KR20200138704A - Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion - Google Patents

Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion Download PDF

Info

Publication number
KR20200138704A
KR20200138704A KR1020200167697A KR20200167697A KR20200138704A KR 20200138704 A KR20200138704 A KR 20200138704A KR 1020200167697 A KR1020200167697 A KR 1020200167697A KR 20200167697 A KR20200167697 A KR 20200167697A KR 20200138704 A KR20200138704 A KR 20200138704A
Authority
KR
South Korea
Prior art keywords
steel sheet
phase
plating
layer
mgzn
Prior art date
Application number
KR1020200167697A
Other languages
Korean (ko)
Other versions
KR102384675B1 (en
Inventor
박일정
이석규
김명수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180115244A external-priority patent/KR102354447B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020200167697A priority Critical patent/KR102384675B1/en
Publication of KR20200138704A publication Critical patent/KR20200138704A/en
Application granted granted Critical
Publication of KR102384675B1 publication Critical patent/KR102384675B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

The present invention relates to a high anti-corrosive coated steel sheet with excellent resistance against welding liquefaction brittleness and coating adhesion. According to one aspect of the present invention, the high anti-corrosive coated steel sheet comprises: a basic steel sheet; and a coated layer sequentially containing an Fe-Al alloy layer and a MgZn_2 layer from an interface between the basic steel sheet and the coated layer.

Description

용접액화취성에 대한 저항성과 도금밀착성이 우수한 고내식 도금강판{ANTI CORROSIVE COATED STEEL HAVING GOOD RESISTANCE AGAINST LIQUID METAL EMBRITTLEMENT AND COATING ADHESION}High corrosion resistance plated steel sheet with excellent resistance to welding liquefaction embrittlement and plating adhesion {ANTI CORROSIVE COATED STEEL HAVING GOOD RESISTANCE AGAINST LIQUID METAL EMBRITTLEMENT AND COATING ADHESION}

본 발명은 용접액화취성에 대한 저항성과 도금밀착성이 우수한 고내식 도금강판에 관한 것이다.The present invention relates to a highly corrosion-resistant plated steel sheet having excellent resistance to welding liquefaction embrittlement and plating adhesion.

최근 자동차 경량화 및 승객 안전성에 관한 관심이 높아지면서 900MPa 이상의 강도를 가지는 자동차용 고강도 강판에 대한 관심이 높아지고 있다. 이러한 요구를 만족시키기 위해서 최근 C, Si, Mn, Al, Ti, Cr 등의 원소를 다량 함유하는 고강도 강판이 개발되고 있다.Recently, as interest in weight reduction of automobiles and passenger safety increases, interest in high-strength steel sheets for automobiles having a strength of 900 MPa or more is increasing. In order to satisfy these needs, high-strength steel sheets containing large amounts of elements such as C, Si, Mn, Al, Ti, and Cr have recently been developed.

또한, 이러한 고강도 강판은 높은 내식성도 동시에 요구되는 경우가 많아 강판의 표면에 도금을 실시한 도금강판이 다수 제안되고 있다. 도금강판 중 많은 비율을 차지하는 것이 알루미늄계 도금강판인데, 알루미늄 도금 강판의 경우 도금층의 희생방식성이 아연도금강판 보다 약하여 내식성이 낮다는 문제가 지적되고 있다.In addition, such a high-strength steel sheet is often required to have high corrosion resistance at the same time, and many plated steel sheets in which the surface of the steel sheet is plated have been proposed. The aluminum-based plated steel sheet occupies a large proportion of the plated steel sheet, and in the case of the aluminum plated steel sheet, the problem that the sacrificial corrosion resistance of the plating layer is weaker than that of the galvanized steel sheet has been pointed out.

이러한 문제를 해결하기 위해, 알루미늄 도금층에 Zn이나 Mg 등을 첨가하여 내식성을 높인 강재가 특허문헌 1 및 2 등으로 제안된 바 있다. 구체적으로, 특허문헌 1에서는 25~85 질량%의 Al과, Al 함유량의 0.5% 이상 10%이하의 Si 및 잔부는 Zn으로 이루어지는 합금 도금을 실시하는 것이 개시되어 있으며, 특허문헌 2에서는 Al: 25~75%, Mg: 0.1~10, Si: 1~7.5, Cr: 0.05~5% 및 잔부 Zn으로 이루어지는 합금도금을 실시하여 내식성을 향상시킨 기술이 개시되어 있다.In order to solve this problem, steel materials having improved corrosion resistance by adding Zn or Mg to the aluminum plating layer have been proposed in Patent Documents 1 and 2, and the like. Specifically, Patent Literature 1 discloses alloy plating consisting of 25 to 85 mass% of Al, 0.5% or more and 10% or less of the Al content and Zn for the balance, and Patent Literature 2 discloses Al: 25 A technique in which corrosion resistance is improved by performing an alloy plating consisting of ~75%, Mg: 0.1-10, Si: 1~7.5, Cr: 0.05-5%, and the balance Zn is disclosed.

그러나, 상기 특허문헌들에 개시된 도금 조성으로 도금을 실시할 경우 도금욕에서 드로스가 발생하며, 이를 방지하기 위해서는 도금욕 온도를 고온으로 유지하여야 하는데 그 결과 강판의 재질 열화 문제가 초래될 수 있다. 또한, 강판에 Zn이 다량 포함될 경우에는 용접시 결정립계로 액화된 금속이 침투하여 크랙을 유발시키는 용접액화취성 문제가 발생할 수 있으며, 특허문헌 2에서와 같이 Mg를 포함시킬 경우 도금밀착성이 저하되는 문제가 발생할 수 있다.However, when plating is performed with the plating composition disclosed in the above patent documents, dross is generated in the plating bath, and in order to prevent this, the temperature of the plating bath must be maintained at a high temperature, and as a result, a problem of material deterioration of the steel sheet may occur. In addition, when a large amount of Zn is included in the steel sheet, a problem of welding liquefaction embrittlement may occur that causes cracks due to the penetration of liquefied metal into the grain boundaries during welding, and when Mg is included as in Patent Document 2, the plating adhesion decreases. Can occur.

특허문헌 1: 일본 공개특허공보 제2005-264188호Patent Document 1: Japanese Laid-Open Patent Publication No. 2005-264188 특허문헌 2: 한국 공개특허공보 제2011-0088573호Patent Document 2: Korean Patent Application Publication No. 2011-0088573

본 발명의 한가지 측면에 따르면, 충분한 내식성을 가지면서도 용접액화취성에 대한 저항성과 도금밀착성이 우수한 도금강판이 제공될 수 있다.According to one aspect of the present invention, a plated steel sheet having sufficient corrosion resistance and excellent resistance to welding liquefaction embrittlement and plating adhesion can be provided.

본 발명의 과제는 상술한 내용으로 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면, 누구라도 본 발명 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 파악하는데 어떠한 어려움도 없을 것이다.The subject of the present invention is not limited to the above. Anyone of ordinary skill in the art to which the present invention pertains will not have any difficulty in grasping the additional subject of the present invention from the overall contents of the present specification.

본 발명의 한가지 측면에 따른 고내식 도금강판은, 소지강판 및 상기 소지강판과의 계면으로부터 순차적으로 Fe-Al 합금층과 MgZn2 층을 포함하는 도금층으로 이루어질 수 있다.The highly corrosion-resistant plated steel sheet according to one aspect of the present invention may be formed of a plated layer including an Fe-Al alloy layer and a MgZn 2 layer sequentially from an interface between the holding steel plate and the holding steel plate.

또한, 본 발명의 다른 한가지 측면에 따른 고내식 도금강판의 제조방법은, 소지강판을 준비하는 단계; 상기 소지강판을 700~1050℃로 가열하는 단계; 상기 강판을 530~750℃로 유지된 알루미늄계 도금욕에 침지하여 알루미늄 도금강판을 얻는 단계; 얻어진 알루미늄계 도금강판의 도금부착량을 조절하는 단계; 도금부착량이 조절된 강판을 350℃까지 7~25℃/초의 냉각속도로 냉각하는 단계; 및 350℃ 부터 80℃까지 5~15℃/초의 냉각속도로 냉각하는 단계를 포함할 수 있다.In addition, a method of manufacturing a highly corrosion-resistant plated steel sheet according to another aspect of the present invention includes: preparing a holding steel sheet; Heating the holding steel sheet to 700 ~ 1050 °C; Obtaining an aluminum plated steel plate by immersing the steel plate in an aluminum-based plating bath maintained at 530 to 750°C; Adjusting the plating amount of the obtained aluminum-based plated steel sheet; Cooling the steel sheet with a controlled plating amount to 350° C. at a cooling rate of 7 to 25° C./sec; And it may include the step of cooling from 350 ℃ to 80 ℃ at a cooling rate of 5 ~ 15 ℃ / sec.

상술한 바와 같이, 본 발명은 도금층과 소지강판의 계면 및 도금층 내에 형성되는 합금상을 적절히 제어함으로써 우수한 내식성을 유지하면서도 용접액화취성 저항성과 도금밀착성을 향상시킬 수 있다.As described above, according to the present invention, by appropriately controlling the interface between the plating layer and the holding steel sheet and the alloy phase formed in the plating layer, it is possible to improve welding liquefaction brittle resistance and plating adhesion while maintaining excellent corrosion resistance.

도 1은 발명예 3에 의하여 제조된 알루미늄계 용융 도금강판의 단면을 나타낸 SEM 사진으로서, 좌측은 저배율로 관찰한 결과를 우측은 고배율로 관찰한 결과를 나타낸다.
도 2는 발명예 1에 의해 제조된 강판의 단면 사진이다.
도 3은 비교예 4-3에 의해 제조된 강판의 단면 사진이다.
도 4는 비교예 5-4에 의해 제조된 강판의 단면 사진이다.
도 5는 본 발명의 각 발명예와 비교예에 의하여 제조된 강판에 대하여 도금 밀착성 실험을 행한 결과를 관찰한 사진이다.
1 is a SEM photograph showing a cross section of an aluminum-based hot-dip plated steel sheet manufactured according to Inventive Example 3, and the left side shows the results observed at low magnification and the right side shows the results observed at high magnification.
2 is a cross-sectional photograph of a steel sheet manufactured according to Inventive Example 1.
3 is a cross-sectional photograph of a steel sheet manufactured according to Comparative Example 4-3.
4 is a cross-sectional photograph of a steel sheet manufactured according to Comparative Example 5-4.
5 is a photograph showing the results of a plating adhesion test on the steel sheets manufactured according to the inventive examples and comparative examples of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 발명자들은 도금강판, 특히 알루미늄계 도금강판의 도금층 내에 Zn이나 Mg 등의 합금성분을 첨가하고 형성되는 합금층을 제어할 경우에는 희생방식성을 향상시키고 부식의 전파를 억제하면서도, 용접액화취성에 대한 저항성을 높일 뿐만 아니라, 경우에 따라서는 도금밀착성도 향상시킬 수 있다는 것을 발견하고 본 발명에 이르게 되었다.In the case of controlling the alloy layer formed by adding an alloy component such as Zn or Mg in the plating layer of a plated steel sheet, especially an aluminum-based plated steel sheet, the inventors of the present invention improve the sacrificial corrosion resistance and suppress the propagation of corrosion while forming a welding liquid. It was discovered that not only the resistance to brittleness could be improved, but also plating adhesion could be improved in some cases, and the present invention was reached.

액화취성(Liquid Metal Embrittlement, 간략히 LME)이라 함은 고온에서 도금층이 용융되고 용융된 도금층의 금속이 소지강판의 결정립계 등에 침투하여 크랙을 발생시키는 현상을 말한다. Liquid metal embrittlement (LME for short) refers to a phenomenon in which the plating layer is melted at a high temperature, and the metal of the molten plating layer penetrates into the grain boundaries of the holding steel sheet and generates cracks.

본 발명의 발명자들은 도금강판의 도금층이 Zn, Mg, Si 등을 포함하는 조성을 가지면서 도금층에 포함되는 각 층의 조건을 적절하게 제어할 경우 용접 액화 취성을 향상시킬 수 있다는 것을 발견하였다.The inventors of the present invention have found that welding liquefaction embrittlement can be improved if the plated layer of the plated steel sheet has a composition including Zn, Mg, Si, etc. and the conditions of each layer included in the plated layer are properly controlled.

