KR20200139029A - Composition for ceramic fiber and ceramic fiber manufactured therefrom - Google Patents

Composition for ceramic fiber and ceramic fiber manufactured therefrom Download PDF

Info

Publication number
KR20200139029A
KR20200139029A KR1020190065573A KR20190065573A KR20200139029A KR 20200139029 A KR20200139029 A KR 20200139029A KR 1020190065573 A KR1020190065573 A KR 1020190065573A KR 20190065573 A KR20190065573 A KR 20190065573A KR 20200139029 A KR20200139029 A KR 20200139029A
Authority
KR
South Korea
Prior art keywords
fiber
ceramic fiber
weight
fibers
ceramic
Prior art date
Application number
KR1020190065573A
Other languages
Korean (ko)
Inventor
염동국
서금덕
김진열
이승목
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to KR1020190065573A priority Critical patent/KR20200139029A/en
Publication of KR20200139029A publication Critical patent/KR20200139029A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Abstract

The present invention relates to: a ceramic fiber composition containing 35 to 65 parts by weight of SiO_2, 1 to 5 parts by weight of CaO, 35 to 60 parts by weight of MgO, and 1 to 20 parts by weight of Al_2O_3, wherein a weight ratio of MgO/CaO is 10 to 35; and a ceramic fiber for salt-soluble high-temperature insulation manufactured from the ceramic fiber composition. The present invention has excellent salt solubility and thus has low human toxicity.

Description

세라믹 섬유 조성물 및 이로부터 제조된 세라믹 섬유{COMPOSITION FOR CERAMIC FIBER AND CERAMIC FIBER MANUFACTURED THEREFROM}Ceramic fiber composition and ceramic fiber manufactured therefrom TECHNICAL FIELD

본 발명은 세라믹 섬유 조성물 및 이로부터 제조된 고온단열재용 염용해성 세라믹 섬유에 관한 것이다.The present invention relates to a ceramic fiber composition and a salt-soluble ceramic fiber for a high temperature insulating material prepared therefrom.

세라믹 섬유(ceramic fiber)는 대표적인 무기단열재로서, 비정질, 반결정질 및 결정질로 나눠진다. 또한, 고온에서 우수한 물성을 갖는 비정질 세라믹 섬유로는 Al2O3-SiO2(RCF-AS)계와 Al2O3-SiO2-ZrO2(RCF-ASZ)계 섬유가 있다. 이러한 세라믹 섬유는 내열성 및 내수성이 우수하고 열전도율이 낮아 건축, 산업플랜트, 선박 등 다양한 분야에서 고온 단열재 및 방화재 등 다양한 제품에 적용되고 있다.Ceramic fiber is a representative inorganic insulating material, and is divided into amorphous, semi-crystalline and crystalline. In addition, amorphous ceramic fibers having excellent physical properties at high temperatures include Al 2 O 3 -SiO 2 (RCF-AS) and Al 2 O 3 -SiO 2 -ZrO 2 (RCF-ASZ) fibers. These ceramic fibers have excellent heat resistance and water resistance and have low thermal conductivity, so they are being applied to various products such as high-temperature insulation and fire protection in various fields such as architecture, industrial plants, and ships.

이처럼 다양한 분야에 적용되는 세라믹 섬유는 낮은 염용해성으로 인해 파쇄된 미세한 섬유가 폐에 흡입되어 축적될 경우, 인체에 해를 초래할 수 있어 유해성 논란이 일고 있다. 따라서, 시공 편의성 및 인체 무해성을 향상시키기 위해, 채액에서의 용해속도를 증가시켜 유해성을 최소화하고 동시에 고온 물성을 만족시키기 위한 염용해성 세라믹 섬유 조성물에 대한 연구가 필요한 실정이다.As such, ceramic fibers applied to various fields may cause harm to the human body when crushed fine fibers are inhaled and accumulated in the lungs due to low salt solubility, and thus, there is a controversy about its harmfulness. Therefore, in order to improve construction convenience and harmlessness to the human body, there is a need for a study on a salt-soluble ceramic fiber composition for minimizing harmfulness by increasing the dissolution rate in the collection solution and satisfying high temperature properties at the same time.

이와 관련하여, 한국 공개특허 제2017-0026704호(특허문헌 1)에는 이산화규소(SiO2) 30~60 중량%, 산화알루미늄(Al2O3) 7~28 중량%, 이산화철(Fe2O3) 0.1~7 중량%, 및 알칼리토금속 산화물 15~50 중량%를 포함하고, 상기 알칼리토금속 산화물은 산화칼슘(CaO) 및 산화마그네슘(MgO)을 1:0.1~1의 중량비로 포함하는 광물 섬유가 개시되어 있다. 그러나, 특허문헌 1의 광물 섬유는 불순물 함유량이 높아 내열성이 낮으며 1,000℃ 이상의 고온에서 용융이 되는 문제가 있었다.In this regard, Korean Laid-Open Patent No. 2017-0026704 (Patent Document 1) discloses silicon dioxide (SiO 2 ) 30 to 60 wt%, aluminum oxide (Al 2 O 3 ) 7 to 28 wt%, iron dioxide (Fe 2 O 3 ) 0.1 to 7% by weight, and 15 to 50% by weight of alkaline earth metal oxide, and the alkaline earth metal oxide contains calcium oxide (CaO) and magnesium oxide (MgO) in a weight ratio of 1:0.1 to 1 Is disclosed. However, the mineral fiber of Patent Document 1 has a high impurity content, low heat resistance, and has a problem of melting at a high temperature of 1,000°C or higher.

따라서, 염용해성이 우수하여 인체 유해성이 낮고 고온에서 우수한 물성을 갖는 섬유를 제조할 수 있는 세라믹 섬유 조성물에 대한 연구개발이 필요한 실정이다.Accordingly, there is a need for research and development on a ceramic fiber composition capable of manufacturing fibers having excellent salt solubility, low toxicity to the human body, and excellent physical properties at high temperatures.

한국 공개특허 제2017-0026704호 (공개일: 2017.3.9.)Korean Patent Application Publication No. 2017-0026704 (Publication date: 2017.3.9.)

