KR20200145583A - Urethanescontaining monofunctional and bifunctional aromatic amines - Google Patents

Urethanescontaining monofunctional and bifunctional aromatic amines Download PDF

Info

Publication number
KR20200145583A
KR20200145583A KR1020190074642A KR20190074642A KR20200145583A KR 20200145583 A KR20200145583 A KR 20200145583A KR 1020190074642 A KR1020190074642 A KR 1020190074642A KR 20190074642 A KR20190074642 A KR 20190074642A KR 20200145583 A KR20200145583 A KR 20200145583A
Authority
KR
South Korea
Prior art keywords
weight
parts
diisocyanate
hours
amine
Prior art date
Application number
KR1020190074642A
Other languages
Korean (ko)
Inventor
박진우
Original Assignee
주식회사 공정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 공정 filed Critical 주식회사 공정
Priority to KR1020190074642A priority Critical patent/KR20200145583A/en
Publication of KR20200145583A publication Critical patent/KR20200145583A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8083Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/809Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/778Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention relates to a high-functional urethane resin production method, a nanocomposite using the same, and a production method thereof. The high-functional urethane resin production method comprises: a 3-aminoalkyl trialkoxysilane production step; a hydroxy-terminated alkyl polydimethyl siloxane production step; an isocyanateterminated silicone resin production step; a functional group capping step; a reactive organic acid neutralization step; and a chain extension step. According to the present invention, durability and mechanical strength are excellent.

Description

고기능우레탄수지제조방법및이를이용한나노복합체와그제조법{Urethanescontaining monofunctional and bifunctional aromatic amines}Manufacturing method of high-functional urethane resin and nanocomposite using the same, and manufacturing method thereof {Urethanes-containing monofunctional and bifunctional aromatic amines}

본 발명은 환경오염을 유발하지 않고 내수성은 물론 기계적 물성, 내열성, [0001] 내후성이 향상된 친환경 고기능 실리콘변성 우레탄 하이브리드 수지 제조방법 및 이를 이용한 나노복합체와 그 제조방법에 관한 것이다.The present invention relates to an eco-friendly high-functional silicone-modified urethane hybrid resin manufacturing method with improved water resistance as well as mechanical properties, heat resistance, and weather resistance without causing environmental pollution, and a nanocomposite using the same and a manufacturing method thereof.

유.무기 하이브리드 수지는 유기성분(유기분자 또는 저분자량의 고분자 등)과 무기성분을 결합함으로써 무기물의 경도, 열안정성과 내구성은 물론 유기 고분자의 유연성 및 인성을 동시에 얻을 수 있다. 도입된 유기성분은무기재료의 기계적 성질을 현저하게 변화시킬 뿐만 아니라 필름이나 섬유형태로 쉽게 만들 수 있게 한다. 또한나노 수준의 상분리가 가능하게 되면서 무색투명하고, 균일하며 기공률까지 임의로 조절이 가능하여 새로운 광학적 전기적 성질을 가진 고기능성 유무기 하이브리드 복합 소재의 제조가 가능하다.Organic/inorganic hybrid resins combine organic components (organic molecules or low molecular weight polymers, etc.) with inorganic components to obtain the hardness, thermal stability and durability of inorganic materials, as well as flexibility and toughness of organic polymers. The introduced organic component not only significantly changes the mechanical properties of the inorganic material, but also makes it easy to form a film or fiber. In addition, as nano-level phase separation is possible, colorless, transparent, uniform, and even porosity can be arbitrarily adjusted, making it possible to manufacture high-functional organic-inorganic hybrid composite materials with new optical and electrical properties.

[0003] 이러한 장점으로 인해 태양 전지용 나노 복합소재, 연료전지용 나노 복합소재, 2차 전지용 나노 복합 소재, 코팅용 나노 복합소재 등의 미래 유망기술로 각광받고 있다.Due to these advantages, it is in the spotlight as a promising future technology, such as nanocomposite materials for solar cells, nanocomposites for fuel cells, nanocomposites for secondary batteries, and nanocomposites for coatings.

[0004] 일반적으로 건축물의 표면마감 피복재로 사용되는 코팅제는(coating agent) 유동성의 물질로 물체의 표면에 넓게 도포되어 얇은 피막 층을 형성하고 시간의 경과에 따라 건조, 경화됨으로써 물체의 표면을 보호할 뿐만 아니라 미감을 증대시키는 기능을 갖는다.[0004] In general, a coating agent used as a covering material for the surface finish of a building is a fluid material that is widely applied to the surface of an object to form a thin film layer and protects the surface of the object by drying and curing over time. Not only does it have a function to enhance aesthetics.

[0005] 따라서 코팅제는 자체 성분뿐만 아니라 코팅층(coating layer)의 수명 또한 환경오염에 영향을 미치는 큰 요인으로 작용한다.Therefore, the coating agent acts as a large factor affecting environmental pollution as well as its own component, as well as the lifetime of the coating layer.

[0006] 즉, 코팅층을 형성하는 고분자수지가(polymer resin) 일광에 노출되어 자외선이나 열에 의해 사슬이 끊어지고그로 인해 저분자량화 되는 열화가 발생되어 코팅층의 물성이 저하되므로 그 성능을 발휘할 수 없게 되고 재코팅 시 비용뿐만 아니라 코팅제 중의 휘발성유기화합물로(volatile organic compound) 인해서 환경오염에 큰 영향을 미치게 된다.That is, because the polymer resin forming the coating layer is exposed to sunlight, the chain is broken by ultraviolet rays or heat, and thus deterioration of low molecular weight is generated, so that the properties of the coating layer are deteriorated, so that the performance cannot be exhibited. In addition, it has a great influence on environmental pollution due to not only cost but also volatile organic compounds in the coating agent during recoating.

[0007] 이에 전 세계적으로 코팅제의 유지 및 보수비용을 줄이기 위해 내후성과 산성비 등에 우수한 내구성을 갖는 바인더수지(binder resin) 개발이 강력히 요구되어 왔다.Accordingly, there has been a strong demand for the development of a binder resin having excellent durability such as weather resistance and acid rain in order to reduce the maintenance and repair cost of the coating agent worldwide.

[0008] 이러한 요구에 따라 선진 각국에서는 1980년 초반부터 이와 관련된 연구가 활발히 진행되어 왔으며 그 결실로기존에 사용되어왔던 유기 고분자에 무기 고분자를 도입하여 유.무기 복합체를 개발하여 코팅제에 적용하는 시도가 있었다.[0008] In accordance with this request, research related to this has been actively conducted in developed countries since the early 1980s, and as a result of this, an attempt to develop an organic/inorganic composite by introducing an inorganic polymer into an organic polymer that has been used before and applying it to a coating agent has been attempted. There was.

[0009] 실리콘수지는 주 사슬이 유.무기화합물로 된 -Si-O- 결합으로 이루어져 있어 그 특성이 유연하고 내수성 및 열이나 산화안정성이 매우 우수한 것으로 알려져 있다.[0009] Silicone resins are known to have excellent properties in terms of flexibility, water resistance and heat or oxidation stability because the main chain is composed of -Si-O- bonds made of organic and inorganic compounds.

[0010] 최근에 와서는 다양한 실리콘 화합물이 개발되어짐에 따라 이를 이용한 응용연구도 활발히 이루어져 코팅제의바인더수지(binder resin) 적용분야에 있어서도 보다 포괄적인 연구가 진행되고 있다.[0010] In recent years, as various silicone compounds have been developed, application studies using them are also actively made, and more comprehensive studies are being conducted in the field of application of a binder resin of a coating agent.

[0011] 이러한 추세에 맞물려 열이나 자외선에 노출 시에도 코팅성능을 장기간 유지할 수 있고 고내후성을 나타내면서가격적으로 불소 수지나 실리콘 수지 보다 저렴한 고기능성 고부가가치 코팅제를 개발하기 위해 실리콘 화합물을 코팅제에 적용하는 시도가 지속적으로 진행되어 왔다.[0011] In line with this trend, a silicone compound is applied to a coating agent to develop a high-functional, high-value-added coating agent that can maintain coating performance for a long period of time even when exposed to heat or ultraviolet rays, and exhibits high weather resistance and is cheaper than fluororesin or silicone resin in price Attempts to do this have been continuously made.

[0012] 그러나, 실리콘 화합물을 도료에 적용하는 종래의 기술은 상온경화가 매우 느리고, 습기가 없는 조건에서는 경화가 어려운 단점을 지니고 있다.However, the conventional technology for applying a silicone compound to a paint has a disadvantage that the room temperature curing is very slow, and it is difficult to cure under a humid condition.

[0013] 또한, 상온 경화 건조성을 일부 개선 시키더라도 중방식 도료 및 일반 공업용 코팅제 등의 적용에 있어서 만족스러운 경화성능이 발휘되지 못하며 내후성이 상대적으로 미흡한 경향을 나타낸다.In addition, even if the room temperature curing drying properties are partially improved, satisfactory curing performance is not exhibited in the application of heavy anticorrosive paints and general industrial coatings, and weather resistance tends to be relatively insufficient.

[0014] 따라서 경화성, 내용제성, 건조성, 코팅경도를 개선하고 내후성을 더욱 향상시킬 수 있는 친환경 고기능 실리콘변성 수지 개발이 절실히 요구되고 있는 실정에 있다.Therefore, there is an urgent need to develop an eco-friendly, high-functional silicone modified resin that can improve curability, solvent resistance, dryness, coating hardness and further improve weather resistance.

상기한 문제점을 해소하기 위해 히드록시-터미네이티드 폴리디메틸실록산(hydroxy terminatedTo solve the above problem, hydroxy-terminated polydimethylsiloxane (hydroxy terminated)

polydimethylsiloxane)과 이소시아네이트-터미네이티드 실리콘수지(isocyanate-terminated silicone resin) 및디이소시아네이트와(diisocyanate) 체인확장제(chain extender)로 부터 형성되는 실리콘-우레탄 유.무기 하이브리드 수지의 화학적 조성 및 소프트 세그먼트의 길이 등을 변화시켜 기계적 강도와 같은 물성을 유지하면서 내열성, 내약품성, 내수성 등을 보완할 수 있는 친환경 고기능 실리콘변성 우레탄 하이브리드 수지 및 나노복합체를 제조하는 것을 목적으로 한다.polydimethylsiloxane), isocyanate-terminated silicone resin, diisocyanate, and chain extender. The chemical composition of the silicone-urethane organic/inorganic hybrid resin and the length of the soft segment, etc. It aims to produce an eco-friendly, high-functional silicone-modified urethane hybrid resin and nanocomposite that can supplement heat resistance, chemical resistance, and water resistance while maintaining physical properties such as mechanical strength by changing.