즉, 본 발명의 도금층은 몇 개의 구분되는 층을 가질 수 있는데, 그 중에서 소지강판에서 가장 가까운 부분, 다시 말하면 도금층과 소지강판의 계면에는 Fe와 Al의 합금상(Fe-Al 합금상)으로 이루어지는 층을 가질 수 있다. 이와 같은 Fe-Al 합금층은 반드시 이로 제한하는 것은 아니지만 주로 Fe2Al5 혹은 FeAl3 상을 가질 수 있다. Fe-Al 합금층이 소지강판과 도금층의 계면에 존재할 경우 용접시 고온으로 인하여 도금층의 Zn 등이 용융된다고 하더라도 용융된 금속과 강판과의 접촉을 차단할 수 있어, 용접액화취성 발생 방지에 효과적이다. 본 발명에서 Fe-Al 합금이라 함은 반드시 Fe와 Al 만을 포함하고 다른 원소가 포함되는 것을 배제하는 것은 아니다. 따라서, 도금욕 또는 소지강판에 포함된 추가적인 원소가 일부 포함되더라도, Fe와 Al의 함량의 합계가 70% 이상인 경우는 모두 Fe-Al 합금으로 볼 수 있다. 본 발명의 한가지 구현례에서는 이를 위해서 상기 Fe-Al 합금상의 두께를 1㎛ 이상으로 정할 수 있다. 반대로, Fe-Al 합금상의 두께가 과다하게 두꺼울 경우에도 경질인 Fe-Al 상의 특성으로 인하여 도금 밀착성이 감소할 수 있다. 따라서, 본 발명의 한가지 구현례에서는 상기 Fe-Al 합금층의 두께는 8㎛ 이하로 제한할 수 있다.That is, the plating layer of the present invention may have several distinct layers. Among them, the portion closest to the base steel sheet, that is, at the interface between the plating layer and the base steel sheet, consists of an alloy phase of Fe and Al (Fe-Al alloy phase). Can have layers. Such an Fe-Al alloy layer is not necessarily limited thereto, but may mainly have a Fe 2 Al 5 or FeAl 3 phase. When the Fe-Al alloy layer is present at the interface between the holding steel sheet and the plating layer, even if the Zn of the plating layer is melted due to high temperature during welding, it is effective in preventing the occurrence of welding liquefaction embrittlement because it can block contact with the molten metal and the steel sheet. In the present invention, the Fe-Al alloy does not necessarily include only Fe and Al, and does not exclude other elements. Therefore, even if some of the additional elements included in the plating bath or the holding steel sheet are included, all cases in which the total content of Fe and Al is 70% or more can be regarded as an Fe-Al alloy. In one embodiment of the present invention, for this purpose, the thickness of the Fe-Al alloy phase may be set to 1 μm or more. Conversely, even when the thickness of the Fe-Al alloy phase is excessively thick, the plating adhesion may decrease due to the characteristics of the hard Fe-Al phase. Therefore, in one embodiment of the present invention, the thickness of the Fe-Al alloy layer may be limited to 8 μm or less.

다만, 용접액화취성에 대한 저항성을 확보하기 위해서는 Fe-Al 합금층을 형성시키는 것만으로는 충분하지 아니하다.However, in order to secure resistance to welding liquefaction embrittlement, it is not enough to form an Fe-Al alloy layer.

따라서 본 발명의 한 가지 구현례에서는 상기 Fe-Al 합금층의 직상에 MgZn2 층을 형성시킨다. 도 1에서 볼 수 있듯이, Fe-Al 상은 불규칙한 형상(특히, 강판과 접하는 면의 반대쪽 면에서)을 가질 수도 있는데, MgZn2 상은 상기 Fe-Al 상에 접촉하여 Fe-Al 상의 위에 형성된다.Therefore, in one embodiment of the present invention, a MgZn 2 layer is formed directly on the Fe-Al alloy layer. As can be seen in FIG. 1, the Fe-Al phase may have an irregular shape (especially, on the opposite side of the surface in contact with the steel sheet), and the MgZn 2 phase is formed on the Fe-Al phase by contacting the Fe-Al phase.

MgZn2 합금상이 도금층에 존재할 경우 도금층 중의 Zn 단독 상의 비율을 감소시키며, Fe-Al 합금층은 용접시 도금층이 액화된다고 하더라도 Zn 과 소지강판과의 접촉을 방해하므로 용접 액화 취성을 방지할 수 있다.When the MgZn 2 alloy phase is present in the plating layer, the ratio of the Zn alone phase in the plating layer is reduced, and the Fe-Al alloy layer prevents welding liquefaction embrittlement because even if the plating layer is liquefied during welding, the contact between Zn and the holding steel sheet is prevented.

본 발명의 한가지 구현례에서는 이러한 효과를 위해서 상기 MgZn2 상의 평균 두께가 0.5㎛ 이상일 수 있으며, 가장 바람직하게는 1㎛ 이상일 수 있다. 본 발명의 한가지 구현례에서는 상기 MgZn2 층의 두께는 그와 접하는 합금층(Fe-Al 층)과의 계면에 수직한 방향으로 측정하며, 강판과 Fe-Al 상의 계면 길이를 기준으로 3㎛ 간격으로 10회 측정한 것을 평균으로 하여 1회의 평균 두께로 정하고, 위치별로 총 5회 측정하여 얻은 각 회당 두께를 평균하여 최종 두께로 한다. 다만, 두께가 너무 두꺼울 경우에는 도금층 가공성이 나빠질 수 있으므로 상기 MgZn2 상을 포함하는 층의 평균 두께는 3.5㎛ 이하로 정할 수 있으며, 경우에 따라서는 2.5㎛ 이하로 정할 수 있다. In one embodiment of the present invention, for this effect, the average thickness of the MgZn 2 phase may be 0.5 μm or more, and most preferably 1 μm or more. In one embodiment of the present invention, the thickness of the MgZn 2 layer is measured in a direction perpendicular to the interface with the alloy layer (Fe-Al layer) in contact with it, and 3㎛ intervals based on the interface length of the steel plate and the Fe-Al phase. Measured 10 times as an average is set as the average thickness of one time, and the thickness for each time obtained by measuring a total of 5 times for each location is averaged as the final thickness. However, if the thickness is too thick, the workability of the plating layer may be deteriorated. Therefore, the average thickness of the layer including the MgZn 2 phase may be set to 3.5 μm or less, and in some cases, it may be set to 2.5 μm or less.

또한, MgZn2 상이 Fe-Al 합금상 직상에 접촉한 상태로 넓은 면적으로 존재하여야 상술한 효과를 얻을 수 있으므로, 상기 MgZn2 상이 도금층 내에서 Fe-Al 합금상 직상에서 차지하는 비율은 90% 이상이 좋다. 상기 비율은 MgZn2 보다 상부에 형성되는 층(예를 들면 Al 합금층)을 제거하고 관찰하였을 때, 전체 면적 대비 MgZn2 상이 점유하는 면적의 비율로 정할 수 있다. 이와 같이 넓은 면적으로 형성되는 MgZn2는 바로 Fe-Al 합금상 직상에서 형성되는 것으로 확인할 수 있었으므로, 본 발명에서는 MgZn2와 Fe-Al 합금상 사이에 다른 상이 포함되는지 여부를 특별히 확인하지 않더라도, MgZn2가 Fe-Al 합금상 직상에 접촉하여 형성되는 것으로 간주할 수 있다.In addition, since the MgZn 2 phase must exist in a large area in contact with the Fe-Al alloy phase in a large area, the ratio of the MgZn 2 phase to the Fe-Al alloy phase in the plating layer is 90% or more. good. The ratio may be determined as the ratio of the area occupied by the MgZn 2 phase relative to the total area when a layer formed above MgZn 2 (eg, an Al alloy layer) is removed and observed. Since MgZn 2 formed in such a large area was confirmed to be formed directly on the Fe-Al alloy phase, in the present invention, even if it is not specifically confirmed whether another phase is included between the MgZn 2 and the Fe-Al alloy phase, It can be considered that MgZn 2 is formed in direct contact with the Fe-Al alloy phase.

상술한 MgZn2 층의 상부(소지강판으로부터 먼 쪽을 의미함)에는 Al 합금층이 형성될 수 있다. 본 발명에서 Al 합금층이라 함은 주로 도금욕의 성분으로부터 유래한 것으로서, Al이 소지강판과 합금화 반응하여 형성한 Fe-Al 합금층이나, 그 위에 형성되는 MgZn2 층을 제외한 상층을 의미하며 Al이 주성분이며 도금욕에서 유래한 원소들이 포함되는 조성을 가지는 합금층을 의미한다. 다만, 상기 Al 합금층이 소지강판으로부터 확산될 수 있는 소량의 소지강판 유래 원소들을 더 포함할 수 있다는 것을 배제하는 것은 아니다. An Al alloy layer may be formed on the above-described MgZn 2 layer (meaning the far side from the holding steel sheet). In the present invention, the Al alloy layer is mainly derived from the components of the plating bath, and refers to the upper layer excluding the Fe-Al alloy layer formed by the alloying reaction of Al with the holding steel sheet or the MgZn 2 layer formed thereon. This is the main component and refers to an alloy layer having a composition containing elements derived from the plating bath. However, it is not excluded that the Al alloy layer may further contain a small amount of elements derived from the holding steel sheet that can be diffused from the holding steel sheet.

따라서, 본 발명의 도금강판의 도금층은 소지강판과의 계면으로부터 순차적으로 Fe-Al 합금층, MgZn2 층 및 Al 합금층을 포함할 수 있다. Accordingly, the plated layer of the plated steel sheet of the present invention may include an Fe-Al alloy layer, an MgZn 2 layer, and an Al alloy layer sequentially from the interface with the holding steel sheet.

또한, 통상 알루미늄계 도금강판이 Mg와 Si를 포함할 경우 Mg2Si 상이 형성되게 되는데 상기 Mg2Si 상은 도금층의 내식성을 향상시키는 역할을 하나, 경질일 뿐만 아니라 강판과의 밀착성을 약화시켜 소지강판과 도금층 계면에 형성 시 도금밀착성을 떨어뜨리는 원인이 되기 때문에 도금층 상부에 형성될 수 있도록 제어가 필요하다.In addition, in general, when the aluminum-based plated steel sheet contains Mg and Si, the Mg 2 Si phase is formed. The Mg 2 Si phase serves to improve the corrosion resistance of the plating layer, but it is not only hard, but also weakens the adhesion to the steel sheet. When forming at the interface between the plating layer and the plating layer, it is necessary to control it so that it can be formed on the top of the plating layer because it causes a decrease in plating adhesion.

따라서, 본 발명의 또한가지 구현례에서 도금층 내 Mg2Si 상의 비율은 면적 기준으로 10% 이하로 정할 수 있다. 이때, 상기 도금층 내 Mg2Si 상의 비율은 도금강판을 절단하여 절단면을 관찰하였을 때, 도금층 전체의 면적 대비 Mg2Si 상이 점유하는 면적의 비율로 정할 수 있다. Mg2Si 상의 면적 비율이 과다하게 높으면 강판과의 계면에서 형성되는 Mg2Si의 비율이 증가하거나 도금층 전체의 취성을 증가시켜서 도금층의 박리를 일으킬 수 있으므로, 상기 Mg2Si 상의 면적 비율은 10% 이하로 제한한다. 또한, 경우에 따라서는 상기 Mg2Si 상의 면적 비율을 8% 이하로 정할 수도 있다. 본 발명에서 도금밀착성을 확보하기 위한 Mg2Si 상의 비율의 하한은 특별히 제한하지 아니하나, Mg2Si 상이 도금층의 내식성 향상에 기여할 수 있으므로 내식성을 추가로 고려할 때, 본 발명의 한가지 구현례에서는 상기 Mg2Si 상의 비율은 면적기준으로 3% 이상으로 정할 수 있으며, 경우에 따라서는 5% 이상으로 정할 수도 있다. Therefore, in another embodiment of the present invention, the ratio of the Mg 2 Si phase in the plating layer may be set to 10% or less based on the area. In this case, the ratio of the Mg 2 Si phase in the plating layer may be determined as the ratio of the area occupied by the Mg 2 Si phase relative to the entire area of the plating layer when the plated steel sheet is cut and the cut surface is observed. If the area ratio of the Mg 2 Si phase is excessively high, the ratio of Mg 2 Si formed at the interface with the steel sheet may increase or the brittleness of the entire plating layer may be increased to cause peeling of the plating layer, so the area ratio of the Mg 2 Si phase is 10%. It is limited to the following. In addition, in some cases, the area ratio of the Mg 2 Si phase may be set to 8% or less. In the present invention, the lower limit of the ratio of the Mg 2 Si phase for securing the plating adhesion is not particularly limited, but since the Mg 2 Si phase may contribute to the improvement of the corrosion resistance of the plating layer, when additionally considering the corrosion resistance, in one embodiment of the present invention, the above The ratio of the Mg 2 Si phase may be set to 3% or more based on the area, and in some cases, it may be set to 5% or more.

