCM(3x20mL)으로 추출하였다. 추출된 유기상을 물 및 염수로 세척한 다음, MgSO4로 건조시키고, 감압하에 농축시켰다. 생성된 잔유물을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란색의 화합물 4d (27mg, 63%, 화학식 35)를 얻었다.Methyl vinyl ketone (26mg, 0.37mmol, formula 13) in a mixed solution of diethyl ether (3.7 mL) and 6-methoxy-1,2,3,4-tetrahydroisoquinoline (30mg, 0.18mmol, formula 9) Was added and stirred at room temperature (25° C.) for 48 hours. After confirming the reaction using TLC, it was concentrated under reduced pressure. The resulting residue was dissolved in anhydrous 1,2-dichloroethane (18.5 mL), and then cesium carbonate (181 mg, 0.55 mmol) and DDQ (52 mg, 0.23 mmol) were sequentially added. After the reaction mixture was stirred at 80° C. for 12 hours, the reaction was terminated with 1M NaOH aqueous solution and extracted with DCM (3×20 mL). The extracted organic phase was washed with water and brine, then dried over MgSO 4 and concentrated under reduced pressure. The resulting residue was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 4d (27mg, 63%, Chemical Formula 35).

실시예 11Example 11

실시예 8과 동일한 방법을 사용하여, 6-메톡시-1,2,3,4-테트라하이드로이소퀴놀린(31.2mg, 0.2mmol, 화학식 9), 에틸 비닐 케톤(ethyl vinyl ketone, 32.2mg, 0.4mmol, 화학식 14)을 디에틸 이터(3.8ml)에 녹인 후 상온에서 48시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란 색의 화합물 3e (46mg, 97%, 화학식 21)를 얻었다.Using the same method as in Example 8, 6-methoxy-1,2,3,4-tetrahydroisoquinoline (31.2mg, 0.2mmol, formula 9), ethyl vinyl ketone (32.2mg, 0.4 After dissolving mmol, formula 14) in diethyl ether (3.8ml), the mixture was stirred at room temperature for 48 hours. The obtained material was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 3e (46mg, 97%, Formula 21).

상기 화합물 3e의 분석결과는 하기와 같다.The analysis results of Compound 3e are as follows.

Rf = 0.68 (DCM/MeOH = 10:1)R f = 0.68 (DCM/MeOH = 10:1)

1H-NMR (400 MHz, CDCl3): δ 6.94 (d, J = 8.5 Hz, 1H), 6.72-6.63 (m, 2H), 3.77 (s, 3H), 3.69 (s, 2H), 2.94-2.91 (m, 4H), 2.86-2.82 (m, 4H), 2.49 (q, J = 7.3 Hz, 2H), 1.06 (t. J = 7.3 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 6.94 (d, J = 8.5 Hz, 1H), 6.72-6.63 (m, 2H), 3.77 (s, 3H), 3.69 (s, 2H), 2.94- 2.91 (m, 4H), 2.86-2.82 (m, 4H), 2.49 (q, J = 7.3 Hz, 2H), 1.06 (t. J = 7.3 Hz, 3H).

13C-NMR (100 MHz, CDCl3): δ 210.5, 158.0, 135.2, 127.5, 126.6, 113.1, 112.1, 55.5, 55.2, 52.6, 50.9, 40.3, 36.3, 29.3, 7.7. 13 C-NMR (100 MHz, CDCl 3 ): δ 210.5, 158.0, 135.2, 127.5, 126.6, 113.1, 112.1, 55.5, 55.2, 52.6, 50.9, 40.3, 36.3, 29.3, 7.7.

HRMS-ESI (m/z): [M+H]+ calc for C15H22NO2 248.1650, found 248.1650.HRMS-ESI (m/z): [M+H]+ calc for C 15 H 22 NO 2 248.1650, found 248.1650.

실시예 12Example 12

산화적 만니히 반응을 이용한 고리형성(CsCO3 첨가제 사용)Cyclic formation using oxidative Mannich reaction (using CsCO 3 additive)

실시예 9와 동일한 방법을 사용하여 실시예 11에서 제조된 화합물(1-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 30mg, 0.12mmol, 화학식 21) 과 세슘카보네이트(119mg, 0.36mmol), DDQ(34mg, 0.15mmol)을 anhydrous 1,2-dichloroethane (18.5ml)에 녹인 후 80℃에서 12시간 동안 교반한다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란 색의 화합물 4e와 부분입체 이성질체 4e'의 혼합물(17 mg, 56% 화학식 36)을 얻었다.Compound (1-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 30mg, 0.12mmol, Formula 21 prepared in Example 11 using the same method as in Example 9 ), cesium carbonate (119mg, 0.36mmol), and DDQ (34mg, 0.15mmol) are dissolved in anhydrous 1,2-dichloroethane (18.5ml) and stirred at 80℃ for 12 hours. The obtained material was separated by flash column chromatography using KANTO neutral silica gel under the developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1, and a mixture of light yellow compound 4e and diastereomer 4e' (17 mg, 56% formula 36) was obtained.

상기 화합물 4e의 분석결과는 하기와 같다.The analysis results of Compound 4e are as follows.

Rf = 0.67 (DCM/MeOH= 10:1)R f = 0.67 (DCM/MeOH= 10:1)

1H-NMR (400 MHz, CDCl3) δ 6.94 (d, J = 8.6 Hz,1H), 6.74 (dd, J = 8.6, 2.5 Hz, 1H), 6.65 (d, J = 2.2 Hz, 1H), 3.78 (s, 3H), 3.56 (bs, 1H), 3.20-3.03 (m, 3H), 3.02-2.84 (m,2H), 2.67-2.32 (m, 3H), 2.48-2.28 (m, 1H), 0.96 (d, J = 7.0 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 6.94 (d, J = 8.6 Hz, 1H), 6.74 (dd, J = 8.6, 2.5 Hz, 1H), 6.65 (d, J = 2.2 Hz, 1H), 3.78 (s, 3H), 3.56 (bs, 1H), 3.20-3.03 (m, 3H), 3.02-2.84 (m,2H), 2.67-2.32 (m, 3H), 2.48-2.28 (m, 1H), 0.96 (d, J = 7.0 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 213.4, 157.9, 137.1, 127.1, 125.8, 113.3, 112.7, 64.8, 55.2, 51.3, 49.6, 38.2, 30.2, 29.7, 12.2. 13 C-NMR (100 MHz, CDCl 3 ) δ 213.4, 157.9, 137.1, 127.1, 125.8, 113.3, 112.7, 64.8, 55.2, 51.3, 49.6, 38.2, 30.2, 29.7, 12.2.

HRMS-ESI (m/z): [M+H]+ calc for C15H20NO2 246.1494, found 246.1491.HRMS-ESI (m/z): [M+H]+ calc for C 15 H 20 NO 2 246.1494, found 246.1491.

Partial spectral data for 4e': 3.71 (d, J = 9.6 Hz, 1H11b), 1.12 (d, J = 6.6 Hz, 3H(C1-methyl)).Partial spectral data for 4e': 3.71 (d, J = 9.6 Hz, 1H 11b ), 1.12 (d, J = 6.6 Hz, 3H(C1-methyl)).

실시예 13Example 13

Ar 기체로 충진한 microwave용 바이알에 6-메톡시-1,2,3,4-테트라하이드로이소퀴놀린(50 mg, 0.31 mmol, 화학식 9), 3-메틸-3-부텐-2-온(3-methyl-3-buten-2-one, 206.1mg, 2.5mmol, 화학식 15)을 무수 테트라하이드로퓨란(anhydrous tetrahydrofuran, 1.0 ml)에 녹인 후 50℃에서 48시간 동안 교반하였다. TLC를 이용하여 반응을 확인한 후 물과 DCM를 첨가하여 층을 나눈 후 DCM (3x10mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란 색의 화합물 3f (61mg, 81%, 화학식 22)를 얻었다. In a microwave vial filled with Ar gas, 6-methoxy-1,2,3,4-tetrahydroisoquinoline (50 mg, 0.31 mmol, formula 9), 3-methyl-3-buten-2-one (3 -Methyl-3-buten-2-one, 206.1mg, 2.5mmol, Formula 15) was dissolved in anhydrous tetrahydrofuran (1.0 ml) and stirred at 50°C for 48 hours. After confirming the reaction by TLC, water and DCM were added to divide the layer, followed by extraction with DCM (3x10mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. The filtered solution was vacuum-concentrated, and the obtained material was separated by flash column chromatography using KANTO neutral silica gel under the developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1, and the light yellow compound 3f (61mg, 81 %, formula 22) was obtained.

상기 화합물 3f의 분석결과는 하기와 같다.The analysis results of compound 3f are as follows.

Rf = 0.72 (DCM/MeOH = 10:1)R f = 0.72 (DCM/MeOH = 10:1)

1H-NMR (400 MHz, CDCl3) δ 6.92 (d, J = 8.4 Hz, 1H), 6.68 (dd, J = 8.34, 2.50 Hz, 1H), 6.61 (d, J = 2.1 Hz, 1H), 3.77 (s, 3H), 3.59 (d, J = 14.4 Hz, 1H), 3.53 (d, J = 14.3 Hz, 1H) 2.93-2.87 (m, 1H), 2.84-2.73 (m, 4H), 2.66-2.61 (m, 1H), 2.44 (dd, J = 12.36, 5.80 Hz, 1H), 2.17(s, 3H), 1.11 (d, J = 6.9 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 6.92 (d, J = 8.4 Hz, 1H), 6.68 (dd, J = 8.34, 2.50 Hz, 1H), 6.61 (d, J = 2.1 Hz, 1H), 3.77 (s, 3H), 3.59 (d, J = 14.4 Hz, 1H), 3.53 (d, J = 14.3 Hz, 1H) 2.93-2.87 (m, 1H), 2.84-2.73 (m, 4H), 2.66- 2.61 (m, 1H), 2.44 (dd, J = 12.36, 5.80 Hz, 1H), 2.17 (s, 3H), 1.11 (d, J = 6.9 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 212.3, 157.9, 135.4, 127.4, 126.8, 113.1, 112.1, 61.1, 55.8, 55.2, 50.9, 45.1, 29.3, 28.6, 15.1. 13 C-NMR (100 MHz, CDCl 3 ) δ 212.3, 157.9, 135.4, 127.4, 126.8, 113.1, 112.1, 61.1, 55.8, 55.2, 50.9, 45.1, 29.3, 28.6, 15.1.

HRMS-ESI (m/z): [M+H]+ calc for C15H22NO2 248.1650, found 248.1648.HRMS-ESI (m/z): [M+H]+ calc for C 15 H 22 NO 2 248.1650, found 248.1648.

실시예 14Example 14

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

실시예 2와 동일한 방법을 사용하여 실시예 13에서 제조된 화합물(4-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one, 30mg, 0.12mmol, 화학식 22) 과 lithium perchlorate (13.0mg, 0.12mmol), DDQ (34.7mg, 0.15mmol)을 anhydrous 1,2-dichloroethane (12.2 ml)에 녹인 후 80℃에서 3시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란 색의 화합물 4f (21mg, 69%, 화학식 37)를 얻었다.Compound (4-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one, 30mg, 0.12mmol prepared in Example 13 using the same method as in Example 2 , Formula 22), lithium perchlorate (13.0mg, 0.12mmol), and DDQ (34.7mg, 0.15mmol) were dissolved in anhydrous 1,2-dichloroethane (12.2 ml) and stirred at 80° C. for 3 hours. The obtained material was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 4f (21mg, 69%, Chemical Formula 37).