[0017] 또한, 습기와 일광과 같은 외부 환경 변화에 따른 실리콘변성 우레탄 하이브리드 수지의 물성저하가 초래되지않아야 한다.In addition, deterioration of the properties of the silicone-modified urethane hybrid resin due to changes in the external environment such as humidity and sunlight should not be caused.

[0018] 최종적으로 코팅제의 바인더 수지로 적용 시 인체와 접촉하기 쉽기 때문에 접촉 시 독성 물질이나 유해 성분이이행 (migration) 되지 않아야 한다.Finally, since it is easy to contact the human body when applied as a binder resin of the coating agent, toxic substances or harmful components should not migrate when contacted.

[0019] 따라서 본 발명의 친환경 고기능 실리콘변성 우레탄 하이브리드 수지 및 나노복합체는 완전 경화되어 미반응 화합물질이 발생하지 않아야 되며, 내수성, 내약품성은 물론 내구성, 기계적 강도가 우수해야하고 제품화 될 경우가사 시간이 길고 취급이 간편하며 산업용은 물론 가정용 코팅제로 사용이 적합하며, 무용제 형으로 휘발성유기화합물이나 인체에 유해성분을 발산 시키지 않아야한다.Therefore, the eco-friendly high-functionality silicone-modified urethane hybrid resin and nanocomposite of the present invention should be completely cured so that unreacted compounds should not occur, and should have excellent water resistance, chemical resistance, durability, and mechanical strength, and when commercialized It is long and easy to handle, and is suitable for use as a coating agent for both industrial and home use. It is a solvent-free type and should not emit volatile organic compounds or harmful components to the human body.

질소공급 하에 온도계와 교반기, 적가장비(dropping equipment) 및 응축콘덴서(reflux [0020] condenser)를 장착한 반응기에 벤젠(benzene)이나, 톨루엔(toluene), 자이렌(xylene)과 같은 방향족용매(aromatic solvent) 30~50중량부와, 디로듐 옥타카보닐(dirhodium octacarbonyl)이나, 테트라로듐 도데카카보닐(tetrarhodiumdodecacarbonyl), 헥사로듐 헥사데카카보닐(hexarhodium hexadecacarbony), 로듐 트리브로마이드(rhodiumtribromide), 로듐 트리클로라이드 트리히드레이트(RhCl3·3H2O)와 같은 로듐촉매 001~01중량부 및 포타슘옥사이드(potassium oxide)나, 루비듐옥사이드(rubidium oxide), 리튬히드로옥사이드(lithium hydroxide), 포타슘히드로옥사이드(potassium hydroxide) 소디움히드로옥사이드(sodium hydroxide)와 같은 금속옥사이드(metaloxide) 001~01중량부를 적가하여 20~50rpm의 속도로 교반하고 반응온도를 100~130℃로 유지하면서 트리메톡시실란(triethoxy silane)이나 트리에톡시실란(triethoxy silane)과 같은 트리알콕시실란(trialkoysilane) 20~50중량부와 2-프로펜-1-아민(2-propen-1-amine)이나, 3-부텐-1-아민(3-butene-1-amine), 4-펜텐-1-아민(4-pentene-1-amine)과 같은 알켄아민(alkene amine)혼합물 5~20중량부를 1시간에 걸쳐 적가(dropwise) 시켜서 반응이 끝난 후에, 감압회전증발기(rotary evaporator)로 미반응물과 용매를 제거한 다음 05~07torr의 진공 및20~40℃의 온도로 진공건조 하여 제조되는 3-아미노알킬 트리알콕시실란(3-aminoalkyl trialkoxysilane) 제조단계와;An aromatic solvent such as benzene, toluene, and xylene in a reactor equipped with a thermometer and agitator, dropping equipment, and a reflux condenser under nitrogen supply. solvent) 30-50 parts by weight, dirhodium octacarbonyl, tetrarhodium dodecacarbonyl, hexarhodium hexadecacarbony, rhodium tribromide, rhodium tribromide 001 to 01 parts by weight of a rhodium catalyst such as trihydrate (RhCl3·3H2O) and potassium oxide, rubidium oxide, lithium hydroxide, potassium hydroxide, sodium hydrochloride Triethoxy silane or triethoxysilane while stirring at a speed of 20 to 50 rpm by dropwise adding 001 to 01 parts by weight of metal oxide such as sodium hydroxide and maintaining the reaction temperature at 100 to 130°C 20 to 50 parts by weight of trialkoxysilane such as (triethoxy silane) and 2-propen-1-amine, or 3-butene-1-amine 5-20 parts by weight of an alkene amine mixture such as -amine) and 4-pentene-1-amine are added dropwise over 1 hour, and after the reaction is finished, rotating under reduced pressure A step of preparing 3-aminoalkyl trialkoxysilane prepared by removing unreacted substances and solvents with a rotary evaporator and then vacuum drying at a vacuum of 05 to 07 torr and a temperature of 20 to 40°C;

[0021] 질소공급 하에 온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 방향족용매와10~30중량부의 중량평균분자량이 1,000~3,000인 히드로진 터미네이티드 폴리디메틸실록산(hydrogen terminatedpolydimethylsiloxane) 및 0001~01중량부의 금속-비닐실란 복합촉매(metal-vinyl silane complex catalyst)를 첨가하여 20~50rpm의 속도로 교반하면서 반응기 온도를 70~75℃로 유지하고 10~20중량부의 2-프로펜-1-올(2-propen-1-ol)이나 3-부텐-1-올(3-butene-1-ol), 4-펜텐-1-올(4-penten-1-ol)을 1시간 동안 적가 시켜서 적가가완료되면, 반응기의 온도를 90~95℃로 상승시켜 1~2시간 동안 더 반응시키고 감압회전증발기를 이용하여 미반응물질을 제거한 다음 24~48시간 동안 진공건조시켜 제조하는 히드로옥시-터미네이티드 알킬폴리디메틸실록산(hydroxy-terminated alkyl polydimethyl siloxane) 제조단계와;[0022] 온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 테트라히드로퓨란(tetrahydrofurane)이나 메틸렌클로라이드(methylene chloride), 1,2-클로로에탄(1,2-chloroethane) 등과 같은극성용매와 20~40중량부의 상기 히드로옥시-터미네이티드 알킬폴리디메틸실록산 제조단계에서 제조된 히드로옥시-터미네이티드 알킬폴리디메틸실록산을 넣고 20~50rpm의 속도로 교반하고, 여기에 20~50중량부의 헥사메틸렌디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate),디이소시아네토디씨크로헥실메탄(4,4'-diisocyanato dicyclo- hexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methane diisocyanate)와 같은 디이소시아네이트 및 05~50중량부의 디부틸 틴 디아세테이트(dibutyl tin diacetate)나 디부틸 틴 디라울레이트Hydrogen-terminated polydimethyl having 30 to 50 parts by weight of distilled aromatic solvent and 10 to 30 parts by weight of a weight average molecular weight of 1,000 to 3,000 in a reactor equipped with a thermometer and agitator, condensing condenser, dropping equipment under nitrogen supply Siloxane (hydrogen terminatedpolydimethylsiloxane) and 0001 to 01 parts by weight of a metal-vinyl silane complex catalyst were added and stirred at a speed of 20 to 50 rpm, while maintaining the reactor temperature at 70 to 75°C and 10 to 20 weights Negative 2-propen-1-ol, 3-butene-1-ol, 4-penten-1-ol (4-penten-1-ol) ol) is added dropwise for 1 hour to complete the dropwise addition, raise the temperature of the reactor to 90~95℃ for further reaction for 1~2 hours, remove unreacted substances using a reduced pressure rotary evaporator, and then vacuum for 24~48 hours. Hydrooxy-terminated alkyl polydimethyl siloxane (hydroxy-terminated alkyl polydimethyl siloxane) prepared by drying a manufacturing step; [0022] 30 to 50 parts by weight of distilled in a reactor equipped with a thermometer, agitator, condensing condenser, and dropping equipment A polar solvent such as tetrahydrofurane, methylene chloride, 1,2-chloroethane, and 20 to 40 parts by weight of the hydrooxy-terminated alkylpolydimethylsiloxane production step The hydrooxy-terminated alkylpolydimethylsiloxane prepared in was added and stirred at a rate of 20 to 50 rpm, and 20 to 50 parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate (1 ,4-phenyl diisocyanate), diisocyanato dicyclohexyl methane (4,4'-diisocyanato dicyclo-hexyl methane), toliene diisocyanate, diphenyl methane di Diisocyanate such as isocyanate (diphenyl methane diisocyanate) and 05 to 50 parts by weight of dibutyl tin diacetate or dibutyl tin dilaulate

(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디 옥틸 틴 디아세테이트(diocyl tindiacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclo-octane)와 같은 축합촉매(dibutyl tin dilaurate), dibutyl tin maleate, dioctyl tindiacetate, 1,4-diazo[2,2,2]-bicyclo-octane (1,4 Condensation catalysts such as -diazo[2,2,2]-bicyclo-octane)

(polycondensation catalyst)를 20~50중량부의 극성용매에 녹인 혼합물을 반응기 내로 30~60분 동안 적가 한다음, 2~4시간 동안 반응을 지속시켜서 반응이 끝난 후에, 감압회전증발기로 용매를 제거한 다음 05~07torr의진공 및 20~40℃의 온도로 진공건조 하여 제조되는 이소시아네이트-터미네이티드 실리콘수지(isocyanateterminated silicone resin) 제조단계와;A mixture of (polycondensation catalyst) dissolved in 20 to 50 parts by weight of a polar solvent is added dropwise into the reactor for 30 to 60 minutes, and then the reaction is continued for 2 to 4 hours to complete the reaction, and then the solvent is removed with a vacuum rotary evaporator. An isocyanate-terminated silicone resin prepared by vacuum drying at a vacuum of ~07torr and a temperature of 20~40℃;

[0023] 질소공급 하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 55~95중량부의 폴리에테르디올(polyetherdiol)이나 폴리에스테르디올(polyesterdiol), 폴리카보네이트디올(polycarbonatediol)과 같은 폴리디올(polydiol)과In a reactor equipped with a thermometer and a stirrer, a condensing condenser under nitrogen supply, 55 to 95 parts by weight of polyetherdiol or polyesterdiol, polydiol such as polycarbonatediol, and