또한, 상기 Mg2Si 상은 가급적 도금층 내 상층(Fe-Al 합금층과 그 직상에 형성된 MgZn2 상을 제외한 상층 부분을 의미함)에 분산되어 존재하는 것이 유리한데, 이를 위해서는 Mg2Si 상은 평균 크기(각 입자들의 장축의 길이의 평균)가 6㎛ 이하(0㎛ 제외)인 것이 바람직하다. 도금층의 박리를 방지한다는 측면에서는 평균 크기는 작을수록 유리하므로 크기의 하한은 특별히 정하지 아니한다. 다만, 일정 수준 이상의 크기를 가지는 Mg2Si는 내식성 향상에도 기여할 수 있으므로, 본 발명의 한가지 구현례에서는 이를 고려하여 상기 Mg2Si 상의 평균 크기를 3㎛ 이상으로 정할 수도 있다. 본 발명의 취지상 다른 상에 의하여 분리되지 아니하고 연속된 Mg2Si 입자라면 하나의 입자로 취급하고 평균 크기를 측정할 수 있다. 이와 같이, Mg2Si는 별도의 층으로 형성된다기 보다는 분산되어 존재하는 형태이므로 본 발명에서는 특별히 구분된 층으로 표시하지 아니한다.In addition, the Mg 2 Si phase is advantageously dispersed and present in the upper layer of the plating layer (meaning the upper layer excluding the Fe-Al alloy layer and the MgZn 2 phase formed directly thereon). For this purpose, the Mg 2 Si phase has an average size. It is preferable that the (average of the length of the major axis of each particle) is 6 μm or less (excluding 0 μm). In terms of preventing peeling of the plating layer, the smaller the average size is, the more advantageous the lower limit of the size is not specifically set. However, since Mg 2 Si having a size greater than or equal to a certain level may contribute to improvement of corrosion resistance, an average size of the Mg 2 Si phase may be set to 3 μm or more in consideration of this in one embodiment of the present invention. For the purpose of the present invention, if the Mg 2 Si particles are not separated by other phases and are continuous, they can be treated as one particle and the average size can be measured. As described above, since Mg 2 Si exists in a dispersed form rather than formed as a separate layer, it is not indicated as a specially divided layer in the present invention.

본 발명의 한가지 구현례에서는 Fe-Al상에 접하는 Mg2Si 상의 면적 비율은 2% 이하일 수 있다(소지강판 면적 대비 Fe-Al상에 접하는 Mg2Si 상의 면적 비율). Fe-Al상에 접하는 Mg2Si 상이 많을 수록 MgZn2 상이 소지강판과 접하는 면적을 감소시켜 도금밀착성과 용접액화취화 저항성을 저하시킬 수 있으므로, Fe-Al상에 접하는 Mg2Si 상의 면적 비율을 2% 이하로 제한한다. 상기 비율은 Fe-Al 상과 접하는 Mg2Si 보다 상부에 형성되는 층(예를 들면 Al 합금층)을 제거하고 관찰하였을 때, 전체 면적 대비 MgZn2 상이 점유하는 면적의 비율로 정할 수 있다.In one embodiment of the present invention, the area ratio of the Mg 2 Si phase in contact with the Fe-Al phase may be 2% or less (the area ratio of the Mg 2 Si phase in contact with the Fe-Al phase relative to the area of the holding steel sheet). The more the Mg 2 Si phase in contact with the Fe-Al phase, the less the area in which the MgZn 2 phase is in contact with the holding steel sheet, thereby lowering the plating adhesion and resistance to welding liquid embrittlement. Therefore, the area ratio of the Mg 2 Si phase in contact with the Fe-Al phase is 2 Limit to less than %. The ratio may be determined as the ratio of the area occupied by the MgZn 2 phase relative to the total area when the layer formed above the Mg 2 Si in contact with the Fe-Al phase (eg, an Al alloy layer) is removed and observed.

본 발명의 한가지 구현례에 따르면 알루미늄계 도금층은 중량 기준으로 Si: 5~10%, Zn: 5~30%, Mg: 1~10%을 포함할 수 있다. 이하에서는, 도금층의 조성을 이와 같이 정하는 이유에 대하여 간략히 설명한다. 본 발명에서 특별히 달리 정하지 아니하는 한 도금층과 소지강판에 포함되는 원소의 함량은 중량 기준이다. 또한, 본 발명에서 알루미늄계 도금층이라 함은 상술한 바와 같이 각 층을 모두 포함하는 개념으로서, 알루미늄 도금층의 조성이라 함은 상술한 각층의 조성을 한꺼번에 분석한 평균 조성을 의미한다는 것에 유의할 필요가 있다. According to one embodiment of the present invention, the aluminum-based plating layer may include Si: 5 to 10%, Zn: 5 to 30%, and Mg: 1 to 10% by weight. Hereinafter, the reason why the composition of the plating layer is determined in this way will be briefly described. Unless otherwise specified in the present invention, the content of elements included in the plated layer and the holding steel sheet is based on weight. In addition, it should be noted that in the present invention, the aluminum-based plating layer is a concept including all of the layers as described above, and the composition of the aluminum plating layer means an average composition obtained by analyzing the composition of each layer.

실리콘(Si): 5~10%Silicon (Si): 5-10%

Si은 Al의 합금 형성을 통해 용융점을 낮아지게 하며, Si의 첨가를 통해 알루미늄 인곳(ingot)의 융점을 낮춰 도금욕 온도를 낮게 관리할 수 있는 이점을 가진다. 도금욕 온도가 낮아질 경우 도금욕으로 용출된 Fe와 Al 및 도금욕 조성 성분 간 화화적 결합으로 인해 발생하는 고상의 드로스 생성량이 감소하는 장점을 가질 수 있다. 따라서, 본 발명의 한가지 구현례에서 Si 함량은 5% 이상으로 정할 수 있다. 하지만 도금층의 Si 함량이 10%를 초과하게 되면 도금욕의 Si 함량도 높아지게 되는데 그 결과 Al 합금의 도금욕 온도가 다시 상승한다. 또한 Si은 Al 기지 내 고용되지 않고 침상형의 Si상을 형성하며, Mg2Si와 같은 이차상을 쉽게 형성하는 특징을 가져 Si 함량이 높은 경우 도금층의 성형성이 저하되고 도금층 밀착성은 감소시키는 문제점이 발생하여 적절히 조절되어야 한다. 다만, Si 함량이 5% 이하인 경우는 Si가 도금층 내 Fe-Al 합금상 형성을 억제하는 기능이 약해져 Fe-Al합금상의 분율이 과도해지므로 제어해야 한다. 보다 바람직한 도금층 내 Si 함량은 6~9%로 정할 수 있다.Si has the advantage of lowering the melting point through the formation of an alloy of Al, and lowering the melting point of the aluminum ingot through the addition of Si to lower the plating bath temperature. When the plating bath temperature is lowered, it may have the advantage of reducing the amount of solid dross generated due to chemical bonding between Fe and Al eluted into the plating bath and the components of the plating bath composition. Therefore, in one embodiment of the present invention, the Si content may be set to 5% or more. However, when the Si content of the plating layer exceeds 10%, the Si content of the plating bath also increases. As a result, the plating bath temperature of the Al alloy rises again. In addition, Si is not a solid solution in the Al matrix, but forms a needle-shaped Si phase, and has the characteristic of easily forming a secondary phase such as Mg 2 Si. When the Si content is high, the formability of the plating layer decreases and the adhesion of the plating layer decreases. Occurs and must be properly adjusted. However, if the Si content is less than 5%, the function of suppressing the formation of the Fe-Al alloy phase in the plating layer of Si weakens, and the fraction of the Fe-Al alloy phase becomes excessive, so it must be controlled. A more preferable Si content in the plating layer may be set to 6 to 9%.

아연(Zn): 5~30%Zinc (Zn): 5-30%

Zn은 도금욕의 용융점을 낮아지게 하며, 알루미늄과 비교하여 부식환경 내에서 소지강판보다 더 빠르게 산화 또는 부식되는 희생방식의 역할을 한다. Al은 자체로는 희생방식 능력이 없기 때문에 Zn함량이 5% 미만에서는 희생방식성 확보가 힘들게 된다. 또한 Zn 함량이 낮을 경우 Mg-Zn 합금상의 형성에도 용이하지 않다. 다만, Zn함량이 30%가 넘어가면 용접 시 LME 현상이 발생하게 되고 도금 중 도금욕 내에 산화물을 쉽게 형성하여 도금 후 강판의 불량을 유발하게 된다. 따라서, 본 발명의 한가지 구현례에서 상기 Zn 함량은 5~30%로 정할 수 있다. 본 발명의 한가지 구현례에서 보다 바람직한 Zn의 함량을 15~25%로 정할 수 있다.Zn lowers the melting point of the plating bath, and acts as a sacrificial method in which the steel sheet is oxidized or corroded more rapidly in a corrosive environment than aluminum. Since Al itself does not have sacrificial corrosion capability, it is difficult to secure sacrificial corrosion resistance when the Zn content is less than 5%. In addition, when the Zn content is low, it is not easy to form an Mg-Zn alloy phase. However, if the Zn content exceeds 30%, the LME phenomenon occurs during welding, and oxides are easily formed in the plating bath during plating, causing defects in the steel sheet after plating. Therefore, in one embodiment of the present invention, the Zn content may be set to 5 to 30%. In one embodiment of the present invention, a more preferable content of Zn may be set to 15 to 25%.

마그네슘(Mg): 1~7%Magnesium (Mg): 1-7%

Mg 또한 도금욕의 용융점을 낮아지게 하며, Zn와 비슷하게 산소친화력이 높은 원소로서 알루미늄과 비교하여 부식환경 내에서 더 빠르게 산화 또는 부식되는 희생방식의 특성이 있다. Zn와 같은 역할을 하지만 적은 양으로 Zn 보다 효과적인 희생방식성을 보인다. 따라서, Zn에 의한 LME의 위험성을 감소시키면서 충분한 희생방식성을 얻기 위해서 상기 Mg 함량을 1% 이상으로 정할 수 있다. Mg 함량이 과다하면 높은 산소친화력으로 인해 도금욕 중 산화물 생성 결과물인 드로스를 유발할 수 있다. 드로스는 도금 후 강판의 덴트 불량을 유발하게 된다. 또한 Mg는 Si과의 높은 친화력으로 Mg2Si와 같은 이차상을 형성하여 도금층 밀착성을 약화시키기도 한다. 이러한 점을 고려하여, 본 발명의 한가지 구현례에서는 상기 Mg 함량의 상한을 7%로 정할 수 있다. 본 발명의 한가지 구현례에서 보다 바람직한 Mg 함량은 1.5~5%일 수 있다.Mg also lowers the melting point of the plating bath, and as an element having a high oxygen affinity similar to Zn, it has the characteristic of a sacrificial method that oxidizes or corrodes more rapidly in a corrosive environment compared to aluminum. It plays the same role as Zn, but shows more effective sacrificial corrosion resistance than Zn with a small amount. Therefore, in order to obtain sufficient sacrificial corrosion resistance while reducing the risk of LME due to Zn, the Mg content may be set to 1% or more. Excessive Mg content may cause dross, which is a result of oxide formation in the plating bath due to high oxygen affinity. Dross causes a dent defect of the steel plate after plating. In addition, Mg has a high affinity with Si to form a secondary phase such as Mg 2 Si to weaken the adhesion of the plating layer. In consideration of this point, in one embodiment of the present invention, the upper limit of the Mg content may be set to 7%. In one embodiment of the present invention, a more preferable Mg content may be 1.5 to 5%.

본 발명의 한가지 구현례에서는 상술한 원소 이외의 잔부는 Al 및 불가피하게 포함되는 불순물일 수 있다. 또한, 본 발명의 도금층은 필요에 따라서, Be와 Sr을 아래에서 정한 함량으로 더 포함할 수 있다. In one embodiment of the present invention, the remainder other than the above-described elements may be Al and impurities unavoidably included. In addition, the plating layer of the present invention may further include Be and Sr in an amount determined below, if necessary.