상기 화합물 4f의 분석결과는 하기와 같다.The analysis results of Compound 4f are as follows.

Rf = 0.66 (DCM/MeOH= 10:1)R f = 0.66 (DCM/MeOH= 10:1)

1H NMR (400 MHz, CDCl3): δ 6.98 (d, J = 8.6 Hz, 1H), 6.74 (dd, J = 8.62, 2.58 Hz, 1H), 6.67 (d, J = 2.52 Hz, 1H), 3.78 (s, 3H), 3.62-3.58 (bs, 1H), 3.31-3.17 (m, 3H), 2.96-2.76 (m, 3H), 2.66-2.53 (m, 2H), 2.43 (m, 1H), 1.19 (d, J = 7.0 Hz, 3H). 1 H NMR (400 MHz, CDCl 3 ): δ 6.98 (d, J = 8.6 Hz, 1H), 6.74 (dd, J = 8.62, 2.58 Hz, 1H), 6.67 (d, J = 2.52 Hz, 1H), 3.78 (s, 3H), 3.62-3.58 (bs, 1H), 3.31-3.17 (m, 3H), 2.96-2.76 (m, 3H), 2.66-2.53 (m, 2H), 2.43 (m, 1H), 1.19 (d, J = 7.0 Hz, 3H).

13C-NMR (100 MHz, CDCl3): δ 209.9, 158.3, 135.2, 128.8, 126.0, 113.6, 112.5, 62.7, 62.4, 55.3, 50.5, 47.0, 44.2, 29.9, 11.2. 13 C-NMR (100 MHz, CDCl 3 ): δ 209.9, 158.3, 135.2, 128.8, 126.0, 113.6, 112.5, 62.7, 62.4, 55.3, 50.5, 47.0, 44.2, 29.9, 11.2.

실시예 15Example 15

Ar 기체로 충진한 microwave용 바이알에 6,7-디메톡시-1,2,3,4-테트라하이드로이소이소퀴놀린(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, 500mg, 2.18mmol, 화학식 10), 메틸 비닐 케톤(methyl vinyl ketone, 304.9mg, 4.35mmol, 화학식 13)을 2M NaOH (1.32ml) 수용액에 녹인 후 상온에서 1시간 동안 빠르게 교반하였다. TLC를 이용하여 반응을 확인한 후 물과 DCM를 첨가하여 층을 나눈 후 DCM (3 x 10 mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 방법으로 DCM/MeOH = 10:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 3g (545mg, 95%, 화학식 23)를 얻었다. In a microwave vial filled with Ar gas, 6,7-dimethoxy-1,2,3,4-tetrahydroisoisoquinoline (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, 500mg, 2.18mmol) , Formula 10), methyl vinyl ketone (methyl vinyl ketone, 304.9mg, 4.35mmol, Formula 13) was dissolved in 2M NaOH (1.32ml) aqueous solution and then stirred rapidly at room temperature for 1 hour. After confirming the reaction by TLC, water and DCM were added to divide the layer, followed by extraction with DCM (3 x 10 mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. The filtered solution was vacuum-concentrated, and the obtained material was separated by flash column chromatography using KANTO neutral silica gel under a developing solvent condition of DCM/MeOH = 10:1, and the light yellow compound 3g (545mg, 95%, Formula 23 ).

상기 화합물 3g의 분석결과는 하기와 같다.The analysis results of 3g of the compound are as follows.

Rf = 0.72 (DCM/MeOH = 10:1)R f = 0.72 (DCM/MeOH = 10:1)

1H-NMR (400 MHz, CDCl3) δ 6.56 (s, 1H), 6.49 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.55 (s, 2H), 2.83-2.78 (m, 4H), 2.74-2.70 (m, 4H), 2.18 (s, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 6.56 (s, 1H), 6.49 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.55 (s, 2H), 2.83-2.78 (m, 4H), 2.74-2.70 (m, 4H), 2.18 (s, 3H).

13C-NMR (100 MHz, CDCl3) δ 207.8, 147.6, 147.3, 126.1, 125.9, 111.3, 109.4, 55.9, 55.8, 52.4, 50.9, 30.2, 28.6. 13 C-NMR (100 MHz, CDCl 3 ) δ 207.8, 147.6, 147.3, 126.1, 125.9, 111.3, 109.4, 55.9, 55.8, 52.4, 50.9, 30.2, 28.6.

실시예 16Example 16

산화적 만니히 반응을 이용한 고리형성(CsCO3 첨가제 사용)Cyclic formation using oxidative Mannich reaction (using CsCO 3 additive)

실시예 9와 동일한 방법을 사용하여 실시예 15에서 제조된 화합물(4-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one, 30mg, 0.11mmol, 화학식 23)과 세슘 카보네이트(111mg, 0.34mmol), DDQ (32mg, 0.14mmol)을 anhydrous 1,2-dichloroethane (11.4ml)에 녹인 후 80℃에서 1.5시간 동안 microwave 하에서 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란색의 화합물 4g (20mg, 67%, 화학식 38)을 얻었다.Compound (4-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one, 30mg, 0.11mmol, Formula 23 prepared in Example 15 using the same method as in Example 9 ), cesium carbonate (111mg, 0.34mmol), and DDQ (32mg, 0.14mmol) were dissolved in anhydrous 1,2-dichloroethane (11.4ml) and stirred at 80° C. for 1.5 hours under microwave. The obtained material was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 4g (20mg, 67%, Chemical Formula 38).

상기 화합물 4g의 분석결과는 하기와 같다.The analysis results of the compound 4g are as follows.

Rf = 0.65 (DCM/MeOH= 10:1)R f = 0.65 (DCM/MeOH= 10:1)

1H NMR (400 MHz, CDCl3): δ 6.61 (s, 1H), 6.53 (s, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.51 (d, J = 12.4 Hz, 1H), 3.29-3.25 (m, 1H), 3.15-3.07 (m, 2H), 2.90 (m, 1H), 2.73-2.65 (m, 3H), 2.63-51 (m, 1H), 2.49-2.41 (m, 2H). 1 H NMR (400 MHz, CDCl 3 ): δ 6.61 (s, 1H), 6.53 (s, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.51 (d, J = 12.4 Hz, 1H ), 3.29-3.25 (m, 1H), 3.15-3.07 (m, 2H), 2.90 (m, 1H), 2.73-2.65 (m, 3H), 2.63-51 (m, 1H), 2.49-2.41 (m , 2H).

13C-NMR (100 MHz, CDCl3): δ 208.6, 147.8, 147.5, 128.4, 126.1, 111.5, 107.8, 61.5, 56.0, 55.9, 54.7, 50.8, 47.5, 41.1, 29.3. 13 C-NMR (100 MHz, CDCl 3 ): δ 208.6, 147.8, 147.5, 128.4, 126.1, 111.5, 107.8, 61.5, 56.0, 55.9, 54.7, 50.8, 47.5, 41.1, 29.3.

실시예 17Example 17

one-pot 과정을 이용한 화합물 4g의 합성Synthesis of compound 4g using one-pot process

무수 1,2-디클로로에탄 (0.51 mL) 및 6,7-디메톡시-1,2,3,4-테트라하이드로이소퀴놀린(30 mg, 0.16 mmol, 화학식 10)의 혼합용액에 메틸비닐케톤(87mg, 1.24mmol, 화학식 13)을 첨가한 다음, 실온(25℃)에서 교반하였다. TLC를 이용하여 반응을 확인한 후, 이를 감압하에 농축시켰다. anhydrous 1,2-dichloroethane (15.5mL)에 생성된 잔유물을 용해한 다음, 세슘 카보네이트(152mg, 0.47mmol) 및 DDQ(44mg, 0.19mmol)를 순차적으로 첨가하였다. 반응 혼합물을 80℃에서 6시간 동안 교반 한 후, 1M NaOH 수용액으로 반응을 종결시키고 DCM (3 x 20 mL)으로 추출하였다. 유기상을 물 및 염수로 세척하고, MgSO4로 건조시키고, 감압하에 농축시켰다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란색의 화합물 4g (22mg, 55%, 화학식 38)을 얻었다.Methyl vinyl ketone (87 mg) in a mixed solution of anhydrous 1,2-dichloroethane (0.51 mL) and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (30 mg, 0.16 mmol, formula 10) , 1.24mmol, Formula 13) was added, and then stirred at room temperature (25°C). After confirming the reaction using TLC, it was concentrated under reduced pressure. After dissolving the residue produced in anhydrous 1,2-dichloroethane (15.5mL), cesium carbonate (152mg, 0.47mmol) and DDQ (44mg, 0.19mmol) were sequentially added. After the reaction mixture was stirred at 80° C. for 6 hours, the reaction was terminated with 1M NaOH aqueous solution and extracted with DCM (3 x 20 mL). The organic phase was washed with water and brine, dried over MgSO 4 and concentrated under reduced pressure. The obtained material was separated by flash column chromatography using KANTO neutral silica gel under the conditions of a developing solvent of DCM/EtOAc/MeOH = 10:1:0.1 to obtain a pale yellow compound 4g (22mg, 55%, Chemical Formula 38).

실시예 18Example 18

Ar 기체로 충진한 microwave용 바이알에 6,7-디메톡시-1,2,3,4-테트라하이드로이소이소퀴놀린(50 mg, 0.26 mmol, 화학식 10), 에틸 비닐 케톤(ethyl vinyl ketone, 174.1mg, 2.07mmol, 화학식 14)을 anhydrous 1,2-dichloroethane (0.70ml)에 녹인 후 상온에서 12시간 동안 빠르게 교반하였다. TLC를 이용하여 반응을 확인한 후 물과 DCM를 첨가하여 층을 나눈 후 DCM (3 x 10 mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/MeOH = 10:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 3h (69.6 mg, 97%, 화학식 24)를 얻었다. In a microwave vial filled with Ar gas, 6,7-dimethoxy-1,2,3,4-tetrahydroisoisoquinoline (50 mg, 0.26 mmol, formula 10), ethyl vinyl ketone (174.1 mg) , 2.07mmol, Formula 14) was dissolved in anhydrous 1,2-dichloroethane (0.70ml) and then stirred rapidly at room temperature for 12 hours. After confirming the reaction by TLC, water and DCM were added to divide the layer, followed by extraction with DCM (3 x 10 mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. After the filtered solution was concentrated under reduced pressure, the obtained material was separated by flash column chromatography using KANTO neutral silica gel under a developing solvent condition of DCM/MeOH = 10:1, and the light yellow compound 3h (69.6 mg, 97%, Formula 24) was obtained.

상기 화합물 3h의 분석결과는 하기와 같다.The analysis results of the compound 3h are as follows.

Rf = 0.71 (DCM/MeOH = 10:1)R f = 0.71 (DCM/MeOH = 10:1)

1H-NMR (400 MHz, CDCl3) δ 6.56 (s, 1H), 6.49 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.60 (s, 2H), 2.87-2.81 (m, 4H), 2.77-2.75 (m, 4H), 2.47 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 6.56 (s, 1H), 6.49 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.60 (s, 2H), 2.87-2.81 (m, 4H), 2.77-2.75 (m, 4H), 2.47 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 210.4, 147.6, 147.3, 126.1, 125.9, 111.4, 109.4, 56.0, 55.9, 55.6, 52.5, 51.0, 40.3, 36.3, 28.5, 7.8. 13 C-NMR (100 MHz, CDCl 3 ) δ 210.4, 147.6, 147.3, 126.1, 125.9, 111.4, 109.4, 56.0, 55.9, 55.6, 52.5, 51.0, 40.3, 36.3, 28.5, 7.8.