5~25중량부의 상기 이소시아네이트-터미네이티드 실리콘수지 제조단계에서 얻어진 이소시아네이트-터미네이티드실리콘수지를 가하고 반응기의 온도를 70~90℃로 유지시키면서 5~20중량부의 히드로옥시아세틱 액시드(hydroxyacetic acid)나, 아미노아세틱 액시드(aminoacetic acid), 리신(lysine), N-2-아미노에틸-2-아미노에탄 설로닉 액시드(N-2-aminoethyl-2-aminoethane sulfonic acid), 2,2-비스(히드록시메틸)프로피오닉 액시드[2,2-bis (hydroxy methyl)propionic acid]와 같은 반응성유기산을 가하여 1~4시간 동안 20~50rpm의 속도로 교반하고, 여기에 60~80중량부의 헥사메틸렌 디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate), 4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanatodi cyclohexylmethane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methanediisocyanate)와 같은 디이소시아네이트와 0001~005중량부의 디부틸 틴 디아세테이트(dibutyl tindiacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디옥틸 틴 디아세테이트(diocyl tin diacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclooctane)과 같은 축합촉매를 넣고 반응온도를 100~120℃로 올려 6~12시간 동안 반응시켜 제조되는 실리콘변성 우레탄 하이브리드 프리폴리머(prepolymer) 제조단계와;5 to 25 parts by weight of the isocyanate-terminated silicone resin obtained in the manufacturing step of the isocyanate-terminated silicone resin was added, and 5 to 20 parts by weight of hydroxyacetic acid was added while maintaining the temperature of the reactor at 70 to 90°C. acid) B, aminoacetic acid, lysine, N-2-aminoethyl-2-aminoethane sulfonic acid, 2, Add reactive organic acid such as 2-bis (hydroxymethyl) propionic acid [2,2-bis (hydroxy methyl) propionic acid] and stir at a speed of 20 to 50 rpm for 1 to 4 hours, and 60 to 80 Parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate, 4,4'-diisocyanatodicyclohexylmethane (4,4'-diisocyanatodi cyclohexylmethane) , Tolyene diisocyanate (tolylene diisocyanate), diphenyl methane diisocyanate (diphenyl methanediisocyanate) and diisocyanates such as 0001 to 005 parts by weight of dibutyl tindiacetate or dibutyl tin dilaurate , Dibutyl tin maleate, dioctyl tin diacetate, 1,4-diazo[2,2,2]-bicyclo-octane (1,4-diazo[2 , A silicon-modified urethane hybrid prepolymer prepared by adding a condensation catalyst such as ,2,2]-bicyclooctane) and raising the reaction temperature to 100 to 120°C for 6 to 12 hours;

상기 실리콘변성 우레탄 하이브리드 프리폴리머 제조단계에서 얻어진 반응생성물에 [0024] 반응온도를 40~60℃로 낮추고 5~20중량부의 상기 3-아미노알킬 트리알콕시실란 제조단계에서 생성된 3-아미노알킬 트리알콕시실란을 투입하여 1~3시간 동안 반응하여 이소시아네이트기(-NCO)를 캡핑(capping) 시키는 관능기캡핑(functional groupcapping)단계와;상기 관능기캡핑(functional group capping)단계에서 제조된 반응생성물에 5~20중량부의 20~80nm 입자크기를 갖는 광촉매(photo catalyst)나 나노실버(nano-silver), 활성나노카본(activated nano-carbon) 및 나노점토(nano-clay)와 같은 기능성나노충진제를 투입하여 1,000~2,000rpm으로 교반한 후 초음파로 분산시키는 나노복합체형성단계와;The reaction product obtained in the silicone-modified urethane hybrid prepolymer production step lowers the reaction temperature to 40 ~ 60 ℃, and 5 ~ 20 parts by weight of the 3-aminoalkyl trialkoxysilane produced in the 3-aminoalkyl trialkoxysilane production step And reacting for 1 to 3 hours to cap the isocyanate group (-NCO); and 5 to 20 weight of the reaction product prepared in the functional group capping step 1,000-2,000 by adding functional nano-fillers such as photo catalyst, nano-silver, activated nano-carbon, and nano-clay with negative 20-80 nm particle size. A nanocomposite forming step of stirring at rpm and dispersing with ultrasonic waves;

[0026] 상기 나노복합체형성단계에서 얻어진 혼합물에 5~10중량부의 트리메틸아민(trimethyl amine)이나 트리에틸아민(triethyl amine)과 같은 삼차아민 중화제를 가하고 40~60℃에서 1~2시간 동안 반응시키는 반응성유기산 중화단계와;To the mixture obtained in the nanocomposite forming step, 5 to 10 parts by weight of a tertiary amine neutralizing agent such as trimethyl amine or triethyl amine is added and reacted at 40 to 60° C. for 1 to 2 hours. Neutralizing a reactive organic acid;

[0027] 상기 중화단계에서 생성된 반응생성물을 800~1,500rpm 속도로 교반되는 증류수에 적가하면서 분산하는 분산단계와;A dispersion step of dispersing while dropwise adding the reaction product generated in the neutralization step to distilled water stirred at a speed of 800-1,500 rpm;

[0028] 상기 분산단계에서 생성된 분산물에 1~5중량부의 메틸렌디아민(methylene diamine)이나, 에틸렌디아민(ethylenediamine), 헥사메틸렌디아민(hexamethylenediamine)과 같은 체인확장제(chain extender)를 투입하여800~1,500rpm 속도로 1~2시간 동안 교반시키는 체인확장단계를; 거쳐 55~95중량부의 폴리디올과, 5~25중량부의이소시아네이트-터미네이티드 실리콘수지, 5~20중량부의 반응성유기산, 60~80중량부의 디이소시아네이트,0001~005중량부의 축합촉매, 5~20중량부의 3-아미노알킬 트리알콕시실란, 5~20중량부의 기능성나노충진제,5~10중량부의 중화제 및 1~5중량부의 체인확장제로 구성되는 친환경 고기능 실리콘변성 우레탄 하이브리드 수지제조를 완성하였다.By adding a chain extender such as 1 to 5 parts by weight of methylene diamine, ethylenediamine, or hexamethylenediamine to the dispersion produced in the dispersion step 800~ A chain expansion step of stirring for 1 to 2 hours at a speed of 1,500 rpm; Then, 55 to 95 parts by weight of polydiol, 5 to 25 parts by weight of isocyanate-terminated silicone resin, 5 to 20 parts by weight of reactive organic acid, 60 to 80 parts by weight of diisocyanate, 0001 to 005 parts by weight of condensation catalyst, 5 to 20 The production of an eco-friendly high-functional silicone-modified urethane hybrid resin composed of parts by weight of 3-aminoalkyl trialkoxysilane, 5 to 20 parts by weight of functional nanofillers, 5 to 10 parts by weight of neutralizing agent and 1 to 5 parts by weight of chain extender was completed.

이상에서 설명한 바와 같이 본 발명 친환경 고기능 실리콘변성 우레탄 하이브리드 수지 및 나노복합체는 완전경화되어 미반응 화합물질이 발생하지 않고, 내수성, 내약품성은 물론 내구성, 기계적 강도가 우수하여 산업용은 물론 가정용 코팅 바인더로 사용가능하며 휘발성유기화합물이나 인체에 유해성분을 발산 시키지 않는 장점을가진다.As described above, the eco-friendly high-functional silicone-modified urethane hybrid resin and nanocomposite of the present invention are completely cured and do not generate unreacted compounds, and are excellent in water resistance, chemical resistance, durability, and mechanical strength. It can be used and has the advantage of not emitting volatile organic compounds or harmful components to the human body.

도1은 본 발명의 실시단계 예시도.
도2는 본 발명의 반응설비의 예시도.
1 is an exemplary diagram of an exemplary embodiment of the present invention.
Figure 2 is an exemplary view of the reaction equipment of the present invention.

본 발명에 따른 친환경 고기능 실리콘변성 우레탄 하이브리드 수지 및 나노복합체의 제조방법을 보다 상세하게살펴보고, 그에 따른 실시예를 서술하면 다음과 같다.The method of manufacturing an eco-friendly high-functional silicone-modified urethane hybrid resin and nanocomposite according to the present invention will be examined in more detail, and examples according to the method will be described as follows.

[0032] 질소공급 하에 온도계와 교반기, 적가장비(dropping equipment) 및 응축콘덴서(reflux condenser)를 장착한 반응기에 벤젠(benzene)이나, 톨루엔(toluene), 자이렌(xylene)과 같은 방향족용매(aromatic solvent) 30~50중량부와, 디로듐 옥타카보닐(dirhodium octacarbonyl)이나, 테트라로듐 도데카카보닐(tetrarhodiumdodecacarbonyl), 헥사로듐 헥사데카카보닐(hexarhodium hexadecacarbony), 로듐 트리브로마이드(rhodiumtribromide), 로듐 트리클로라이드 트리히드레이트(RhCl3·3H2O)와 같은 로듐촉매 001~01중량부 및 포타슘옥사이드(potassium oxide)나, 루비듐옥사이드(rubidium oxide), 리튬히드로옥사이드(lithium hydroxide), 포타슘히드로옥사이드(potassium hydroxide) 소디움히드로옥사이드(sodium hydroxide)와 같은 금속옥사이드(metaloxide) 001~01중량부를 적가하여 20~50rpm의 속도로 교반하고 반응온도를 100~130℃로 유지하면서 20~50중량부의 트리메톡시실란(triethoxy silane)이나 트리에톡시실란(triethoxy silane)과 같은 트리알콕시실란(trialkoysilane) 20~50중량부와 2-프로펜-1-아민(2-propen-1-amine)이나, 3-부텐-1-아민(3-butene-1-amine),4-펜텐-1-아민(4-pentene-1-amine)과 같은 알켄아민(alkene amine)혼합물 5~20중량부를 1시간에 걸쳐 적가(dropwise) 시킨다.In a reactor equipped with a thermometer and agitator, dropping equipment, and a condensing condenser under nitrogen supply, aromatic solvents such as benzene, toluene, and xylene are used. solvent) 30-50 parts by weight, dirhodium octacarbonyl, tetrarhodium dodecacarbonyl, hexarhodium hexadecacarbony, rhodium tribromide, rhodium tribromide 001 to 01 parts by weight of a rhodium catalyst such as trihydrate (RhCl3·3H2O) and potassium oxide, rubidium oxide, lithium hydroxide, potassium hydroxide, sodium hydrochloride 20 to 50 parts by weight of triethoxy silane while stirring at a speed of 20 to 50 rpm by dropwise addition of 001 to 01 parts by weight of a metal oxide such as sodium hydroxide and maintaining the reaction temperature at 100 to 130°C 20 to 50 parts by weight of trialkoxysilane such as triethoxy silane and 2-propen-1-amine, or 3-butene-1-amine ( 5-20 parts by weight of an alkene amine mixture such as 3-butene-1-amine), 4-pentene-1-amine is added dropwise over 1 hour.