이에, 본 발명은 고온 처리시 열적 내구성이 우수하고, 우수한 염용해성을 가져 인체 유해성이 낮고, 섬유 복원력이 우수한 섬유를 제조할 수 있는 세라믹 섬유 조성물, 및 이로부터 제조된 세라믹 섬유를 제공하고자 한다.Accordingly, an object of the present invention is to provide a ceramic fiber composition capable of manufacturing fibers having excellent thermal durability, excellent salt solubility, and excellent fiber resilience, and ceramic fibers manufactured therefrom.

본 발명은 35 내지 65 중량부의 SiO2, 1 내지 5 중량부의 CaO, 35 내지 60 중량부의 MgO 및 1 내지 20 중량부의 Al2O3를 포함하고, MgO/CaO의 중량비가 10 내지 35인, 세라믹 섬유 조성물을 제공한다.The present invention includes 35 to 65 parts by weight of SiO 2 , 1 to 5 parts by weight of CaO, 35 to 60 parts by weight of MgO and 1 to 20 parts by weight of Al 2 O 3 , and the weight ratio of MgO/CaO is 10 to 35 It provides a fiber composition.

또한, 본 발명은 상기 세라믹 섬유 조성물로부터 제조된 세라믹 섬유를 제공한다.In addition, the present invention provides a ceramic fiber prepared from the ceramic fiber composition.

본 발명에 따른 세라믹 섬유 조성물로부터 제조된 세라믹 섬유는 섬유복원력이 우수하고, 1,400℃의 고온에서 24시간 열처리 후에도 열간 선수축율이 5% 이하로 매우 우수하며, 인공체액에 대한 용해속도상수가 500 ng/㎠·hr 이상으로 현저히 커 염용해성이 우수하여 인체 유해성이 낮다.The ceramic fiber prepared from the ceramic fiber composition according to the present invention has excellent fiber resilience, and even after heat treatment at a high temperature of 1,400°C for 24 hours, the hot pre-contraction rate is 5% or less, and the dissolution rate constant for artificial body fluid is 500 ng. It is remarkably larger than /㎠·hr, so it has excellent salt solubility and has low human toxicity.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

세라믹 섬유 조성물Ceramic fiber composition

본 발명에 따른 세라믹 섬유 조성물은 SiO2, CaO, MgO 및 Al2O3를 포함한다.The ceramic fiber composition according to the present invention includes SiO 2 , CaO, MgO and Al 2 O 3 .

상기와 같은 본 발명의 세라믹 섬유 조성물은 인공체액에 대한 용해속도상수가 크고, 이로부터 제조된 섬유의 인체 유해성이 낮고, 기존 설비를 이용하여 염용해성을 갖는 고온 단열재용 세라믹 섬유의 제조가 가능하다.The ceramic fiber composition of the present invention as described above has a large dissolution rate constant for artificial bodily fluids, the fiber produced therefrom has low harm to the human body, and it is possible to manufacture ceramic fibers for high-temperature insulation materials having salt solubility using existing equipment. .

이하, 본 발명의 상기 세라믹 섬유 조성물의 각 성분들을 상세히 설명한다.Hereinafter, each component of the ceramic fiber composition of the present invention will be described in detail.

SiOSiO 22

SiO2는 망목 형성 산화물(network former oxide)로 유리의 기본적인 골격을 형성하는 역할을 한다.SiO 2 is a network former oxide that serves to form the basic skeleton of glass.

SiO2의 함량은 제조된 섬유의 섬유 복원력 및 염용해성에 영향을 주는바, 제조된 섬유의 섬유 복원력 및 염용해성 조절을 위해 적절히 조절하는 것이 필요하다. 구체적으로, 상기 SiO2는 35 내지 65 중량부의 함량으로 조성물에 포함될 수 있다. 예를 들어, 상기 SiO2는 40 내지 58 중량부의 함량으로 조성물에 포함될 수 있다. SiO2의 함량이 상기 범위 내일 경우, 이를 포함하는 조성물로부터 제조된 섬유의 직경이 너무 커지는 문제가 방지되고, 상기 섬유의 열저항성이 향상되는 효과가 있다. Since the content of SiO 2 affects the fiber resilience and salt solubility of the fabricated fibers, it is necessary to properly control the fiber resilience and salt solubility of the fabricated fibers. Specifically, the SiO 2 may be included in the composition in an amount of 35 to 65 parts by weight. For example, the SiO 2 may be included in the composition in an amount of 40 to 58 parts by weight. When the content of SiO 2 is within the above range, the problem that the diameter of the fiber prepared from the composition containing the same is too large is prevented, and the heat resistance of the fiber is improved.

CaOCaO

CaO는 수식 산화물(modifier oxide)로서 융제 역할을 하며, 이를 포함하는 조성물로부터 제조된 섬유의 취성과 같은 내구성을 향상시키는 역할을 한다.CaO acts as a fluxing agent as a modifier oxide, and improves durability such as brittleness of fibers prepared from a composition containing the same.

상기 CaO는 1 내지 5 중량부의 함량으로 조성물에 포함될 수 있다. 예를 들어, 상기 CaO는 2 내지 3 중량부의 함량으로 조성물에 포함될 수 있다. CaO의 함량이 상기 범위 내일 경우, 이를 포함하는 조성물로부터 제조된 섬유의 취성이 과도하게 향상되어 탄력이 저하되는 문제, 내열성이 저하되는 문제 및 용융 점도가 부족한 문제를 방지할 수 있다.The CaO may be included in the composition in an amount of 1 to 5 parts by weight. For example, the CaO may be included in the composition in an amount of 2 to 3 parts by weight. When the content of CaO is within the above range, it is possible to prevent the problem of deteriorating elasticity due to excessively improved brittleness of the fiber prepared from the composition containing the same, a problem of lowering heat resistance, and a problem of insufficient melt viscosity.