HRMS-ESI (m/z): [M+H]+ calc for C16H24NO3 278.1756, found 278.1753.HRMS-ESI (m/z): [M+H]+ calc for C 16 H 24 NO 3 278.1756, found 278.1753.

실시예 19Example 19

산화적 만니히 반응을 이용한 고리형성(CsCO3 첨가제 사용)Cyclic formation using oxidative Mannich reaction (using CsCO 3 additive)

실시예 9와 동일한 방법을 사용하여 상기 실시예 18에서 제조된 화합물(1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 30mg, 0.11mmol, 화학식 24)과 세슘 카보네이트(105.7mg, 0.32mmol), DDQ(30.7mg, 0.14mmol)을 anhydrous 1,2-dichloroethane (10.8ml)에 녹인 후 80℃에서 6시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란색의 화합물 4h와 부분입체 이성질체 4h'의 1.7:1 혼합물(17 mg, 59%, 화학식 39)를 얻었다.The compound prepared in Example 18 (1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 30mg, 0.11mmol, using the same method as in Example 9 , Formula 24), cesium carbonate (105.7mg, 0.32mmol), and DDQ (30.7mg, 0.14mmol) were dissolved in anhydrous 1,2-dichloroethane (10.8ml) and stirred at 80°C for 6 hours. The obtained material was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography separation method using KANTO neutral silica gel, and a 1.7:1 mixture of light yellow compound 4h and diastereomer 4h' ( 17 mg, 59%, formula 39) was obtained.

상기 화합물 4h 및 4h'의 분석결과는 하기와 같다.The analysis results of the compounds 4h and 4h' are as follows.

Rf = 0.40 (DCM/MeOH= 20:1)R f = 0.40 (DCM/MeOH= 20:1)

4h: 1H-NMR (400 MHz, CDCl3) δ 6.59 (s, 1H), 6.49 (s, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 3.61-3.56 (bs, 1H), 3.23-2.91 (m, 5H), 2.62-2.51 (m, 3H), 2.34-2.30 (m, 1H), 0.98 (d, J = 5.7 Hz, 3H).4h: 1 H-NMR (400 MHz, CDCl 3 ) δ 6.59 (s, 1H), 6.49 (s, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 3.61-3.56 (bs, 1H) , 3.23-2.91 (m, 5H), 2.62-2.51 (m, 3H), 2.34-2.30 (m, 1H), 0.98 (d, J = 5.7 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 213.5, 147.8, 147.6, 127.8, 126.5, 111.4, 107.3, 64.8, 56.0, 55.8, 55.1, 51.4, 49.7, 38.1, 29.3, 12.2. 13 C-NMR (100 MHz, CDCl 3 ) δ 213.5, 147.8, 147.6, 127.8, 126.5, 111.4, 107.3, 64.8, 56.0, 55.8, 55.1, 51.4, 49.7, 38.1, 29.3, 12.2.

HRMS-ESI (m/z): [M+H]+ calc for C16H22NO3 276.1599, found 276.1596.HRMS-ESI (m/z): [M+H]+ calc for C 16 H 22 NO 3 276.1599, found 276.1596.

Partial spectral data for 4h': 3.67 (d, J = 9.6 Hz, 1H11b), 1.15 (d, J = 6.6 Hz, 3H (C1-methyl)).Partial spectral data for 4h': 3.67 (d, J = 9.6 Hz, 1H 11b ), 1.15 (d, J = 6.6 Hz, 3H (C 1 -methyl)).

실시예 20Example 20

실시예 15와 동일한 방법을 사용하여, 6,7-디메톡시-1,2,3,4-테트라하이드로이소이소퀴놀린(30 mg, 0.13 mmol, 화학식 10), 3-메틸-3-부텐-2-온(3-methyl-3-buten-2-one, 22.0mg, 0.26mmol, 화학식 15)을 2M NaOH(0.8ml) 수용액에 녹인 후 상온(25℃)에서 72시간 동안 빠르게 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/MeOH = 20:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 3i (34 mg, 94%, 화학식 25)를 얻었다.Using the same method as in Example 15, 6,7-dimethoxy-1,2,3,4-tetrahydroisoisoquinoline (30 mg, 0.13 mmol, formula 10), 3-methyl-3-butene-2 -One (3-methyl-3-buten-2-one, 22.0mg, 0.26mmol, Formula 15) was dissolved in 2M NaOH (0.8ml) aqueous solution, and then stirred rapidly at room temperature (25°C) for 72 hours. The obtained material was separated in a developing solvent condition of DCM/MeOH = 20:1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 3i (34 mg, 94%, Chemical Formula 25).

상기 화합물 3i의 분석결과는 하기와 같다.The analysis results of Compound 3i are as follows.

Rf = 0.68 (DCM/MeOH = 10:1)R f = 0.68 (DCM/MeOH = 10:1)

1H-NMR (400 MHz, CDCl3) δ 6.56 (s, 1H), 6.48 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.59 (d, J = 14.4 Hz, 1H), 3.52 (d, J = 14.5 Hz, 1H), 2.93-2.83 (m, 1H), 2.83-2.76 (m, 4H), 2.68-2.63 (m, 1H), 2.44 (m, 1H), 2.17 (s, 3H), 1.10 (d, J = 6.9 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 6.56 (s, 1H), 6.48 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.59 (d, J = 14.4 Hz, 1H ), 3.52 (d, J = 14.5 Hz, 1H), 2.93-2.83 (m, 1H), 2.83-2.76 (m, 4H), 2.68-2.63 (m, 1H), 2.44 (m, 1H), 2.17 ( s, 3H), 1.10 (d, J = 6.9 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 212.1, 147.5, 147.2, 126.1, 126.0, 111.3, 109.3, 60.8, 55.9, 55.8, 55.7, 51.0, 45.1, 28.5, 28.4, 15.1. 13 C-NMR (100 MHz, CDCl 3 ) δ 212.1, 147.5, 147.2, 126.1, 126.0, 111.3, 109.3, 60.8, 55.9, 55.8, 55.7, 51.0, 45.1, 28.5, 28.4, 15.1.

HRMS-ESI (m/z): [M+H]+ calc for C16H24NO3 278.1756, found 278.1755.HRMS-ESI (m/z): [M+H]+ calc for C 16 H 24 NO 3 278.1756, found 278.1755.

실시예 21Example 21

산화적 만니히 반응을 이용한 고리형성(CsCO3 첨가제 사용)Cyclic formation using oxidative Mannich reaction (using CsCO 3 additive)

실시예 9와 동일한 방법을 사용하여 상기 실시예 20에서 제조된 화합물(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one, 30mg, 0.11mmol, 화학식 25) 과 세슘 카보네이트(105.7mg, 0.32mmol), DDQ (30.7mg, 0.14mmol)을 anhydrous 1,2-dichloroethane (10.8ml)에 녹인 후 80℃에서 3시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란색 고체 화합물 4i (20.2mg, 68%, 화학식 40)를 얻었다.The compound prepared in Example 20 (4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one, 30mg using the same method as in Example 9 , 0.11mmol, Formula 25), cesium carbonate (105.7mg, 0.32mmol), and DDQ (30.7mg, 0.14mmol) were dissolved in anhydrous 1,2-dichloroethane (10.8ml) and stirred at 80°C for 3 hours. The obtained material was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow solid compound 4i (20.2mg, 68%, Formula 40). .

상기 화합물 4i의 분석결과는 하기와 같다.The analysis results of Compound 4i are as follows.

Rf = 0.40 (DCM/MeOH= 20:1)R f = 0.40 (DCM/MeOH= 20:1)

1H-NMR (400 MHz, CDCl3): δ 6.06 (s, 1H), 6.53 (s, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.58 (d, J = 10.7 Hz, 1H) 3.31-3.26 (m, 1H), 3.17-3.12 (m, 2H), 2.92-2.85 (m, 2H), 2.75-2.71 (m, 1H), 2.70-2.58 (m, 2H), 2.43 (m, 1H), 1.05 (d, J = 6.6 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 6.06 (s, 1H), 6.53 (s, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.58 (d, J = 10.7 Hz, 1H) 3.31-3.26 (m, 1H), 3.17-3.12 (m, 2H), 2.92-2.85 (m, 2H), 2.75-2.71 (m, 1H), 2.70-2.58 (m, 2H), 2.43 (m , 1H), 1.05 (d, J = 6.6 Hz, 3H).

13C-NMR (100 MHz, CDCl3): δ 209.7, 147.9, 147.6, 128.0, 125.9, 111.5, 107.8, 62.6, 62.5, 56.0, 55.9, 50.5, 47.1, 44.1, 29.2, 11.2. 13 C-NMR (100 MHz, CDCl 3 ): δ 209.7, 147.9, 147.6, 128.0, 125.9, 111.5, 107.8, 62.6, 62.5, 56.0, 55.9, 50.5, 47.1, 44.1, 29.2, 11.2.

실시예 22Example 22

2M NaOH (0.14 mL)수용액과 6-브로모-1,2,3,4-테트라하이드로이소퀴놀린(6-bromo-1,2,3,4-tetrahydroisoquinoline, 50mg, 0.24mmol, 화학식 11) 용액에 메틸 비닐 케톤(25mg, 0.35mmol, 화학식 13)을 첨가하고, 실온에서 혼합하였다. TLC를 이용하여 반응을 확인한 후 이를 DCM(3 x 10 mL)으로 추출하고 염수로 세척 하였다. 유기층을 무수 MgSO4을 이용하여 건조시키고 감압하에 농축시켰다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/DCM/MeOH = 1:3:0.1의 전개용매 조건에서 분리하여 연노란색 액체 화합물 3j (42mg, 63%, 화학식 26)를 얻었다.2M NaOH (0.14 mL) aqueous solution and 6-bromo-1,2,3,4-tetrahydroisoquinoline (6-bromo-1,2,3,4-tetrahydroisoquinoline, 50mg, 0.24mmol, formula 11) solution Methyl vinyl ketone (25mg, 0.35mmol, formula 13) was added and mixed at room temperature. After confirming the reaction using TLC, it was extracted with DCM (3 x 10 mL) and washed with brine. The organic layer was dried over anhydrous MgSO 4 and concentrated under reduced pressure. The obtained material was separated in a developing solvent condition of n- hexane/DCM/MeOH = 1:3:0.1 by flash column chromatography separation method using KANTO neutral silica gel to obtain a pale yellow liquid compound 3j (42mg, 63%, Formula 26). Got it.

상기 화합물 3j의 분석결과는 하기와 같다.The analysis results of compound 3j are as follows.

1H-NMR (400 MHz, CDCl3) δ 7.26-7.21 (m, 2H), 6.88 (d, J = 7.6 Hz, 1H), 3.56 (s, 2H), 2.87-2.80 (m, 4H), 2.73-2.69 (m, 4H), 2.19 (s, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 7.26-7.21 (m, 2H), 6.88 (d, J = 7.6 Hz, 1H), 3.56 (s, 2H), 2.87-2.80 (m, 4H), 2.73 -2.69 (m, 4H), 2.19 (s, 3H).