반응이 끝난 후에 감압회전증발기(rotary evaporator)로 미반응물과 용매를 제거한 다음 [0033] 05~07torr의 진공 및20~40℃의 온도로 진공건조 하여 제조되는 3-아미노알킬 트리알콕시실란(3-aminoalkyl trialkoxysilane) 제조단계와;[0034] 질소공급 하에 온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 방향족용매와10~30중량부의 중량평균분자량이 1,000~3,000인 히드로진 터미네이티드 폴리디메틸실록산(hydrogen terminatedpolydimethylsiloxane) 및 0001~01중량부의 금속-비닐실란 복합촉매(metal-vinyl silane complex catalyst)를 첨가하여 20~50rpm의 속도로 교반하면서 반응기 온도를 70~75℃로 유지하고 10~20중량부의 2-프로펜-1-올(2-propen-1-ol)이나 3-부텐-1-올(3-butene-1-ol), 4-펜텐-1-올(4-penten-1-ol)을 1시간 동안 적가시킨다.After the reaction is over, the unreacted material and the solvent are removed with a rotary evaporator, and then 3-aminoalkyl trialkoxysilane prepared by vacuum drying at a temperature of 20 to 40°C and a vacuum of 05 to 07 torr (3- aminoalkyl trialkoxysilane) production step; [0034] In a reactor equipped with a thermometer, agitator, condensing condenser, and dropping equipment under nitrogen supply, 30 to 50 parts by weight of distilled aromatic solvent and 10 to 30 parts by weight of a weight average molecular weight of 1,000 to 3,000 Hydrogen terminated polydimethylsiloxane and 0001 to 01 parts by weight of metal-vinyl silane complex catalyst were added and stirred at a speed of 20 to 50 rpm and the reactor temperature was 70 to 75 °C. And 10 to 20 parts by weight of 2-propen-1-ol, 3-butene-1-ol, and 4-penten-1-ol (4-penten-1-ol) was added dropwise over 1 hour.

[0035] 적가가 완료되면 반응기의 온도를 90~95℃로 상승시켜 1~2시간 동안 더 반응시키고 감압회전증발기를 이용하여미반응 물질을 제거한 다음 24~48시간 동안 진공건조시켜 제조하는 히드로옥시-터미네이티드 알킬폴리디메틸실록산(hydroxy-terminated alkyl polydimethyl siloxane) 제조단계와;When the dropwise addition is complete, the temperature of the reactor is raised to 90 to 95°C, reacted for 1 to 2 hours, and then unreacted material is removed using a reduced pressure rotary evaporator, and then hydrooxy prepared by vacuum drying for 24 to 48 hours. -Preparation step of hydroxy-terminated alkyl polydimethyl siloxane;

[0036] 온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 테트라히드로퓨란(tetrahydrofurane)이나 메틸렌클로라이드(methylene chloride), 1,2-클로로에탄(1,2-chloroethane) 등과 같은극성용매와 20~40중량부의 상기 히드로옥시-터미네이티드 알킬폴리디메틸실록산 제조단계에서 제조된 히드로옥시-터미네이티드 알킬폴리디메틸실록산을 넣고 20~50rpm의 속도로 교반한다. 여기에 20~50중량부의 헥사메틸렌디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate),4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanato dicyclo- hexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methane diisocyanate)와 같은 디이소시아네이트 및 05~50중량부의 디부틸 틴 디아세테이트(dibutyl tin diacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디 옥틸 틴 디아세테이트(diocyl tindiacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclo-octane)와 같은 축합촉매(polycondensation catalyst)를 20~50중량부의 극성용매에 녹인 혼합물을 반응기 내로 30~60분 동안 적가 한다음, 2~4시간 동안 반응을 지속시킨다.Thermometer and stirrer, condensing condenser, 30 to 50 parts by weight of distilled tetrahydrofurane or methylene chloride (methylene chloride) in a reactor equipped with dropping equipment, 1,2-chloroethane (1,2-chloroethane ), and the like, and 20 to 40 parts by weight of the hydrooxy-terminated alkylpolydimethylsiloxane prepared in the production step of the hydrooxy-terminated alkylpolydimethylsiloxane, and stirred at a speed of 20 to 50 rpm. Here, 20 to 50 parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate, 4,4'-diisocyanate dicyclohexylmethane (4,4 Diisocyanates such as'-diisocyanato dicyclo-hexyl methane), tolylene diisocyanate, diphenyl methane diisocyanate, and 05-50 parts by weight of dibutyl tin diacetate or diisocyanate. Butyl tin dilaurate, dibutyl tin maleate, dioctyl tindiacetate, 1,4-diazo[2,2,2]-bicyclo- A mixture in which a polycondensation catalyst such as octane (1,4-diazo[2,2,2]-bicyclo-octane) is dissolved in 20 to 50 parts by weight of a polar solvent is added dropwise into the reactor for 30 to 60 minutes. The reaction is continued for 2 to 4 hours.

[0037] 반응이 끝난 후에 감압회전증발기로 용매를 제거한 다음 05~07torr의 진공 및 20~40℃의 온도로 진공건조 하여 제조되는 이소시아네이트-터미네이티드 실리콘수지(isocyanate terminated silicone resin) 제조단계와;[0038] 질소공급 하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 55~95중량부의 폴리에테르디올(polyetherdiol)이나 폴리에스테르디올(polyesterdiol), 폴리카보네이트디올(polycarbonatediol)과 같은 폴리디올(polydiol)과5~25중량부의 상기 이소시아네이트-터미네이티드 실리콘수지 제조단계에서 얻어진 이소시아네이트-터미네이티드실리콘수지를 가하고 반응기의 온도를 70~90℃로 유지시키면서 5~20중량부의 히드로옥시아세틱 액시드(hydroxyacetic acid)나, 아미노아세틱 액시드(aminoacetic acid), 리신(lysine), N-2-아미노에틸-2-아미노에탄 설로닉 액시드(N-2-aminoethyl-2-aminoethane sulfonic acid), 2,2-비스(히드록시메틸)프로피오닉 액시드[2,2-bis (hydroxy methyl)propionic acid]와 같은 반응성유기산을 가하여 1~4시간 동안 20~50rpm의 속도로 교반한다,After the reaction is over, the solvent is removed with a vacuum rotary evaporator, and then isocyanate-terminated silicone resin prepared by vacuum drying at a temperature of 20 to 40° C. and a vacuum of 05 to 07 torr; In a reactor equipped with a thermometer and a stirrer, a condensing condenser under nitrogen supply, 55 to 95 parts by weight of polyetherdiol or polyesterdiol, polydiol such as polycarbonatediol, and 5 to 25 parts by weight of the isocyanate-terminated silicone resin obtained in the manufacturing step of the isocyanate-terminated silicone resin was added, and 5 to 20 parts by weight of hydroxyacetic acid was added while maintaining the temperature of the reactor at 70 to 90°C. acid) B, aminoacetic acid, lysine, N-2-aminoethyl-2-aminoethane sulfonic acid, 2, Add reactive organic acid such as 2-bis (hydroxy methyl) propionic acid [2,2-bis (hydroxy methyl) propionic acid] and stir at a speed of 20 to 50 rpm for 1 to 4 hours.

[0039] 여기에 60~80중량부의 헥사메틸렌 디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate), 4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanatodi cyclohexylmethane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methanediisocyanate)와 같은 디이소시아네이트와 0001~005중량부의 디부틸 틴 디아세테이트(dibutyl tindiacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디옥틸 틴 디아세테이트(diocyl tin diacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclooctane)과 같은 축합촉매를 넣고 반응온도를 100~120℃로 올려 6~12시간 동안 반응시켜 제조되는 실리콘변성 우레탄 하이브리드 프리폴리머(prepolymer) 제조단계와;Here, 60 to 80 parts by weight of hexamethylene diisocyanate (hexamethylene diisocyanate), 1,4-phenyl diisocyanate (1,4-phenyl diisocyanate), 4,4'-diisocyaneto dicyclohexylmethane ( Diisocyanates such as 4,4'-diisocyanatodi cyclohexylmethane), toliene diisocyanate, diphenyl methanediisocyanate and 0001 to 005 parts by weight of dibutyl tindiacetate or dibutyl tin Dibutyl tin dilaurate, dibutyl tin maleate, diocyl tin diacetate, 1,4-diazo[2,2,2]-bicyclo-octane Preparation step of silicone-modified urethane hybrid prepolymer prepared by adding a condensation catalyst such as (1,4-diazo[2,2,2]-bicyclooctane) and raising the reaction temperature to 100~120℃ for 6~12 hours Wow;

[0040] 상기 실리콘변성 우레탄 하이브리드 프리폴리머 제조단계에서 얻어진 반응생성물에 반응온도를 40~60℃로 낮추고 5~20중량부의 상기 3-아미노알킬 트리알콕시실란 제조단계에서 생성된 3-아미노알킬 트리알콕시실란을 투입하여 1~3시간 동안 반응하여 이소시아네이트기(-NCO)를 캡핑(capping) 시키는 관능기캡핑(functional groupcapping)단계와;상기 관능기캡핑(functional group capping)단계에서 제조된 반응생성물에 5~20중량부의 [0041] 20~80nm 입자크기를 갖는 광촉매(photo catalyst)나 나노실버(nano-silver), 활성나노카본(activated nano-carbon) 및 나노점토(nano-clay)와 같은 기능성나노충진제를 투입하여 1,000~2,000rpm으로 교반한 후 초음파로 분산시키는 나노복합체형성단계와;[0040] The reaction product obtained in the silicone-modified urethane hybrid prepolymer production step lowers the reaction temperature to 40 to 60° C. and 5 to 20 parts by weight of the 3-aminoalkyl trialkoxysilane produced in the production step of the 3-aminoalkyl trialkoxysilane And reacting for 1 to 3 hours to cap the isocyanate group (-NCO); and 5 to 20 weight of the reaction product prepared in the functional group capping step By introducing functional nano-fillers such as photo catalyst or nano-silver, activated nano-carbon and nano-clay having a negative 20-80 nm particle size A nanocomposite forming step of stirring at 1,000 to 2,000 rpm and dispersing by ultrasonic waves;

[0042] 상기 나노복합체형성단계에서 얻어진 혼합물에 5~10중량부의 트리메틸아민(trimethyl amine)이나 트리에틸아민(triethyl amine)과 같은 삼차아민 중화제를 가하고 40~60℃에서 1~2시간 동안 반응시키는 반응성유기산 중화단계와;[0043] 상기 중화단계에서 생성된 반응생성물을 800~1,500rpm 속도로 교반되는 증류수에 적가하면서 분산하는 분산단계와;[0044] 상기 분산단계에서 생성된 분산물에 1~5중량부의 메틸렌디아민(methylene diamine)이나, 에틸렌디아민(ethylendiamine), 헥사메틸렌디아민(hexamethylenediamine)과 같은 체인확장제(chain extender)를 투입하여800~1,500rpm 속도로 1~2시간 동안 교반시키는 체인확장단계를; 거쳐 55~95중량부의 폴리디올과, 5~25중량부의이소시아네이트-터미네이티드 실리콘수지, 5~20중량부의 반응성유기산, 60~80중량부의 디이소시아네이트,0001~005중량부의 축합촉매, 5~20중량부의 3-아미노알킬 트리알콕시실란, 5~20중량부의 기능성나노충진제,5~10중량부의 중화제 및 1~5중량부의 체인확장제로 구성되는 친환경 고기능 실리콘변성 우레탄 하이브리드 수지제조를 완성하였다.To the mixture obtained in the nanocomposite forming step, 5 to 10 parts by weight of a tertiary amine neutralizing agent such as trimethyl amine or triethyl amine is added and reacted at 40 to 60° C. for 1 to 2 hours Reactive organic acid neutralization step; [0043] A dispersion step of dropwise adding the reaction product generated in the neutralization step to distilled water stirred at a speed of 800 to 1500 rpm and dispersing; [0044] 1 to the dispersion produced in the dispersion step Chain expansion step in which a chain extender such as 5 parts by weight of methylene diamine, ethylenediamine, or hexamethylenediamine is added and stirred at a speed of 800-1,500 rpm for 1-2 hours. To; Then, 55 to 95 parts by weight of polydiol, 5 to 25 parts by weight of isocyanate-terminated silicone resin, 5 to 20 parts by weight of reactive organic acid, 60 to 80 parts by weight of diisocyanate, 0001 to 005 parts by weight of condensation catalyst, 5 to 20 The production of an eco-friendly high-functional silicone-modified urethane hybrid resin composed of parts by weight of 3-aminoalkyl trialkoxysilane, 5 to 20 parts by weight of functional nanofillers, 5 to 10 parts by weight of neutralizing agent and 1 to 5 parts by weight of chain extender was completed.