Be과 Sr: 합계로 0.5% 이하Be and Sr: 0.5% or less in total

Be과 Sr은 산화력이 강한 원소로써 도금욕 내에 Be과 Sr 두 원소 중 1종 이상을 포함하는 경우, 도금욕 표면에 Be과 Sr의 산화피막이 형성되어 도금욕의 증발로 인한 애쉬(ash) 발생량을 줄일 수 있다. 또한, 이들 원소는 도금층 표면에서도 Be과 Sr의 산화막을 형성하여 표면을 안정화 시키므므로 소량 첨가할 수 있다. 다만, Be과 Sr의 함량이 너무 높으면 이들 원소의 산화물이 도금욕 내에서 과도하게 생성되어 결함을 유발시킬 수 있으며, 성분 투입 비용이 증가하므로 본 발명의 한가지 구현례에서는 이들 원소의 함량의 합을 0.5% 이하로 제한할 수 있다. 상술한 조성범위를 충족하는 한 이들 원소는 불순물로 존재할 수도 있다.Be and Sr are elements with strong oxidizing power, and if at least one of the two elements Be and Sr is included in the plating bath, an oxide film of Be and Sr is formed on the surface of the plating bath to reduce the amount of ash generated by the evaporation of the plating bath. Can be reduced. In addition, since these elements stabilize the surface by forming an oxide film of Be and Sr on the surface of the plating layer, a small amount can be added. However, if the content of Be and Sr is too high, oxides of these elements may be excessively generated in the plating bath, causing defects, and the cost of component input increases. Therefore, in one embodiment of the present invention, the sum of the contents of these elements is It can be limited to 0.5% or less. These elements may be present as impurities as long as the above-described composition range is satisfied.

도금층에 포함되는 불순물로는 강판이나 도금욕 제조 원료인 잉곳에서 유래한 Mn, P, S, Cu, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd, 등을 들 수 있는데, 이들은 각각 0.1% 미만까지는 포함되어 있어도 본 발명의 본지에서 벗어나지 아니한다. 또한, Fe 도 도금욕이나 소지강판으로부터 도금욕에 포함될 수 있으며, 약 5%까지는 허용될 수 있다.Impurities included in the plating layer include Mn, P, S, Cu, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, and Cd, etc. may be mentioned, and these do not depart from the spirit of the present invention even if they are contained up to less than 0.1% each. In addition, Fe may also be included in the plating bath from the plating bath or the holding steel sheet, and up to about 5% may be allowed.

본 발명에서 소지강판의 종류는 특별히 제한하지 아니한다. 다만, 인장강도가 1.0GPa 이상인 강판의 경우 용접액화취성에 더욱 민감할 수 있으므로, 본 발명의 한가지 구현례에서는 인장강도가 1.0GPa 이상인 강판을 소지강판으로 사용할 경우 용접액화취성에 대한 저항성이 높은 본 발명의 도금층의 효과를 더욱 확실하게 얻을 수 있다.In the present invention, the type of the holding steel sheet is not particularly limited. However, since a steel sheet having a tensile strength of 1.0 GPa or more may be more sensitive to welding liquefaction embrittlement, in one embodiment of the present invention, when a steel sheet having a tensile strength of 1.0 GPa or more is used as the holding steel plate, the present invention has high resistance to welding liquefaction embrittlement. The effect of the plating layer of the invention can be obtained more reliably.

또한, 본 발명의 한가지 구현례에 따르면 도금강판은 도금 전 소지강판의 인장강도에 비하여 80% 이상의 인장강도를 가질 수 있다. 즉, 본 발명의 도금강판은 도금층의 조성이 낮은 온도에서도 드로스의 발생을 최소화할 수 있는 온도로서, 700℃ 이하의 낮은 도금욕 온도에서도 도금이 가능하며, 그에 따라 강판을 고온으로 가열하지 않아도 되므로, 강판의 재질 열화를 최소화 할 수 있는 것이다.In addition, according to one embodiment of the present invention, the plated steel sheet may have a tensile strength of 80% or more compared to the tensile strength of the holding steel sheet before plating. That is, the plated steel sheet of the present invention is a temperature capable of minimizing the occurrence of dross even at a temperature in which the composition of the plating layer is low, and plating is possible even at a low plating bath temperature of 700°C or less, and accordingly, the steel sheet is not heated to a high temperature. Therefore, it is possible to minimize the material degradation of the steel plate.

본 발명의 도금강판의 제조방법은 상술한 조건이 구현가능한 한 특별히 제한되지 아니한다. 다만, 본 발명의 도금강판을 제조하는 한가지 비제한적인 예를 들면 다음과 같다.The manufacturing method of the plated steel sheet of the present invention is not particularly limited as long as the above-described conditions can be realized. However, one non-limiting example of manufacturing the plated steel sheet of the present invention is as follows.

본 발명의 도금강판의 제조방법은 소지강판을 준비하는 단계; 상기 소지강판을 700~1050℃로 가열하는 단계; 상기 강판을 530~750℃로 유지된 알루미늄계 도금욕에 침지하여 알루미늄계 도금강판을 얻는 단계; 얻어진 알루미늄계 도금강판의 도금부착량을 조절하는 단계; 도금부착량이 조절된 강판을 350℃까지 7~25℃/초의 냉각속도로 냉각하는 단계; 및 350℃ 부터 80℃까지 5~15℃/초의 냉각속도로 냉각하는 단계를 포함할 수 있다. 이때, 상기 강판을 도금욕에 인입하는 온도는 도금욕 온도 - 20℃ 내지 도금욕 온도 + 50℃ 로 조절될 수 있다. 반드시 이로 제한하는 것은 아니나, 본 발명의 한가지 구현례에 따르면 도금시 도금부착량은 한쪽면 기준 20~90g/m2으로 제어할 수 있다. 이하, 각 조건별로 구체적으로 설명한다. The method of manufacturing a plated steel sheet of the present invention comprises the steps of preparing a holding steel sheet; Heating the holding steel sheet to 700 ~ 1050 °C; Immersing the steel sheet in an aluminum plating bath maintained at 530 to 750°C to obtain an aluminum plating steel sheet; Adjusting the plating amount of the obtained aluminum-based plated steel sheet; Cooling the steel sheet with a controlled plating amount to 350° C. at a cooling rate of 7 to 25° C./sec; And it may include the step of cooling from 350 ℃ to 80 ℃ at a cooling rate of 5 ~ 15 ℃ / sec. In this case, the temperature at which the steel sheet is introduced into the plating bath may be adjusted to a plating bath temperature of -20°C to a plating bath temperature of +50°C. Although not necessarily limited thereto, according to one embodiment of the present invention, the amount of plating during plating may be controlled to 20 to 90 g/m 2 based on one side. Hereinafter, it will be described in detail for each condition.

소지강판의 가열 온도: 700~1050℃Heating temperature of holding steel sheet: 700~1050℃

소지강판을 도금하기 전에 소지강판을 상술한 범위로 가열한다. 즉, 고강도 강의 경우 이상역 온도에서 열처리를 통해 강도를 확보하고, 환원열처리를 통하여 표면의 청정도를 확보할 필요가 있는데, 이를 위해서는 상술한 범위로 강판을 가열할 필요가 있다. 보다 바람직한 온도 범위는 750~1000℃ 이다. The base steel sheet is heated to the above-described range before plating the base steel sheet. That is, in the case of high-strength steel, it is necessary to secure strength through heat treatment at an ideal temperature and to secure surface cleanliness through reduction heat treatment. To this end, it is necessary to heat the steel sheet in the above-described range. A more preferable temperature range is 750 to 1000°C.

도금욕 온도: 530~750℃Plating bath temperature: 530~750℃

도금욕 온도는 530~750℃으로 제한하는데, 이는 530℃ 미만에서는 알루미늄의 점도가 증가하여 도금욕 내 롤의 구동성이 떨어지고 750℃를 초과하면 도금욕 증발로 인한 애쉬(ash) 발생량 및 도금욕 내 Fe-Al 간 결합에 의한 드로스 발생량이 증가한다. 또한 상변태를 동반하는 고강도강의 경우 높은 온도에서 재질의 고온 열화를 발생시켜 기계적 물성 변화를 유발 할 수 있다. 본 발명의 한가지 구현례에서는 고강도 강의 강도 저하를 방지하기 위하여 상기 도금욕의 온도를 600℃ 이하로 제한할 수도 있다.The plating bath temperature is limited to 530~750℃, which increases the viscosity of aluminum at less than 530℃, resulting in poor driveability of the roll in the plating bath. If it exceeds 750℃, the amount of ash generated by the evaporation of the plating bath and the plating bath The amount of dross generated by the bond between Fe-Al increases. In addition, in the case of high-strength steel accompanied by phase transformation, high-temperature deterioration of the material may occur at a high temperature, resulting in a change in mechanical properties. In one embodiment of the present invention, the temperature of the plating bath may be limited to 600° C. or less in order to prevent a decrease in strength of the high-strength steel.

강판의 도금욕 인입 온도: 도금욕 온도 - 20℃ 내지 도금욕 온도 + 50℃Plating bath inlet temperature of steel sheet: Plating bath temperature-20°C to plating bath temperature + 50°C

강판의 인입 온도가 도금욕 온도-20℃ 보다 낮으면 용융 알루미늄의 젖음성이 떨어지며, 도금욕 온도+50℃를 초과하면 국부적으로 도금욕 온도를 상승시켜 도금욕 온도관리가 어려운 단점이 있다.If the inlet temperature of the steel sheet is lower than the plating bath temperature -20°C, the wettability of molten aluminum decreases, and if the plating bath temperature exceeds +50°C, the plating bath temperature is increased locally, making it difficult to manage the plating bath temperature.

도금 후 부착량 조절:Adjustment of adhesion amount after plating:

본 발명에서와 같이, Si, Zn 및 Mg을 포함하는 Al계 도금에서는 각 고용 원소들 또는 합금상의 냉각 속도가 달라서 에어나이프를 이용한 도금 부착량 조절시 주의가 필요하다. 즉, 본 발명에서 구현하고자 하는 유리한 합금층 구성을 얻기 위해서는 에어나이프에 의한 도금 부착량 조절을 2단계로 나누어서 실시하는 것이 유리하다. 즉, 도금층이 응고되는 초기에 응고속도가 느릴 경우에는 도금층 내 다양한 상이 형성되고, 그로 인하여 부분적으로 미도금이 발생할 수 있다. 본 발명의 한가지 구현례에서는 이러한 문제를 회피하기 위하여 강판 온도가 530~500℃까지 감소할 경우에는 도금 부착량을 조절하기 위한 에어나이프를 강판에 가까이 대고 강한 속도로 블로우 하여 도금층의 빠른 응고를 도모한다. 즉, 본 발명의 한가지 구현례에서는 상기 온도까지는 강판과 에어나이프 사이의 거리를 6~10mm로 조절하고, 에어나이프에서 토출되는 가스의 선속도를 150~250m/s, 바람직하게는 180~220m/s로 빠르게 조절한다. 이후에는 부착량을 정밀하게 조절하기 위하여 강판과 에어나이프 사이의 거리를 10mm 초과 ~ 14mm 이내로 조절하고, 블로우 되는 기체의 양도 30~70m/s로 조절한다.As in the present invention, in the Al-based plating including Si, Zn, and Mg, the cooling rate of each solid solution element or alloy phase is different, so care must be taken in controlling the amount of plating deposited using an air knife. That is, in order to obtain an advantageous alloy layer configuration to be implemented in the present invention, it is advantageous to divide the amount of plating deposited by an air knife into two steps. That is, when the solidification rate is slow at the initial stage of solidification of the plating layer, various phases are formed in the plating layer, and thus, partial non-plating may occur. In one embodiment of the present invention, in order to avoid such a problem, when the temperature of the steel sheet is reduced to 530 to 500°C, an air knife for controlling the amount of plating adhered is placed close to the steel sheet and blown at a high speed to promote rapid solidification of the plating layer. . That is, in one embodiment of the present invention, the distance between the steel plate and the air knife is adjusted to 6 to 10 mm up to the temperature, and the linear velocity of the gas discharged from the air knife is 150 to 250 m/s, preferably 180 to 220 m/s. Adjust quickly with s. After that, in order to precisely control the amount of adhesion, the distance between the steel plate and the air knife is adjusted within 10mm to 14mm, and the amount of gas blown is also adjusted to 30~70m/s.