13C-NMR (100 MHz, CDCl3) δ 207.8, 136.5, 133.6, 131.4, 128.8, 128.3, 119.7, 55.6, 52.4, 50.5, 41.6, 30.3, 28.9. 13 C-NMR (100 MHz, CDCl 3 ) δ 207.8, 136.5, 133.6, 131.4, 128.8, 128.3, 119.7, 55.6, 52.4, 50.5, 41.6, 30.3, 28.9.

LRMS-ESI (m/z): [M+H]+ calc for C13H17BrNO 282.05, found 282.2.LRMS-ESI (m/z): [M+H]+ calc for C 13 H 17 BrNO 282.05, found 282.2.

실시예 23Example 23

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

실시예 2와 동일한 방법을 사용하여 실시예 22에서 제조된 화합물(4-(6-bromo-3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one, 40mg, 0.14mmol, 화학식 26), LiClO4 (15mg, 0.14mmol) 및 DDQ (40mg, 0.18mmol)의 anhydrous 1,2-dichloroethane (14.2 mL)를 2 시간 동안 환류하여 화합물 4j (15mg, 38%, 화학식 41)를 황색 고체로서 수득 하였다.Compound (4-(6-bromo-3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one, 40mg, 0.14mmol, Formula 26 prepared in Example 22 using the same method as in Example 2 ), LiClO 4 (15mg, 0.14mmol) and DDQ (40mg, 0.18mmol) anhydrous 1,2-dichloroethane (14.2 mL) were refluxed for 2 hours to obtain compound 4j (15mg, 38%, Formula 41) as a yellow solid. Obtained.

상기 화합물 4j의 분석결과는 하기와 같다.The analysis results of compound 4j are as follows.

1H NMR (400 MHz, CDCl3) δ 7.30-7.28 (m, 2H), 6.93 (d, J = 8.9 Hz, 1H), 3.51 (d, J = 11.2 Hz, 1H), 3.31-3.22 (m, 1H), 3.19-3.11 (m, 2H), 2.91-2.87 (m, 1H), 2.80-2.74 (m, 1H), 2.72-68 (m, 2H), 2.64-2.57 (m, 1H), 2.48-2.41 (m, 2H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.30-7.28 (m, 2H), 6.93 (d, J = 8.9 Hz, 1H), 3.51 (d, J = 11.2 Hz, 1H), 3.31-3.22 (m, 1H), 3.19-3.11 (m, 2H), 2.91-2.87 (m, 1H), 2.80-2.74 (m, 1H), 2.72-68 (m, 2H), 2.64-2.57 (m, 1H), 2.48- 2.41 (m, 2H).

13C-NMR (100 MHz, CDCl3) δ 208.2, 136.6, 135.9, 131.8, 129.4, 126.7, 120.5, 61.5, 54.8, 50.5, 47.2, 41.2, 29.7. 13 C-NMR (100 MHz, CDCl 3 ) δ 208.2, 136.6, 135.9, 131.8, 129.4, 126.7, 120.5, 61.5, 54.8, 50.5, 47.2, 41.2, 29.7.

LRMS-ESI (m/z): [M+H]+ calc for C13H15BrNO 280.03, found 280.0.LRMS-ESI (m/z): [M+H]+ calc for C 13 H 15 BrNO 280.03, found 280.0.

실시예 24Example 24

one-pot 과정을 이용한 화합물 4j의 합성Synthesis of compound 4j using one-pot process

anhydrous 1,2-dichloroethane (0.79 mL) 및 6-브로모-1,2,3,4-테트라하이드로이소퀴놀린(50mg, 0.24mmol, 화학식 11)의 혼합용액에 메틸 비닐 케톤(132mg, 1.89mmol, 화학식 13)을 첨가하고, 실온(25℃)에서 15시간 교반하였다. TLC를 이용하여 반응을 확인한 후 이를 감압하에 농축시켰다. 생성된 잔유물을 anhydrous 1,2-dichloroethane (23.6 mL)으로 용해한 다음, LiClO4(25mg, 0.24mmol) 및 DDQ(67mg, 0.29mmol)를 순차적으로 첨가하였다. 반응 혼합물을 80℃에서 3시간 동안 교반 한 후 1M NaOH 수용액으로 반응을 종결시키고 DCM(3 x 20 mL)으로 추출 하였다. 유기상을 물 및 염수로 세척하고, MgSO4로 건조시키고, 감압하에 농축시켰다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc/DCM = 1:1:1의 전개용매 조건에서 분리하여 연노란색 액체 화합물 4j (32mg, 49%, 화학식 41)를 얻었다.In a mixed solution of anhydrous 1,2-dichloroethane (0.79 mL) and 6-bromo-1,2,3,4-tetrahydroisoquinoline (50mg, 0.24mmol, formula 11), methyl vinyl ketone (132mg, 1.89mmol, Formula 13) was added, followed by stirring at room temperature (25°C) for 15 hours. After confirming the reaction by TLC, it was concentrated under reduced pressure. The resulting residue was dissolved in anhydrous 1,2-dichloroethane (23.6 mL), and then LiClO 4 (25mg, 0.24mmol) and DDQ (67mg, 0.29mmol) were sequentially added. After the reaction mixture was stirred at 80° C. for 3 hours, the reaction was terminated with 1M NaOH aqueous solution and extracted with DCM (3 x 20 mL). The organic phase was washed with water and brine, dried over MgSO 4 and concentrated under reduced pressure. The obtained material was separated in a developing solvent condition of n- hexane/EtOAc/DCM = 1:1:1 by flash column chromatography separation method using KANTO neutral silica gel to obtain a pale yellow liquid compound 4j (32mg, 49%, Formula 41). Got it.

실시예 25Example 25

2M NaOH (0.14 mL) 수용액 및 6-브로모-1,2,3,4-테트라하이드로이소퀴놀린(50mg, 0.24 mmol, 화학식 11)의 혼합용액에 에틸 비닐 케톤(30mg, 0.35mmol, 화학식 14)을 첨가하고, 실온(25℃)에서 혼합하였다. TLC를 이용하여 반응을 확인한 후, 이를 DCM(3 x 10 mL)으로 추출하고 염수로 세척하였다. 유기층을 무수 MgSO4상에서 건조시키고 감압하에 농축시켰다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/DCM/MeOH = 1:3:0.1의 전개용매 조건에서 분리하여 연노란색 액체 화합물 3k (57mg, 82%, 화학식 27)를 얻었다.Ethyl vinyl ketone (30mg, 0.35mmol, formula 14) in a mixed solution of 2M NaOH (0.14 mL) aqueous solution and 6-bromo-1,2,3,4-tetrahydroisoquinoline (50mg, 0.24 mmol, formula 11) Was added and mixed at room temperature (25°C). After confirming the reaction using TLC, it was extracted with DCM (3 x 10 mL) and washed with brine. The organic layer was dried over anhydrous MgSO 4 and concentrated under reduced pressure. The obtained material was separated in a developing solvent condition of n- hexane/DCM/MeOH = 1:3:0.1 by flash column chromatography separation method using KANTO neutral silica gel to obtain a pale yellow liquid compound 3k (57mg, 82%, Formula 27). Got it.

상기 화합물 3k의 분석결과는 하기와 같다.The analysis results of compound 3k are as follows.

1H-NMR (400 MHz, CDCl3) δ 7.23-7.21 (m, 2H), 6.88 (d, J = 8.0 Hz, 1H), 3.55 (s, 2H), 2.86-2.80 (m, 4H), 2.71-2.67 (m, 4H), 2.47 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 7.23-7.21 (m, 2H), 6.88 (d, J = 8.0 Hz, 1H), 3.55 (s, 2H), 2.86-2.80 (m, 4H), 2.71 -2.67 (m, 4H), 2.47 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 210.4, 136.6, 133.7, 131.5, 128.8, 128.3, 119.8, 55.7, 52.6, 50.6, 40.4, 36.4, 29.0, 7.8. 13 C-NMR (100 MHz, CDCl 3 ) δ 210.4, 136.6, 133.7, 131.5, 128.8, 128.3, 119.8, 55.7, 52.6, 50.6, 40.4, 36.4, 29.0, 7.8.

LRMS-ESI (m/z): [M+H]+ calc for C14H19BrNO 296.06, found 296.1.LRMS-ESI (m/z): [M+H]+ calc for C 14 H 19 BrNO 296.06, found 296.1.

실시예 26Example 26

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

실시예 2와 동일한 방법을 사용하여 실시예 25에서 제조된 화합물(1-(6-bromo-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 31mg, 0.11mmol, 화학식 27), LiClO4(11mg, 0.11mmol), DDQ(30mg, 0.13mmol) 및 anhydrous 1,2-dichloroethane (10.5ml)의 혼합물을 12시간 동안 환류하여 화합물 4k (10mg, 32 %, 화학식 42) 및 그의 부분 입체 이성질체 4k'(10mg, 32 %)를 황색 오일로서 수득하였다.Compound (1-(6-bromo-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 31mg, 0.11mmol, Formula 27 prepared in Example 25 using the same method as Example 2 ), LiClO 4 (11mg, 0.11mmol), DDQ (30mg, 0.13mmol) and anhydrous 1,2-dichloroethane (10.5ml) by refluxing a mixture for 12 hours to compound 4k (10mg, 32%, formula 42) and its The diastereomer 4k' (10 mg, 32%) was obtained as a yellow oil.

상기 화합물 4k 및 4k'의 분석결과는 하기와 같다.The analysis results of the compounds 4k and 4k' are as follows.

4k: 1H NMR (400 MHz, CDCl3) δ 7.31-7.88 (m, 2H), 6.92 (d, J = 8.1 Hz, 1H), 3.5 (s, 1H), 3.23-3.17 (m, 1H), 3.16-3.08 (m, 1H), 3.07-3.02 (m, 1H), 2.93-2.83 (m, 2H), 2.66 (d, J = 15.4 Hz, 1H), 2.60-2.56 (m, 1H), 2.54-2.48 (m, 1H), 2.32 (dd, J = 14.8, 1.4 Hz, 1H), 0.94 (d, J = 7.1 Hz, 3H).4k: 1 H NMR (400 MHz, CDCl 3 ) δ 7.31-7.88 (m, 2H), 6.92 (d, J = 8.1 Hz, 1H), 3.5 (s, 1H), 3.23-3.17 (m, 1H), 3.16-3.08 (m, 1H), 3.07-3.02 (m, 1H), 2.93-2.83 (m, 2H), 2.66 (d, J = 15.4 Hz, 1H), 2.60-2.56 (m, 1H), 2.54- 2.48 (m, 1H), 2.32 (dd, J = 14.8, 1.4 Hz, 1H), 0.94 (d, J = 7.1 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 212.9, 238.3, 134.1, 131.8, 129.5, 126.6, 120.1, 64.9, 55.1, 51.0, 49.5, 38.3, 29.9, 12.4. 13 C-NMR (100 MHz, CDCl 3 ) δ 212.9, 238.3, 134.1, 131.8, 129.5, 126.6, 120.1, 64.9, 55.1, 51.0, 49.5, 38.3, 29.9, 12.4.