[0045] 상기 폴리디올은 55~95중량부가 사용되어 실리콘변성 우레탄 하이브리드 수지의 하드세그먼트(hard segment)를형성하는 주성분으로 폴리에테르디올이나 폴리에스테르디올, 폴리카보네이트디올 등이 사용가능하다.[0045] The polydiol is 55 to 95 parts by weight, and polyether diol, polyester diol, polycarbonate diol, etc. may be used as a main component forming a hard segment of a silicone-modified urethane hybrid resin.

[0046] 이때 폴리디올 함량이 55중량부 미만일 경우 형성되는 실리콘변성 우레탄 하이브리드 수지의 기계적 강도가 떨어지고 95중량부 이상일 경우 반응 시 점도 상승에 따른 생산성이 떨어진다.At this time, when the polydiol content is less than 55 parts by weight, the mechanical strength of the silicone-modified urethane hybrid resin formed decreases, and when the content is more than 95 parts by weight, productivity due to the increase in viscosity during the reaction decreases.

[0047] 상기 이소시아네이트-터미네이티드 실리콘수지는 실리콘변성 우레탄 하이브리드 수지의 소프트세그먼트(softsegment)를 형성하는 주성분으로 5~25중량부가 사용된다.[0047] The isocyanate-terminated silicone resin is used in an amount of 5 to 25 parts by weight as a main component forming a soft segment of a silicone-modified urethane hybrid resin.

[0048] 이때 이소시아네이트-터미네이티드 실리콘수지 함량이 5중량부 미만일 경우 형성되는 실리콘변성 우레탄 하이브리드 수지의 내수성이 떨어지고 25중량부 이상일 경우 제품의 기계적 강도가 떨어진다.At this time, when the content of the isocyanate-terminated silicone resin is less than 5 parts by weight, the water resistance of the silicone-modified urethane hybrid resin formed is lower, and when the content is 25 parts by weight or more, the mechanical strength of the product is lowered.

[0049] 상기 반응성유기산은 수분산성 향상을 증가시키기 위해 사용되며 히드로옥시아세틱 액시드나, 아미노아세틱 액시드, 리신, N-2-아미노에틸-2-아미노에탄 설로닉 액시드, 2,2-비스(히드록시메틸)프로피오닉 액시드 등이 5~20중량부가 사용된다.[0049] The reactive organic acid is used to increase water dispersibility, and hydrooxyacetic acid, aminoacetic acid, lysine, N-2-aminoethyl-2-aminoethane sulonic acid, 2,2 -5 to 20 parts by weight of bis (hydroxymethyl) propionic acid, etc. are used.

[0050] 이때 반응성유기산 함량이 5중량부 미만일 경우 수분산성이 떨어지고 20중량부 이상일 경우 제품의 내수성이 떨어진다.At this time, when the reactive organic acid content is less than 5 parts by weight, the water dispersibility decreases, and when the content is more than 20 parts by weight, the water resistance of the product decreases.

[0051] 상기 디이소시아네이트는 반응성결합제로 헥사메틸렌 디이소시아네이트나, 1,4-페닐 디이소시아네이트, 4,4'-디이소시아네토디씨크로헥실 메탄, 톨리엔 디이소시아네이트, 디페닐 메탄 디이소시아네이트 등이 60~80중량부가사용된다.[0051] The diisocyanate is a reactive binder such as hexamethylene diisocyanate, 1,4-phenyl diisocyanate, 4,4'-diisocyanate dicyclohexyl methane, tolyene diisocyanate, diphenyl methane diisocyanate, etc. 60 to 80 parts by weight are used.

[0052] 이때 디이소시아네이트 함량이 60중량부 미만일 경우 형성되는 실리콘변성 우레탄 하이브리드 수지의 기계적 강도가 떨어지고 80중량부 이상일 경우 환경친화성이 떨어진다.At this time, when the diisocyanate content is less than 60 parts by weight, the mechanical strength of the silicone-modified urethane hybrid resin is lowered, and when the content is 80 parts by weight or more, environmental friendliness is lowered.

[0053] 상기 축합촉매는 반응촉매로 디부틸 틴 디아세테이트나 디부틸 틴 디라울레이트, 디부틸 틴 말레이트, 디 옥틸틴 디아세테이트, 1,4-디아조[2,2,2]-바이시크로-옥탄 등의 사용가능 하며 0001~005 중량부가 사용된다.[0053] The condensation catalyst is a reaction catalyst such as dibutyl tin diacetate or dibutyl tin dilaulate, dibutyl tin maleate, dioctyl tin diacetate, 1,4-diazo[2,2,2]-by Cyclo-octane can be used, and 0001~005 parts by weight are used.

[0054] 이때 축합촉매 함량이 0001중량부 미만일 경우 형성되는 실리콘변성 우레탄 하이브리드 수지의 점도가 떨어지고 005중량부 이상일 경우 생산성이 떨어진다.At this time, when the content of the condensation catalyst is less than 0001 parts by weight, the viscosity of the silicone-modified urethane hybrid resin formed is lowered, and when the content is 005 parts by weight or more, the productivity decreases.

[0055] 상기 3-아미노알킬 트리알콕시실란 제조단계에서 생성된 3-아미노알킬 트리알콕시실란은 이소시아네이트기의 캡핑을 하기위해 5~20중량부가 사용된다.The 3-aminoalkyl trialkoxysilane produced in the manufacturing step of the 3-aminoalkyl trialkoxysilane is used in an amount of 5 to 20 parts by weight for capping the isocyanate group.

[0056] 이때 3-아미노알킬 트리알콕시실란 함량이 5중량부 미만일 경우 형성되는 실리콘변성 우레탄 하이브리드 수지의점도가 떨어지고 20중량부 이상일 경우 경제성이 떨어진다.At this time, when the 3-aminoalkyl trialkoxysilane content is less than 5 parts by weight, the viscosity of the silicone-modified urethane hybrid resin formed is lower, and when the content is 20 parts by weight or more, the economical efficiency is lowered.

상기 기능성나노충진제는 5~20중량부가 사용되어 최종제품이 휘발성유기화합물의 [0057] 분해, 항균성, 음이온방출 및인장강도 향상 등의 특성부여를 위해 20~80nm 입자크기를 갖는 광촉매나 나노실버, 활성나노카본 및 나노점토가사용가능하다.The functional nano-filler is used in 5 to 20 parts by weight of the final product is a photocatalyst or nano silver having a particle size of 20 to 80 nm to impart properties such as decomposition of volatile organic compounds, antibacterial properties, release of anions and improvement of tensile strength, Activated nanocarbons and nanoclays are available.

Claims (3)