MgOMgO

MgO는 수식 산화물(modifier oxide)로서 융제 역할을 하며, 이를 포함하는 조성물로부터 제조된 섬유의 탄력을 상승시키는 역할을 한다. 특히, MgO는 제조된 섬유의 고온에서의 내열성, 압축강도 및 압축복원력을 조절하며, 인공체액에서 섬유의 용해도를 조절하는 역할을 한다.MgO acts as a fluxing agent as a modifier oxide, and serves to increase the elasticity of fibers prepared from a composition containing the same. In particular, MgO controls the heat resistance, compressive strength, and compression resilience of the manufactured fibers at high temperatures, and controls the solubility of fibers in artificial body fluids.

상기 MgO는 35 내지 60 중량부의 함량으로 조성물에 포함될 수 있다. 예를 들어, 상기 MgO는 40 내지 55 중량부의 함량으로 조성물에 포함될 수 있다. MgO의 함량이 상기 범위 내일 경우, 제조된 섬유의 탄력이 증대되어 섬유 복원력이 우수하고, 용융 점도가 부족한 문제를 방지할 수 있다.The MgO may be included in the composition in an amount of 35 to 60 parts by weight. For example, the MgO may be included in the composition in an amount of 40 to 55 parts by weight. When the content of MgO is within the above range, the elasticity of the produced fiber is increased, so that the fiber resilience is excellent, and a problem of insufficient melt viscosity can be prevented.

AlAl 22 OO 33

Al2O3는 이를 포함하는 조성물의 생분해성 및 열적 특성, 및 이로부터 제조된 섬유의 탄력을 향상시키는 역할을 하는 중간 산화물(intermediate oxide)이다. 또한, Al3+의 배위수에 따라 일부가 SiO2의 역할을 대체할 수도 있고, 수식 산화물(modifier oxide)의 역할을 하기도 하는데, 이는 그 외의 수식 산화물의 함량에 따라 달라질 수 있다.Al 2 O 3 is an intermediate oxide that serves to improve the biodegradability and thermal properties of the composition containing the same, and the elasticity of the fibers produced therefrom. In addition, depending on the coordination number of Al 3+ , some may replace the role of SiO 2 or serve as a modifier oxide, which may vary depending on the content of other modified oxides.

상기 Al2O3는 1 내지 20 중량부의 함량으로 조성물에 포함될 수 있다. 예를 들어, 상기 Al2O3는 1 내지 10 중량부의 함량으로 조성물에 포함될 수 있다. Al2O3의 함량이 상기 범위 내일 경우, 이를 포함하는 조성물로부터 제조된 섬유의 탄력 및 열적 특성이 향상되는 효과가 있다.The Al 2 O 3 may be included in the composition in an amount of 1 to 20 parts by weight. For example, the Al 2 O 3 may be included in the composition in an amount of 1 to 10 parts by weight. When the content of Al 2 O 3 is within the above range, there is an effect of improving the elasticity and thermal properties of the fiber prepared from a composition containing the same.

기타 성분Other ingredients

상기 조성물은 사용되는 원료에 따라 K2O, Na2O, Fe2O3, TiO2 등과 같은 성분들이 추가로 포함할 수 있으며, 상기 성분들로 인해 섬유의 열적 특성이나 물성에 영향을 미치지 않도록, 상기 성분들의 총 함량은 1 중량부 이하로 포함될 수 있다.The composition may additionally contain components such as K 2 O, Na 2 O, Fe 2 O 3 , TiO 2, etc., depending on the raw material used, so that the above components do not affect the thermal properties or physical properties of the fiber. , The total content of the components may be included in 1 part by weight or less.

상기 세라믹 섬유 조성물은 MgO/CaO의 중량비가 10 내지 35이다. 상기 MgO/CaO의 중량비가 상기 범위 내일 경우, 내열성이 증가되어 열간 선수축율이 감소하고 용해속도 상수가 증가되는 효과가 있다.The ceramic fiber composition has a weight ratio of MgO/CaO of 10 to 35. When the weight ratio of MgO/CaO is within the above range, heat resistance is increased, so that the hot pre-contraction rate decreases and the dissolution rate constant is increased.

세라믹 섬유Ceramic fiber

또한, 본 발명에 따른 세라믹 섬유는 상술한 바와 같은 세라믹 섬유 조성물로부터 제조된다. Further, the ceramic fiber according to the present invention is prepared from the ceramic fiber composition as described above.

상기 세라믹 섬유는 섬유 복원력이 우수하고, 1,400℃의 고온에서 24시간 열처리 후에도 열간 선수축율이 5.0% 이하로 매우 우수하며, 인공체액에 대한 용해속도상수가 커 염용해성이 우수하여 인체 유해성이 낮다.The ceramic fiber has excellent fiber resilience, has an excellent hot pre-contraction rate of 5.0% or less even after 24 hours heat treatment at a high temperature of 1,400°C, and has excellent salt solubility due to a large dissolution rate constant for artificial bodily fluids, and thus has low toxicity to the human body.

예를 들어, 상기 세라믹 섬유는 섬유 20g과 물 1L를 혼합한 후 1L 메스실린더 내 정치시 섬유가 떠오른 높이가 500㎖ 이상일 수 있다. 상기 세라믹 섬유와 물의 혼합 후 정치시 섬유가 떠오른 높이로 섬유 복원 정도(탄성력)을 평가할 수 있다.For example, the ceramic fiber may have a height of 500 ml or more when the ceramic fiber is mixed with 20 g of fiber and 1 liter of water and then left standing in a 1 liter measuring cylinder. After mixing the ceramic fiber with water, the fiber recovery degree (elasticity) can be evaluated at the height at which the fiber rises when standing.

또한, 상기 세라믹 섬유는 인공체액에 대한 용해속도상수가 500 ng/㎠·hr 이상, 또는 700 ng/㎠·hr 이상일 수 있다. 상기 세라믹 섬유의 인공체액에 대한 용해속도상수가 500 ng/㎠·hr 이상일 경우, 우수한 염용해성을 갖는 효과가 있다.In addition, the ceramic fiber may have a dissolution rate constant of 500 ng/cm 2·hr or more, or 700 ng/cm 2·hr or more for the artificial body fluid. When the dissolution rate constant for the artificial body fluid of the ceramic fiber is 500 ng/cm 2·hr or more, there is an effect of having excellent salt solubility.