4k': 1H NMR (400 MHz, CDCl3) δ 7.31 (s, 1H), 7.24 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 3.71 (d, J = 9.8 Hz, 1H), 3.50-3.43 (m, 1H), 3.38 (ddd, J = 13.6, 6.8, 2.2 Hz, 1H), 3.27 (td, J = 12.9, 3.7 Hz, 1H), 3.12-3.04 (m, 1H), 3.00-2.97 (m, 1H), 2.97-2.90 (m, 1H), 2.82-2.70 (m, 3H), 2.38 (ddd, J = 13.8, 3.5, 2.3 Hz, 1H), 1.11 (d, J = 6.6 Hz, 3H).4k': 1 H NMR (400 MHz, CDCl 3 ) δ 7.31 (s, 1H), 7.24 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 3.71 (d, J = 9.8 Hz, 1H), 3.50-3.43 (m, 1H), 3.38 (ddd, J = 13.6, 6.8, 2.2 Hz, 1H), 3.27 (td, J = 12.9, 3.7 Hz, 1H), 3.12-3.04 ( m, 1H), 3.00-2.97 (m, 1H), 2.97-2.90 (m, 1H), 2.82-2.70 (m, 3H), 2.38 (ddd, J = 13.8, 3.5, 2.3 Hz, 1H), 1.11 ( d, J = 6.6 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 209.7, 136.3, 134.4, 132.0, 130.2, 128.1, 120.3, 66.4, 53.6, 46.8, 44.2, 38.3, 29.0, 12.2. 13 C-NMR (100 MHz, CDCl 3 ) δ 209.7, 136.3, 134.4, 132.0, 130.2, 128.1, 120.3, 66.4, 53.6, 46.8, 44.2, 38.3, 29.0, 12.2.

LRMS-ESI (m/z): [M+H]+ calc for C14H17BrNO 294.05, found 294.0.LRMS-ESI (m/z): [M+H]+ calc for C 14 H 17 BrNO 294.05, found 294.0.

실시예 27Example 27

2M NaOH (0.14 mL) 수용액 및 6-브로모-1,2,3,4-테트라하이드로이소퀴놀린(50mg, 0.24mmol, 화학식 11)의 혼합용액에 3-메틸-3-부텐-2-온(25mg, 0.35mmol, 화학식 15)를 혼합한 다음 실온에서 교반하였다. TLC를 이용하여 반응을 확인한 후, 이를 DCM (3 x 10 mL)으로 추출하고 염수로 세척 하였다. 유기층을 무수 MgSO4상에서 건조시키고 감압하에 농축시켰다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/DCM/MeOH = 1:3:0.1의 전개용매 조건에서 분리하여 연노란색 액체 화합물 3l (60mg, 86%, 화학식 28)를 얻었다.In a mixed solution of 2M NaOH (0.14 mL) aqueous solution and 6-bromo-1,2,3,4-tetrahydroisoquinoline (50mg, 0.24mmol, formula 11), 3-methyl-3-buten-2-one ( 25mg, 0.35mmol, formula 15) was mixed and then stirred at room temperature. After confirming the reaction using TLC, it was extracted with DCM (3 x 10 mL) and washed with brine. The organic layer was dried over anhydrous MgSO 4 and concentrated under reduced pressure. The obtained material was separated in a developing solvent condition of n- hexane/DCM/MeOH = 1:3:0.1 by flash column chromatography separation method using KANTO neutral silica gel to obtain a pale yellow liquid compound 3l (60mg, 86%, Formula 28). Got it.

상기 화합물 3l의 분석결과는 하기와 같다.The analysis results of Compound 3l are as follows.

1H-NMR (400 MHz, CDCl3) δ 7.23-7.21 (m, 2H), 6.87 (d, J = 8.4 Hz, 1H), 3.58 (d, J = 15.0 Hz, 1H), 3.52 (d, J = 15.0 Hz, 1H), 2.91-2.73 (m, 5H), 2.65-2.59 (m, 1H), 2.44 (dd, J = 12.3, 5.8 Hz, 1H), 2.17 (s, 3H), 1.11 (d, J = 6.8 Hz, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 7.23-7.21 (m, 2H), 6.87 (d, J = 8.4 Hz, 1H), 3.58 (d, J = 15.0 Hz, 1H), 3.52 (d, J = 15.0 Hz, 1H), 2.91-2.73 (m, 5H), 2.65-2.59 (m, 1H), 2.44 (dd, J = 12.3, 5.8 Hz, 1H), 2.17 (s, 3H), 1.11 (d, J = 6.8 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 212.2, 136.8, 133.8, 131.4, 128.7, 128.2, 119.7, 61.1, 55.9, 50.6, 45.2, 29.0, 28.6, 15.1. 13 C-NMR (100 MHz, CDCl 3 ) δ 212.2, 136.8, 133.8, 131.4, 128.7, 128.2, 119.7, 61.1, 55.9, 50.6, 45.2, 29.0, 28.6, 15.1.

LRMS-ESI (m/z): [M+H]+ calc for C14H18BrNO 296.06, found 296.0.LRMS-ESI (m/z): [M+H]+ calc for C 14 H 18 BrNO 296.06, found 296.0.

실시예 27Example 27

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

실시예 2와 동일한 방법을 사용하여 실시예 26에서 제조된 화합물(4-(6-bromo-3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one,(36mg, 0.12mmol, 화학식 28), lithium perchlorate (13 mg, 0.12 mmol), DDQ (35 mg, 0.15 mmol) 및 anhydrous 1,2-dichloroethane (12.2 mL)의 혼합물을 3시간 동안 환류하여 화합물 4l (14mg, 40%, 화학식 43)을 황색 고체로서 수득하였다.Compound (4-(6-bromo-3,4-dihydroisoquinolin-2(1H)-yl)-3-methylbutan-2-one, (36mg, 0.12) prepared in Example 26 using the same method as in Example 2 A mixture of mmol, chemical formula 28), lithium perchlorate (13 mg, 0.12 mmol), DDQ (35 mg, 0.15 mmol), and anhydrous 1,2-dichloroethane (12.2 mL) was refluxed for 3 hours to obtain compound 4l (14 mg, 40%). , Formula 43) was obtained as a yellow solid.

상기 화합물 4l의 분석결과는 하기와 같다.The analysis results of Compound 4l are as follows.

1H NMR (400 MHz, CDCl3) δ 7.29-7.27 (m, 2H), 6.94 (d, J = 8.9 Hz, 1H), 3.53 (d, J = 11.2 Hz, 1H), 3.25 (dd, J = 11.6, 6.3 Hz, 1H), 3.16-3.09 (m, 2H), 2.91-2.86 (m, 1H), 2.81-2.73 (m, 2H), 2.63-2.36 (m, 3H), 1.05 (d, J = 6.6 Hz, 3H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.29-7.27 (m, 2H), 6.94 (d, J = 8.9 Hz, 1H), 3.53 (d, J = 11.2 Hz, 1H), 3.25 (dd, J = 11.6, 6.3 Hz, 1H), 3.16-3.09 (m, 2H), 2.91-2.86 (m, 1H), 2.81-2.73 (m, 2H), 2.63-2.36 (m, 3H), 1.05 (d, J = 6.6 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 209.6, 136.5, 135.9, 131.8, 129.3, 126.8, 120.5, 62.7, 62.3, 50.0, 46.8, 44.3, 29.8, 29.7, 11.3. 13 C-NMR (100 MHz, CDCl 3 ) δ 209.6, 136.5, 135.9, 131.8, 129.3, 126.8, 120.5, 62.7, 62.3, 50.0, 46.8, 44.3, 29.8, 29.7, 11.3.

실시예 28Example 28

Ar 기체로 충진한 둥근 바닥 플라스크에 1,2,3,4-테트라하이드로이소퀴놀린(1,2,3,4-tetrahydroisoquinoline, 50mg, 0.38mmol, 화학식 8), 1-아세틸-1-사이클로헥센(1-acetyl-1-cyclohexene, 93mg, 0.75mmol, 화학식 16)을 첨가한 후 0℃에서 5분 동안 교반하였다. 반응 혼합 물에 실리콘 테트라클로라이드(silicon tetrachloride, 1.28 mg, 0.008 mmol)을 천천히 첨가한 후 60℃로 가열하여 교반하였다. 12시간 이후 TLC를 이용하여 반응을 확인하고, NaCl 수용액을 첨가해 반응을 종결시켰다. 물과 DCM를 첨가하여 층을 나눈 후 DCM (3 x 10 mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc = 10:1의 전개용매 조건에서 분리하여 연노란 색 고체인 화합물 3m (41mg, 42%, 화학식 29)를 얻었다. In a round bottom flask filled with Ar gas, 1,2,3,4-tetrahydroisoquinoline (1,2,3,4-tetrahydroisoquinoline, 50mg, 0.38mmol, Formula 8), 1-acetyl-1-cyclohexene ( 1-acetyl-1-cyclohexene, 93mg, 0.75mmol, Formula 16) was added and then stirred at 0°C for 5 minutes. Silicon tetrachloride (silicon tetrachloride, 1.28 mg, 0.008 mmol) was slowly added to the reaction mixture, followed by heating to 60° C. and stirring. After 12 hours, the reaction was confirmed using TLC, and the reaction was terminated by adding an aqueous NaCl solution. After dividing the layer by adding water and DCM, extraction was performed using DCM (3 x 10 mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. After the filtered solution was concentrated under reduced pressure, the obtained material was separated by flash column chromatography using a KANTO neutral silica gel under the conditions of a developing solvent of n-hexane/EtOAc = 10:1, and a pale yellow solid compound 3m (41mg, 42 %, to obtain Chemical Formula 29).

상기 화합물 3m의 분석결과는 하기와 같다.The analysis results of the compound 3m are as follows.

Rf = 0.75 (n-hexane/Et2O = 10:1, v/v)R f = 0.75 (n-hexane/Et2O = 10:1, v/v)

1H-NMR (400 MHz, CDCl3): δ 7.09-7.06 (m, 3H), 6.99-6.97 (m, 1H), 3.91 (d, J = 14.6 Hz, 1H), 3.64 (d, J = 14.6 Hz, 1H), 3.02-2.98 (m, 1H), 2.88-2.77 (m, 3H), 2.69-2.55 (m, 2H), 2.10 (s, 3H), 2.01-1.95 (m, 1H), 1.88-1.74 (m, 3H), 1.47(q, J = 8.6 Hz, 1H), 1.36-1.14 (m, 3H). 1 H-NMR (400 MHz, CDCl 3 ): δ 7.09-7.06 (m, 3H), 6.99-6.97 (m, 1H), 3.91 (d, J = 14.6 Hz, 1H), 3.64 (d, J = 14.6 Hz, 1H), 3.02-2.98 (m, 1H), 2.88-2.77 (m, 3H), 2.69-2.55 (m, 2H), 2.10 (s, 3H), 2.01-1.95 (m, 1H), 1.88- 1.74 (m, 3H), 1.47 (q, J = 8.6 Hz, 1H), 1.36-1.14 (m, 3H).

13C-NMR (100 MHz, CDCl3): δ 212.7, 157.7, 136.1, 127.8, 127.4, 113.2, 111.9, 65.5, 55.4, 55.3, 51.1, 45.5, 30.5, 29.4, 28.1, 25.6, 25.5, 23.5. 13 C-NMR (100 MHz, CDCl 3 ): δ 212.7, 157.7, 136.1, 127.8, 127.4, 113.2, 111.9, 65.5, 55.4, 55.3, 51.1, 45.5, 30.5, 29.4, 28.1, 25.6, 25.5, 23.5.

HRMS-ESI (m/z): [M+H]+ calc for C17H24NO 258.1857, found 258.1855.HRMS-ESI (m/z): [M+H]+ calc for C 17 H 24 NO 258.1857, found 258.1855.