질소공급 하에 온도계와 교반기, 적가장비(dropping equipment) 및 응축콘덴서(reflux condenser)를 장착한반응기에 벤젠(benzene)이나, 톨루엔(toluene), 자이렌(xylene)과 같은 방향족용매(aromatic solvent) 30~50중량부와, 디로듐 옥타카보닐(dirhodium octacarbonyl)이나, 테트라로듐 도데카카보닐(tetrarhodium
dodecacarbonyl), 헥사로듐 헥사데카카보닐(hexarhodium hexadecacarbony), 로듐 트리브로마이드(rhodium
tribromide), 로듐 트리클로라이드 트리히드레이트(RhCl3·3H2O)와 같은 로듐촉매 001~01중량부 및 포타슘옥사이드(potassium oxide)나, 루비듐옥사이드(rubidium oxide), 리튬히드로옥사이드(lithium hydroxide), 포타슘히드로옥사이드(potassium hydroxide) 소디움히드로옥사이드(sodium hydroxide)와 같은 금속옥사이드(metaloxide) 001~01중량부를 적가하여 20~50rpm의 속도로 교반하고 반응온도를 100~130℃로 유지하면서 트리메톡시실란(triethoxy silane)이나 트리에톡시실란(triethoxy silane)과 같은 트리알콕시실란(trialkoysilane) 20~50중량부와 2-프로펜-1-아민(2-propen-1-amine)이나, 3-부텐-1-아민(3-butene-1-amine), 4-펜텐-1-아민(4-pentene-1-amine)과 같은 알켄아민(alkene amine)혼합물 5~20중량부를 1시간에 걸쳐 적가(dropwise) 시켜서 반응이 끝난 후에, 감압회전증발기(rotary evaporator)로 미반응물과 용매를 제거한 다음 05~07torr의 진공 및20~40℃의 온도로 진공건조 하여 제조되는 3-아미노알킬 트리알콕시실란(3-aminoalkyl trialkoxysilane) 제조단계와;
질소공급 하에 온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 방향족용매와10~30중량부의 중량평균분자량이 1,000~3,000인 히드로진 터미네이티드 폴리디메틸실록산(hydrogen terminatedpolydimethylsiloxane) 및 0001~01중량부의 금속-비닐실란 복합촉매(metal-vinyl silane complex catalyst)를 첨가하여 20~50rpm의 속도로 교반하면서 반응기 온도를 70~75℃로 유지하고 10~20중량부의 2-프로펜-1-올(2-propen-1-ol)이나 3-부텐-1-올(3-butene-1-ol), 4-펜텐-1-올(4-penten-1-ol)을 1시간 동안 적가 시켜서 적가가완료되면, 반응기의 온도를 90~95℃로 상승시켜 1~2시간 동안 더 반응시키고 감압회전증발기를 이용하여 미반응물질을 제거한 다음 24~48시간 동안 진공건조시켜 제조하는 히드로옥시-터미네이티드 알킬폴리디메틸실록산(hydroxy-terminated alkyl polydimethyl siloxane) 제조단계와;
온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 테트라히드로퓨란
(tetrahydrofurane)이나 메틸렌클로라이드(methylene chloride), 1,2-클로로에탄(1,2-chloroethane) 등과 같은극성용매와 20~40중량부의 상기 히드로옥시-터미네이티드 알킬폴리디메틸실록산 제조단계에서 제조된 히드로옥시-터미네이티드 알킬폴리디메틸실록산을 넣고 20~50rpm의 속도로 교반하고, 여기에 20~50중량부의 헥사메틸렌디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate),4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanato dicyclo- hexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methane diisocyanate)와 같은 디이소시아네이트 및 05~50중량부의 디부틸 틴 디아세테이트(dibutyl tin diacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디 옥틸 틴 디아세테이트(diocyl tindiacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclo-octane)와 같은 축합촉매(polycondensation catalyst)를 20~50중량부의 극성용매에 녹인 혼합물을 반응기 내로 30~60분 동안 적가 한다음, 2~4시간 동안 반응을 지속시켜서 반응이 끝난 후에, 감압회전증발기로 용매를 제거한 다음 05~07torr의진공 및 20~40℃의 온도로 진공건조 하여 제조되는 이소시아네이트-터미네이티드 실리콘수지(isocyanateterminated silicone resin) 제조단계와;
질소공급 하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 55~95중량부의폴리에테르디올(polyetherdiol)이나 폴리에스테르디올(polyesterdiol), 폴리카보네이트디올(polycarbonatediol)과 같은 폴리디올(polydiol)과
5~25중량부의 상기 이소시아네이트-터미네이티드 실리콘수지 제조단계에서 얻어진 이소시아네이트-터미네이티드실리콘수지를 가하고 반응기의 온도를 70~90℃로 유지시키면서 5~20중량부의 히드로옥시아세틱 액시드(hydroxyacetic acid)나, 아미노아세틱 액시드(aminoacetic acid), 리신(lysine), N-2-아미노에틸-2-아미노에탄 설로닉 액시드(N-2-aminoethyl-2-aminoethane sulfonic acid), 2,2-비스(히드록시메틸)프로피오닉 액시드[2,2-bis (hydroxy methyl)propionic acid]와 같은 반응성유기산을 가하여 1~4시간 동안 20~50rpm의 속도로 교반하고, 여기에 60~80중량부의 헥사메틸렌 디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate), 4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanatodi cyclohexylmethane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methanediisocyanate)와 같은 디이소시아네이트와 0001~005중량부의 디부틸 틴 디아세테이트(dibutyl tindiacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디옥틸 틴 디아세테이트(diocyl tin diacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclooctane)
과 같은 축합촉매를 넣고 반응온도를 100~120℃로 올려 6~12시간 동안 반응시켜 제조되는 실리콘변성 우
레탄 하이브리드 프리폴리머(prepolymer) 제조단계와;상기 실리콘변성 우레탄 하이브리드 프리폴리머 제조단계에서 얻어진 반응생성물에 반응온도를 40~60℃로 낮추고 5~20중량부의 상기 3-아미노알킬 트리알콕시실란 제조단계에서 생성된 3-아미노알킬 트리알콕시실란을 투입하여 1~3시간 동안 반응하여 이소시아네이트기(-NCO)를 캡핑(capping) 시키는 관능기캡핑(functional groupcapping)단계와;
상기 관능기캡핑(functional group capping)단계에서 제조된 반응생성물에 5~10중량부의 트리메틸아민
(trimethyl amine)이나 트리에틸아민(triethyl amine)과 같은 삼차아민 중화제를 가하고 40~60℃에서 1~2시간동안 반응시키는 반응성유기산 중화단계와;
상기 중화단계에서 생성된 반응생성물을 800~1,500rpm 속도로 교반되는 증류수에 적가하면서 분산하는 분산단계와;상기 분산단계에서 생성된 분산물에 1~5중량부의 메틸렌디아민(methylene diamine)이나, 에틸렌디아민(ethylenediamine), 헥사메틸렌디아민(hexamethylenediamine)과 같은 체인확장제(chain extender)를 투입하여800~1,500rpm 속도로 1~2시간 동안 교반시키는 체인확장단계와;로 이루어짐을 특징으로 하는 친환경 고기능 실리콘변성 우레탄 하이브리드 수지 제조방법.
In a reactor equipped with a thermometer, agitator, dropping equipment and a reflux condenser under nitrogen supply, an aromatic solvent such as benzene, toluene, and xylene 30 ~50 parts by weight and, dirhodium octacarbonyl or tetrarhodium dodecacarbonyl (tetrarhodium)
dodecacarbonyl), hexarhodium hexadecacarbony, rhodium tribromide
001 to 01 parts by weight of a rhodium catalyst such as tribromide), rhodium trichloride trihydrate (RhCl3·3H2O) and potassium oxide, rubidium oxide, lithium hydroxide, potassium hydroxide (potassium hydroxide) 001 to 01 parts by weight of a metal oxide such as sodium hydroxide is added dropwise and stirred at a speed of 20 to 50 rpm, and the reaction temperature is maintained at 100 to 130°C, while triethoxy silane ) And trialkoxysilane such as triethoxy silane and 20 to 50 parts by weight of 2-propen-1-amine or 3-butene-1-amine Reaction by dropwise adding 5 to 20 parts by weight of an alkene amine mixture such as (3-butene-1-amine) and 4-pentene-1-amine over 1 hour After completion, 3-aminoalkyl trialkoxysilane prepared by removing unreacted substances and solvent with a vacuum rotary evaporator and then vacuum drying at a vacuum of 05~07torr and a temperature of 20~40℃. Manufacturing steps;
Under nitrogen supply, in a reactor equipped with a thermometer, agitator, condensing condenser, and dropping equipment, 30 to 50 parts by weight of distilled aromatic solvent and 10 to 30 parts by weight of a hydrogen-terminated polydimethylsiloxane having a weight average molecular weight of 1,000 to 3,000. terminatedpolydimethylsiloxane) and 0001 to 01 parts by weight of a metal-vinyl silane complex catalyst were added and stirred at a speed of 20 to 50 rpm while maintaining the temperature of the reactor at 70 to 75°C, and 10 to 20 parts by weight of 2- Propen-1-ol (2-propen-1-ol), 3-butene-1-ol (3-butene-1-ol), 4-penten-1-ol (4-penten-1-ol) When the dropwise addition is completed by adding dropwise for 1 hour, increase the temperature of the reactor to 90~95℃, react for 1~2 hours, remove unreacted material using a reduced pressure rotary evaporator, and then vacuum dry for 24~48 hours. Hydrooxy-terminated alkyl polydimethylsiloxane (hydroxy-terminated alkyl polydimethyl siloxane) preparation step;
30-50 parts by weight of distilled tetrahydrofuran in a reactor equipped with a thermometer, agitator, condensing condenser, and dropping equipment
(tetrahydrofurane), methylene chloride (methylene chloride), 1,2-chloroethane (1,2-chloroethane), such as polar solvent and 20 to 40 parts by weight of the hydrooxy-terminated alkylpolydimethylsiloxane prepared in the manufacturing step Hydrooxy-terminated alkylpolydimethylsiloxane was added and stirred at a speed of 20 to 50 rpm, and 20 to 50 parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate (1,4- phenyl diisocyanate), 4,4'-diisocyanato dicyclo-hexyl methane (4,4'-diisocyanato dicyclo-hexyl methane), toliene diisocyanate, diphenyl methane diisocyanate, and The same diisocyanate and 05-50 parts by weight of dibutyl tin diacetate or dibutyl tin dilaurate, dibutyl tin maleate, dioctyl tin diacetate (diocyl) tindiacetate), a polycondensation catalyst such as 1,4-diazo[2,2,2]-bicyclo-octane (1,4-diazo[2,2,2]-bicyclo-octane). The mixture dissolved in ~50 parts by weight of a polar solvent is added dropwise into the reactor for 30 to 60 minutes, and then the reaction is continued for 2 to 4 hours to complete the reaction.After the reaction is finished, the solvent is removed with a reduced pressure rotary evaporator, and then vacuum of 05 to 07 torr and 20 An isocyanate-terminated silicone resin prepared by vacuum drying at a temperature of ~40°C;
In a reactor equipped with a thermometer, stirrer, and condensation condenser under nitrogen supply, polydiol such as 55 to 95 parts by weight of polyetherdiol, polyesterdiol, and polycarbonatediol
5 to 25 parts by weight of the isocyanate-terminated silicone resin obtained in the manufacturing step of the isocyanate-terminated silicone resin was added, and 5 to 20 parts by weight of hydroxyacetic acid was added while maintaining the temperature of the reactor at 70 to 90°C. acid) B, aminoacetic acid, lysine, N-2-aminoethyl-2-aminoethane sulfonic acid, 2, Add reactive organic acid such as 2-bis (hydroxymethyl) propionic acid [2,2-bis (hydroxy methyl) propionic acid] and stir at a speed of 20 to 50 rpm for 1 to 4 hours, and 60 to 80 Parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate, 4,4'-diisocyanatodicyclohexylmethane (4,4'-diisocyanatodi cyclohexylmethane) , Tolyene diisocyanate (tolylene diisocyanate), diphenyl methane diisocyanate (diphenyl methanediisocyanate) such as diisocyanate and 0001 to 005 parts by weight of dibutyl tindiacetate or dibutyl tin dilaurate (dibutyl tin dilaurate) , Dibutyl tin maleate, dioctyl tin diacetate, 1,4-diazo[2,2,2]-bicyclo-octane (1,4-diazo[2 ,2,2]-bicyclooctane)
Silicon modified cow prepared by adding a condensation catalyst as described above and raising the reaction temperature to 100~120℃ for 6~12 hours
Retane hybrid prepolymer (prepolymer) production step; The reaction product obtained in the silicone-modified urethane hybrid prepolymer production step, lower the reaction temperature to 40 ~ 60 ℃, 5-20 parts by weight of the 3-aminoalkyl trialkoxysilane produced in the production step A functional group capping step of capping an isocyanate group (-NCO) by adding 3-aminoalkyl trialkoxysilane and reacting for 1 to 3 hours;
5 to 10 parts by weight of trimethylamine in the reaction product prepared in the functional group capping step
a reactive organic acid neutralization step of adding a tertiary amine neutralizing agent such as (trimethyl amine) or triethyl amine and reacting at 40 to 60° C. for 1 to 2 hours;
A dispersion step of dropwise adding the reaction product generated in the neutralization step to distilled water stirred at a speed of 800 to 1500 rpm and dispersing; 1 to 5 parts by weight of methylene diamine or ethylene to the dispersion produced in the dispersion step An eco-friendly high-functional silicone modification characterized by comprising: a chain extension step in which a chain extender such as diamine or hexamethylenediamine is added and stirred at a speed of 800 to 1500 rpm for 1 to 2 hours. Urethane hybrid resin manufacturing method.
55~95중량부의 폴리디올과, 5~25중량부의 이소시아네이트-터미네이티드 실리콘수지, 5~20중량부의
반응성유기산, 60~80중량부의 디이소시아네이트, 0001~005중량부의 축합촉매, 5~20중량부의 3-아미노알킬 트리알콕시실란, 5~20중량부의 기능성나노충진제, 5~10중량부의 중화제 및 1~5중량부의 체인확장제로 조성함을 특징으로 하는 친환경 고기능 실리콘변성 우레탄 하이브리드수지 나노복합체.
55 to 95 parts by weight of polydiol, 5 to 25 parts by weight of isocyanate-terminated silicone resin, 5 to 20 parts by weight
Reactive organic acid, 60 to 80 parts by weight of diisocyanate, 0001 to 005 parts by weight of condensation catalyst, 5 to 20 parts by weight of 3-aminoalkyl trialkoxysilane, 5 to 20 parts by weight of functional nano-filler, 5 to 10 parts by weight of neutralizing agent and 1 to Eco-friendly, high-functional silicone-modified urethane hybrid resin nanocomposite, characterized by comprising 5 parts by weight of a chain extender.