7~25℃/초의 속도로 350℃까지 냉각 Cooling to 350℃ at a rate of 7~25℃/sec

도금층 내에서 적정량의 Mg2Si 상이 형성되도록 하기 위해서는 소지강판의 Fe 성분이 도금층으로 확산되기 전에 Mg2Si가 형성되도록 할 필요가 있다. 이를 위해서는 도금된 강판을 냉각속도 7℃/초 이상으로 냉각할 필요가 있으며, 바람직하게는 10℃/초 이상의 냉각속도로 냉각할 수 있다. 본 발명의 한가지 구현례에서 Fe의 확산을 억제하여 Mg2Si 상을 도금층 내에 형성시키기 위한 냉각은 350℃까지 제어될 수 있다. 냉각속도가 빠를 경우에는 Mg2Si 상이 아닌 비정질 상에 가까운 상이 형성될 수 있으므로, Mg2Si 상의 원활한 형성을 위하여 상기 냉각속도는 25℃/초 이하, 바람직하게는 20℃/초 이하, 보다 바람직하게는 15℃/초 이하로 제한할 수 있다. 필요에 따라서 상기 도금 후 냉각 개시전에 도금 부착량을 조절하는 과정이 수행될 수도 있다. 이러할 경우에는 냉각 속도는 도금 부착량이 조절된 이후 부터 350℃까지의 냉각 속도를 의미한다. 만일 도금 부착량 조절이 없을 경우에는 도금욕에서 빠져 나오는 시점 부터 350℃까지의 냉각 속도를 의미할 수 있다. 본 발명의 한가지 구현례에서 도금 부착량 조절은 에어 나이프를 이용하여 할 수 있으며, 이러한 경우 본 단계의 냉각 속도는 에어 나이프 직후부터 350℃ 까지의 냉각 속도로 할 수 있다.In order to form an appropriate amount of Mg 2 Si phase in the plating layer, it is necessary to form Mg 2 Si before the Fe component of the steel sheet is diffused into the plating layer. To this end, it is necessary to cool the plated steel sheet at a cooling rate of 7°C/sec or more, and preferably, it can be cooled at a cooling rate of 10°C/sec or more. In one embodiment of the present invention, cooling for forming the Mg 2 Si phase in the plating layer by suppressing the diffusion of Fe may be controlled up to 350°C. If the cooling rate is fast, a phase close to the amorphous phase may be formed rather than the Mg 2 Si phase, so the cooling rate is 25° C./sec or less, preferably 20° C./sec or less, more preferably for smooth formation of the Mg 2 Si phase. It can be limited to 15 ℃ / sec or less. If necessary, a process of adjusting the amount of plating deposited after the plating and before starting cooling may be performed. In this case, the cooling rate means a cooling rate from 350°C to 350°C after the amount of plating deposited is adjusted. If there is no control of the amount of plating attached, it may mean the cooling rate from the point of exit from the plating bath to 350°C. In one embodiment of the present invention, the amount of plating deposited may be adjusted using an air knife, and in this case, the cooling rate in this step may be from immediately after the air knife to 350°C.

5~15℃/초의 냉각속도로 350℃ 에서 80℃까지 냉각Cooling from 350℃ to 80℃ at a cooling rate of 5~15℃/sec

또한, 본 발명의 한가지 구현례에서는 350℃ 에서 80℃까지의 냉각속도를 5~15℃/초로 제어할 수 있다. 상술한 냉각속도 범위에서는 MgZn2 상이 도금층 직상에서 연속적으로 형성될 수 있다. 상기 온도범위에서의 냉각속도가 너무 빠를 경우에는 일종이 비평형상인 MgZn2 상이 연속적으로 형성되기 어려우므로 상기 냉각속도를 15℃/초 이하로 제한할 수 있다. 냉각속도가 너무 느릴 경우에는 추가적인 Mg2Si 상과 같은 불필요한 2차 상이 도금층 내에서 다량 생성되어 MgZn2 상의 성장을 방해할 수 있어 상기 냉각속도는 5℃/초 이상으로 제한할 수 있다. 본 발명에서의 냉각속도는 해당온도구간의 평균 냉각속도라는 점에 유의할 필요가 있다. 따라서, 350℃ 이하의 일부 온도구간까지도 높은 냉각속도로 냉각할 수 있으며, 단지 평균 냉각속도가 상술한 범위에 해당하면 상술한 조건을 만족하는 것으로 한다. 또한, 80℃ 미만의 온도 범위에서는 냉각속도에 따른 강판의 물성 차이가 크지 않으므로, 본 발명의 한가지 구현례에서는 이를 특별히 제한하지 아니한다.In addition, in one embodiment of the present invention, the cooling rate from 350°C to 80°C can be controlled at 5 to 15°C/sec. In the above-described cooling rate range, the MgZn 2 phase may be continuously formed directly on the plating layer. If the cooling rate in the above temperature range is too fast, the MgZn 2 phase, which is a kind of non-equilibrium phase, is difficult to be continuously formed, and thus the cooling rate may be limited to 15° C./sec or less. If the cooling rate is too slow, a large amount of unnecessary secondary phases, such as an additional Mg 2 Si phase, are generated in the plating layer to hinder the growth of the MgZn 2 phase, and thus the cooling rate may be limited to 5° C./sec or more. It should be noted that the cooling rate in the present invention is the average cooling rate in the corresponding temperature section. Therefore, it is possible to cool at a high cooling rate even in some temperature sections below 350°C, and only if the average cooling rate falls within the above range, it is assumed that the above-described conditions are satisfied. In addition, since the difference in physical properties of the steel sheet according to the cooling rate is not large in the temperature range of less than 80° C., this is not particularly limited in one embodiment of the present invention.

본 발명의 한가지 구현례에 따르면 상기 도금 부착량을 조절한 이후에 350℃까지 냉각하는 단계의 냉각속도가 350℃에서 80℃까지의 냉각속도보다 빠를 수 있다. 전 단계의 냉각속도를 상대적으로 빨리 하여 Mg2Si 상의 분산 형성을 유도하고, 후 단계의 냉각속도를 상대적으로 느리게 하여 연속적인 MgZn2 상을 형성시키기 위한 것이다.According to one embodiment of the present invention, the cooling rate in the step of cooling to 350°C after adjusting the amount of plating deposited may be faster than the cooling rate from 350°C to 80°C. This is to induce dispersion formation of the Mg 2 Si phase by relatively fast cooling rate of the previous step, and to form a continuous MgZn 2 phase by relatively slowing the cooling rate of the later step.

도금욕 성분Plating bath ingredients

본 발명의 도금욕 성분은 실질적으로 도금층과 동일하다. 다만, 도금후 소지강판과의 합금화 과정에서 도금층에 Fe가 1~2% 증가할 수 있으므로, 도금욕 중의 Fe 함량은 도금층 중의 Fe 함량에 비하여 1~2% 정도 낮을 수 있다. 본 발명의 한가지 구현례에서 사용되는 도금욕 중의 Fe 함량은 4% 이하일 수 있으며, 다른 한가지 구현례에서는 상기 Fe 함량은 0.5~3%일 수 있다. The plating bath component of the present invention is substantially the same as the plating layer. However, since Fe may increase by 1 to 2% in the plating layer during the alloying process with the holding steel sheet after plating, the Fe content in the plating bath may be about 1 to 2% lower than the Fe content in the plating layer. The Fe content in the plating bath used in one embodiment of the present invention may be 4% or less, and in the other embodiment, the Fe content may be 0.5-3%.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만 하기하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 정하여지는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for exemplifying the present invention and not limiting the scope of the present invention. This is because the scope of the rights of the present invention is determined by matters described in the claims and matters reasonably inferred therefrom.

(실시예)(Example)

소지강판(강도 1.2GPa)을 준비하고, 연속소둔로를 이용하여 950℃로 승온한 후, 하기 표 1에 기재된 알루미늄계 도금욕에 침지하여 알루미늄계 도금을 실시하였다(표에서 표시되지 않은 나머지 성분은 0.1% 미만까지 포함된 불순물 및 20ppm의 Be, 40ppm의 Sr을 제외하고 Al 이다). 도금욕 온도와 도금욕으로 인입되는 강판의 온도는 표 1에 기재한 바와 같이 조절되었다. 도금욕에서 빠져나오는 모든 강판에 대하여 에어 나이프를 이용하여 부착량을 60g/m2으로 조절한 후, 350℃까지의 평균 냉각속도와 이후 350℃에서 80℃까지의 냉각속도를 표 1에 기재된 바와 같이 제어하여 도금강판을 얻었다. 에어 나이프를 이용하여 부착량 조절시 강판의 온도가 540℃가 될 때까지는 에어 나이프와 강판 사이의 거리를 8mm로 조절하고, 분사되는 가스의 선속도를 200m/s로 하였으며, 그 이후에는 에어 나이프와 강판 사이의 거리를 12mm로 가스의 선속도를 50m/s로 조절하였다. 얻어진 도금강판의 도금층의 조성(Si, Zn, Mg, Be, Sr 및 불순물의 함량)은 Fe를 제외하고는 도금욕의 조성과 실질적으로 동일하였으며, 약 1%의 Fe가 증가(픽업)된 결과를 나타내고 있었다(Al 함량은 첨가 원소와 불순물을 제외한 잔부이다). 또한, 얻어진 도금강판의 도금층은 발명예와 비교예에서 모두 소지강판과의 계면으로부터 Fe-Al 합금층, MgZn2 합금층, Al 합금층의 순서로 적층되어 있었으며, Mg2Si 상이 입자 형태로 존재하고 있었음을 확인할 수 있었다. A holding steel sheet (strength 1.2 GPa) was prepared, the temperature was raised to 950°C using a continuous annealing furnace, and then aluminum-based plating was performed by immersing in the aluminum-based plating bath shown in Table 1 below (the remaining components not shown in the table. Is Al except for impurities contained up to less than 0.1% and 20ppm Be and 40ppm Sr). The plating bath temperature and the temperature of the steel sheet introduced into the plating bath were adjusted as shown in Table 1. After adjusting the adhesion amount to 60g/m 2 using an air knife for all the steel sheets exiting from the plating bath, the average cooling rate from 350°C to 80°C after that is as shown in Table 1. Controlled to obtain a plated steel sheet. When adjusting the adhesion amount by using an air knife, the distance between the air knife and the steel plate was adjusted to 8mm until the temperature of the steel plate reached 540℃, and the linear velocity of the injected gas was 200m/s. The distance between the steel plates was adjusted to 12 mm and the linear velocity of the gas was adjusted to 50 m/s. The composition of the plating layer (content of Si, Zn, Mg, Be, Sr and impurities) of the obtained plated steel sheet was substantially the same as that of the plating bath except for Fe, and about 1% of Fe increased (picked up). (Al content is the balance excluding additional elements and impurities). In addition, the plating layer of the obtained plated steel sheet was laminated in the order of the Fe-Al alloy layer, the MgZn 2 alloy layer, and the Al alloy layer from the interface with the holding steel sheet in both the invention examples and comparative examples, and the Mg 2 Si phase was present in the form of particles. I could confirm that I was doing it.

표 2에 도금층 내 형성된 MgZn2 상의 평균 두께와 Fe-Al 직상 표면에서의 점유율을 나타내었다. 또한, 표 2에는 도금층 내 Mg2Si의 분율과 Mg2Si 상의 평균 크기를 나타내었다. Fe2Al5 혹은 FeAl3 상이 도금층과 소지금속 계면을 전부 점유하고 있었으므로, MgZn2와 Mg2Si 상 모두 소지강판에 접하는 상의 면적 비율은 0% 이었다. MgZn2 상의 두께 및 분율과 Mg2Si 상의 분율은 다음과 같은 방식으로 측정하였다. Table 2 shows the average thickness of the MgZn 2 phase formed in the plating layer and the occupancy rate on the direct surface of Fe-Al. Further, Table 2 shows the average size and on the percentage of Mg 2 Si in the plating layer within the Mg 2 Si. Since the Fe 2 Al 5 or FeAl 3 phase occupied all of the plating layer and the base metal interface, the area ratio of the phases in contact with the base steel sheet in both the MgZn 2 and Mg 2 Si phases was 0%. The thickness and fraction of the MgZn 2 phase and the fraction of the Mg 2 Si phase were measured in the following manner.

MgZn2 두께 측정 : 도금 후 시편의 단면을 SEM 관찰 후 EDS를 통해 상의 구분을 수행한다. MgZn2 층과 접하는 합금층(Fe-Al 층)과의 계면에 수직한 방향으로 측정하며, 강판과 Fe-Al 상의 계면 길이를 기준으로 3㎛ 간격으로 10회 측정한 것을 평균으로 하여 1회의 평균 두께로 정하고, 위치별로 총 5회 측정하여 얻은 각 회당 두께를 평균하여 최종 두께로 한다.MgZn 2 thickness measurement: After plating, the cross section of the specimen is observed with SEM, and the phase is identified through EDS. Measured in a direction perpendicular to the interface between the MgZn 2 layer and the alloy layer (Fe-Al layer), and measured 10 times at 3 μm intervals based on the interface length of the steel plate and the Fe-Al phase. It is determined by the thickness, and the final thickness is obtained by average of the thickness obtained by measuring a total of 5 times for each location.

Mg2Si 크기 측정: 도금 후 시편의 단면을 SEM 관찰 후 EDS를 통해 상의 구분을 수행한다. 이후 각 시편 당 10장 이상의 사진을 확보하고, 해당 상(입자)의 장축의 크기를 측정하여 평균값을 이용한다.Mg 2 Si size measurement: After plating, the cross section of the specimen is observed with SEM, and the phase is classified through EDS. After that, 10 or more pictures are obtained for each specimen, and the size of the major axis of the image (particle) is measured and the average value is used.