실시예 29Example 29

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

실시예 2와 동일한 방법을 사용하여 실시예 28에서 제조된 화합물(1-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)cyclohexyl)ethan-1-one, 30mg, 0.12mmol, 화학식 29), lithium perchlorate (12mg, 0.12mmol), DDQ (33mg, 0.15mmol)을 anhydrous 1,2-dichloroethane (11.7ml)에 녹인 후 80℃에서 12시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc/DCM = 1:1:1의 전개용매 조건에서 분리하여 흰색 고체의 화합물 4m (19.3mg, 65%, 화학식 44)를 얻었다.Compound (1-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)cyclohexyl)ethan-1-one, 30mg, 0.12mmol, chemical formula prepared in Example 28 using the same method as in Example 2 29), lithium perchlorate (12mg, 0.12mmol), and DDQ (33mg, 0.15mmol) were dissolved in anhydrous 1,2-dichloroethane (11.7ml) and stirred at 80℃ for 12 hours. The obtained material was separated in a developing solvent condition of n-hexane/EtOAc/DCM = 1:1:1 by flash column chromatography separation method using KANTO neutral silica gel, and a white solid compound 4m (19.3mg, 65%, Formula 44) Got it.

상기 화합물 4m의 분석결과는 하기와 같다.The analysis results of Compound 4m are as follows.

Rf = 0.44 (n-hexane/EtOAc = 4:1)R f = 0.44 (n-hexane/EtOAc = 4:1)

1H-NMR (400 MHz, CDCl3) δ 7.17-7.12 (m, 3H), 7.05-7.03 (m, 1H), 3.94-3.91 (d, J = 11.8 Hz, 1H), 3.36-3.33 (m, 1H), 2.94-2.91 (m, 1H), 2.82-2.78 (m, 1H), 2.72-2.70 (m, 1H), 2.69-2.65 (m, 2H), 2.48-2.47 (m, 1H), 2.23-2.20 (m, 2H), 2.19-2.05 (m, 1H), 1.89-1.76 (m, 2H), 1.31 (q, J = 2.4 Hz, 1H), 1.31-1.20 (m, 3H). 1 H-NMR (400 MHz, CDCl 3 ) δ 7.17-7.12 (m, 3H), 7.05-7.03 (m, 1H), 3.94-3.91 (d, J = 11.8 Hz, 1H), 3.36-3.33 (m, 1H), 2.94-2.91 (m, 1H), 2.82-2.78 (m, 1H), 2.72-2.70 (m, 1H), 2.69-2.65 (m, 2H), 2.48-2.47 (m, 1H), 2.23- 2.20 (m, 2H), 2.19-2.05 (m, 1H), 1.89-1.76 (m, 2H), 1.31 (q, J = 2.4 Hz, 1H), 1.31-1.20 (m, 3H).

13C-NMR (400 MHz, CDCl3) δ 209.1, 136.8, 134.0, 128.7, 126.5, 126.0, 125.5, 66.5, 62.6, 52.1, 46.7, 41.3, 30.7, 29.7, 25.2, 24.6, 24.2. 13 C-NMR (400 MHz, CDCl 3 ) δ 209.1, 136.8, 134.0, 128.7, 126.5, 126.0, 125.5, 66.5, 62.6, 52.1, 46.7, 41.3, 30.7, 29.7, 25.2, 24.6, 24.2.

HRMS-ESI (m/z): [M+H]+ calc for C17H22NO 256.1701, found 256.1699.HRMS-ESI (m/z): [M+H]+ calc for C 17 H 22 NO 256.1701, found 256.1699.

실시예 30Example 30

Ar 기체로 충진한 microwave용 바이알에 테트라하이드로-베타-카보린(tetrahydro-beta-carboline, 50mg, 0.29mmol, 화학식 12), 메틸 비닐 케톤(methyl vinyl ketone, 80.9mg, 1.15mmol, 화학식 13), 소듐 바이카보네이트(sodium bicarbonate, 73mg, 0.9mmol)을 무수 에탄올(anhydrous ethanol, 2.9mL)에 녹인 후 상온에서 36시간 동안 빠르게 교반하였다. TLC를 이용하여 반응을 확인한 다음, 물과 DCM를 첨가하여 층을 나눈 후 DCM (3 x 10 mL)를 이용하여 추출하였다. 모아진 유기층은 무수 MgSO4를 넣어 건조시켜 여과하였다. 여과한 용액을 감압, 농축한 후 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/MeOH/Acetone = 40:1:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 5a (44.6mg, 65%, 화학식 30)를 얻었다. In a microwave vial filled with Ar gas, tetrahydro-beta-carboline (50mg, 0.29mmol, formula 12), methyl vinyl ketone (80.9mg, 1.15mmol, formula 13), Sodium bicarbonate (73mg, 0.9mmol) was dissolved in anhydrous ethanol (2.9mL), and then rapidly stirred at room temperature for 36 hours. After confirming the reaction by TLC, water and DCM were added to divide the layer, followed by extraction with DCM (3 x 10 mL). The collected organic layer was dried with anhydrous MgSO 4 and filtered. After the filtered solution was concentrated under reduced pressure, the obtained material was separated by flash column chromatography using KANTO neutral silica gel under the developing solvent condition of DCM/MeOH/Acetone = 40:1:1, and the light yellow compound 5a (44.6mg , 65%, to obtain Chemical Formula 30).

상기 화합물 5a의 분석결과는 하기와 같다.The analysis results of Compound 5a are as follows.

Rf = 0.45 (DCM/MeOH/Acetone = 20:1:1)R f = 0.45 (DCM/MeOH/Acetone = 20:1:1)

1H NMR (400 MHz, CDCl3): δ 8.00 (bs, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 7.0 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 3.68 (s, 2H), 2.94-2.87 (m, 4H), 2.84-2.81 (m, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.18 (s, 3H). 1 H NMR (400 MHz, CDCl 3 ): δ 8.00 (bs, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 7.0 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 3.68 (s, 2H), 2.94-2.87 (m, 4H), 2.84-2.81 (m, 2H), 2.73 (t, J = 7.1 Hz) , 2H), 2.18 (s, 3H).

13C-NMR (100 MHz, CDCl3): δ 207.7, 136.1, 131.1, 127.1, 121.5, 119.4, 117.9, 110.8, 108.2, 51.8, 51.0, 50.3, 41.7, 30.2, 21.1. 13 C-NMR (100 MHz, CDCl 3 ): δ 207.7, 136.1, 131.1, 127.1, 121.5, 119.4, 117.9, 110.8, 108.2, 51.8, 51.0, 50.3, 41.7, 30.2, 21.1.

HRMS-ESI (m/z): [M+H]+ calc for C15H19N2O 243.1497, found 143.1494.HRMS-ESI (m/z): [M+H]+ calc for C 15 H 19 N 2 O 243.1497, found 143.1494.

실시예 31Example 31

산화적 만니히 반응을 이용한 고리형성(CsCO3 첨가제 사용)Cyclic formation using oxidative Mannich reaction (using CsCO 3 additive)

실시예 9와 동일한 방법을 사용하여 상기 실시예 30에서 제조된 화합물(4-(1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)butan-2-one, 30mg, 0.12mmol, 화학식 30) 과 cesium carbonate(121mg, 0.37mmol), DDQ(35mg, 0.15mmol)을 anhydrous 1,2-dichloroethane (12.4ml)에 녹인 후 80℃에서 9시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/EtOAc/MeOH = 10:1:0.1의 전개용매 조건에서 분리하여 연노란 색의 화합물 6a (9 mg, 30%, 화학식 45)를 얻었다.The compound prepared in Example 30 (4-(1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)butan-2 using the same method as in Example 9 -one, 30mg, 0.12mmol, formula 30), cesium carbonate (121mg, 0.37mmol), DDQ (35mg, 0.15mmol) were dissolved in anhydrous 1,2-dichloroethane (12.4ml) and stirred at 80℃ for 9 hours. . The obtained material was separated in a developing solvent condition of DCM/EtOAc/MeOH = 10:1:0.1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 6a (9 mg, 30%, Formula 45). .

상기 화합물 6a의 분석결과는 하기와 같다.The analysis results of Compound 6a are as follows.

Rf = 0.65 (DCM/MeOH= 20:1)R f = 0.65 (DCM/MeOH= 20:1)

1H NMR (400 MHz, CDCl3): δ 8.01 (bs, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 3.66 (d, J = 11.2 Hz, 1H), 3.34-3.24 (m, 2H), 3.09-3.01 (m, 1H), 2.85-2.60 (m, 6H), 2.50 (d, J = 11.8 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ): δ 8.01 (bs, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 3.66 (d, J = 11.2 Hz, 1H), 3.34-3.24 (m, 2H), 3.09-3.01 (m, 1H), 2.85-2.60 (m, 6H), 2.50 (d, J = 11.8 Hz, 1H).

13C-NMR (100 MHz, CDCl3): δ 207.8, 136.3, 133.0, 127.0, 122.0, 119.7, 118.3, 111.1, 108.6, 58.6, 54.3, 52.0, 45.7, 41.7, 21.8. 13 C-NMR (100 MHz, CDCl 3 ): δ 207.8, 136.3, 133.0, 127.0, 122.0, 119.7, 118.3, 111.1, 108.6, 58.6, 54.3, 52.0, 45.7, 41.7, 21.8.

실시예 32Example 32

상기 실시예 30과 동일한 방법을 사용하여, 테트라하이드로-베타-카보린(49.4mg, 0.29mmol, 화학식 12), 에틸 비닐 케톤(ethyl vinyl ketone, 94.7mg, 1.2mmol, 화학식 14), 소듐 바이카보네이트(73mg, 0.9mmol)을 무수 에탄올(2.9ml)에 녹인 후 상온에서 36시간 동안 빠르게 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 DCM/MeOH/Acetone = 40:1:1의 전개용매 조건에서 분리하여 연노란 색의 화합물 5b (53.1mg, 76%, 화학식 31)를 얻었다.Using the same method as in Example 30, tetrahydro-beta-carboline (49.4mg, 0.29mmol, Formula 12), ethyl vinyl ketone (94.7mg, 1.2mmol, Formula 14), sodium bicarbonate (73mg, 0.9mmol) was dissolved in absolute ethanol (2.9ml) and then stirred rapidly at room temperature for 36 hours. The obtained material was separated in a developing solvent condition of DCM/MeOH/Acetone = 40:1:1 by flash column chromatography using KANTO neutral silica gel to obtain a pale yellow compound 5b (53.1mg, 76%, Chemical Formula 31). .

상기 화합물 5b의 분석결과는 하기와 같다.The analysis results of Compound 5b are as follows.

Rf = 0.45 (DCM/MeOH/Acetone = 20:1:1)R f = 0.45 (DCM/MeOH/Acetone = 20:1:1)

1H-NMR (400 MHz, CDCl3) δ 8.22 (bs, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 3.56 (s, 2H), 2.92-2.81 (m, 6H), 2.68 (t, J = 7.2 Hz, 2H), 2.48 (q, J = 7.3 Hz, 2H), 2.08 (t, J = 7.3 Hz, 3H). 1 H-NMR (400 MHz, CDCl3) δ 8.22 (bs, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.2 Hz , 1H), 7.08 (t, J = 7.4 Hz, 1H), 3.56 (s, 2H), 2.92-2.81 (m, 6H), 2.68 (t, J = 7.2 Hz, 2H), 2.48 (q, J = 7.3 Hz, 2H), 2.08 (t, J = 7.3 Hz, 3H).