질소공급 하에 온도계와 교반기, 적가장비(dropping equipment) 및 응축콘덴서(reflux condenser)를 장착한응기에 벤젠(benzene)이나, 톨루엔(toluene), 자이렌(xylene)과 같은 방향족용매(aromatic solvent) 30~50중량부와, 디로듐 옥타카보닐(dirhodium octacarbonyl)이나, 테트라로듐 도데카카보닐(tetrarhodium
dodecacarbonyl), 헥사로듐 헥사데카카보닐(hexarhodium hexadecacarbony), 로듐 트리브로마이드(rhodium
tribromide), 로듐 트리클로라이드 트리히드레이트(RhCl3·3H2O)와 같은 로듐촉매 001~01중량부 및 포타슘옥사이드(potassium oxide)나, 루비듐옥사이드(rubidium oxide), 리튬히드로옥사이드(lithium hydroxide), 포타슘히드로옥사이드(potassium hydroxide) 소디움히드로옥사이드(sodium hydroxide)와 같은 금속옥사이드(metaloxide) 001~01중량부를 적가하여 20~50rpm의 속도로 교반하고 반응온도를 100~130℃로 유지하면서 트리메톡시실란(triethoxy silane)이나 트리에톡시실란(triethoxy silane)과 같은 트리알콕시실란(trialkoysilane) 20~50중량부와 2-프로펜-1-아민(2-propen-1-amine)이나, 3-부텐-1-아민(3-butene-1-amine), 4-펜텐-1-아민(4-pentene-1-amine)과 같은 알켄아민(alkene amine)혼합물 5~20중량부를 1시간에 걸쳐 적가(dropwise) 시켜서 반응이 끝난 후에, 감압회전증발기(rotary evaporator)로 미반응물과 용매를 제거한 다음 05~07torr의 진공 및20~40℃의 온도로 진공건조 하여 제조되는 3-아미노알킬 트리알콕시실란(3-aminoalkyl trialkoxysilane) 제조단계와;질소공급 하에 온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 방향족용매와
10~30중량부의 중량평균분자량이 1,000~3,000인 히드로진 터미네이티드 폴리디메틸실록산(hydrogen terminatedpolydimethylsiloxane) 및 0001~01중량부의 금속-비닐실란 복합촉매(metal-vinyl silane complex catalyst)를 첨가하여 20~50rpm의 속도로 교반하면서 반응기 온도를 70~75℃로 유지하고 10~20중량부의 2-프로펜-1-올(2-propen-1-ol)이나 3-부텐-1-올(3-butene-1-ol), 4-펜텐-1-올(4-penten-1-ol)을 1시간 동안 적가 시켜서 적가가완료되면, 반응기의 온도를 90~95℃로 상승시켜 1~2시간 동안 더 반응시키고 감압회전증발기를 이용하여 미반응물질을 제거한 다음 24~48시간 동안 진공건조시켜 제조하는 히드로옥시-터미네이티드 알킬폴리디메틸실록산(hydroxy-terminated alkyl polydimethyl siloxane) 제조단계와;
온도계와 교반기, 응축콘덴서, 적가장비를 장착한 반응기에 30~50중량부의 증류된 테트라히드로퓨란
(tetrahydrofurane)이나 메틸렌클로라이드(methylene chloride), 1,2-클로로에탄(1,2-chloroethane) 등과 같은극성용매와 20~40중량부의 상기 히드로옥시-터미네이티드 알킬폴리디메틸실록산 제조단계에서 제조된 히드로옥시-터미네이티드 알킬폴리디메틸실록산을 넣고 20~50rpm의 속도로 교반하고, 여기에 20~50중량부의 헥사메틸렌디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate),4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanato dicyclo- hexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methane diisocyanate)와 같은 디이소시아 네이트 및 05~50중량부의 디부틸 틴 디아세테이트(dibutyl tin diacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디 옥틸 틴 디아세테이트(diocyl tindiacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclo-octane)와 같은 축합촉매(polycondensation catalyst)를 20~50중량부의 극성용매에 녹인 혼합물을 반응기 내로 30~60분 동안 적가 한
다음, 2~4시간 동안 반응을 지속시켜서 반응이 끝난 후에, 감압회전증발기로 용매를 제거한 다음 05~07torr의진공 및 20~40℃의 온도로 진공건조 하여 제조되는 이소시아네이트-터미네이티드 실리콘수지(isocyanateterminated silicone resin) 제조단계와;
질소공급 하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 55~95중량부의 폴리에테르디올(polyetherdiol)이나 폴리에스테르디올(polyesterdiol), 폴리카보네이트디올(polycarbonatediol)과 같은 폴리디올(polydiol)과
5~25중량부의 상기 이소시아네이트-터미네이티드 실리콘수지 제조단계에서 얻어진 이소시아네이트-터미네이티드실리콘수지를 가하고 반응기의 온도를 70~90℃로 유지시키면서 5~20중량부의 히드로옥시아세틱 액시드(hydroxyacetic acid)나, 아미노아세틱 액시드(aminoacetic acid), 리신(lysine), N-2-아미노에틸-2-아미노에탄 설로닉 액시드(N-2-aminoethyl-2-aminoethane sulfonic acid), 2,2-비스(히드록시메틸)프로피오닉 액시드[2,2-bis (hydroxy methyl)propionic acid]와 같은 반응성유기산을 가하여 1~4시간 동안 20~50rpm의 속도로 교반하고, 여기에 60~80중량부의 헥사메틸렌 디이소시아네이트나(hexamethylene diisocyanate), 1,4-페닐 디이소시아네이트(1,4-phenyl diisocyanate), 4,4'-디이소시아네토디씨크로헥실메탄(4,4'-diisocyanatodi cyclohexylmethane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 디페닐 메탄 디이소시아네이트(diphenyl methanediisocyanate)와 같은 디이소시아네이트와 0001~005중량부의 디부틸 틴 디아세테이트(dibutyl tindiacetate)나 디부틸 틴 디라울레이트(dibutyl tin dilaurate), 디부틸 틴 말레이트(dibutyl tin maleate), 디옥틸 틴 디아세테이트(diocyl tin diacetate), 1,4-디아조[2,2,2]-바이시크로-옥탄(1,4-diazo[2,2,2]-bicyclooctane)과 같은 축합촉매를 넣고 반응온도를 100~120℃로 올려 6~12시간 동안 반응시켜 제조되는 실리콘변성 우레탄 하이브리드 프리폴리머(prepolymer) 제조단계와;
상기 실리콘변성 우레탄 하이브리드 프리폴리머 제조단계에서 얻어진 반응생성물에 반응온도를 40~60℃로 낮추고 5~20중량부의 상기 3-아미노알킬 트리알콕시실란 제조단계에서 생성된 3-아미노알킬 트리알콕시실란을 투입하여 1~3시간 동안 반응하여 이소시아네이트기(-NCO)를 캡핑(capping) 시키는 관능기캡핑(functional groupcapping)단계와;
상기 관능기캡핑(functional group capping)단계에서 제조된 반응생성물에 5~20중량부의 20~80nm 입자크기를 갖는 광촉매(photo catalyst)나 나노실버(nano-silver), 활성나노카본(activated nano-carbon) 및 나노점토(nano-clay)와 같은 기능성나노충진제를 투입하여 1,000~2,000rpm으로 교반한 후 초음파로 분산시키는 나노복합체형성단계와;
상기 나노복합체형성단계에서 얻어진 혼합물에 5~10중량부의 트리메틸아민(trimethyl amine)이나 트리에틸아민(triethyl amine)과 같은 삼차아민 중화제를 가하고 40~60℃에서 1~2시간 동안 반응시키는 반응성유기산 중화단계와;상기 중화단계에서 생성된 반응생성물을 800~1,500rpm 속도로 교반되는 증류수에 적가하면서 분산하는 분산단계와;
상기 분산단계에서 생성된 분산물에 1~5중량부의 메틸렌디아민(methylene diamine)이나, 에틸렌디아민(ethylenediamine), 헥사메틸렌디아민(hexamethylenediamine)과 같은 체인확장제(chain extender)를 투입하여800~1,500rpm 속도로 1~2시간 동안 교반시키는 체인확장단계를; 더포함하여 이루어짐을 특징으로 하는 친환경고기능 실리콘변성 우레탄 하이브리드 수지 나노복합체의 제조방법.
An aromatic solvent such as benzene, toluene, and xylene in a condenser equipped with a thermometer, agitator, dropping equipment and a reflux condenser under nitrogen supply 30 ~50 parts by weight and, dirhodium octacarbonyl or tetrarhodium dodecacarbonyl (tetrarhodium)
dodecacarbonyl), hexarhodium hexadecacarbony, rhodium tribromide
001 to 01 parts by weight of a rhodium catalyst such as tribromide), rhodium trichloride trihydrate (RhCl3·3H2O) and potassium oxide, rubidium oxide, lithium hydroxide, potassium hydroxide (potassium hydroxide) 001 to 01 parts by weight of a metal oxide such as sodium hydroxide is added dropwise and stirred at a speed of 20 to 50 rpm, and the reaction temperature is maintained at 100 to 130°C, while triethoxy silane ) And trialkoxysilane such as triethoxy silane and 20 to 50 parts by weight of 2-propen-1-amine or 3-butene-1-amine Reaction by dropwise adding 5 to 20 parts by weight of an alkene amine mixture such as (3-butene-1-amine) and 4-pentene-1-amine over 1 hour After completion, 3-aminoalkyl trialkoxysilane prepared by removing unreacted substances and solvent with a vacuum rotary evaporator and then vacuum drying at a vacuum of 05~07torr and a temperature of 20~40℃. Manufacturing step; 30 to 50 parts by weight of distilled aromatic solvent in a reactor equipped with a thermometer, agitator, condensing condenser, and dropping equipment under nitrogen supply and
By adding 10 to 30 parts by weight of hydrogen terminated polydimethylsiloxane with a weight average molecular weight of 1,000 to 3,000 and 0001 to 01 parts by weight of a metal-vinyl silane complex catalyst, 20 to While stirring at a speed of 50 rpm, the reactor temperature is maintained at 70 to 75°C, and 10 to 20 parts by weight of 2-propen-1-ol or 3-butene-1-ol -1-ol) and 4-penten-1-ol are added dropwise for 1 hour, and when the dropwise addition is completed, the temperature of the reactor is raised to 90~95℃ for 1~2 hours. A step of preparing a hydroxy-terminated alkyl polydimethyl siloxane prepared by reacting and removing unreacted substances using a vacuum rotary evaporator and then vacuum drying for 24 to 48 hours;
30-50 parts by weight of distilled tetrahydrofuran in a reactor equipped with a thermometer, agitator, condensing condenser, and dropping equipment
(tetrahydrofurane), methylene chloride (methylene chloride), 1,2-chloroethane (1,2-chloroethane), such as polar solvent and 20 to 40 parts by weight of the hydrooxy-terminated alkylpolydimethylsiloxane prepared in the manufacturing step Hydrooxy-terminated alkylpolydimethylsiloxane was added and stirred at a speed of 20 to 50 rpm, and 20 to 50 parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate (1,4- phenyl diisocyanate), 4,4'-diisocyanato dicyclo-hexyl methane (4,4'-diisocyanato dicyclo-hexyl methane), toliene diisocyanate, diphenyl methane diisocyanate, and The same diisocyanate and 05-50 parts by weight of dibutyl tin diacetate or dibutyl tin dilaurate, dibutyl tin maleate, dioctyl tin diacetate ( diocyl tindiacetate), 1,4-diazo[2,2,2]-bicyclo-octane (1,4-diazo[2,2,2]-bicyclo-octane), a polycondensation catalyst such as A mixture dissolved in 20-50 parts by weight of a polar solvent was added dropwise into the reactor for 30-60 minutes.
Next, the reaction is continued for 2 to 4 hours, after the reaction is over, the solvent is removed with a vacuum rotary evaporator, and then isocyanate-terminated silicone resin prepared by vacuum drying at a vacuum of 05 to 07 torr and a temperature of 20 to 40°C ( isocyanateterminated silicone resin) manufacturing step;
In a reactor equipped with a thermometer, stirrer, and condensing condenser under nitrogen supply, polydiol such as 55 to 95 parts by weight of polyetherdiol, polyesterdiol, and polycarbonatediol
5 to 25 parts by weight of the isocyanate-terminated silicone resin obtained in the manufacturing step of the isocyanate-terminated silicone resin was added, and 5 to 20 parts by weight of hydroxyacetic acid was added while maintaining the temperature of the reactor at 70 to 90°C. acid) B, aminoacetic acid, lysine, N-2-aminoethyl-2-aminoethane sulfonic acid, 2, Add reactive organic acid such as 2-bis (hydroxymethyl) propionic acid [2,2-bis (hydroxy methyl) propionic acid] and stir at a speed of 20 to 50 rpm for 1 to 4 hours, and 60 to 80 Parts by weight of hexamethylene diisocyanate, 1,4-phenyl diisocyanate, 4,4'-diisocyanatodicyclohexylmethane (4,4'-diisocyanatodi cyclohexylmethane) , Tolyene diisocyanate (tolylene diisocyanate), diphenyl methane diisocyanate (diphenyl methanediisocyanate) such as diisocyanate and 0001 to 005 parts by weight of dibutyl tindiacetate (dibutyl tindiacetate) or dibutyl tin dilaurate (dibutyl tin dilaurate) , Dibutyl tin maleate, dioctyl tin diacetate, 1,4-diazo[2,2,2]-bicyclo-octane (1,4-diazo[2 , A silicon-modified urethane hybrid prepolymer prepared by adding a condensation catalyst such as ,2,2]-bicyclooctane) and raising the reaction temperature to 100 to 120°C for 6 to 12 hours;
To the reaction product obtained in the silicone-modified urethane hybrid prepolymer production step, the reaction temperature was lowered to 40 to 60°C, and 5 to 20 parts by weight of the 3-aminoalkyl trialkoxysilane produced in the 3-aminoalkyl trialkoxysilane production step was added. A functional group capping step of capping the isocyanate group (-NCO) by reacting for 1 to 3 hours;
In the reaction product prepared in the functional group capping step, a photo catalyst, nano-silver, or activated nano-carbon having a particle size of 20 to 80 nm in 5 to 20 parts by weight of the reaction product And a nanocomposite forming step of adding a functional nano-filler such as nano-clay, stirring at 1,000 to 2,000 rpm, and dispersing with ultrasonic waves;
Neutralization of reactive organic acids by adding 5 to 10 parts by weight of a tertiary amine neutralizing agent such as trimethyl amine or triethyl amine to the mixture obtained in the nanocomposite formation step and reacting at 40 to 60° C. for 1 to 2 hours A dispersion step of dropping and dispersing the reaction product generated in the neutralization step into distilled water stirred at a speed of 800 to 1500 rpm;
A chain extender such as 1 to 5 parts by weight of methylene diamine, ethylenediamine, or hexamethylenediamine is added to the dispersion produced in the dispersion step at a speed of 800-1,500 rpm. A chain expansion step of stirring for 1 to 2 hours; A method of manufacturing an eco-friendly, high-functional silicone-modified urethane hybrid resin nanocomposite comprising further comprising
KR1020190074642A 2019-06-22 2019-06-22 Urethanescontaining monofunctional and bifunctional aromatic amines KR20200145583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190074642A KR20200145583A (en) 2019-06-22 2019-06-22 Urethanescontaining monofunctional and bifunctional aromatic amines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190074642A KR20200145583A (en) 2019-06-22 2019-06-22 Urethanescontaining monofunctional and bifunctional aromatic amines

Publications (1)

Publication Number Publication Date
KR20200145583A true KR20200145583A (en) 2020-12-30

Family

ID=74088579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190074642A KR20200145583A (en) 2019-06-22 2019-06-22 Urethanescontaining monofunctional and bifunctional aromatic amines

Country Status (1)

Country Link
KR (1) KR20200145583A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028797A (en) * 2022-06-24 2022-09-09 盛鼎高新材料有限公司 Organic silicon modified polyurethane elastomer and preparation method thereof
CN115181230A (en) * 2022-08-19 2022-10-14 盛鼎高新材料有限公司 Preparation method of block copolymerization polyurethane elastomer
CN116178669A (en) * 2023-03-08 2023-05-30 安徽开捷汽车部件有限公司 High-toughness reaction injection molding material and application thereof
CN117603642A (en) * 2024-01-24 2024-02-27 烟台隆达树脂有限公司 Preparation method of modified epoxy electronic adhesive

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028797A (en) * 2022-06-24 2022-09-09 盛鼎高新材料有限公司 Organic silicon modified polyurethane elastomer and preparation method thereof
CN115181230A (en) * 2022-08-19 2022-10-14 盛鼎高新材料有限公司 Preparation method of block copolymerization polyurethane elastomer
CN115181230B (en) * 2022-08-19 2023-10-31 盛鼎高新材料有限公司 Preparation method of segmented polyurethane elastomer
CN116178669A (en) * 2023-03-08 2023-05-30 安徽开捷汽车部件有限公司 High-toughness reaction injection molding material and application thereof
CN116178669B (en) * 2023-03-08 2024-05-14 安徽开捷汽车部件有限公司 High-toughness reaction injection molding material and application thereof
CN117603642A (en) * 2024-01-24 2024-02-27 烟台隆达树脂有限公司 Preparation method of modified epoxy electronic adhesive
CN117603642B (en) * 2024-01-24 2024-03-22 烟台隆达树脂有限公司 Preparation method of modified epoxy electronic adhesive

Similar Documents

Publication Publication Date Title
KR20200145583A (en) Urethanescontaining monofunctional and bifunctional aromatic amines
Cheng et al. Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties
EP0676403B1 (en) Arylaminosilane end-capped urethane sealants
CN103068872B (en) Tin free silyl-terminated polymers
KR101865544B1 (en) Moisture curable silylated polymer compositions with improved adhesion to concrete
JPH11263907A (en) Aqueous alkoxysilane group-containing polyurethane/ urea dispersion
JPH11263905A (en) Aqueous alkoxy silane group-containing polyurethane/ urea dispersion
WO2021057132A1 (en) Asphalt-polyurethane waterproof coating for cement base, preparation method therefor and use thereof
EP0924232B1 (en) Aqueous dispersions of polyurethane/ureas containing alkoxysilane groups and colloidal silica
CN111040713A (en) Preparation method of high-temperature and low-temperature resistant carborane hybrid polyurethane adhesive
Karna et al. Structure-property relationship of silane-modified polyurethane: A review
CN111909337B (en) Crosslinking agent, polyurethane prepolymer and single-component polyurethane adhesive
JP5154804B2 (en) Thermosetting resin composition, the cured product, and various articles derived therefrom
KR20130042850A (en) Manufacturing method of environmental friendly high performance silicone modified urethane hybrid resin and its nanocomposite material
CN110734533A (en) terminal/side fluoroalkyl co-modified polyurethane nano hybrid emulsion and preparation method thereof
CN112778493B (en) Polypropylene carbonate polyol type water-based polyurethane waterproof emulsion and preparation method and application thereof
CN111171271B (en) Preparation method of heat-resistant polyurethane elastomer
CN1100838C (en) Organosilicon modified polyurethane paint
CN112375531A (en) Preparation method of modified polyurethane sealant
CN111533880A (en) Preparation method of nano-silica modified waterborne polyurethane
Guo et al. Synthesis of hydroxyl silane coupling agent and its application in preparation of silane‐modified polyurethane
CN114805734B (en) Water-based polyurethane dispersoid and preparation method thereof, and self-crosslinking water-based polyurethane waterproof coating
CN114958171A (en) Preparation method of polyborosiloxane modified polyurethane water-based paint
KR20130042864A (en) Manufacturing method of environmental friendly ultraviolet light curable silicone modified urethane pre-polymer and its water dispersion
TWI719624B (en) A organic-inorganic hybrid material, its fabricating process and its raw material's preparation