MgZn2 분율(MgZn2 상이 Fe-Al 합금상 직상에서 차지하는 비율) 측정: 도금층 최상부에 형성되는 Al 합금층을 제거하고 관찰하였을 때, 전체 면적 대비 MgZn2 상이 점유하는 면적의 비율로 정한다. 관찰된 MgZn2 상과 Fe-Al 합금상 사이에는 다른 상이 존재하지 않는다는 것도 절단면 분석 등을 통하여 확인하였다.MgZn 2 fraction (the ratio of the MgZn 2 phase to the Fe-Al alloy phase) measurement: When the Al alloy layer formed on the top of the plating layer is removed and observed, it is determined as the ratio of the area occupied by the MgZn 2 phase to the total area. It was also confirmed through cross section analysis that there was no other phase between the observed MgZn 2 phase and the Fe-Al alloy phase.

도금층 내 Mg2Si 분율 측정 : 도금 후 시편의 단면을 SEM 관찰 후 EDS를 통해 상의 구분을 수행한다. 이후 각 시편 당 10장 이상의 사진을 확보하고, 이를 이미지 분석 소프트웨어을 통해 해당 상의 분율을 구한 후 평균값을 이용한다.Measurement of the Mg 2 Si fraction in the plating layer: After plating, the cross section of the specimen is observed with SEM, and the phase is identified through EDS. After that, 10 or more pictures are obtained for each specimen, and the fraction of the phase is obtained through image analysis software, and the average value is used.

Fe-Al상에 접하는 Mg2Si 상의 면적 비율: 도금층 최상부에 형성되는 Al 합금층을 제거하고 관찰하였을 때, 전체 면적 대비 MgZn2 상이 점유하는 면적의 비율로 정한다.Area ratio of Mg 2 Si phase in contact with Fe-Al: When the Al alloy layer formed on the top of the plating layer is removed and observed, it is determined as the ratio of the area occupied by the MgZn 2 phase to the total area.

이와 같은 과정에 의하여 얻어진 도금강판에 대하여 아래에 기재한 기준으로 용접액화취성(LME)의 발생여부, 도금밀착성, 도금 후 인장강도 변화, 내식성 등을 평가하고 그 결과를 도 5에 나타내었다. With respect to the plated steel sheet obtained by this process, whether or not welding liquid brittleness (LME) has occurred, plating adhesion, change in tensile strength after plating, corrosion resistance, etc. were evaluated based on the criteria described below, and the results are shown in FIG.

LME 평가: ISO 18278-2 기준에 맞추어 점 용점을 실시하며, 용접전류는 Expulsion 전류에서 0.5kA 낮게 설정하였다. 용접 후 강판의 단면을 OM 혹은 SEM으로 관찰하여 열영향부 크랙 여부를 통해 해당 시편의 LME 크랙의 발생여부를 판단하였다.LME evaluation: The spot point was performed according to the ISO 18278-2 standard, and the welding current was set as low as 0.5kA in the expulsion current. After welding, the cross section of the steel plate was observed with OM or SEM, and the occurrence of LME cracks in the specimen was determined based on whether the heat affected zone was cracked.

도금 밀착성 평가: 강판 표면에 자동차 구조용 접착제를 도포한 후, 건조하여 응고를 완료한 다음 90도로 굽혀 접착제와 도금강판을 분리시킴으로써 수행하였으며, 도금층이 박리되어 접착제에 묻어 나오는지를 여부를 확인하여 도금 밀착성을 평가한다. 도금층이 박리되지 않고 접착제가 묻어나지 않는 양호한 경우는 미박리로, 도금층이 박리되어 접착제가 묻어나는 불량한 경우는 박리로 나타내었다.Plating adhesion evaluation: After applying the automotive structural adhesive on the surface of the steel sheet, it was carried out by drying it to complete solidification and then bending it at 90 degrees to separate the adhesive from the plated steel sheet, and checking whether the plated layer is peeled off and smeared on the adhesive to determine the plating adhesion Evaluate. A good case in which the plating layer did not peel off and the adhesive was not adhered was indicated as non-peeling, and a poor case in which the plated layer was peeled and the adhesive adhered was indicated as peeling.

기계적 물성 평가 : 알루미늄 도금 된 시편을 10-2/s의 변형속도로 인장실험을 하여 인장강도의 변화를 측정한다. 도금을 하지 않은 냉간 압연 강판(CR) 시편도 동일하게 실험하여 그 결과를 비교하였다.Mechanical property evaluation: Measure the change in tensile strength by performing a tensile test on an aluminum plated specimen at a strain rate of 10 -2 /s. Cold-rolled steel sheet (CR) specimens without plating were also tested in the same way and the results were compared.

양호 (도금재 인장강도 / CR재 인장강도 = 0.80 이상)Good (Tensile strength of plating material / Tensile strength of CR material = 0.80 or more)

열위 (도금재 인장강도 / CR재 인장강도 = 0.80 미만) Inferiority (Tensile strength of plating material / Tensile strength of CR = less than 0.80)

내식성 평가 : 3.5% NaCl 용액에서 Salt Spray Test (SST)를 진행하여 적청 발생할 때까지 소요된 시간으로 판단하였다.Corrosion resistance evaluation: The salt spray test (SST) was performed in a 3.5% NaCl solution, and it was judged as the time taken until the occurrence of red rust.

우수 : 2000h 초과Excellent: more than 2000h

보통 : 1000h ~ 2000h 사이Normal: Between 1000h and 2000h

열위 : 1000h 미만 Inferior: less than 1000h

구분division 도금욕 조성
(중량%)
Plating bath composition
(weight%)
도금욕 온도
(℃)
Plating bath temperature
(℃)
강판 인입온도
(℃)
Steel plate inlet temperature
(℃)
~350℃까지 냉각속도(℃/s)Cooling rate up to ~350℃ (℃/s) 350℃~80℃까지 냉각속도(℃/s)Cooling rate from 350℃ to 80℃ (℃/s)
SiSi ZnZn MgMg 비교예1Comparative Example 1 1One 2020 33 663663 660660 1515 1010 비교예2Comparative Example 2 1One 2020 55 651651 650650 1515 1010 비교예3Comparative Example 3 1One 4040 55 620620 620620 1515 1010 발명예1Invention Example 1 55 2020 33 585585 580580 1515 1010 비교예4-1Comparative Example 4-1 55 2020 33 585585 580580 1515 2020 비교예4-2Comparative Example 4-2 55 2020 33 585585 580580 3030 1010 발명예2Inventive Example 2 55 2020 55 567567 560560 1515 1O1O 발명예3Invention Example 3 77 2020 33 561561 560560 1515 1010 비교예5-1Comparative Example 5-1 77 2020 33 561561 560560 1515 2020 비교예5-2Comparative Example 5-2 77 2020 33 561561 560560 1515 33 비교예5-3Comparative Example 5-3 77 2020 33 561561 560560 3030 1010 비교예5-4Comparative Example 5-4 77 2020 33 561561 560560 55 1010 비교예5-5Comparative Example 5-5 77 2020 33 561561 560560 3030 2020 발명예4Invention Example 4 77 2020 55 553553 550550 1515 1010 비교예6Comparative Example 6 77 2020 1010 544544 540540 1515 1010 발명예5Invention Example 5 77 3030 33 534534 535535 1515 1010 발명예6Invention Example 6 77 3030 55 542542 540540 1515 1010 비교예7Comparative Example 7 77 3030 1010 532532 530530 1515 1010 비교예8Comparative Example 8 77 4040 33 528528 530530 1515 1010 발명예7Invention Example 7 99 2020 33 545545 540540 1515 1010 발명예8Invention Example 8 99 2020 55 546546 540540 1515 1010 비교예9Comparative Example 9 1111 3030 1010 548548 550550 1515 1010 비교예10Comparative Example 10 1515 2525 33 641641 640640 1515 1010 비교예11Comparative Example 11 1515 2525 55 620620 620620 1515 1010 비교예12Comparative Example 12 1515 2525 1010 599599 600600 1515 1010

구분division MgZn2 평균
두께(㎛)
MgZn 2 average
Thickness(㎛)
MgZn2 상이 Fe-Al 합금상 직상에서 차지하는 비율 (%)The proportion of MgZn 2 phase in the direct phase of the Fe-Al alloy phase (%) Mg2Si 평균
크기(㎛)
Mg 2 Si average
Size (㎛)
도금층 내 Mg2Si
분율(%)
Mg 2 Si in the plating layer
Fraction (%)
Mg2Si의 Fe-Al 합금층 점유율 (%)Fe-Al alloy layer share of Mg 2 Si (%) Fe-Al 상의 두께(㎛)Thickness of Fe-Al phase (㎛)
비교예1Comparative Example 1 3.83.8 9999 6.46.4 2.12.1 0.70.7 11.811.8 비교예2Comparative Example 2 4.14.1 9999 6.36.3 2.62.6 0.80.8 10.310.3 비교예3Comparative Example 3 5.75.7 9999 6.16.1 2.62.6 0.80.8 10.010.0 발명예1Invention Example 1 2.72.7 9999 5.35.3 5.15.1 0.90.9 7.37.3 비교예4-1Comparative Example 4-1 1.81.8 8383 5.35.3 4.84.8 0.90.9 7.97.9 비교예4-2Comparative Example 4-2 2.82.8 9999 2.72.7 2.02.0 0.60.6 7.37.3 발명예2Inventive Example 2 3.13.1 9898 5.15.1 5.35.3 1.11.1 7.17.1 발명예3Invention Example 3 1.41.4 9898 5.15.1 5.75.7 1.11.1 6.96.9 비교예5-1Comparative Example 5-1 1.01.0 8181 5.05.0 5.65.6 1.21.2 6.96.9 비교예5-2Comparative Example 5-2 3.93.9 9898 5.15.1 5.85.8 1.01.0 6.96.9 비교예5-3Comparative Example 5-3 1.31.3 9898 2.72.7 2.12.1 0.70.7 6.96.9 비교예5-4Comparative Example 5-4 1.41.4 9797 7.17.1 9.89.8 2.52.5 6.96.9 비교예5-5Comparative Example 5-5 1.01.0 8787 6.86.8 2.32.3 0.60.6 6.96.9 발명예4Invention Example 4 1.81.8 9898 5.05.0 6.06.0 1.31.3 6.76.7 비교예6Comparative Example 6 3.73.7 9696 6.16.1 10.110.1 2.82.8 6.76.7 발명예5Invention Example 5 2.22.2 9898 4.84.8 5.75.7 1.01.0 6.56.5 발명예6Invention Example 6 2.52.5 9898 5.05.0 5.95.9 1.21.2 6.46.4 비교예7Comparative Example 7 5.35.3 9696 6.26.2 10.310.3 3.03.0 6.46.4 비교예8Comparative Example 8 4.34.3 8787 2.82.8 4.44.4 0.90.9 6.46.4 발명예7Invention Example 7 2.32.3 9797 5.15.1 6.06.0 1.11.1 6.56.5 발명예8Invention Example 8 1.91.9 9797 5.15.1 6.26.2 1.31.3 6.46.4 비교예9Comparative Example 9 5.55.5 8888 5.25.2 10.110.1 2.52.5 6.66.6 비교예10Comparative Example 10 3.83.8 8989 6.36.3 10.010.0 1.31.3 10.110.1 비교예11Comparative Example 11 3.93.9 8888 6.26.2 9.59.5 1.41.4 9.89.8 비교예12Comparative Example 12 5.45.4 8686 5.85.8 12.312.3 2.12.1 9.89.8

구분division LME 발생 여부LME Occurrence 도금 밀착성Plating adhesion 내식성 평가Corrosion resistance evaluation 기계적 물성Mechanical properties 비교예1Comparative Example 1 미발생Not occurring 미박리Unremoved 열위Inferiority 열위Inferiority 비교예2Comparative Example 2 미발생Not occurring 미박리Unremoved 열위Inferiority 열위Inferiority 비교예3Comparative Example 3 미발생Not occurring 미박리Unremoved 열위Inferiority 열위Inferiority 발명예1Invention Example 1 미발생Not occurring 미박리Unremoved 보통usually 양호Good 비교예4-1Comparative Example 4-1 발생Occur 박리Peeling 보통usually 양호Good 비교예4-2Comparative Example 4-2 미발생Not occurring 미박리Unremoved 열위Inferiority 양호Good 발명예2Inventive Example 2 미발생Not occurring 미박리Unremoved 보통usually 양호Good 발명예3Invention Example 3 미발생Not occurring 미박리Unremoved 우수Great 양호Good 비교예5-1Comparative Example 5-1 발생Occur 박리Peeling 우수Great 양호Good 비교예5-2Comparative Example 5-2 미발생Not occurring 미박리Unremoved 우수Great 양호Good 비교예5-3Comparative Example 5-3 미발생Not occurring 미박리Unremoved 열위Inferiority 양호Good 비교예5-4Comparative Example 5-4 발생Occur 미박리Unremoved 우수Great 양호Good 비교예5-5Comparative Example 5-5 발생Occur 박리Peeling 우수Great 양호Good 발명예4Invention Example 4 미발생Not occurring 미박리Unremoved 우수Great 양호Good 비교예6Comparative Example 6 미발생Not occurring 박리Peeling 우수Great 양호Good 발명예5Invention Example 5 미발생Not occurring 미박리Unremoved 우수Great 양호Good 발명예6Invention Example 6 미발생Not occurring 미박리Unremoved 우수Great 양호Good 비교예7Comparative Example 7 미발생Not occurring 박리Peeling 우수Great 양호Good 비교예8Comparative Example 8 발생Occur 박리Peeling 보통usually 양호Good 발명예7Invention Example 7 미발생Not occurring 미박리Unremoved 우수Great 양호Good 발명예8Invention Example 8 미발생Not occurring 미박리Unremoved 우수Great 양호Good 비교예9Comparative Example 9 발생Occur 박리Peeling 보통usually 양호Good 비교예10Comparative Example 10 발생Occur 박리Peeling 보통usually 열위Inferiority 비교예11Comparative Example 11 발생Occur 박리Peeling 보통usually 열위Inferiority 비교예12Comparative Example 12 발생Occur 박리Peeling 보통usually 열위Inferiority