13C-NMR (100 MHz, CDCl3) δ 210.6, 136.1, 131.6, 127.1, 121.3, 119.2, 117.9, 110.8, 108.1, 52.0, 50.9, 50.3, 40.4, 36.3, 21.3, 7.7. 13 C-NMR (100 MHz, CDCl 3 ) δ 210.6, 136.1, 131.6, 127.1, 121.3, 119.2, 117.9, 110.8, 108.1, 52.0, 50.9, 50.3, 40.4, 36.3, 21.3, 7.7.

HRMS-ESI (m/z): [M+H]+ calc for C16H21N2O 257.1654, found 257.1652.HRMS-ESI (m/z): [M+H]+ calc for C 16 H 21 N 2 O 257.1654, found 257.1652.

실시예 33Example 33

산화적 만니히 반응을 이용한 고리형성(LiClO4 첨가제 사용)Cyclic formation using oxidative Mannich reaction (with LiClO 4 additive)

실시예 2와 동일한 방법을 사용하여 실시예 32에서 제조된 화합물(1-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 58mg, 0.23mmol, 화학식 31)과 Lithium perchlorate(24mg, 0.23mmol), DDQ(64mg, 0.28mmol) anhydrous 1,2-dichloroethane (22.6ml)에 녹인 후 80℃에서 12시간 동안 교반하였다. 얻어진 물질을 KANTO neutral silica gel을 이용한 flash column chromatography 분리 방법으로 n-hexane/EtOAc/DCM = 1:2:1의 전개용매 조건에서 분리하여 흰색 고체 화합물 6b (13mg, 26%, 화학식 46)와 부분입체 이성질체 6b'(8 mg, 16%, 화학식 46`)를 얻었다.The compound prepared in Example 32 (1-(6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentan-3-one, 58mg, 0.23mmol, Formula 31 using the same method as in Example 2 ), Lithium perchlorate (24mg, 0.23mmol), DDQ (64mg, 0.28mmol) anhydrous 1,2-dichloroethane (22.6ml) and stirred at 80℃ for 12 hours. The obtained material was separated under a developing solvent condition of n-hexane/EtOAc/DCM = 1:2:1 by flash column chromatography separation method using KANTO neutral silica gel, and the white solid compound 6b (13mg, 26%, Formula 46) Stereoisomer 6b' (8 mg, 16%, Formula 46') was obtained.

상기 화합물 6b 및 6b'의 분석결과는 하기와 같다.The analysis results of the compounds 6b and 6b' are as follows.

Rf = 0.65 (DCM/MeOH= 20:1)R f = 0.65 (DCM/MeOH= 20:1)

6b: 1H-NMR (400 MHz, CDCl3) δ 7.68 (bs, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 3.68 (bs, 1H), 3.29 (dd, J = 10.2, 7.4 Hz, 1H), 3.19 (dd, J = 11.0, 5.2 Hz, 1H), 3.04-2.91 (m, 2H), 2.84-2.75 (m, 2H), 2.72-2.60 (m, 2H), 2.36 (d, J = 14.8 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H).6b: 1 H-NMR (400 MHz, CDCl 3 ) δ 7.68 (bs, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 3.68 (bs, 1H), 3.29 (dd, J = 10.2, 7.4 Hz, 1H), 3.19 (dd, J = 11.0, 5.2 Hz , 1H), 3.04-2.91 (m, 2H), 2.84-2.75 (m, 2H), 2.72-2.60 (m, 2H), 2.36 (d, J = 14.8 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H).

13C-NMR (400 MHz, CDCl3) δ 212.6, 136.4, 131.6, 127.1, 121.8, 119.6, 118.1, 111.1, 110.7, 62.1, 54.9, 52.2, 48.5, 38.4, 21.8, 12.7. 13 C-NMR (400 MHz, CDCl 3 ) δ 212.6, 136.4, 131.6, 127.1, 121.8, 119.6, 118.1, 111.1, 110.7, 62.1, 54.9, 52.2, 48.5, 38.4, 21.8, 12.7.

HRMS-ESI (m/z): [M+H]+ calc for C16H19N2O 255.1497, found 255.1496.HRMS-ESI (m/z): [M+H]+ calc for C16H19N2O 255.1497, found 255.1496.

6b': 1H-NMR (400 MHz, CDCl3) δ 7.80 (bs, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.18 (t, J = 7.3 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 3.68 (d, J = 9.7 Hz, 1H), 3.45-3.34 (m, 2H), 3.10 (td, J = 12.4, 3.4 Hz, 1H), 3.00-2.74 (m, 5H), 2.47 (dt, J = 13.9, 3.0 Hz, 1H), 1.41 (d, J = 6.6 Hz, 3H).6b': 1 H-NMR (400 MHz, CDCl 3 ) δ 7.80 (bs, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.18 (t, J = 7.3 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 3.68 (d, J = 9.7 Hz, 1H), 3.45-3.34 (m, 2H), 3.10 (td, J = 12.4, 3.4 Hz, 1H), 3.00-2.74 (m, 5H), 2.47 (dt, J = 13.9, 3.0 Hz, 1H), 1.41 (d, J = 6.6 Hz, 3H).

13C-NMR (400 MHz, CDCl3) δ 212.5, 136.5, 131.6, 127.2, 121.9, 119.7, 118.3, 111.1, 110.9, 62.2, 55.0, 52.3, 48.6, 38.5, 21.9, 12.8. 13 C-NMR (400 MHz, CDCl 3 ) δ 212.5, 136.5, 131.6, 127.2, 121.9, 119.7, 118.3, 111.1, 110.9, 62.2, 55.0, 52.3, 48.6, 38.5, 21.9, 12.8.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (9)

다음의 단계를 포함하는 퀴놀리지딘 화합물의 제조방법:
(a) 화학식 1 또는 화학식 2의 구조를 가지는 고리형 화합물에 화학식 3의 구조를 가지는 화합물과 용매를 혼합하여 aza-Michael 반응을 통하여 화학식 4 또는 5의 구조를 가지는 화합물을 제조하는 단계;
[화학식 1]
Figure pat00095

(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기)
[화학식 2]
Figure pat00096

(상기 화학식 2에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기)
[화학식 3]
Figure pat00097

(상기 화학식 3에서, R3, R4 및 R5는 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R4 및 R5는 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)
[화학식 4]
Figure pat00098

(상기 화학식 4에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)
[화학식 5]
Figure pat00099

(상기 화학식 5에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소 또는 C1~C10의 알킬기)
(b) 상기 제조된 화학식 4 또는 5의 구조를 가지는 화합물에 분자내 산화적 만니히반응을 통하여 화학식 6 또는 화학식 7의 구조를 가지는 화합물을 제조하는 단계.
[화학식 6]
Figure pat00100

(상기 화학식 6에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)
[화학식 7]
Figure pat00101

(상기 화학식 7에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소 또는 C1~C10의 알킬기)
A method for preparing a quinolizidine compound comprising the following steps:
(a) preparing a compound having a structure of formula 4 or 5 through an aza-Michael reaction by mixing a compound having a structure of formula 3 and a solvent with a cyclic compound having a structure of formula 1 or 2;
[Formula 1]
Figure pat00095

(In Formula 1, R 1 and R 2 are each independently hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group)
[Formula 2]
Figure pat00096

(In Formula 2, R 1 and R 2 are each independently hydrogen, a halogen element, a C1-C10 alkyl group, or a C1-C10 alkoxy group)
[Formula 3]
Figure pat00097

(In Chemical Formula 3, R 3 , R 4 and R 5 are each independently hydrogen or a C1-C10 alkyl group, or R 4 and R 5 are a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*) Can form)
[Formula 4]
Figure pat00098

(In Formula 4, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 ~ C10 alkyl group, or a C1 ~ C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))
[Formula 5]
Figure pat00099

(In Formula 5, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen Or C1~C10 alkyl group)
(b) preparing a compound having a structure of Formula 6 or Formula 7 through an intramolecular oxidative Mannich reaction with the compound having a structure of Formula 4 or 5 above.
[Formula 6]
Figure pat00100

(In Formula 6, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))
[Formula 7]
Figure pat00101

(In Formula 7, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen Or C1~C10 alkyl group)
제1항에 있어서,
상기 화학식 1의 화합물은 하기의 화학식 8 내지 화학식 11의 구조를 가지는 화합물로 이루어지는 군으로부터 선택되는 1종이고, 화학식 2의 화합물은 하기의 화학식 12의 구조를 가지는 화합물인 것을 특징으로 하는 퀴놀리지딘 화합물의 제조방법.
[화학식 8]
Figure pat00102

[화학식 9]
Figure pat00103

[화학식 10]
Figure pat00104

[화학식 11]
Figure pat00105

[화학식 12]
Figure pat00106
The method of claim 1,
The compound of Formula 1 is one selected from the group consisting of compounds having a structure of Formula 8 to Formula 11 below, and the compound of Formula 2 is a compound having a structure of Formula 12 below. Method for preparing the compound.
[Formula 8]
Figure pat00102

[Formula 9]
Figure pat00103

[Formula 10]
Figure pat00104

[Formula 11]
Figure pat00105

[Formula 12]
Figure pat00106
제1항에 있어서,
상기 화학식 3의 화합물은 하기의 화학식 13 내지 화학식 16으로 이루어지는 군으로부터 선택되는 1종의 구조를 가지는 것을 특징으로 하는 퀴놀리지딘 화합물의 제조방법.
[화학식 13]
Figure pat00107

[화학식 14]
Figure pat00108

[화학식 15]
Figure pat00109

[화학식 16]
Figure pat00110
The method of claim 1,
The method for producing a quinolizidine compound, wherein the compound of Formula 3 has one structure selected from the group consisting of the following Formulas 13 to 16.
[Formula 13]
Figure pat00107

[Formula 14]
Figure pat00108

[Formula 15]
Figure pat00109

[Formula 16]
Figure pat00110
제1항에 있어서,
상기 화학식 4의 화합물은 하기의 화학식 17 내지 화학식 29로 이루어지는 군으로부터 선택되는 1종의 구조를 가지는 것이고, 상기 화학식 5의 화합물은 하기의 화학식 30 또는 31의 구조를 가지는 것을 특징으로 하는 퀴놀리지딘 화합물의 제조방법.
[화학식 17]
Figure pat00111

[화학식 18]
Figure pat00112

[화학식 19]
Figure pat00113

[화학식 20]
Figure pat00114

[화학식 21]
Figure pat00115

[화학식 22]
Figure pat00116

[화학식 23]
Figure pat00117

[화학식 24]
Figure pat00118

[화학식 25]
Figure pat00119

[화학식 26]
Figure pat00120

[화학식 27]
Figure pat00121

[화학식 28]
Figure pat00122

[화학식 29]
Figure pat00123

[화학식 30]
Figure pat00124

[화학식 31]
Figure pat00125
The method of claim 1,
The compound of Formula 4 has one structure selected from the group consisting of the following Formulas 17 to 29, and the compound of Formula 5 has a structure of the following Formulas 30 or 31. Method for preparing the compound.
[Formula 17]
Figure pat00111