나아가, 상기 세라믹 섬유는 평균 입경이 5㎛ 이하, 또는 4 내지 5 ㎛일 수 있다. 세라믹 섬유의 평균 입경이 상기 범위 내일 경우, 섬유강도의 증가로 내열성이 증대되는 효과가 있다.Further, the ceramic fiber may have an average particle diameter of 5 μm or less, or 4 to 5 μm. When the average particle diameter of the ceramic fiber is within the above range, there is an effect of increasing heat resistance due to an increase in fiber strength.

더불어, 상기 세라믹 섬유는 ASTM C892에 따라 측정한 미섬유 물질의 함량이 50 중량% 이하일 수 있다. 미섬유 물질의 함량이 50 중량% 이하일 경우, 섬유밀도 증가로 인한 단열성의 증대 효과가 있다. In addition, the ceramic fiber may have a fine fiber content of 50% by weight or less measured according to ASTM C892. When the content of the microfibrous material is 50% by weight or less, there is an effect of increasing thermal insulation due to an increase in fiber density.

또한, 상기 세라믹 섬유는 1,400℃에서 24시간 유지 후 하기 수학식 1로 계산한 열간 선수축율이 5.0% 이하일 수 있다. 세라믹 섬유의 열간 선수축율이 5.0% 이하일 경우, 섬유의 최고 사용온도 증대 효과가 있다.In addition, the ceramic fiber may have a hot shrinkage of 5.0% or less calculated by Equation 1 below after maintaining at 1,400°C for 24 hours. When the hot pre-contraction ratio of the ceramic fiber is 5.0% or less, there is an effect of increasing the maximum use temperature of the fiber.

Figure pat00001
Figure pat00001

상기 수학식 1에서, l0는 열처리 전 두 점 사이의 최소 거리(mm)이고, l1는 열처리 후 두 점 사이의 최소 거리(mm)이다.In Equation 1, l 0 is a minimum distance (mm) between two points before heat treatment, and l 1 is a minimum distance (mm) between two points after heat treatment.

나아가, 상기 세라믹 섬유는 섬유 복원 정도가 50% 이상일 수 있다. 이때, 상기 섬유 복원 정도는 섬유 20g과 물 1L를 혼합하고 분쇄기로 분쇄하여 평균 길이 5mm로 분쇄한 후 분쇄물을 1L 메스실린더에 넣고 15분 동안 정치하여 메스실린더 내부 바닥으로부터 섬유가 쌓인 최대 높이를 측정하여 물의 총 높이에 대한 섬유가 쌓인 최대 높이의 비율로 섬유 복원 정도를 평가하였다. Furthermore, the ceramic fiber may have a fiber recovery degree of 50% or more. At this time, the degree of fiber restoration is determined by mixing 20g of fiber and 1L of water, pulverizing with a grinder, pulverizing to an average length of 5mm, putting the pulverized product in a 1L measuring cylinder and allowing it to stand for 15 minutes to determine the maximum height of the fibers accumulated from the bottom of the measuring cylinder The degree of fiber restoration was evaluated by measuring the ratio of the maximum height of the fibers to the total height of water.

이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only intended to aid understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.

[실시예][Example]

실시예 1 내지 8 및 비교예 1 내지 12. 세라믹 섬유의 제조Examples 1 to 8 and Comparative Examples 1 to 12. Preparation of ceramic fibers

삼상 전극봉을 구비한 전기로를 이용하여 전기 통전 방식의 용융공법으로 하기 표 1의 조성을 갖도록 성분들을 혼합하여 세라믹 섬유 조성물을 제조하였다. 이후 상기 세라믹 섬유 조성물을 기존의 세라믹 섬유 제조용 스피닝 공정(용융물을 원심회전하는 디스크 형태의 스피너 표면에 떨어뜨려 섬유를 인장시키고, 동시에 후면에서 고압의 에어를 분사하여 섬유를 섬유화시키는 방식)에 도입하여 세라믹 섬유를 제조하였다. A ceramic fiber composition was prepared by mixing the components so as to have the composition shown in Table 1 below by a melting method of an electric current method using an electric furnace equipped with a three-phase electrode. Thereafter, the ceramic fiber composition was introduced into a conventional spinning process for producing ceramic fibers (a method in which the melt was dropped on the surface of a spinner in the form of a disk that rotates centrifugally to stretch the fibers, and at the same time, the fibers were turned into fibers by spraying high-pressure air from the rear side). Ceramic fibers were prepared.

구분(중량부)Classification (part by weight) SiO2 SiO 2 Al2O3 Al 2 O 3 MgOMgO CaOCaO K2OK 2 O Na2ONa 2 O Fe2O3 Fe 2 O 3 TiO2 TiO 2 ZrO2 ZrO 2 MgO/CaOMgO/CaO 합계Sum 실시예 1Example 1 52.7252.72 1.91.9 42.5642.56 2.252.25 0.130.13 0.010.01 0.410.41 0.020.02 -- 18.9218.92 100100 실시예 2Example 2 49.9949.99 1.881.88 45.2445.24 2.292.29 0.10.1 0.020.02 0.470.47 0.010.01 -- 19.7619.76 100100 실시예 3Example 3 47.9647.96 1.821.82 47.2347.23 2.312.31 0.110.11 0.040.04 0.50.5 0.030.03 -- 20.4520.45 100100 실시예 4Example 4 44.8544.85 1.861.86 50.1350.13 2.522.52 0.090.09 0.030.03 0.510.51 0.010.01 -- 19.8919.89 100100 실시예 5Example 5 40.540.5 1.251.25 55.455.4 2.12.1 0.140.14 0.050.05 0.520.52 0.040.04 -- 26.3826.38 100100 실시예 6Example 6 60.260.2 1.511.51 36.536.5 1.11.1 0.10.1 0.030.03 0.550.55 0.010.01 -- 33.1833.18 100100 실시예 7Example 7 42.342.3 18.818.8 37.237.2 1.251.25 0.130.13 0.050.05 0.230.23 0.040.04 -- 29.7629.76 100100 실시예 8Example 8 41.941.9 7.17.1 46.246.2 4.514.51 0.10.1 0.030.03 0.120.12 0.040.04 -- 10.2410.24 100100 비교예 1Comparative Example 1 50.150.1 49.949.9 -- -- -- -- -- -- -- -- 100100 비교예 2Comparative Example 2 75.975.9 0.40.4 9.49.4 12.512.5 0.20.2 0.10.1 0.20.2 -- 1.31.3 0.750.75 100100 비교예 3Comparative Example 3 33.533.5 10.210.2 50.850.8 4.924.92 0.070.07 0.050.05 0.420.42 0.040.04 -- 10.3310.33 100100 비교예 4Comparative Example 4 37.2837.28 24.224.2 3636 1.911.91 0.110.11 0.080.08 0.370.37 0.050.05 -- 18.8518.85 100100 비교예 5Comparative Example 5 60.560.5 4.744.74 30.930.9 3.253.25 0.080.08 0.020.02 0.490.49 0.020.02 -- 9.519.51 100100 비교예 6Comparative Example 6 36.236.2 1.11.1 61.261.2 1.11.1 0.10.1 0.080.08 0.180.18 0.040.04 -- 55.6455.64 100100 비교예 7Comparative Example 7 46.4146.41 1.821.82 50.4550.45 0.50.5 0.150.15 0.070.07 0.570.57 0.030.03 -- 100.9100.9 100100 비교예 8Comparative Example 8 41.8441.84 1.521.52 47.9347.93 8.18.1 0.140.14 0.050.05 0.390.39 0.030.03 -- 5.925.92 100100 비교예 9Comparative Example 9 50.5450.54 0.050.05 47.2147.21 1.51.5 0.160.16 0.080.08 0.410.41 0.050.05 -- 31.4731.47 100100 비교예 10Comparative Example 10 59.559.5 4.74.7 29.929.9 5.155.15 0.110.11 0.050.05 0.520.52 0.070.07 -- 5.815.81 100100 비교예 11Comparative Example 11 56.256.2 1.91.9 36.536.5 4.84.8 0.120.12 0.040.04 0.410.41 0.030.03 -- 7.607.60 100100 비교예 12Comparative Example 12 50.250.2 1.71.7 46.246.2 1.21.2 0.160.16 0.050.05 0.470.47 0.020.02 -- 38.538.5 100100

시험예. 세라믹 섬유의 물성 평가Test example. Evaluation of physical properties of ceramic fiber

실시예 1 내지 8 및 비교예 1 내지 12의 세라믹 섬유의 물성을 다음과 같은 방법으로 측정하였으며, 그 결과를 표 3에 나타내었다.The physical properties of the ceramic fibers of Examples 1 to 8 and Comparative Examples 1 to 12 were measured in the following manner, and the results are shown in Table 3.

(1) 섬유의 평균 입경(1) Average particle diameter of fiber

섬유의 평균 입경은 전자현미경을 이용하여 1,000배 이상의 고배율로 확대해 500회 이상 반복 측정하여 평균 입경을 측정하였다.The average particle diameter of the fiber was magnified at a high magnification of 1,000 times or more using an electron microscope, and the average particle diameter was measured by repeatedly measuring at least 500 times.

(2) 미섬유물질의 함량(2) Content of microfibrous material

ASTM C892에 따라 미섬유물질의 함량을 측정하였다. 구체적으로, 세라믹 섬유를 1,200 ℃ 에서 5시간 동안 열처리한 후 10 g의 섬유를 0.0001g까지 정확히 무게(W0)를 측정하였다. 이후 30 mesh 체에 상기 섬유를 담고 고무 막대를 이용하여 눌러서 체를 통과시켰다. 체 통과된 섬유를 다시 50 mesh, 및 70 mesh 체를 통과시킨 후 각 체에 남은 입자의 무게(W1)를 측정한 후 하기 수학식 2를 이용하여 미섬유물질의 함량(Ws)을 계산하였다.The content of the microfibrous material was measured according to ASTM C892. Specifically, the ceramic fiber was heat-treated at 1,200° C. for 5 hours, and then 10 g of the fiber was accurately weighed (W 0 ) to 0.0001 g. Thereafter, the fibers were put in a 30 mesh sieve and passed through the sieve by pressing them using a rubber rod. After passing the fiber through the sieve through a 50 mesh and a 70 mesh sieve, the weight (W 1 ) of the particles remaining in each sieve was measured, and then the content of the microfiber material (Ws) was calculated using Equation 2 below. .

Figure pat00002
Figure pat00002

상기 수학식 2에서, Ws는 미섬유물질의 함량이고, W0는 초기 섬유의 무게이며, W1은 남은 섬유의 무게이다.In Equation 2, Ws is the content of the microfiber material, W 0 is the weight of the initial fiber, and W 1 is the weight of the remaining fiber.

(3) 열간 선수축율(3) Hot pre-contraction ratio

제조된 섬유의 고온에서 물성은 섬유로 구성된 성형물의 고온에서의 길이 변화로 측정했다. 세라믹 섬유의 열간 선수축율을 측정하기 위해, 섬유를 패드(pad) 형태의 시편으로 제조한 후 실험에 사용하였다. The physical properties of the fabricated fibers at high temperature were measured by the change in length at high temperature of a molded article composed of fibers. In order to measure the hot shrinkage of ceramic fibers, the fibers were prepared as a pad-shaped specimen and used in the experiment.

먼저, 섬유 250 g을 2.5% 녹말 수용액에서 충분히 해면한 후 300mm×300mm(가로×세로) 주형에 부어 넣고, 주형 바닥을 통해 배수함으로써 패드를 제조하였다. 이후 상기 패드를 100℃의 오븐에서 24시간 동안 건조한 후 100mm×100mm×20mm(가로×세로×두께)의 크기로 절단하여 시편을 제조하였다. 이후, 상기 시편에 백금 핀을 이용하여 측정점 2개를 표시한 다음 버니어 캘리퍼스를 이용하여 측정점 사이의 거리를 측정한 후, 노(furnace)에 위치시켜 1,400℃에서 24시간 동안 가열한 후 서서히 냉각시켰다. 이후 상기 냉각된 시편의 측정점 사이의 거리를 측정하여 열처리 전후의 측정결과를 비교하였으며, 하기 수학식 1을 이용하여 열간 선수축율을 계산하였다.First, 250 g of fibers were sufficiently sponged in a 2.5% aqueous starch solution, then poured into a 300 mm×300 mm (width×length) mold, and drained through the bottom of the mold to prepare a pad. Thereafter, the pad was dried in an oven at 100° C. for 24 hours, and then cut into a size of 100 mm×100 mm×20 mm (width×length×thickness) to prepare a specimen. Thereafter, two measurement points were marked using a platinum pin on the specimen, and then the distance between the measurement points was measured using a vernier caliper, placed in a furnace, heated at 1,400°C for 24 hours, and then gradually cooled. . Thereafter, the distance between the measuring points of the cooled specimen was measured to compare the measurement results before and after heat treatment, and the hot pre-contraction rate was calculated using Equation 1 below.

[수학식 1][Equation 1]

Figure pat00003
Figure pat00003

상기 수학식 1에서, l0는 열처리 전 두 점 사이의 최소 거리(mm)이고, l1는 열처리 후 두 점 사이의 최소 거리(mm)이다.In Equation 1, l 0 is a minimum distance (mm) between two points before heat treatment, and l 1 is a minimum distance (mm) between two points after heat treatment.

(4) 용해속도상수(K(4) Dissolution rate constant (K disdis ))

제조된 섬유의 생분해성을 평가하기 위해 아래와 같은 방법으로 인공체액에 대한 용해속도를 구하였다. In order to evaluate the biodegradability of the prepared fiber, the dissolution rate for the artificial body fluid was calculated as follows.

구체적으로, 세라믹 섬유의 체내 생분해성은 인공체액에 대한 섬유의 용해도를 기준으로 평가하는데, 상기 용해속도를 기준으로 한 체내 잔류시간을 비교한 후 다음 하기 수학식 3을 이용하여 용해속도상수(Kdis)를 계산하였다.Specifically, the biodegradability of ceramic fibers in the body is evaluated based on the solubility of the fibers in the artificial body fluid. After comparing the residence time in the body based on the dissolution rate, the dissolution rate constant (K dis ) Was calculated.

Figure pat00004
Figure pat00004

상기 수학식 3에서, d0는 초기 평균 섬유경(㎛)이고, ρ는 섬유의 초기 밀도(g/㎤)이며, M0는 초기 섬유 질량(㎎)이고, M은 용해되고 남은 섬유의 질량(㎎)이며, t는 실험 시간(hr)이다.In Equation 3, d 0 is the initial average fiber diameter (µm), ρ is the initial density (g/cm 3) of the fiber, M 0 is the initial fiber mass (mg), and M is the mass of the remaining fiber after being dissolved. (Mg), and t is the experiment time (hr).

이때, 용해속도는 실시예 및 비교예에서 제조한 세라믹 섬유를 플라스틱 필터 지지대로 고정된 0.2㎛ 폴리카보네이트 멤브레인 필터(polycarbonate membrane filter) 사이의 얇은 층 사이에 놓고 이 필터 사이로 인공체액을 여과시켜 용해속도를 측정하였다. 실험이 진행되는 동안 계속하여 인공체액의 온도를 37 ℃, 유량을 135 ㎖/day로 조절하고, CO2 및 N2의 혼합 가스(5:95 부피비)를 이용하여 pH를 7.4±0.1로 유지시켰다.At this time, the dissolution rate is determined by placing the ceramic fibers prepared in Examples and Comparative Examples between thin layers between 0.2 μm polycarbonate membrane filters fixed with plastic filter supports and filtering artificial bodily fluids between these filters. Was measured. During the experiment, the temperature of the artificial body fluid was continuously adjusted to 37°C and the flow rate was adjusted to 135 ml/day, and the pH was maintained at 7.4±0.1 using a mixed gas of CO 2 and N 2 (5:95 volume ratio). .

장시간 동안 일어나는 섬유의 용해도를 정확히 측정하기 위하여 섬유를 21일간 침출(leaching)시키면서, 특정 간격(1일, 4일, 7일, 11일, 14일, 또는 21일)으로 여과된 인공체액을 유도 결합 플라즈마 분석법(ICP, Inductively Coupled Plasma Spectrometer)을 이용해서 용해된 이온들을 분석한 후 이 결과를 이용해서 상기 수학식으로 용해속도상수(

Figure pat00005
)를 계산하였으며, 그 결과를 표 3에 나타내었다.In order to accurately measure the solubility of the fiber that occurs over a long period of time, the fiber is leached for 21 days, while inducing the filtered artificial body fluid at specific intervals (1 day, 4 days, 7 days, 11 days, 14 days, or 21 days) After analyzing the dissolved ions using an Inductively Coupled Plasma Spectrometer (ICP), the dissolution rate constant (
Figure pat00005
) Was calculated, and the results are shown in Table 3.

또한, 섬유의 용해속도를 측정하기 위해 사용한 인공체액 1L에 들어 있는 성분의 함량(g)은 표 2에 나타내었다.In addition, the content (g) of the component contained in 1L of the artificial body fluid used to measure the dissolution rate of the fiber is shown in Table 2.