본 발명의 조건을 충족하는 발명예의 경우에는 LME가 발생하지 않았으며, 도금 밀착성도 우수한 결과를 나타내었다. 그 뿐만 아니라, 내식성 평가 결과도 보통 이상이었으며, 기계적 물성 역시 양호한 결과를 나타내었다. 도 1은 발명예 3에 의하여 제조된 알루미늄계 용융 도금강판의 단면을 나타낸 SEM 사진이다. 도면에서 볼 수 있듯이, 소지강판(소지철)과 도금층의 계면에는 Fe-Al 상이 연속적으로 형성되어 있고, 그 상의 직상부에 MgZn2상이 분포하며, 도금층 내 상층부에 Mg2Si 상이 분포하는 것을 확인할 수 있다. 도 2에 본 발명에 따른 발명예의 예시적인 사진으로서 발명예 1에 의해 제조된 강판의 단면 사진을 나타내었다.In the case of the inventive examples satisfying the conditions of the present invention, LME did not occur, and the plating adhesion was also excellent. In addition, the corrosion resistance evaluation results were above average, and the mechanical properties also showed good results. 1 is a SEM photograph showing a cross section of an aluminum-based hot-dip plated steel sheet manufactured according to Inventive Example 3. As can be seen from the figure, it is confirmed that the Fe-Al phase is continuously formed at the interface between the holding steel sheet (substrate iron) and the plating layer, and the MgZn 2 phase is distributed directly above the phase, and the Mg 2 Si phase is distributed in the upper layer of the plating layer. I can. Fig. 2 shows a cross-sectional photograph of a steel sheet manufactured according to Inventive Example 1 as an exemplary photograph of an inventive example according to the present invention.

그러나, 비교예 1 내지 3은 도금욕과 도금층의 Si 함량이 낮은 경우로서, Mg2Si가 잘 형성되지 못하였다. 그 결과 낮은 Mg2Si 분율로 인해 내식성 확보가 어려웠다. 그 뿐만 아니라, 상기 비교예들에서는 합금화 반응을 억제하는 Si 함량이 낮음으로 인하여 Fe-Al 상이 과다한 두께로 형성되어 밀착성이 열위하였다. 또한, Si 함량이 부족하여 도금시 도금욕 온도를 620~660℃로 하였으며, 그 결과 도금재의 인장강도가 CR재의 인장강도에 비하여 상대적으로 낮게 되는 부수적인 문제도 발생하였다. However, in Comparative Examples 1 to 3, when the Si content of the plating bath and the plating layer was low, Mg 2 Si was not well formed. As a result, it was difficult to secure corrosion resistance due to a low Mg2Si fraction. In addition, in the comparative examples, the Fe-Al phase was formed with an excessive thickness due to the low Si content that suppresses the alloying reaction, resulting in poor adhesion. In addition, due to insufficient Si content, the plating bath temperature was set at 620 to 660°C during plating, and as a result, the tensile strength of the plated material was relatively lower than that of the CR material, resulting in a side problem.

비교예 4-1과 4-2는 조성은 발명예 1과 동일하게 하되 각 구간의 냉각속도를 달리한 경우이다. 비교예 4-1은 350℃~80℃까지 냉각속도를 빠르게 진행한 결과이다. MgZn2 상의 형성 시간이 충분하지 않아 MgZn2 상이 Fe-Al 합금상 직상에서 차지하는 비율이 낮았다. 그 결과 LME가 발생하였으며, 도금밀착성이 열위하게 나타났다. 비교예 4-2은 도금온도~350℃까지 냉각속도를 빠르게 진행한 결과이다. 그 결과 Mg2Si상의 평균 크기가 다소 작았으며, 형성 시간이 충분치 않아 분율 또한 낮았다. 이로 인하여 내식성이 좋지 않게 나타났다.In Comparative Examples 4-1 and 4-2, the composition was the same as Inventive Example 1, but the cooling rate of each section was different. Comparative Example 4-1 is a result of rapidly increasing the cooling rate to 350 ℃ ~ 80 ℃. MgZn not be formed on the second time is not enough low percentage of MgZn 2 phase Fe-Al alloy phase immediately above. As a result, LME occurred, and the plating adhesion was inferior. Comparative Example 4-2 is a result of rapidly increasing the cooling rate from plating temperature to 350°C. As a result, the average size of the Mg 2 Si phase was somewhat small, and the fraction was also low due to insufficient formation time. This resulted in poor corrosion resistance.

비교예 5-1 에서 5-5는 조성을 발명예 3과 동일하게 하되 냉각조건을 달리한 경우이다. 그 중 비교예 1은 350℃~80℃까지의 냉각속도를 본 발명의 한가지 구현례에서 규정하는 범위 보다 빠르게 한 경우로서, MgZn2 상이 Fe-Al 합금상 직상에서 차지하는 비율이 낮아서 LME가 발생하였으며, 도금 밀착성이 좋지 않은 결과를 나타내었다. 비교예 5-2는 350℃~80℃까지의 냉각속도를 본 발명의 한가지 구현례에서 규정하는 범위 보다 느리게 한 경우로서, 그 결과 MgZn2 층이 비교적 두껍게 형성되었다. 이러한 경우 표 3에 나타낸 각종 물성은 크게 나빠지지 않았으나, 도금층의 가공성이 나빠지는 결과를 확인할 수 있었다. 비교예 5-3은 도금온도에서 350℃까지의 냉각속도를 본 발명에서 규정하는 범위보다 빠르게 한 경우로서, 그 결과 Mg2Si상의 평균 크기가 다소 작았으며, 형성 시간이 충분치 않아 분율 또한 낮았고, 이로 인하여 내식성이 좋지 않게 나타났다. 비교예 5-4는 도금온도에서 350℃까지의 냉각속도를 본 발명에서 규정하는 범위보다 느리게 한 경우로서, 그 결과 Mg2Si상이 과대하였을 뿐만 아니라, 그 Fe-Al상에 접하는 Mg2Si 상의 면적 비율 역시 본 발명에서 규정하는 바람직한 범위를 초과하여 형성되었다. 이로 인하여, 비교예 5-4에 의하여 제조된 강판에서는 용접시 LME가 발생하였다. 비교예 5-5는 도금온도에서 350℃까지의 냉각속도를 본 발명에서 규정하는 범위보다 빠르게 하였을 뿐만 아니라, 350℃~80℃까지의 냉각속도를 본 발명의 한가지 구현례에서 규정하는 범위 보다 느리게 한 경우로서, MgZn2 상이 Fe-Al 합금상 직상에서 차지하는 비율이 충분하지 못하였으며, Mg2Si 상의 크기는 본 발명에서 규정하는 범위 이상으로 조대하였다. 그 결과 용접시 LME 현상이 발생하는 것을 방지할 수 없었다. 도 3과 도 4에 각각 비교예 4-3과 비교예 5-4에 의해 제조된 강판의 단면을 관찰한 사진을 나타내었다.In Comparative Examples 5-1 to 5-5, the composition was the same as Inventive Example 3, but the cooling conditions were different. Among them, Comparative Example 1 was a case in which the cooling rate from 350°C to 80°C was faster than the range specified in one embodiment of the present invention, and the ratio of the MgZn 2 phase in the direct phase of the Fe-Al alloy phase was low, resulting in LME. , The plating adhesion showed poor results. Comparative Example 5-2 is a case in which the cooling rate from 350° C. to 80° C. was made slower than the range specified in one embodiment of the present invention, and as a result, the MgZn 2 layer was formed relatively thick. In this case, the various physical properties shown in Table 3 were not significantly deteriorated, but the result of deteriorating the workability of the plating layer was confirmed. Comparative Example 5-3 is a case where the cooling rate from the plating temperature to 350°C is faster than the range specified in the present invention, and as a result, the average size of the Mg 2 Si phase was somewhat smaller, and the formation time was insufficient, so the fraction was also low. This resulted in poor corrosion resistance. Comparative Example 5-4 is a case in which the cooling rate from the plating temperature to 350°C was made slower than the range specified in the present invention. As a result, not only the Mg 2 Si phase was excessive, but also the Mg 2 Si phase in contact with the Fe-Al phase. The area ratio was also formed in excess of the preferred range defined in the present invention. For this reason, LME occurred during welding in the steel sheet manufactured according to Comparative Example 5-4. Comparative Example 5-5 not only made the cooling rate from plating temperature to 350°C faster than the range specified in the present invention, but also made the cooling rate from 350°C to 80°C slower than the range specified in one embodiment of the present invention. In one case, the proportion of the MgZn 2 phase in the direct phase of the Fe-Al alloy phase was not sufficient, and the size of the Mg 2 Si phase was coarse beyond the range specified in the present invention. As a result, it was not possible to prevent the LME phenomenon from occurring during welding. 3 and 4 show photographs of observing cross-sections of steel sheets manufactured by Comparative Examples 4-3 and 5-4, respectively.

비교예 6, 7은 Mg 함량이 매우 높았던 경우로 이 경우 MgZn2층의 두께가 두껍게 형성되었으며, Mg2Si상이 조대하고, 높은 분율을 가지도록 형성되었다. 또한 Fe-Al상에 접하는 Mg2Si 상의 면적 비율도 높게 나타났다. 그 결과로 도금 밀착성이 열위한 것으로 나타났다.In Comparative Examples 6 and 7, the Mg content was very high. In this case, the MgZn 2 layer was formed to have a thick thickness, and the Mg 2 Si phase was coarse and formed to have a high fraction. In addition, the area ratio of the Mg 2 Si phase in contact with the Fe-Al phase was also high. As a result, it was found that the plating adhesion was poor.

비교예 8는 Zn 함량이 매우 높았던 경우로서 이 경우 미합금화된 Zn 에 의하여 LME가 발생하였다. 비교예 9는 Si와 Zn 의 함량이 과다하고 Fe-Al 두께가 충분하지 못하여 LME가 발생하였을 뿐만 아니라, 불충분한 Fe-Al 합금상 형성으로 인하여 도금밀착성도 양호하지 못한 결과를 나타내었다 비교예 10과 11은 Si 함량이 다소 높았던 경우로서, 드로스 발생 등으로 인하여 도금욕 온도를 620~645℃로 하였으며, 그 결과 도금강판의 인장강도가 감소되는 결과를 나타내었다. 또한, 이들 비교예에서는 Mg2Si 크기가 다소 조대하고 분율이 과다하게 형성되었으며, 그 결과 내식성이 보통 정도를 나타내고 있었다. 이는 도금욕의 높은 Si의 함량으로 인해 계면 합금상(Fe-Al 합금상) 형성이 억제되고, 그에 따라서 합금상 직상에 MgZn2 층이 매우 불균일하게 형성되어 소지철 표면 점유율이 낮기 때문에 내식성 저하와 LME 발생에 영향을 미친것으로 판단된다. 비교예 12은 Si 함량이 과다하며, Mg 역시 다소 과다로 첨가된 경우로서 그 결과 Mg2Si가 과다하게 형성되었으며, MgZn2 층의 두께도 다소 과다한 편이고 점유율도 낮은 편이다. 이러한 비교예에서는 LME가 발생하였으며, MgZn2의 표면점유율이 낮아 도금층의 박리도 발생하였고, 내식성도 보통 수준이였다. 또한, 도금욕 온도가 높아서 도금 후에 인장강도도 큰 폭으로 감소하였다.Comparative Example 8 was a case where the Zn content was very high In this case, LME was generated by unalloyed Zn. In Comparative Example 9, the content of Si and Zn was excessive, and the Fe-Al thickness was insufficient, resulting in LME, as well as poor plating adhesion due to insufficient formation of an Fe-Al alloy phase.Comparative Example 10 And 11 are cases in which the Si content was somewhat high, and the plating bath temperature was set to 620 to 645°C due to dross generation, and as a result, the tensile strength of the plated steel sheet was decreased. In addition, in these comparative examples, the size of Mg 2 Si was somewhat coarse and the fraction was excessively formed, and as a result, the corrosion resistance was averaged. This is an interfacial alloy phase (Fe-Al alloy phase) due to the high content of Si in the plating bath. The formation was suppressed, and accordingly, the MgZn 2 layer was very non-uniformly formed directly on the alloy, and the surface occupancy of the base iron was low, so it was judged that the corrosion resistance decreased and the LME generation was affected. In Comparative Example 12, the Si content was excessive, and Mg was also added in a somewhat excessive amount. As a result, Mg 2 Si was formed excessively, and the thickness of the MgZn 2 layer was somewhat excessive and the occupancy rate was also low. In this comparative example, LME occurred, the surface share of MgZn 2 was low, so that the plating layer was peeled off, and the corrosion resistance was also at a normal level. In addition, since the plating bath temperature was high, the tensile strength was greatly reduced after plating.