[Formula 18]
Figure pat00112

[Formula 19]
Figure pat00113

[Formula 20]
Figure pat00114

[Formula 21]
Figure pat00115

[Formula 22]
Figure pat00116

[Formula 23]
Figure pat00117

[Formula 24]
Figure pat00118

[Formula 25]
Figure pat00119

[Formula 26]
Figure pat00120

[Formula 27]
Figure pat00121

[Formula 28]
Figure pat00122

[Chemical Formula 29]
Figure pat00123

[Formula 30]
Figure pat00124

[Formula 31]
Figure pat00125
제1항에 있어서,
상기 화학식 6의 화합물은 하기의 화학식 32 내지 화학식 44로 이루어지는 군으로부터 선택되는 1종의 구조를 가지며, 상기 화학식 7의 화합물은 하기의 화학식 45 또는 화학식 46의 구조를 가지는 것을 특징으로 하는 퀴놀리지딘 화합물의 제조방법.
[화학식 32]
Figure pat00126

[화학식 33]
Figure pat00127

[화학식 35]
Figure pat00128

[화학식 36]
Figure pat00129

[화학식 37]
Figure pat00130

[화학식 37]
Figure pat00131

[화학식 38]
Figure pat00132

[화학식 39]
Figure pat00133

[화학식 40]
Figure pat00134

[화학식 41]
Figure pat00135

[화학식 42]
Figure pat00136

[화학식 43]
Figure pat00137

[화학식 44]
Figure pat00138

[화학식 45]
Figure pat00139

[화학식 46]
Figure pat00140
The method of claim 1,
The compound of Formula 6 has one structure selected from the group consisting of the following Formulas 32 to 44, and the compound of Formula 7 has a structure of Formula 45 or Formula 46 below. Method for preparing the compound.
[Formula 32]
Figure pat00126

[Formula 33]
Figure pat00127

[Formula 35]
Figure pat00128

[Formula 36]
Figure pat00129

[Formula 37]
Figure pat00130

[Formula 37]
Figure pat00131

[Formula 38]
Figure pat00132

[Formula 39]
Figure pat00133

[Formula 40]
Figure pat00134

[Formula 41]
Figure pat00135

[Formula 42]
Figure pat00136

[Formula 43]
Figure pat00137

[Formula 44]
Figure pat00138

[Formula 45]
Figure pat00139

[Chemical Formula 46]
Figure pat00140
제1항에 있어서,
상기 분자내 산화적 만니히 반응은 산화제로서 2,3-디클로로-5, 6-디시아노-1,4-벤조퀴논(2, 3-dichloro- 5,6-dicyano-1,4-benzoquinone, DDQ)를 사용하는 것을 특징으로 하는 퀴놀리지딘 화합물의 제조방법.
The method of claim 1,
The oxidative Mannich reaction in the molecule is 2,3-dichloro-5, 6-dicyano-1,4-benzoquinone (2,3-dichloro-5,6-dicyano-1,4-benzoquinone, DDQ) as oxidizing agents. ) Method for producing a quinolizidine compound, characterized in that using.
제1항에 있어서,
상기 (a)~(b)단계는 하나의 반응기 내에서 수행되는 것을 특징으로 하는 퀴놀리지딘 화합물의 제조방법.
The method of claim 1,
The (a) to (b) steps are a method for producing a quinorizidine compound, characterized in that carried out in one reactor.
하기 화학식 6 또는 화학식 7의 구조를 가지는 퀴놀리지딘 유도체 화합물 또는 이의 입체 이성질체.
[화학식 6]
Figure pat00141

(상기 화학식 6에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, 또는 C1~C10의 알킬기, C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기이거나, 상기 R7 및 R8은 이들이 부착된 탄소 및 별표(*) 표시된 탄소와 함께 6원환을 형성할 수 있음)
[화학식 7]
Figure pat00142

(상기 화학식 7에서, R1 및 R2는 각각 독립적으로 수소, 할로겐 원소, C1~C10의 알킬기, 또는 C1~C10의 알콕시기일 수 있고, 상기 R6, R7 및 R8은 각각 독립적으로 수소, 또는 C1~C10의 알킬기)
A quinolizidine derivative compound or a stereoisomer thereof having a structure represented by the following formula (6) or (7).
[Formula 6]
Figure pat00141

(In Formula 6, R 1 and R 2 may each independently be hydrogen, a halogen element, or a C1 to C10 alkyl group, a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group, or the R 7 and R 8 may form a 6-membered ring with the carbon to which they are attached and the carbon marked with an asterisk (*))
[Formula 7]
Figure pat00142

(In Formula 7, R 1 and R 2 may each independently be hydrogen, a halogen element, a C1 to C10 alkyl group, or a C1 to C10 alkoxy group, and R 6 , R 7 and R 8 are each independently hydrogen , Or a C1-C10 alkyl group)
제1항에 있어서,
상기 화학식 6의 화합물은 하기의 화학식 32 내지 화학식 44로 이루어지는 군으로부터 선택되는 1종의 구조를 가지며, 상기 화학식 7의 화합물은 하기의 화학식 45 또는 화학식 45의 구조를 가지는 것을 특징으로 하는 퀴놀리지딘 유도체 화합물 또는 이의 입체 이성질체.
[화학식 32]
Figure pat00143

[화학식 33]
Figure pat00144

[화학식 35]
Figure pat00145

[화학식 36]
Figure pat00146

[화학식 37]
Figure pat00147

[화학식 37]
Figure pat00148

[화학식 38]
Figure pat00149

[화학식 39]
Figure pat00150

[화학식 40]
Figure pat00151

[화학식 41]
Figure pat00152

[화학식 42]
Figure pat00153

[화학식 43]
Figure pat00154

[화학식 44]
Figure pat00155

[화학식 45]
Figure pat00156

[화학식 46]
Figure pat00157
The method of claim 1,
The compound of Formula 6 has one structure selected from the group consisting of the following Formulas 32 to 44, and the compound of Formula 7 has a structure of Formula 45 or Formula 45 below. Derivative compounds or stereoisomers thereof.
[Formula 32]
Figure pat00143

[Formula 33]
Figure pat00144

[Formula 35]
Figure pat00145

[Formula 36]
Figure pat00146

[Formula 37]
Figure pat00147

[Formula 37]
Figure pat00148

[Formula 38]
Figure pat00149

[Formula 39]
Figure pat00150

[Formula 40]
Figure pat00151

[Formula 41]
Figure pat00152

[Formula 42]
Figure pat00153

[Formula 43]
Figure pat00154

[Formula 44]
Figure pat00155

[Formula 45]
Figure pat00156

[Chemical Formula 46]
Figure pat00157
KR1020200049982A 2019-06-19 2020-04-24 Quinolizidine compound and the manufacturing method thereof KR102380870B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190072733 2019-06-19
KR1020190072733 2019-06-19

Publications (3)

Publication Number Publication Date
KR20200145661A true KR20200145661A (en) 2020-12-30
KR102380870B1 KR102380870B1 (en) 2022-03-31
KR102380870B9 KR102380870B9 (en) 2023-10-19

Family

ID=74088764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200049982A KR102380870B1 (en) 2019-06-19 2020-04-24 Quinolizidine compound and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102380870B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028756A (en) 2010-06-22 2013-03-19 에프. 호프만-라 로슈 아게 Quinolizidine and indolizidine derivatives
CN107089980A (en) * 2017-05-11 2017-08-25 合肥工业大学 A kind of ketone compounds of chiral benzo [a] quinolizine 2 and its asymmetry catalysis synthetic method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028756A (en) 2010-06-22 2013-03-19 에프. 호프만-라 로슈 아게 Quinolizidine and indolizidine derivatives
CN107089980A (en) * 2017-05-11 2017-08-25 合肥工业大学 A kind of ketone compounds of chiral benzo [a] quinolizine 2 and its asymmetry catalysis synthetic method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Advanced Synthesis & Catalysis, Vol. 355, pp. 874-879(2013.02.27.) *
ChemCatChem, Vol. 4, pp. 51-54(2011.11.14.) *

Also Published As

Publication number Publication date
KR102380870B9 (en) 2023-10-19
KR102380870B1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
McDonald et al. Selective carbon–carbon bond cleavage of cyclopropanols
Bauer et al. Synthesis of pyrrole and carbazole alkaloids
Nunez et al. Efficient oxidation of phenyl groups to carboxylic acids with ruthenium tetraoxide. A simple synthesis of (R)-. gamma.-caprolactone, the pheromone of Trogoderma granarium
Overman et al. Total syntheses of (+)-geissoschizine,(.+-.)-geissoschizine, and (.+-.)-(Z)-isositsirikine. Stereocontrolled synthesis of exocyclic double bonds by stereospecific iminium ion-vinylsilane cyclizations
Inack‐Ngi et al. Copper‐catalyzed preparation of γ‐alkylidenebutenolides and isocoumarins under mild palladium‐free conditions
EP2556070A1 (en) Synthesis of chiral 2-(1h-indazol-6-yl)-spiro[cyclopropane-1,3'- indolin]-2'-ones
Henniges et al. Palladium-catalysed oligocyclisations of 2-bromododeca-1, 11-diene-6-ynes
Greshock et al. Concise, biomimetic total synthesis of d, l-marcfortine C
Gannarapu et al. Two catalytic annulation modes via Cu-allenylidenes with sulfur ylides that are dominated by the presence or absence of trifluoromethyl substituents
Mangeney et al. Radical cyclizations of 1, 4-dihydropyridines. Synthesis of chiral fused nitrogen heterocycles. Synthesis of lupinine and epilupinine
KR102380870B1 (en) Quinolizidine compound and the manufacturing method thereof
Perreault et al. Enantioselective synthesis of the tricyclic core of FR901483 featuring a Rhodium-catalyzed [2+ 2+ 2] cycloaddition
Yamada et al. Stereoselective formal synthesis of (+)-allokainic acid via thiol-mediated acyl radical cyclization
Roy et al. Metal‐Dependent Reaction Tuning with Cyclopentylmetal Reagents: Application to the Asymmetric Synthesis of (+)‐α‐Conhydrine and (S)‐2‐Cyclopentyl‐2‐phenylglycolic Acid
Murai et al. Imidazo [1, 5-a] pyridine-1-ylalkylalcohols: synthesis via intramolecular cyclization of N-thioacyl 1, 2-aminoalcohols and their silyl ethers and molecular structures
Kobayashi et al. New short step general synthesis of isobenzofuran-1 (3H)-ones (phthalides) based on a single or double β-scission of alkoxyl radicals generated from 1-ethyl-benzocyclobuten-1-ols and from 1, 3-dihydroisobenzofuran-1-ols; synthesis of some natural phthalides
CN107382858B (en) Series of 1,2,3, 4-tetrahydroisoquinoline-4-ketone compounds, and synthetic method and application thereof
CN110590644A (en) Chiral 1, 2-dihydropyridine compounds and preparation method and application thereof
Clark et al. Total synthesis of oxynitidine via lithiated toluamide-imine cycloaddition
US8552028B2 (en) 8-phenylisoquinolines and pharmaceutical composition used in treatment for sepsis
CN108699047B (en) Substituted aurone alkaloids as antimycobacterial agents
CN102424682A (en) Chiral aromatic spiroketal compound and preparation method thereof
Potts et al. Synthetic Experiments Related to the Indole Alkaloids. III. The Reductive Cyclization of 1-[2-(3-Indolyl)-2-oxoethyl] pyridinium Salts to Quinolizine Derivatives Related to the Indole Alkaloids1
CN109776465B (en) Synthesis method of benzodihydrofuran derivative with C2 quaternary carbon center
Riesinger et al. A General Approach to Indolizidine Alkaloids From 1‐Benzyloxy‐5‐(p‐toluenesulfonamido)‐3‐alken‐2‐ols: Synthesis of (+)‐Monomorine I

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]