인공체액의 성분Components of artificial body fluids 함량(g/L)Content (g/L) NaClNaCl 7.1207.120 MgCl2·6H2OMgCl 2 6H 2 O 0.2120.212 CaCl2·2H2OCaCl 2 2H 2 O 0.0290.029 Na2SO4 Na 2 SO 4 0.0790.079 Na2HPO4 Na 2 HPO 4 0.1480.148 NaHCO3 NaHCO 3 1.9501.950 Na2Tartrate·2H2ONa 2 Tartrate 2H 2 O 0.1800.180 Na3Citrate·2H2ONa 3 Citrate 2H 2 O 0.1520.152 90% Lactic Acid90% Lactic Acid 0.1560.156 C2H3NO2GlycineC 2 H 3 NO 2 Glycine 0.1180.118 Na-PyruvateNa-Pyruvate 0.1720.172 HCl (pH 조정용)HCl (for pH adjustment) 0.7500.750

(5) 섬유 복원 정도(5) Fiber restoration degree

실시예 1 내지 8 및 비교예 1 내지 12의 섬유 20g을 물 1L와 혼합하고 분쇄기를 사용하여 11,000rpm으로 30초 동안 분쇄하여 평균 길이 5mm로 분쇄하였다. 이후 분쇄물을 1L 메스실린더에 넣어 혼합한 후 15분 동안 정치하여 메스실린더 내부 바닥으로부터 섬유가 쌓인 최대 높이를 측정하였다. 섬유 복원 정도는 물의 총 높이에 대한 상기 섬유가 쌓인 최대 높이의 비율로 평가하였으며, 그 결과를 표 3에 나타냈다. 20 g of fibers of Examples 1 to 8 and Comparative Examples 1 to 12 were mixed with 1 L of water and pulverized for 30 seconds at 11,000 rpm using a grinder to obtain an average length of 5 mm. Thereafter, the pulverized material was put into a 1L measuring cylinder, mixed, and allowed to stand for 15 minutes to measure the maximum height of fibers accumulated from the inner bottom of the measuring cylinder. The degree of fiber restoration was evaluated as the ratio of the maximum height of the fibers to the total height of water, and the results are shown in Table 3.

구분division 평균 입경 (㎛)Average particle diameter (㎛) 미섬유물질의 함량 (중량%)Content of fine fiber (% by weight) 열간 선수축율(%)Hot pre-contraction rate (%) 용해속도상수 (Kdis)(ng/㎠·hr)Dissolution rate constant (K dis )(ng/㎠·hr) 섬유 최대 높이 (㎖)Maximum fiber height (ml) 섬유 복원 정도Fiber restoration degree 실시예 1Example 1 4.74.7 4242 4.74.7 710710 540540 54%54% 실시예 2Example 2 4.84.8 4040 4.44.4 740740 610610 61%61% 실시예 3Example 3 4.64.6 4444 4.24.2 760760 650650 65%65% 실시예 4Example 4 4.84.8 4646 4.14.1 780780 680680 68%68% 실시예 5Example 5 4.54.5 3838 4.24.2 720720 660660 66%66% 실시예 6Example 6 4.84.8 4242 4.54.5 760760 620620 62%62% 실시예 7Example 7 4.94.9 4444 4.94.9 730730 660660 66%66% 실시예 8Example 8 4.94.9 4343 4.84.8 710710 630630 63%63% 비교예 1Comparative Example 1 3.63.6 3030 5.75.7 7070 410410 41%41% 비교예 2Comparative Example 2 4.14.1 3030 6.16.1 330330 470470 47%47% 비교예 3Comparative Example 3 3.43.4 3535 5.25.2 350350 480480 48%48% 비교예 4Comparative Example 4 3.63.6 3838 6.46.4 310310 450450 45%45% 비교예 5Comparative Example 5 4.14.1 5252 6.16.1 280280 430430 43%43% 비교예 6Comparative Example 6 3.83.8 4545 7.87.8 250250 400400 40%40% 비교예 7Comparative Example 7 3.93.9 4444 5.35.3 360360 480480 48%48% 비교예 8Comparative Example 8 3.43.4 5151 9.29.2 220220 250250 25%25% 비교예 9Comparative Example 9 4.24.2 5656 13.813.8 290290 320320 32%32% 비교예 10Comparative Example 10 4.34.3 5858 19.719.7 320320 310310 31%31% 비교예 11Comparative Example 11 3.23.2 5252 8.58.5 250250 260260 27%27% 비교예 12Comparative Example 12 4.44.4 5353 15.415.4 240240 280280 29%29%

표 3에서 보는 바와 같이, 실시예 1 내지 8의 세라믹 섬유는 평균 입경이 4.6 내지 4.9 ㎛으로 상용 세라믹 섬유의 평균 섬유 입경인 5㎛보다 작기 때문에 양질로 판단되며, 섬유 평균 입경이 작기 때문에 제조된 섬유의 단열효과가 우수할 것으로 예상된다. 또한, 실시예 1 내지 8의 세라믹 섬유는 미섬유물질의 함량이 50 중량%이하이고, 열간 선수축율이 5% 미만으로 고온 열안정성이 우수하며, 섬유 복원정도가 50% 이상으로 섬유 복원력이 우수할 것으로 예상된다. 나아가, 실시예 1 내지 8의 세라믹 섬유는 용해속도상수가 710 내지 780 ng/㎠·hr로 체액에서의 용해속도가 현저히 우수함을 알 수 있다.As shown in Table 3, the ceramic fibers of Examples 1 to 8 have an average particle diameter of 4.6 to 4.9 µm, and are judged to be of good quality because they are smaller than the average fiber particle diameter of 5 µm of commercial ceramic fibers. It is expected that the insulation effect of the fiber will be excellent. In addition, the ceramic fibers of Examples 1 to 8 have a fine fiber content of 50% by weight or less, a hot pre-contraction ratio of less than 5%, excellent thermal stability at high temperature, and excellent fiber resilience with a fiber recovery degree of 50% or more. Is expected to do. Further, it can be seen that the ceramic fibers of Examples 1 to 8 have a dissolution rate constant of 710 to 780 ng/cm 2·hr, which is remarkably excellent in dissolution rate in body fluid.

반면, Al2O3-SiO2(RCF-AS)계 세라믹 섬유인 비교예 1의 세라믹 섬유는 열간 선수축율이 5.7%으로 내열성이 부족하고, 용해속도상수가 70 ng/㎠·hr로 섬유가 인체에 흡입될 경우 생분해성이 매우 낮을 것으로 예상된다. 또한, 비교예 1 내지 12의 세라믹 섬유는 열간 선수축율이 5.0%를 초과하여 열안정성이 낮고, 인공체액에 대한 용해속도상수가 500 ng/㎠·hr 미만으로 생분해성이 부족했다. 나아가, 비교예 1 내지 12의 세라믹 섬유는 섬유 복원 정도가 50% 미만으로 섬유 복원력이 부족했다.On the other hand, the ceramic fiber of Comparative Example 1, which is an Al 2 O 3 -SiO 2 (RCF-AS)-based ceramic fiber, has a hot pre-contraction rate of 5.7%, which is insufficient in heat resistance, and the melting rate constant is 70 ng/cm 2·hr. Biodegradability is expected to be very low when inhaled into the human body. In addition, the ceramic fibers of Comparative Examples 1 to 12 had low thermal stability due to a hot precontraction ratio of more than 5.0%, and a dissolution rate constant for an artificial body fluid was less than 500 ng/cm 2 ·hr, and thus biodegradability was insufficient. Further, the ceramic fibers of Comparative Examples 1 to 12 had a fiber recovery degree of less than 50%, and the fiber recovery power was insufficient.

Claims (5)

35 내지 65 중량부의 SiO2, 1 내지 5 중량부의 CaO, 35 내지 60 중량부의 MgO 및 1 내지 20 중량부의 Al2O3를 포함하고, MgO/CaO의 중량비가 10 내지 35인, 세라믹 섬유 조성물.35 to 65 parts by weight of SiO 2 , 1 to 5 parts by weight of CaO, 35 to 60 parts by weight of MgO and 1 to 20 parts by weight of Al 2 O 3 , wherein the weight ratio of MgO/CaO is 10 to 35. 청구항 1의 세라믹 섬유 조성물로부터 제조된 세라믹 섬유.Ceramic fiber prepared from the ceramic fiber composition of claim 1. 청구항 2에 있어서,
상기 세라믹 섬유는 평균 입경이 5㎛ 이하이며, 1,400℃에서 24시간 유지 후 열간 선수축율이 5.0% 이하인, 세라믹 섬유.
The method according to claim 2,
The ceramic fiber has an average particle diameter of 5 μm or less, and a hot pre-contraction rate of 5.0% or less after maintaining at 1,400° C. for 24 hours.
청구항 2에 있어서,
상기 세라믹 섬유는 인공체액에 대한 용해속도상수가 500 ng/㎠·hr 이상인, 세라믹 섬유.
The method according to claim 2,
The ceramic fiber has a dissolution rate constant of 500 ng/cm 2·hr or more for an artificial body fluid.
청구항 2에 있어서,
상기 세라믹 섬유는 섬유 복원 정도가 50% 이상인, 세라믹 섬유.
The method according to claim 2,
The ceramic fiber has a fiber restoration degree of 50% or more.
KR1020190065573A 2019-06-03 2019-06-03 Composition for ceramic fiber and ceramic fiber manufactured therefrom KR20200139029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190065573A KR20200139029A (en) 2019-06-03 2019-06-03 Composition for ceramic fiber and ceramic fiber manufactured therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190065573A KR20200139029A (en) 2019-06-03 2019-06-03 Composition for ceramic fiber and ceramic fiber manufactured therefrom

Publications (1)

Publication Number Publication Date
KR20200139029A true KR20200139029A (en) 2020-12-11

Family

ID=73786340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190065573A KR20200139029A (en) 2019-06-03 2019-06-03 Composition for ceramic fiber and ceramic fiber manufactured therefrom

Country Status (1)

Country Link
KR (1) KR20200139029A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170026704A (en) 2015-08-26 2017-03-09 글로벌케이엔씨 주식회사 Mineral fiber and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170026704A (en) 2015-08-26 2017-03-09 글로벌케이엔씨 주식회사 Mineral fiber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2327667B1 (en) Saline soluble glass fiber composition
EP1979284B1 (en) A biodegradable ceramic fiber composition for a heat insulating material
EP1323687A2 (en) Biosoluble ceramic fiber composition with improved solubility in a physiological saline solution for a high temperature insulation material
Xie et al. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds
CN106966600B (en) A kind of dentistry nano-sized crystal glass and its production method
EP2360131B1 (en) Composition for preparing ceramic fibers and biosoluble ceramic fibers prepared therefrom for heat insulating material at high temperature
TW200911725A (en) Reduced strain refractory ceramic composite and method of making
KR101516981B1 (en) Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom
KR20200139029A (en) Composition for ceramic fiber and ceramic fiber manufactured therefrom
KR101348274B1 (en) Composition for preparing mineral wool fiber having high solubility in body fluid and mineral wool fiber prepared therefrom
Arstila et al. The sintering range of porous bioactive glasses
KR20210058199A (en) Composition for ceramic fiber and ceramic fiber manufactured therefrom
KR20210058198A (en) Composition for ceramic fiber and ceramic fiber manufactured therefrom
KR102177965B1 (en) Composition for mineral wool and mineral wool manufactured thereof
KR20220026745A (en) Composition for ceramic fiber and ceramic fiber manufactured therefrom
JP6433981B2 (en) Composition for producing mineral wool fiber excellent in solubility in body fluid and mineral wool fiber produced thereby
KR101531633B1 (en) A composition for preparing ceramic fiber and a saline soluble ceramic fiber prepared therefrom for heat insulating material at high temperature
JP2006152468A (en) Inorganic fiber and method for producing the same
CN115385672B (en) Opalescent porcelain powder and preparation method thereof
Pan et al. Effects of h-BN addition on microstructures and mechanical properties of β-CaSiO3 bioceramics
KR20210026891A (en) Batch composition for mineral wool and mineral wool manufactured therefrom
Shaharuddin et al. Investigation on the thermal properties, density and degradation of quaternary iron and titanium phosphate based glasses
AU2014246689A1 (en) Ceramic Fiber Composition Which is Soluble in Salt
Liu et al. Effect of nucleating agent on the crystallization of tailings glass ceramics prepared by one-time sintering
JP2009120998A (en) Inorganic fiber