도 5는 본 발명의 각 발명예와 비교예에 의하여 제조된 강판에 대하여 도금 밀착성 실험을 행한 결과를 관찰한 사진이다. 도면에서 볼 수 있듯이 본 발명의 조건을 충족하는 각 발명예에서는 도금층의 박리가 전혀 관찰되지 않았던 반면, 본 발명의 조건을 충족하지 못하였던 비교예 3, 5, 6, 7, 8에서 박리가 관찰되었음을 알 수 있다. 이러한 박리의 원인은 Fe-Al 상의 형성이 억제되어 불균일 함으로써 MgZn2 상의 표면 점유율이 낮거나 Mg2Si가 과다하게 형성되었기 때문으로 판단된다.5 is a photograph showing the results of a plating adhesion test on the steel sheets manufactured according to the inventive examples and comparative examples of the present invention. As can be seen from the drawings, peeling of the plating layer was not observed at all in each of the inventive examples satisfying the conditions of the present invention, whereas peeling was observed in Comparative Examples 3, 5, 6, 7, 8, which did not satisfy the conditions of the present invention. You can see that it is. The reason for this peeling is that the formation of the Fe-Al phase is suppressed and thus the surface occupancy of the MgZn 2 phase is low or Mg 2 Si is formed excessively.

따라서, 본 발명의 유리한 효과를 확인할 수 있었다.Therefore, it was possible to confirm the advantageous effects of the present invention.

Claims (11)

소지강판 및 상기 소지강판과의 계면으로부터 순차적으로 Fe-Al 합금층과 MgZn2 층을 포함하는 도금층으로 이루어진 고내식 도금강판.
A high corrosion-resistant plated steel sheet consisting of a plated layer including an Fe-Al alloy layer and a MgZn 2 layer sequentially from an interface between the holding steel plate and the holding steel plate.
제 1 항에 있어서, 상기 Fe-Al 합금층은 그 두께가 1~8㎛인 고내식 도금강판.
The high corrosion-resistant plated steel sheet according to claim 1, wherein the Fe-Al alloy layer has a thickness of 1 to 8 μm.
제 1 항에 있어서, 상기 MgZn2 층은 그 두께가 0.5㎛ 이상인 고내식 도금강판.
The high corrosion-resistant plated steel sheet according to claim 1, wherein the MgZn 2 layer has a thickness of 0.5 μm or more.
제 1 항에 있어서, 상기 도금층은 상기 MgZn2 층의 상부에 Al 합금층을 더 포함하는 고내식 도금강판.
The high corrosion-resistant plated steel sheet according to claim 1, wherein the plating layer further comprises an Al alloy layer on top of the MgZn 2 layer.
제 4 항에 있어서, 상기 MgZn2 상이 도금층 내에서 Fe-Al 합금상 직상에서 차지하는 비율이 90% 이상인 고내식 도금 강판.
(단, 상기 비율은 MgZn2 보다 상부에 형성되는 층을 제거하고 관찰하였을 때, 전체 면적 대비 MgZn2 상이 점유하는 면적의 비율로 정한다)
The highly corrosion-resistant plated steel sheet according to claim 4, wherein the MgZn 2 phase occupies 90% or more of the Fe-Al alloy phase in the plating layer.
(However, the ratio is determined as the ratio of the area occupied by the MgZn 2 phase relative to the total area when the layer formed above MgZn 2 is removed and observed)
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 도금층은 Mg2Si 상을 면적 기준으로 10% 이하로 포함하는 고내식 도금강판.
(단, 상기 Mg2Si 상의 비율은 도금강판을 절단하여 절단면을 관찰하였을 때, 도금층 전체의 면적 대비 Mg2Si 상이 점유하는 면적의 비율로 정한다)
The high corrosion-resistant plated steel sheet according to any one of claims 1 to 5, wherein the plated layer comprises an Mg 2 Si phase in an area of 10% or less.
(However, the proportion of the Mg 2 Si is determined by the ratio of the area for cutting by the cutting surface when observed, compared to the area of the entire plating layer Mg 2 Si phase occupies the plated steel sheet)
제 6 항에 있어서, 소지강판에 접하는 Mg2Si 상의 면적 비율은 2% 이하인 고내식 도금강판.
(단, 상기 Mg2Si 상의 비율은 Mg2Si 보다 상부에 형성되는 층을 제거하고 관찰하였을 때, 전체 면적 대비 Mg2Si 상이 점유하는 면적의 비율로 정한다)
The high corrosion-resistant plated steel sheet according to claim 6, wherein the area ratio of the Mg 2 Si phase in contact with the holding steel sheet is 2% or less.
(However, the proportion of the Mg 2 Si is determined by the ratio of the area of removing the layer formed on more Mg 2 Si and time, compared to the total area occupied by Mg 2 Si phase was observed)
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 도금층은 중량 기준으로 Si: 5~10%, Zn: 5~30%, Mg: 1~7%을 포함하는 조성을 가지는 고내식 도금강판.
The highly corrosion-resistant plated steel sheet according to any one of claims 1 to 5, wherein the plating layer has a composition comprising Si: 5 to 10%, Zn: 5 to 30%, and Mg: 1 to 7% by weight.
제 8 항에 있어서, 상기 도금층의 조성은 중량 기준으로 Be과 Sr을 합계로 0.5% 이하 더 포함하는 고내식 도금강판.
The highly corrosion-resistant plated steel sheet according to claim 8, wherein the composition of the plating layer further comprises 0.5% or less in total of Be and Sr based on weight.
소지강판을 준비하는 단계;
상기 소지강판을 700~1050℃로 가열하는 단계;
상기 강판을 530~750℃로 유지된 알루미늄계 도금욕에 침지하여 알루미늄 도금강판을 얻는 단계;
얻어진 알루미늄계 도금강판의 도금부착량을 조절하는 단계;
350℃까지 7~25℃/초의 냉각속도로 냉각하는 단계; 및
350℃ 부터 80℃까지 5~15℃/초의 냉각속도로 냉각하는 단계
를 포함하는 고내식 도금강판의 제조방법.
Preparing a holding steel plate;
Heating the holding steel sheet to 700 ~ 1050 °C;
Obtaining an aluminum plated steel plate by immersing the steel plate in an aluminum-based plating bath maintained at 530 to 750°C;
Adjusting the plating amount of the obtained aluminum-based plated steel sheet;
Cooling to 350° C. at a cooling rate of 7 to 25° C./sec; And
Cooling from 350℃ to 80℃ at a cooling rate of 5~15℃/sec
Method of manufacturing a high corrosion-resistant plated steel sheet comprising a.
제 10 항에 있어서, 상기 강판을 도금욕에 인입하는 온도는 도금욕 온도 - 20℃ 내지 도금욕 온도 + 50℃인 고내식 도금강판의 제조방법.The method of claim 10, wherein the temperature at which the steel sheet is introduced into the plating bath is a plating bath temperature of -20°C to a plating bath temperature of +50°C.
KR1020200167697A 2018-09-27 2020-12-03 Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion KR102384675B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200167697A KR102384675B1 (en) 2018-09-27 2020-12-03 Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180115244A KR102354447B1 (en) 2018-09-27 2018-09-27 Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion
KR1020200167697A KR102384675B1 (en) 2018-09-27 2020-12-03 Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180115244A Division KR102354447B1 (en) 2018-09-27 2018-09-27 Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion

Publications (2)

Publication Number Publication Date
KR20200138704A true KR20200138704A (en) 2020-12-10
KR102384675B1 KR102384675B1 (en) 2022-04-08

Family

ID=81183114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200167697A KR102384675B1 (en) 2018-09-27 2020-12-03 Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion

Country Status (1)

Country Link
KR (1) KR102384675B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040771A (en) * 1999-08-09 2002-05-30 다이도 스틸 시트 코포레이션 Zn-Al-Mg-Si ALLOY PLATED STEEL PRODUCT HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR PREPARING THE SMAE
JP2005264188A (en) 2004-03-16 2005-09-29 Nippon Steel Corp HOT DIP Zn-Al ALLOY PLATED STEEL HAVING EXCELLENT BENDABILITY, AND ITS MANUFACTURING METHOD
KR20110088573A (en) 2009-01-16 2011-08-03 신닛뽄세이테쯔 카부시키카이샤 Hot-dip zn-al-mg-si-cr alloy coated steel material with excellent corrosion resistance
KR20140129529A (en) * 2013-04-30 2014-11-07 현대제철 주식회사 Hot-dip aluminium based alloy coated steel sheet with excellent sacrificial protection and method of maunfacturing the same
KR20150049991A (en) * 2013-10-31 2015-05-08 포스코강판 주식회사 HOT DIP Al PLATED STEEL SHEET HAVING EXCELLENT SURFACE APPEARANCE AND HEAT RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
JP2017066459A (en) * 2015-09-29 2017-04-06 新日鐵住金株式会社 Plated steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040771A (en) * 1999-08-09 2002-05-30 다이도 스틸 시트 코포레이션 Zn-Al-Mg-Si ALLOY PLATED STEEL PRODUCT HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR PREPARING THE SMAE
JP2005264188A (en) 2004-03-16 2005-09-29 Nippon Steel Corp HOT DIP Zn-Al ALLOY PLATED STEEL HAVING EXCELLENT BENDABILITY, AND ITS MANUFACTURING METHOD
KR20110088573A (en) 2009-01-16 2011-08-03 신닛뽄세이테쯔 카부시키카이샤 Hot-dip zn-al-mg-si-cr alloy coated steel material with excellent corrosion resistance
KR20140129529A (en) * 2013-04-30 2014-11-07 현대제철 주식회사 Hot-dip aluminium based alloy coated steel sheet with excellent sacrificial protection and method of maunfacturing the same
KR20150049991A (en) * 2013-10-31 2015-05-08 포스코강판 주식회사 HOT DIP Al PLATED STEEL SHEET HAVING EXCELLENT SURFACE APPEARANCE AND HEAT RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
JP2017066459A (en) * 2015-09-29 2017-04-06 新日鐵住金株式会社 Plated steel

Also Published As

Publication number Publication date
KR102384675B1 (en) 2022-04-08

Similar Documents

Publication Publication Date Title
KR102354447B1 (en) Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion
JP6839283B2 (en) Molten aluminum-based plated steel with excellent corrosion resistance and workability and its manufacturing method
WO2020213686A1 (en) Galvanized steel plate
EP1158069A1 (en) Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
WO2012053694A1 (en) Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same
JP7070795B2 (en) Plated steel sheet
JP7136342B2 (en) plated steel plate
WO2021171519A1 (en) Hot-stamped article
KR102501440B1 (en) Plated steel sheet for hot press forming having excellent surface property and method for manufacturing the same
KR102557220B1 (en) plated steel
KR102384675B1 (en) Anti corrosive coated steel having good resistance against liquid metal embrittlement and coating adhesion
KR102311502B1 (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
JP2023507638A (en) Aluminum-based alloy-plated steel sheet with excellent workability and corrosion resistance, and method for producing the same
JP2005336545A (en) Steel sheet to be galvannealed
KR102175731B1 (en) Alloyed aluminium coated steel sheet having excellent weldability and phosphating properties and method of manufacturing the same
EP4234736A1 (en) Plated steel sheet
JP2020084224A (en) Hot-dip Al-plated steel sheet
KR20220142517A (en) hot stamped body
KR101349612B1 (en) Hot-dip bath, hot-dip coated steel and method for manufacturing the same
JP2020122199A (en) Multi-layer plated steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant