KR20200137935A - Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2'-deoxyguanosine as an active ingredient - Google Patents

Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2'-deoxyguanosine as an active ingredient Download PDF

Info

Publication number
KR20200137935A
KR20200137935A KR1020190158918A KR20190158918A KR20200137935A KR 20200137935 A KR20200137935 A KR 20200137935A KR 1020190158918 A KR1020190158918 A KR 1020190158918A KR 20190158918 A KR20190158918 A KR 20190158918A KR 20200137935 A KR20200137935 A KR 20200137935A
Authority
KR
South Korea
Prior art keywords
cardiac arrest
composition
oh8dg
heart
damage during
Prior art date
Application number
KR1020190158918A
Other languages
Korean (ko)
Other versions
KR102200030B1 (en
Inventor
홍정희
손국희
정명희
지민정
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of KR20200137935A publication Critical patent/KR20200137935A/en
Application granted granted Critical
Publication of KR102200030B1 publication Critical patent/KR102200030B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • A61K31/708Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid having oxo groups directly attached to the purine ring system, e.g. guanosine, guanylic acid
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0226Physiologically active agents, i.e. substances affecting physiological processes of cells and tissue to be preserved, e.g. anti-oxidants or nutrients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a composition for preventing cardiac injury in case of cardiac arrest containing 8-oxo-2′-deoxyguanosine as an active component. The 8-oxo-2′-deoxyguanosine inhibits an increase of free radicals in cardiomyocytes, inhibits ion transporter activity, inhibits the expression of poly-ADP-ribose (PAR), HSP60, Bcl-2, P-53, and BAX, which are apoptosis factors, and reduces COX-2 which is an inflammatory factor and CTGF which is a fibrosis factor, thereby being able to be usefully used as the composition for preventing cardiac injury in case of cardiac arrest.

Description

8-옥소-2'-디옥시구아노신을 유효성분으로 포함하는 심정지 시 심장손상 방지용 조성물{Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2'-deoxyguanosine as an active ingredient}Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2'-deoxyguanosine as an active ingredient, containing 8-oxo-2'-deoxyguanosine as an active ingredient}

본 발명은 심정지 시 심장손상 방지용 조성물에 관한 것으로, 구체적으로 8-옥소-2'-디옥시구아노신을 유효성분으로 포함하는 심정지 시 심장손상 방지용 조성물에 관한 것이다.The present invention relates to a composition for preventing heart damage during cardiac arrest, and specifically relates to a composition for preventing heart damage during cardiac arrest, comprising 8-oxo-2'-dioxyguanosine as an active ingredient.

인체에서의 심장은 혈액을 순환시키는 원동력이 되는 순환계의 중추기관으로, 주기적으로 수축과 이완을 되풀이함으로써 혈액을 온몸에 공급하는 펌프 역할을 하는데, 심장 질환은 선천성 심장질환과 후천성 심장질환이 있다.The heart in the human body is the central organ of the circulatory system that is the motive force for circulating blood, and acts as a pump that supplies blood to the whole body by repetitive contraction and relaxation. Heart diseases include congenital heart disease and acquired heart disease.

심장수술은 심장으로 유입되는 혈액을 막아 심장을 비게 하고, 심장을 절개하여 내부를 직접 육안으로 보면서 조작하는 수술을 말한다. 이러한 심장수술 시에는 심장의 박동을 멈추고 심장의 혈액을 빼낸 후, 시야를 확보해야 하기 때문에 심장의 정지는 필수적이다.Heart surgery refers to an operation in which the heart is emptied by blocking blood flowing into the heart, and the heart is incised to see the inside directly with the naked eye. In such heart surgery, heart stop is essential because it is necessary to stop the beating of the heart, drain the blood from the heart, and secure the field of view.

심장박동이 완전히 멈춘 상태에서는 관상동맥 혈류가 없으므로 심장근육이 손상을 받게 되는데, 심정지 기간 도중의 심장근육 손상을 최소한으로 줄여주기 위해 심정지액(cardioplegic solution)을 주며 저체온 상태에서 수술한다.When the heartbeat is completely stopped, the heart muscle is damaged because there is no coronary artery blood flow.In order to minimize the damage to the heart muscle during the cardiac arrest period, cardioplegic solution is given and surgery is performed under hypothermia.

이러한 목적으로 사용되는 심정지액은, 심폐바이패스 후에 대동맥혈관을 차단하여 심장으로 가는 혈류가 차단이 되는 때 주입한다. 심정지액은 보통 고농도의 포타슘(주로 20 내지 25 mEq/L)을 함유하고 있으며, 심정지액이 주입되면 즉각적이고 지속적인 확장기성 심정지(diastolic arrest) 상태가 유발되면서 심근의 에너지 소모가 최소화된다.Cardiac arrest fluid used for this purpose is injected after cardiopulmonary bypass, when the aortic blood vessel is blocked and blood flow to the heart is blocked. Cardiac arrest fluid usually contains a high concentration of potassium (mainly 20 to 25 mEq/L), and when cardiac arrest fluid is injected, immediate and continuous diastolic arrest is induced, thereby minimizing energy consumption of the myocardium.

그런데 심정지 중에는 심근이 허혈상태로 되어 산소가 부족하므로 심기능이 저하되기 쉽다. 그 때문에 심정지액은 심정지작용 외에, 심근을 보호하는 작용도 구비하여야한다. 종래의 심정지액으로 세인트 토마스액 등이 알려져 있는데, 세인트 토마스액은 Na+, K+, Mg2 및 Ca2 +와 같은 여러 이온을 함유하고 있고, 각 이온의 농도는 세포외액의 농도에 가깝다.However, during cardiac arrest, the myocardial muscle becomes ischemic and lacks oxygen, so cardiac function is liable to decrease. Therefore, in addition to cardiac arrest, the cardiac arrest fluid must have an action to protect the myocardium. St. Thomas' fluid is known as a conventional cardiac arrest fluid. St Thomas' fluid contains several ions such as Na + , K + , Mg 2 and Ca 2 +, and the concentration of each ion is close to that of the extracellular fluid.

심정지액은, 1970년대에 고농도 포타슘 기반의 Thomas hospital solution이 개발되어 이후 지속적인 개량 연구가 진행되고 있다. 고농도 포타슘 심정지액이 심근괴사 등 문제를 일으킬 수 있다는 연구 결과들이 발표되었고, 이를 극복하고자 하는 연구가 다음과 같이 지속되었으나 유의미한 효과는 얻지 못하였다.For cardiac arrest, Thomas hospital solution based on high-concentration potassium was developed in the 1970s, and since then, continuous improvement research has been conducted. Research results have been published that high concentration of potassium cardiac arrest fluid can cause problems such as myocardial necrosis, and studies to overcome this have been continued as follows, but no significant effect has been obtained.

심장수술 시에 심장을 정지시키고 심정지 동안 심근 보호를 위해 사용되는 고농도 칼륨(K+) 심정지액은, 심근 세포의 이온 농도 변화를 초래하여 세포 내 Ca2 + 등의 이온농도의 변화를 일으키고, 이로 인해 오히려 심정지액 사용 후 역설적으로 심근 세포 손상이 발생할 수 있다(Front Physiol. 2013 Aug 28;4:228).The high-concentration potassium (K + ) cardiac arrest fluid, which is used to stop the heart during cardiac surgery and protect the myocardium during cardiac arrest, causes a change in the ionic concentration of the myocardial cells, causing a change in the intracellular ionic concentration such as Ca 2 + . Therefore, paradoxically, cardiomyocyte damage may occur after the use of cardiac arrest fluid (Front Physiol. 2013 Aug 28;4:228).

즉, 심정지액에 노출된 심근세포는 세포의 생존 및 사멸에 중요한 항상성 균형이 깨지고 세포질 내 다양한 효소를 활성화시켜 세포 자멸사와 세포 괴사를 일으키게 되어, 심근세포의 손상이 발생할 수밖에 없다. 구체적으로, 심근세포의 이온수송체인 NBC(Sodium/Bicarbonate Cotransporter)의 활성이 증가되어 과도한 이온 불균형이 초래되고 세포의 항상성에 관여하는 여러 기능들이 손상되며, 또한 상기 NBC의 활성증가로 심근세포의 산성화가 일어난다. 그러므로 심정지액 투여 시 발생하는, 이온수송체인 NBC의 활성을 조절해야 할 필요가 있다.That is, cardiomyocytes exposed to cardiac arrest fluid break homeostasis, which is important for cell survival and death, and activate various enzymes in the cytoplasm to cause apoptosis and cell necrosis, resulting in damage to cardiomyocytes. Specifically, the activity of NBC (Sodium/Bicarbonate Cotransporter), which is an ion transporter of cardiomyocytes, increases, resulting in excessive ion imbalance, impairing various functions involved in cell homeostasis, and acidification of cardiomyocytes due to the increase in the activity of the NBC. Happens. Therefore, it is necessary to control the activity of NBC, an ion transporter, that occurs during administration of cardiac arrest fluid.

심정지 시 발생하는 칼슘의 증가를 억제시키기 위한 Ca2 + channel antagonist인 verapamil, nifedifine이나, Na+ 이온 조절을 위한 Na+ channel blocker를 활용하여 심정지액을 만들고자 하는 연구들도 진행되었다(Ann Thorac Surg. 1983 Dec;36(6):654-63; Thorac Cardiovasc Surg. 1985 Dec;33(6):354-9; Ann Thorac Surg. 1985 Apr;39(4):324-8; Eur Heart J. 1983 May;4 Suppl C:115-21.).In Ca 2 + channel antagonist for inhibiting an increase in calcium that occur during cardiac arrest verapamil, nifedifine or, Na + by using the Na + channel blocker for the ion adjustment was conducted also studies to create one cardioplegia (Ann Thorac Surg. 1983 Dec;36(6):654-63; Thorac Cardiovasc Surg.1985 Dec;33(6):354-9; Ann Thorac Surg.1985 Apr;39(4):324-8; Eur Heart J. 1983 May ;4 Suppl C:115-21.).

한편, 심근세포가 심정지액에 노출되면 세포사멸인자들의 발현이 증가하는데, 이는 세포사멸 분석의 척도가 될 수 있다. 최근 연구에 따르면, PARP(Poly-ADP-ribose polymerase)의 활성이 DNA 손상이 회복될 때 세포 생존의 중요한 과정이면서도, ATP 소비가 많은 과정이므로 고에너지 인산염을 더욱 환원시키고, 결국 세포사멸 또는 괴사로 이어짐이 알려졌다(Mol. Med. 2014, 20, 313-328.). 그리고 심정지 상태 후에 미토콘드리아의 HSP60(heat shock protein 60)이 감소되는 것이, 미토콘드리아를 보존하는데 있어 도움이 되는 것으로 보고되었다(Front Physiol. 2017; 8: 324). 따라서, 세포사멸인자인 PAR(Poly-ADP-ribose)와 HSP60의 발현을 줄이게 되면, 심근세포의 사멸을 줄여 심근을 보호하는데 도움이 됨을 알 수 있다.Meanwhile, when cardiomyocytes are exposed to cardiac arrest fluid, the expression of apoptosis factors increases, which can be a measure of apoptosis assay. According to a recent study, the activity of PARP (Poly-ADP-ribose polymerase) is an important process for cell survival when DNA damage is restored, but since it is a process that consumes a lot of ATP, it further reduces high-energy phosphate, resulting in apoptosis or necrosis. It is known to be followed (Mol. Med. 2014, 20, 313-328.). In addition, it has been reported that the reduction of mitochondrial heat shock protein 60 (HSP60) after cardiac arrest is helpful in preserving mitochondria (Front Physiol. 2017; 8: 324). Therefore, it can be seen that reducing the expression of the apoptosis factors PAR (Poly-ADP-ribose) and HSP60 helps to protect the myocardium by reducing the death of myocardial cells.

종래의 심정지액에서는 심근 보호작용이 충분하지 아니하여, 본 발명자들은 심근보호에 유용한 심정지 시 심장손상 방지용 조성물을 제공하고자 연구한 결과, 8-옥소-2'-디옥시구아노신이 심정지액과 함께 사용시에, 심근세포의 활성산소 증가를 억제하고, 이온수송체 활성을 억제하며, 세포사멸인자인 PAR(Poly-ADP-ribose), HSP60, Bcl-2, P-53 및 BAX의 발현을 억제하고, 염증인자인 COX-2 및 섬유화인자인 CTGF를 감소시키는 효과가 있는 것을 발견하였다.Since the myocardial protective action is not sufficient in the conventional cardiac arrest solution, the present inventors studied to provide a composition for preventing heart damage during cardiac arrest, which is useful for cardiac arrest. As a result, when 8-oxo-2'-dioxyguanosine is used together with cardiac arrest solution Inhibits the increase of free radicals in cardiomyocytes, inhibits ion transporter activity, inhibits the expression of apoptosis factors PAR (Poly-ADP-ribose), HSP60, Bcl-2, P-53 and BAX, and inflammation It was found to have an effect of reducing the factor COX-2 and the fibrosis factor CTGF.

본 발명의 목적은 고농도 K+를 포함하는 심정지액의 사용에 따라 발생하는 심장손상을 방지할 수 있는 조성물을 제공하면서 동시에 상기 조성물을 포함하는 심정지액을 제공하는 것이다.It is an object of the present invention to provide a composition capable of preventing cardiac damage caused by the use of a cardiac arrest solution containing a high concentration of K + while at the same time providing a cardiac arrest solution containing the composition.

본 발명의 다른 목적은 고농도 K+를 포함하는 심정지액의 사용에 따라 발생하는 심장손상을 방지할 수 있는 조성물 및 상기 심정지액을 포함하는 키트를 제공하는 것이다.Another object of the present invention is to provide a composition capable of preventing heart damage caused by the use of a cardiac arrest solution containing a high concentration of K + and a kit including the cardiac arrest solution.

본 발명의 일 측면은, 8-옥소-2'-디옥시구아노신을 유효성분으로 포함하는 심정지 시 심장손상 방지용 조성물을 제공하는 것에 있다.An aspect of the present invention is to provide a composition for preventing heart damage during cardiac arrest, comprising 8-oxo-2'-dioxyguanosine as an active ingredient.

본 발명의 다른 측면은, K+를 포함하는 심정지액에 8-옥소-2'-디옥시구아노신이 첨가된 심정지액의 형태로 상기 조성물을 제공하는 것에 있다.Another aspect of the present invention is to provide the composition in the form of a cardiac arrest solution in which 8-oxo-2'-dioxyguanosine is added to cardiac arrest solution containing K + .

본 발명의 다른 측면은, 심정지액 및 상기 조성물을 포함하는 심장수술을 위한 심정지용 키트를 제공하는 것에 있다.Another aspect of the present invention is to provide a cardiac arrest kit for cardiac surgery comprising the cardiac arrest fluid and the composition.

본 발명에 따른 8-옥소-2'-디옥시구아노신은 심정지액과 함께 사용 시에, 심근세포의 활성산소 증가를 억제하고, 이온수송체 활성을 억제하며, 세포사멸인자인 PAR(Poly-ADP-ribose), HSP60, Bcl-2, P-53 및 BAX의 발현을 억제하고, 염증인자인 COX-2 및 섬유화인자인 CTGF를 감소시켜, 심정지 시 심장손상 방지용 조성물로 유용하게 사용할 수 있다.When 8-oxo-2'-deoxyguanosine according to the present invention is used with cardiac arrest fluid, it inhibits the increase of free radicals in cardiomyocytes, inhibits ion transporter activity, and is an apoptosis factor PAR (Poly-ADP- ribose), HSP60, Bcl-2, P-53, and BAX, and reduce COX-2, an inflammatory factor, and CTGF, a fibrosis factor, so that it can be usefully used as a composition for preventing heart damage during cardiac arrest.

도 1은 Sodium/Bicarbonate Cotransporter(NBC)인 NBCe1을 과발현시킨 HEK 293T 세포(인간 배아 신장 세포)에, Na+이 없는 HCO3 - 용액 및 H2O2 를 동시에 주입하기 전후의 세포 내 이온수송체(NBC) 활성을 나타내는 그래프이다.
도 2는 Sodium/Bicarbonate Cotransporter(NBC)인 NBCe1을 과발현시킨 HEK 293T 세포(인간 배아 신장 세포)에, H2O2를 먼저 주입하고 1시간 후에 Na+이 없는 HCO3 - 용액 주입한 후, 세포 내 이온수송체 활성변화를 나타내는 그래프이다.
도 3은 대조군, 심정지액(HTK), 100 μg/mL oh8dG 10분 전처리 후 심정지액 처리 및 100 μg/mL oh8dG 30분 전처리 후 심정지액 처리에 따른, 쥐의 단일심근세포 내 활성산소 변화를 측정한 공촛점 현미경 사진이다.
도 4는 대조군, 심정지액, 100 μg/mL oh8dG 10분 전처리 후 심정지액 처리 및 100 μg/mL oh8dG 30분 전처리 후 심정지액 처리에 따른, 쥐의 단일심근세포 내 활성산소 변화 측정 결과를 정량화하여 나타낸 그래프이다.
도 5는 BCECF-AM을 이용하여, 대조군, 심정지액 처리, 100 μg/mL oh8dG 처리 및 100 μg/mL oh8dG 1시간 전처리 후 심정지액 처리에 따른, 쥐의 단일심근세포 내 NBC 활성을 측정하고, Resting pH level을 측정한 결과를 나타내는 그래프이다.
도 6은 대조군, 심정지액 처리, 100 μg/mL oh8dG 처리 및 100 μg/mL oh8dG 1시간 전처리 후 심정지액 처리에 따른, 쥐의 단일심근세포 내 NBC 활성을 정리하여 나타낸 그래프이다.
도 7은 대조군, 심정지액 처리, 100 μg/mL oh8dG 처리 및 100 μg/mL oh8dG 1시간 전처리 후 심정지액 처리에 따른, 쥐의 단일심근세포 내 Resting pH level을 정리하여 나타낸 그래프이다.
도 8은 BCECF-AM을 이용하여, 대조군으로서 NBCe1-B를 과발현시킨 HEK293T 세포 및 이에 10 μg/mL 또는 100 μg/mL 농도의 oh8dG를 1시간 동안 처리함에 따른, NBC 활성을 측정한 결과를 나타내는 그래프이다.
도 9는 대조군으로서 NBCe1-B를 과발현시킨 HEK293T 세포 및 이에 10 μg/mL 또는 100 μg/mL 농도의 oh8dG를 1시간 동안 처리함에 따른, NBC 활성을 정리하여 나타낸 그래프이다.
도 10은 대조군인 심정지 직후, 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, 세포사멸 정도를 Tunel assay로 측정한 사진이다.
도 11은 대조군인 심정지 직후, 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, 세포사멸 정도를 Tunel assay로 측정한 결과를 정량화하여 나타낸 그래프이다.
도 12는 대조군인 심정지 직후, 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, PAR 발현정도를 측정한 사진이다.
도 13은 대조군인 심정지 직후, 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, PAR 발현정도를 측정한 결과를 정량화하여 나타낸 그래프이다.
도 14는 대조군인 심정지 직후, 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, HSP60 발현정도를 측정한 사진이다.
도 15는 대조군인 심정지 직후, 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, HSP60 발현정도를 측정한 결과를 정량화하여 나타낸 그래프이다.
도 16은 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, Bcl-2, P-53 및 BAX의 RNA 발현정도를 겔 전기영동법으로 측정한 사진이다.
도 17은 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, Bcl-2, P-53 및 BAX의 RNA 발현정도를 겔 전기영동법으로 측정한 결과를 정량화하여 나타낸 그래프이다.
도 18은 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, CTGF의 RNA 발현정도를 겔 전기영동법으로 측정한 사진이다.
도 19는 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, CTGF의 RNA 발현정도를 겔 전기영동법으로 측정한 결과를 정량화하여 나타낸 그래프이다.
도 20은 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, COX-2 및 CTGF의 단백질 발현정도를 겔 전기영동법으로 측정한 사진이다.
도 21은 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, COX-2의 단백질 발현정도를 겔 전기영동법으로 측정한 결과를 정량화하여 나타낸 그래프이다.
도 22는 심정지액 2시간 처리, 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 1시간 처리 및 심정지액 2시간 처리와 함께 100 μg/mL oh8dG을 2시간 처리함에 따른, CTGF의 단백질 발현정도를 겔 전기영동법으로 측정한 결과를 정량화하여 나타낸 그래프이다.
FIG. 1 shows HEK 293T cells (human embryonic kidney cells) overexpressing Sodium/Bicarbonate Cotransporter (NBC), NBCe1, in HCO 3 - solution and H 2 O 2 without Na + It is a graph showing the intracellular ion transporter (NBC) activity before and after simultaneously injecting.
Figure 2 shows HEK 293T cells (human embryonic kidney cells) overexpressing Sodium/Bicarbonate Cotransporter (NBC) NBCe1, H 2 O 2 was first injected and 1 hour later, Na + free HCO 3 - solution was injected, and then cells It is a graph showing the change in the activity of the inner ion transporter.
Figure 3 is a control group, cardiac arrest fluid (HTK), 100 μg/mL oh8dG 10 min pretreatment followed by cardiac arrest fluid treatment and 100 μg/mL oh8dG 30 min pretreatment followed by cardiac arrest fluid treatment, measuring the changes in active oxygen in single myocardial cells in mice This is a confocal micrograph.
Figure 4 is a control group, cardiac arrest fluid, 100 μg/mL oh8dG 10 minutes pretreatment followed by cardiac arrest fluid treatment and 100 μg/mL oh8dG 30 minutes pretreatment followed by cardiac arrest fluid treatment. This is the graph shown.
5 is a control group, cardiac arrest fluid treatment, 100 μg/mL oh8dG treatment and 100 μg/mL oh8dG 1 hour pretreatment followed by cardiac arrest fluid treatment using BCECF-AM to measure NBC activity in single cardiomyocytes of mice, It is a graph showing the result of measuring the resting pH level.
6 is a graph showing the NBC activity in single cardiomyocytes of mice according to the control, cardiac arrest fluid treatment, 100 μg/mL oh8dG treatment, and 100 μg/mL oh8dG 1 hour pretreatment and then cardiac arrest fluid treatment.
7 is a graph showing a summary of Resting pH levels in single cardiomyocytes of mice according to the control, cardiac arrest fluid treatment, 100 μg/mL oh8dG treatment, and 100 μg/mL oh8dG 1 hour pretreatment and then cardiac arrest fluid treatment.
FIG. 8 shows the results of measuring NBC activity by treating HEK293T cells overexpressing NBCe1-B as a control and oh8dG at a concentration of 10 μg/mL or 100 μg/mL for 1 hour using BCECF-AM. It is a graph.
9 is a graph showing a summary of NBC activity according to treatment of HEK293T cells overexpressing NBCe1-B as a control and oh8dG at a concentration of 10 μg/mL or 100 μg/mL for 1 hour.
FIG. 10 is a control group immediately after cardiac arrest, cardiac arrest for 2 hours, cardiac arrest for 2 hours, 100 μg/mL oh8dG for 1 hour, cardiac arrest for 2 hours, 100 μg/mL oh8dG for 2 hours, This is a picture of the degree of cell death measured by Tunel assay.
11 is a control group immediately after cardiac arrest, cardiac arrest for 2 hours, cardiac arrest for 2 hours treatment with 100 μg/mL oh8dG for 1 hour and cardiac arrest for 2 hours with 100 μg/mL oh8dG for 2 hours, This is a graph that quantifies the result of measuring the degree of apoptosis by Tunel assay.
12 is a control group immediately after cardiac arrest, cardiac arrest for 2 hours, cardiac arrest for 2 hours treatment with 100 μg/mL oh8dG for 1 hour and cardiac arrest for 2 hours with 100 μg/mL oh8dG for 2 hours, This is a picture of the level of PAR expression.
13 is a control group immediately after cardiac arrest, cardiac arrest for 2 hours, cardiac arrest for 2 hours and 100 μg/mL oh8dG for 1 hour and cardiac arrest for 2 hours and 100 μg/mL oh8dG for 2 hours, This is a graph showing the quantification of the result of measuring the level of PAR expression.
14 is a control group immediately after cardiac arrest, cardiac arrest for 2 hours, cardiac arrest for 2 hours treatment with 100 μg/mL oh8dG for 1 hour and cardiac arrest for 2 hours with 100 μg/mL oh8dG for 2 hours, This is a picture of HSP60 expression level.
15 is a control group immediately after cardiac arrest, cardiac arrest for 2 hours, cardiac arrest for 2 hours treatment with 100 μg/mL oh8dG for 1 hour and cardiac arrest for 2 hours with 100 μg/mL oh8dG for 2 hours, It is a graph showing the quantification of the result of measuring the HSP60 expression level.
Figure 16 is a cardiac arrest fluid treatment for 2 hours, 100 μg/mL oh8dG with a cardiac arrest solution for 2 hours treatment and 100 μg/mL oh8dG with a cardiac arrest solution for 2 hours treatment for 2 hours, Bcl-2, P This is a picture of the RNA expression level of -53 and BAX measured by gel electrophoresis.
FIG. 17 shows Bcl-2, P according to treatment with cardiac arrest for 2 hours, treatment with 100 μg/mL oh8dG for 1 hour and treatment with cardiac arrest for 2 hours and treatment with 100 μg/mL oh8dG for 2 hours It is a graph showing the quantification of the results of measuring the RNA expression levels of -53 and BAX by gel electrophoresis.
FIG. 18 shows the level of RNA expression of CTGF according to treatment with cardiac arrest for 2 hours, treatment with 100 μg/mL oh8dG for 1 hour and treatment with cardiac arrest for 2 hours and treatment with 100 μg/mL oh8dG for 2 hours. Is a photograph measured by gel electrophoresis.
FIG. 19 shows the level of RNA expression of CTGF as a result of 2 hours of cardiac arrest, 2 hours of cardiac arrest and 100 μg/mL oh8dG for 1 hour, and 100 μg/mL oh8dG with 2 hours of cardiac arrest and 2 hours of treatment. Is a graph showing the quantification of the results measured by gel electrophoresis.
Figure 20 is a cardiac arrest fluid treatment for 2 hours, 100 μg/mL oh8dG with a cardiac arrest solution for 2 hours treatment and 100 μg/mL oh8dG with a cardiac arrest fluid treatment for 1 hour, COX-2 and CTGF This is a photograph of the protein expression level measured by gel electrophoresis.
FIG. 21 is a protein of COX-2 according to treatment with cardiac arrest for 2 hours, treatment with 100 μg/mL oh8dG for 1 hour and treatment with cardiac arrest for 2 hours and treatment with 100 μg/mL oh8dG for 2 hours It is a graph showing the quantification of the result of measuring the expression level by gel electrophoresis.
FIG. 22 shows the protein expression level of CTGF according to treatment with cardiac arrest for 2 hours, treatment with 100 μg/mL oh8dG for 1 hour and treatment with cardiac arrest for 2 hours and treatment with 100 μg/mL oh8dG for 2 hours. Is a graph showing the quantification of the results measured by gel electrophoresis.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은, One aspect of the present invention,

8-옥소-2'-디옥시구아노신을 유효성분으로 함유하는 심정지 시 심장손상 방지용 조성물을 제공한다.It provides a composition for preventing heart damage during cardiac arrest containing 8-oxo-2'-deoxyguanosine as an active ingredient.

심장수술 시에는 심장을 정지시키고 심정지 동안 심근의 손상을 줄이기 위해 고농도 칼륨(K+)을 포함하는 심정지액을 사용하지만, 수술 후 심장에 혈액을 재관류시킬 때에 상기 심정지액으로 인해 심장에 손상이 생길 수 있다. 심정지액에 포함된 고농도 칼륨(K+)으로 인해, 심근세포의 이온수송체인 NBC(Sodium/Bicarbonate Cotransporter)의 활성이 증가되며 심근세포의 산성화가 일어나기 때문이다. During heart surgery, cardiac arrest fluid containing high concentration of potassium (K + ) is used to stop the heart and reduce damage to the myocardium during cardiac arrest. However, when blood is reperfused to the heart after surgery, the cardiac arrest fluid causes damage to the heart. I can. This is because the activity of NBC (Sodium/Bicarbonate Cotransporter), which is an ion transporter of cardiomyocytes, increases due to the high concentration of potassium (K + ) contained in cardiac arrest fluid, and acidification of cardiomyocytes occurs.

이에 심근보호를 위하여, 심정지 시 심장손상 방지용 조성물이 심정지액과 함께 사용될 수 있다. 구체적으로 8-옥소-2'-디옥시구아노신을 유효성분으로 함유하는 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용 시에, 심근세포의 활성산소 증가를 억제하고, 이온수송체 활성을 억제하며, 세포사멸인자인 PAR(Poly-ADP-ribose), HSP60, Bcl-2, P-53 및 BAX의 발현을 억제하고, 염증인자인 COX-2 및 섬유화인자인 CTGF를 감소시킴으로써 심장손상을 방지할 수 있다.Accordingly, for myocardial protection, a composition for preventing heart damage during cardiac arrest may be used together with cardiac arrest fluid. Specifically, the composition for preventing heart damage during cardiac arrest containing 8-oxo-2'-deoxyguanosine as an active ingredient, when used with cardiac arrest fluid, inhibits the increase of free radicals in cardiomyocytes and inhibits ion transporter activity, Heart damage can be prevented by inhibiting the expression of the apoptosis factors PAR (Poly-ADP-ribose), HSP60, Bcl-2, P-53 and BAX, and reducing the inflammatory factor COX-2 and the fibrosis factor CTGF. have.

한편, 심정지액과 함께 사용되는 경우에 상기 8-옥소-2'-디옥시구아노신(oh8dG)의 농도는 1 내지 1000 μg/mL, 3 내지 700 μg/mL, 6 내지 400 μg/mL, 10 내지 100 μg/mL, 50 내지 150 μg/mL 또는 90 내지 110 μg/mL일 때에 심장손상을 방지할 수 있으나, 이는 예시일뿐, 이에 한정되지 않는다. On the other hand, when used with cardiac arrest, the concentration of the 8-oxo-2'-dioxyguanosine (oh8dG) is 1 to 1000 μg/mL, 3 to 700 μg/mL, 6 to 400 μg/mL, 10 In the case of to 100 μg/mL, 50 to 150 μg/mL, or 90 to 110 μg/mL, heart damage can be prevented, but this is only an example and is not limited thereto.

또한 상기 심정지액의 종류는 HTK(Histidine-Tryptophan-Ketoglutarate), Hyperkalemic cardioplegia, Cold antegrade crystalloid cardioplegia, crystalloid cardioplegia, warm blood cardioplegia, high-KCl cardioplegic solution 또는 del Nido (DN) solution일 수 있으나, 이에 한정되지 않는다.In addition, the type of cardiac arrest fluid may be HTK (Histidine-Tryptophan-Ketoglutarate), Hyperkalemic cardioplegia, Cold antegrade crystalloid cardioplegia, crystalloid cardioplegia, warm blood cardioplegia, high-KCl cardioplegic solution or del Nido (DN) solution, but is not limited thereto. Does not.

상기 심정지액의 사용량은 심장수술을 받는 사람의 나이, 체중, 질환의 경중 등의 요인에 따라 달라질 수 있으나, 0.1 내지 10 mL/minute/심장무게(g), 0.3 내지 7 mL/minute/심장무게(g), 0.5 내지 4 mL/minute/심장무게(g), 0.8 내지 2 mL/minute/심장무게(g), 0.2 내지 3 mL/minute/심장무게(g) 또는 0.7 내지 8 mL/minute/심장무게(g)일 수 있으나, 이는 예시일뿐, 이에 한정되지 않는다.The amount of cardiac arrest fluid used may vary depending on factors such as the age, weight, and severity of the disease of the person undergoing heart surgery, but 0.1 to 10 mL/minute/heart weight (g), 0.3 to 7 mL/minute/heart weight (g), 0.5 to 4 mL/minute/heart weight (g), 0.8 to 2 mL/minute/heart weight (g), 0.2 to 3 mL/minute/heart weight (g) or 0.7 to 8 mL/minute/ It may be the heart weight (g), but this is only an example and is not limited thereto.

또한 상기 심정지 시 심장손상은, 심장수술을 위한 심정지 이후 재관류로 인한 심장손상일 수 있으나, 이에 한정되지 않는다.In addition, the heart damage during cardiac arrest may be a heart damage due to reperfusion after cardiac arrest for cardiac surgery, but is not limited thereto.

나아가, 상기 조성물은 심정지액과 동시적 또는 순차적으로 투여할 수 있는데, 본 발명의 일실시예에서는 심정지액인 HTK(Histidine-Tryptophan-Ketoglutarate)와 8-옥소-2'-디옥시구아노신(oh8dG)이 함께 사용된 바 있고, 다른 일시예에서는 8-옥소-2'-디옥시구아노신(oh8dG)이 전처리된 후에 HTK가 사용된 바 있다(실험예 2 내지 10).Furthermore, the composition may be administered simultaneously or sequentially with the cardiac arrest solution.In one embodiment of the present invention, the cardiac arrest solution HTK (Histidine-Tryptophan-Ketoglutarate) and 8-oxo-2'-dioxyguanosine (oh8dG) ) Were used together, and in other examples, HTK was used after 8-oxo-2'-dioxyguanosine (oh8dG) was pretreated (Experimental Examples 2 to 10).

그리고 상기 조성물은 K+를 포함하는 심정지액에 8-옥소-2'-디옥시구아노신이 첨가된 심정지액일 수 있고, 여기서 K+의 농도는 1 내지 100 mM, 3 내지 70 mM, 5 내지 40 mM, 7 내지 20 mM, 4 내지 50 mM 또는 6 내지 80 mM일 수 있으나, 이는 예시일 뿐, 이에 한정되지 않는다. 또한 상기 K+를 포함하는 심정지액은 Na+, Mg2 +, Ca2+, 히스티딘(histidine), 트립토판(tryptophan), 케토글루타르산(Ketoglutarate), 만니톨(mannitol)을 더 포함할 수 있다.And the composition may be a cardiac arrest solution in which 8-oxo-2'-dioxyguanosine is added to a cardiac arrest solution containing K + , wherein the concentration of K + is 1 to 100 mM, 3 to 70 mM, 5 to 40 mM , 7 to 20 mM, 4 to 50 mM, or 6 to 80 mM, but this is only an example and is not limited thereto. In addition, the cardiac arrest fluid containing K + may further include Na + , Mg 2 + , Ca 2+ , histidine, tryptophan, ketoglutarate, and mannitol.

본 발명에 따른 심정지 시 심장손상 방지용 조성물은 심정지 시 활성산소의 증가를 억제하는 효과가 우수하여, 활성산소로 인한 심장조직 손상을 막을 수 있다.The composition for preventing heart damage during cardiac arrest according to the present invention has an excellent effect of inhibiting an increase in free radicals during cardiac arrest, and thus can prevent damage to heart tissues caused by free radicals.

본 발명의 실험예 1에서 활성산소의 일종인 H2O2에 의해 이온수송체인 NBC(Sodium/Bicarbonate Cotransporter)의 활성이 증가함을 확인하였고, 이를 통해 심정지액 사용에 의한 심정지 시에 발생하는 활성산소가 심장조직을 손상시킬 수 있음을 알 수 있다(도 1 및 도 2 참조).In Experimental Example 1 of the present invention, it was confirmed that the activity of the ion transporter NBC (Sodium/Bicarbonate Cotransporter) was increased by H 2 O 2 as a kind of active oxygen, through which the activity generated during cardiac arrest by the use of cardiac arrest fluid It can be seen that oxygen can damage heart tissue (see FIGS. 1 and 2).

그런데 본 발명의 일 실시예에서 쥐의 심근세포를 분리한 후, 100 μg/mL 농도의 8-옥소-2'-디옥시구아노신(oh8dG)을 전처리하고 심정지액(HTK, Histidine-Tryptophan-Ketoglutarate)을 처리하면, 대조군 또는 심정지액만 처리한 경우보다 심근세포의 활성산소 증가가 억제되는 것을 확인하였으므로, 이를 통해 상기 조성물이 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다(실험예 2, 도 3 및 도 4 참조).However, in an embodiment of the present invention, after the cardiomyocytes of mice were isolated, 8-oxo-2'-deoxyguanosine (oh8dG) was pretreated at a concentration of 100 μg/mL, and cardiac arrest fluid (HTK, Histidine-Tryptophan-Ketoglutarate ), it was confirmed that the increase in free radicals of the cardiomyocytes was suppressed compared to the case of treatment with only the control or cardiac arrest fluid, so it can be seen that the composition can prevent damage to the heart tissue during cardiac arrest (Experimental Example 2, see FIGS. 3 and 4).

또한, 상기 조성물은 심근세포의 이온수송체 활성을 감소시키는 효과를 나타낼 수 있다.In addition, the composition may exhibit an effect of reducing the ion transporter activity of cardiomyocytes.

본 발명의 일 실시예에서 쥐의 심근세포를 분리하고 100 μg/mL 농도의 8-옥소-2'-디옥시구아노신(oh8dG)을 1시간 전처리하여 심정지액을 처리한 후, BCECF-AM를 이용하여 이온수송체인 NBC(Sodium/Bicarbonate Cotransporter)의 활성을 측정하였는데, 대조군과 심정지액, 100 μg/mL 농도의 8-옥소-2'-디옥시구아노신(oh8dG)을 각각 따로 처리한 경우보다 NBC의 활성이 감소하는 것을 확인할 수 있다(실험예 3, 도 5, 도 6 및 도 7 참조).In one embodiment of the present invention, cardiac arrest fluid was treated by isolating rat cardiomyocytes and pretreated with 8-oxo-2'-deoxyguanosine (oh8dG) at a concentration of 100 μg/mL for 1 hour, and then BCECF-AM was The activity of the ion transporter, NBC (Sodium/Bicarbonate Cotransporter), was measured. Compared with the control, cardiac arrest fluid, and 8-oxo-2'-deoxyguanosine (oh8dG) at a concentration of 100 μg/mL, respectively. It can be seen that the activity of NBC decreases (see Experimental Example 3, Figs. 5, 6 and 7).

또한 활성산소가 발생하지 않은 조직세포에 8-옥소-2'-디옥시구아노신(oh8dG)을 처리한 경우, 대조군보다 NBC 활성이 감소하는 것을 확인할 수 있다(실험예 4, 도 8 및 도 9 참조).In addition, when 8-oxo-2'-deoxyguanosine (oh8dG) was treated on tissue cells in which reactive oxygen was not generated, it was confirmed that NBC activity was decreased compared to the control (Experimental Example 4, FIGS. 8 and 9). Reference).

상기 조성물은 세포사멸인자인 PAR, HSP60, Bcl-2, P-53, BAX를 감소시킬 수 있다.The composition may reduce apoptosis factors PAR, HSP60, Bcl-2, P-53, and BAX.

심근세포가 심정지액에 노출되면 세포사멸인자들의 발현이 증가하는데, 이를 억제하면 심근세포의 사멸을 줄여 심근을 보호할 수 있음이 알려져있다. 이에 본 발명의 일 실시예에서 세포사멸의 확인방법인 TUNEL assay를 수행하였고, 대조군 및 심정지액만 처리한 경우보다 심정지액 및 100 μg/mL 농도의 8-옥소-2'-디옥시구아노신(oh8dG)을 같이 처리한 경우에 심정지된 심근세포의 세포사멸 정도가 감소하는 것을 확인할 수 있다(실험예 5, 도 10 및 도 11 참조).When cardiomyocytes are exposed to cardiac arrest fluid, the expression of apoptosis factors increases. It is known that inhibition of this can reduce the death of cardiomyocytes to protect the myocardium. Accordingly, in an embodiment of the present invention, the TUNEL assay, which is a method for confirming apoptosis, was performed, and 8-oxo-2'-dioxyguanosine at a concentration of 100 μg/mL of cardiac arrest fluid and 100 μg/mL than when only the control and cardiac arrest fluid were treated ( oh8dG), it can be seen that the degree of apoptosis of cardiac arrested cardiomyocytes decreases (see Experimental Example 5, FIGS. 10 and 11).

그리고 심정지액만 처리한 경우보다 심정지액 및 100 μg/mL 농도의 8-옥소-2'-디옥시구아노신(oh8dG)을 같이 처리한 경우에, 심정지된 심근세포의 세포사멸인자인 PAR(Poly-ADP-ribose), HSP60, Bcl-2, P-53 및 BAX가 감소하는 것을 확인할 수 있다(실험예 6 내지 8 및 도 12 내지 도 17 참조).In addition, when treated with cardiac arrest fluid and 8-oxo-2'-deoxyguanosine (oh8dG) at a concentration of 100 μg/mL, PAR (Poly -ADP-ribose), HSP60, Bcl-2, P-53 and BAX can be confirmed to decrease (see Experimental Examples 6 to 8 and Figs. 12 to 17).

또한, 염증인자인 COX-2 및 섬유화에 관여하는 인자인 CTGF의 발현이 감소하는 것을 확인할 수 있다(실험예 9, 실험예 10 및 도 18 내지 도 22 참조).In addition, it can be seen that the expression of the inflammatory factor COX-2 and the factor involved in fibrosis, CTGF, are decreased (see Experimental Example 9, Experimental Example 10 and FIGS. 18 to 22).

상기 결과를 통해 본 발명에 따른 심정지 시 심장손상 방지용 조성물이, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.Through the above results, it can be seen that the composition for preventing heart damage during cardiac arrest according to the present invention can prevent damage to the heart tissue during cardiac arrest.

본 발명의 다른 측면은,Another aspect of the invention,

심정지액 및 상기 심정지 시 심장손상 방지용 조성물을 포함하는 심장수술을 위한 심정지용 키트를 제공한다.It provides a cardiac arrest kit for cardiac surgery comprising a cardiac arrest fluid and a composition for preventing heart damage during cardiac arrest.

상기 키트는 심장수술 시에 심정지액 사용으로 인한 심장손상의 방지를 위해, 심정지액 및 상기 조성물을 함께 사용할 수 있도록 하는 키트이다.The kit is a kit that allows the cardiac arrest solution and the composition to be used together to prevent cardiac damage caused by the use of cardiac arrest solution during heart surgery.

여기서 심정지액, 상기 조성물, 심장손상에 관한 설명은 상술한 바와 같다.Here, the description of the cardiac arrest fluid, the composition, and heart damage are as described above.

또한 심정지액 및 상기 조성물은 동시적 또는 순차적으로 투여할 수 있는데, 본 발명의 일실시예에서는 심정지액인 HTK(Histidine-Tryptophan-Ketoglutarate)와 8-옥소-2'-디옥시구아노신(oh8dG)이 함께 사용된 바 있고, 다른 일시예에서는 8-옥소-2'-디옥시구아노신(oh8dG)이 전처리된 후에 HTK가 사용된 바 있다(실험예 2 내지 9).In addition, the cardiac arrest solution and the composition may be administered simultaneously or sequentially. In one embodiment of the present invention, the cardiac arrest solution HTK (Histidine-Tryptophan-Ketoglutarate) and 8-oxo-2'-dioxyguanosine (oh8dG) These have been used together, and in other examples, HTK has been used after pretreatment with 8-oxo-2'-dioxyguanosine (oh8dG) (Experimental Examples 2 to 9).

나아가, 심정지액과 상기 조성물은 혼합하여 투여될 수 있다.Furthermore, cardiac arrest fluid and the composition may be mixed and administered.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following examples and experimental examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples and experimental examples.

<< 실시예Example 1> 본 발명에 따른 심정지 시 심장손상 방지용 조성물의 준비 1> Preparation of the composition for preventing heart damage during cardiac arrest according to the present invention

본 발명에 따른 심정지 시 심장손상 방지용 조성물 내에 포함되는 8-옥소-2'-디옥시구아노신(8-Oxo-2'-deoxyguanosine, oh8dG)은 시판되는 것을 사용할 수 있고, 통상 제조되는 방법으로 얻어지는 것을 사용할 수도 있다.The 8-oxo-2'-deoxyguanosine (oh8dG) contained in the composition for preventing heart damage during cardiac arrest according to the present invention may be commercially available, and is obtained by a conventionally prepared method. You can also use it.

그리고 상기 조성물은 8-옥소-2'-디옥시구아노신 외에도 K+ ,Na+, Mg2 +, Ca2 +, 히스티딘(histidine), 트립토판(tryptophan), 케토글루타르산(Ketoglutarate), 만니톨(mannitol)을 더 포함할 수 있으며, 이는 예시일뿐, 이에 한정되는 것이 아니며, 당업자에게 널리 알려져 통상 사용할 수 있는 성분을 더 포함할 수 있다.In addition to 8-oxo-2'-deoxyguanosine, the composition includes K + , Na + , Mg 2 + , Ca 2 + , histidine, tryptophan, ketoglutarate, mannitol ( mannitol) may be further included, which is for illustrative purposes only, and is not limited thereto, and may further include a component widely known to those skilled in the art and commonly used.

한편 하기 실험예들에서, 상기 조성물은 단독으로 사용되거나 K+를 포함하는 심정지액과 동시적 또는 순차적으로 사용되었는데, 단독으로 사용되는 경우는 physiological salt solution (PSS) buffer와 함께 투여되었다.Meanwhile, in the following experimental examples, the composition was used alone or concurrently or sequentially with cardiac arrest fluid containing K + , but when used alone, it was administered with a physiological salt solution (PSS) buffer.

<< 실험예Experimental example 1> 활성산소에 의한 세포의 이온수송체 기능변화 측정 1> Measurement of cell ion transporter function change by free radicals

활성산소에 의한 세포의 이온수송체 기능변화를 하기와 같은 실험을 통해 측정하였으며, 그 결과를 도 1 및 도 2에 나타내었다.Changes in the function of the ion transporter of the cells due to free radicals were measured through the following experiments, and the results are shown in FIGS. 1 and 2.

Na+이 없는 HCO3 - 용액을 주입하게 되면 세포의 pH는 감소하고, Na+을 함유하는 HCO3 - 용액을 주입하면 Na+ 및 HCO3 -이 함께 세포 내로 들어오게 되는데, 세포 내에 들어온 HCO3 - (염기성 성분)에 의해 세포 내에 pH가 증가하게 된다. 이러한 세포 내 pH 변화는 pH측정용 형광물질인 BCECF-AM(2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester)을 사용하여 측정할 수 있다. 또한, Sodium/Hydrogen Exchanger(NHE)를 억제하는 EIPA(5-(N-Ethyl-N-isopropyl) Amiloride)를 상기 HCO3 - 용액에 섞으면, NBC(Sodium/Bicarbonate Cotransporter)의 활성만을 측정할 수 있다.When HCO 3 - solution without Na + is injected, the pH of the cell decreases, and when HCO 3 - solution containing Na + is injected, Na + and HCO 3 - enter the cell together. HCO 3 that has entered the cell - (Basic component) increases the pH in the cell. Such changes in intracellular pH can be measured using BCECF-AM (2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester), a fluorescent substance for pH measurement. . In addition, when EIPA (5-(N-Ethyl-N-isopropyl) Amiloride), which inhibits Sodium/Hydrogen Exchanger (NHE), is mixed with the HCO 3 - solution, only the activity of NBC (Sodium/Bicarbonate Cotransporter) can be measured. .

NBC의 일종인 NBCe1을 24시간 동안 과발현시킨 HEK293T 세포(인간 배아 신장 세포)에 EIPA를 섞은 Na+이 없는 HCO3 - 용액(HCO3 -)을 주입하였는데, 상기 HEK293T 세포에 H2O2를 주입하지 않은 경우를 대조군으로 두고, 상기 HEK293T 세포에 Na+이 없는 HCO3 - 용액 및 H2O2를 동시에 주입한 경우 및 HEK293T 세포에 H2O2를 먼저 주입하고 1시간 후에 Na+이 없는 HCO3 - 용액을 주입한 경우를 실험군으로 두었다.Solution (HCO 3 - -) HCO 3 with no Na + mixture of EIPA in HEK293T cells in which the NBC a type of NBCe1 of over-expression for 24 h (human embryonic kidney cells) were injected into the injecting H 2 O 2 to the HEK293T cells In the case of not taking as a control, HCO 3 - solution without Na + and H 2 O 2 were simultaneously injected into the HEK293T cells, and H 2 O 2 was first injected into the HEK293T cells and HCO without Na + 1 hour later 3 -The case where the solution was injected was set as the experimental group.

수분 후에 Na+을 함유하는 HCO3 - 용액(Na++HCO3 -)을 주입하여 각 HEK293T 세포의 pH가 증가하면, 이러한 변화를 BCECF-AM을 사용하여 측정하였고, 시간에 따른 pH 변화(기울기)를 통해 NBCe1의 활성이 얼마나 변화하는지 확인하였다.Solution (Na + + HCO 3 - - ) HCO 3 containing Na + after water when the pH of each of HEK293T cells increased by implanting, was measured for these changes using BCECF-AM, pH changes over time (slope ), it was confirmed how much the activity of NBCe1 changes.

HEK293T 세포에 H2O2를 주입하지 않고 Na+이 없는 HCO3 - 용액(HCO3 -)을 주입한 대조군보다, H2O2를 동시에 또는 1시간 전에 주입한 경우에 NBCe1 활성이 증가하였다(도 1 및 도 2 참조).Without injection of H 2 O 2 in HEK293T cells Na + is HCO 3 no-solution (HCO 3 -) when the injection a more injection control, the H 2 O 2 at the same time or 1 hour before the NBCe1 activity was increased ( 1 and 2).

이는 활성산소의 일종인 H2O2에 의해 이온수송체인 NBC 활성이 증가함을 나타내고, 상기 결과를 통해, 활성산소가 염소/중탄산염 교환기의 이온수송능력을 증가시켜 과도한 이온 불균형을 초래하고 심근세포의 산성화를 일으켜 심장조직을 손상시킬 수 있음을 알 수 있다.This indicates that the activity of NBC, which is an ion transporter, is increased by H 2 O 2 , a kind of active oxygen, and through the above results, the active oxygen increases the ion transport capacity of the chlorine/bicarbonate exchanger, causing excessive ion imbalance, and cardiomyocytes It can be seen that it can cause acidification of the heart and damage the heart tissue.

<< 실험예Experimental example 2> 단일 2> single 심근세포Cardiomyocyte 분리 후 활성산소 변화 측정 Measurement of changes in active oxygen after separation

본 발명에 따른 심정지 시 심장손상 방지용 조성물을 심근세포에 처리하였을 때, 활성산소의 변화를 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 도 3 및 도 4에 나타내었다.When the composition for preventing heart damage during cardiac arrest according to the present invention was treated to cardiomyocytes, the following experiment was performed to evaluate the change in free radicals, and the results are shown in FIGS. 3 and 4.

심정지액 사용에 따라, 심정지 시 활성산소가 증가하면, 과도한 이온 불균형이 초래되고 심근세포의 산성화가 일어나 심장조직이 손상될 수 있으므로, 활성산소 증가가 억제되면 심장조직 손상을 방지할 수 있다.Depending on the use of cardiac arrest fluid, if free radicals increase during cardiac arrest, excessive ion imbalance may be caused and cardiac tissue may be damaged by acidification of cardiomyocytes. Therefore, suppressing the increase in free radicals can prevent damage to heart tissues.

단일심근세포 분리법에 따라 8주령의 수컷 쥐에 EDTA 용액 7 mL을 우심실에 주입한 후에, 심장만 분리해 플레이트에 옮겼다. 분리된 심장의 좌심실에 EDTA 용액 10 mL을 주입한 후, 상기 좌심실에 Perfusion 용액 3 mL을 주입하고, Collagenase 용액 30 내지 40 mL을 좌심실에 주입하여, 심근이 창백해지고 부드러워지는지를 확인하였다. 이후 심실만 깨끗하게 잘라 분리하고, 포셉을 이용하여 이를 여러 조각으로 찢은 후, Stop 용액에 담그고 100 μm의 필터를 이용해 걸러낸 뒤, 40 g에서 15분 동안 원심분리하여 심근세포만 분리하였다. According to the single cardiomyocyte isolation method, 7 mL of EDTA solution was injected into the right ventricle to 8-week-old male mice, and then only the heart was separated and transferred to a plate. After injecting 10 mL of EDTA solution into the left ventricle of the separated heart, 3 mL of Perfusion solution was injected into the left ventricle, and 30 to 40 mL of Collagenase solution was injected into the left ventricle, thereby confirming whether the myocardium became pale and soft. Thereafter, only the ventricle was cleanly cut and separated, and after tearing it into several pieces using forceps, it was immersed in a Stop solution, filtered through a 100 μm filter, and centrifuged at 40 g for 15 minutes to separate only cardiomyocytes.

분리된 심근세포를 약물처리하지 않은 대조군, 심정지액인 HTK(Histidine-Tryptophan-Ketoglutarate)에 1시간 처리한 것 및 HTK에 1시간 처리하되 그 전에 100 μg/mL 농도의 oh8dG를 10분 또는 30분 전처리한 4종의 실험군으로 나누었다. 상온에서 각 실험군에 따라 해당하는 약물을 처리하고, 세포 내의 활성산소의 양을 측정하기 위한 DCFDA 염색을 하여, 495 nm 파장의 빛을 쬐어준 후 방출되는 530 nm 파장의 빛을 공초점 현미경을 이용하여 측정하였다. 활성산소가 증가하면 녹색인 상기 530 nm 파장의 빛의 세기가 증가하므로, 이를 통해 심근세포의 활성산소의 양을 측정함으로써, 활성산소의 증감변화를 확인하였다. The isolated cardiomyocytes were treated with untreated control, cardiac arrest solution HTK (Histidine-Tryptophan-Ketoglutarate) for 1 hour and HTK for 1 hour, but before that, oh8dG at a concentration of 100 μg/mL for 10 minutes or 30 minutes It was divided into four pretreated experimental groups. Treat the drug according to each experimental group at room temperature, and perform DCFDA staining to measure the amount of active oxygen in the cells, and use a confocal microscope to irradiate light with a wavelength of 495 nm and then use a confocal microscope. And measured. When the active oxygen increases, the intensity of the green light at the wavelength of 530 nm increases, so by measuring the amount of active oxygen in the cardiomyocytes through this, the increase or decrease of the active oxygen was confirmed.

대조군보다 심정지액(HTK)을 처리한 경우 활성산소가 증가하였다. 그리고 HTK만 처리한 경우보다, 100 μg/mL oh8dG를 전처리한 후 심정지액을 처리한 경우에 활성산소 발생이 감소하되, oh8dG 처리시간이 길수록 활성산소의 증가가 억제되었다(도 3 및 도 4 참조).When treated with cardiac arrest solution (HTK) than the control group, free radicals increased. And, compared to the case where only HTK was treated, when the cardiac arrest solution was treated after pretreatment with 100 μg/mL oh8dG, the generation of active oxygen decreased, but the increase of the active oxygen was suppressed as the oh8dG treatment time increased (see FIGS. 3 and 4 ).

이는 oh8dG 없이 심정지액만 처리되면 활성산소가 증가하지만, 100 μg/mL oh8dG를 전처리한 후 심정지액을 처리하면 활성산소의 증가가 억제되는 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 활성산소의 증가를 억제하므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that if only cardiac arrest fluid is treated without oh8dG, active oxygen is increased, but if cardiac arrest fluid is treated after pretreatment with 100 μg/mL oh8dG, the increase of free radical is suppressed. Through the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention suppresses an increase in free radicals, so that damage to the heart tissue during cardiac arrest may be prevented.

<< 실험예Experimental example 3> 3> 심근세포의Cardiomyocyte 심정지액Cardiac arrest (( HTK)에HTK) 의한 이온수송체 활성 변화 및 심정지 시 심장손상 방지용 조성물 처리에 따른 이온수송체 활성화 감소 확인 Confirmation of reduction in ion transporter activation by treatment of composition for preventing heart damage during cardiac arrest and change of ion transporter activity

본 발명의 심정지 시 심장손상 방지용 조성물의 심정지 시 이온수송체 활성화 감소 효과를 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 하기 도 5 내지 도 7에 나타내었다.In order to evaluate the effect of reducing the activation of the ion transporter during cardiac arrest of the composition for preventing cardiac damage during cardiac arrest of the present invention, the following experiment was performed, and the results are shown in FIGS. 5 to 7 below.

실험예 2와 동일한 방법으로, 8주령의 수컷 쥐를 이용하여 심근세포를 분리하였고, 이를 각각 심정지액(HTK) 처리 없는 대조군, 심정지액을 5분간 처리한 경우, 100 μg/mL 농도의 oh8dG를 1시간 처리한 경우 및 심정지액을 5분간 처리하기 전에 100 μg/mL 농도의 oh8dG를 1시간 전처리한 경우를 실험군으로 나누었다.In the same manner as in Experimental Example 2, cardiomyocytes were isolated using 8-week-old male mice, respectively, as a control without cardiac arrest (HTK) treatment, and when treated with cardiac arrest solution for 5 minutes, oh8dG at a concentration of 100 μg/mL was used. The case of treatment for 1 hour and the case of pretreatment with oh8dG at a concentration of 100 μg/mL for 1 hour before the cardiac arrest solution was treated for 5 minutes were divided into experimental groups.

이후 대조군 및 상기와 같이 약물 처리된 실험군의 심근세포를 대상으로, 실험예 1과 같이 BCECF-AM을 이용하여 NBC의 활성을 측정하였고, 측정 초기 1분간의 pH값을 평균 내어 세포 내의 Resting pH level을 확인하였다.Thereafter, for the cardiomyocytes of the control group and the experimental group treated with the drug as described above, the activity of NBC was measured using BCECF-AM as in Experimental Example 1, and the pH value for the first minute of the measurement was averaged to the resting pH level in the cells. Was confirmed.

대조군보다 심정지액(HTK)을 처리한 경우 NBC 활성이 증가하였다. 그리고 대조군 또는 심정지액만 처리한 경우보다 100 μg/mL oh8dG를 처리한 경우에는 NBC 활성이 감소하였고, 이보다도 100 μg/mL oh8dG를 전처리한 후 심정지액을 처리한 경우에 NBC 활성이 더 감소하였다(도 5 내지 도 7 참조).When treated with cardiac arrest fluid (HTK) than the control group, NBC activity was increased. In addition, NBC activity decreased when treated with 100 μg/mL oh8dG than in the control group or treated with only cardiac arrest fluid, and NBC activity decreased even more when cardiac arrest fluid was treated after pretreatment with 100 μg/mL oh8dG. (See Figs. 5 to 7).

이는 oh8dG 없이 심정지액만 처리되는 경우보다, 100 μg/mL oh8dG를 처리하는 경우 또는 100 μg/mL oh8dG를 전처리한 후 심정지액을 처리한 경우에 심근세포의 이온수송체인 NBC의 활성이 감소하는 효과가 우수한 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 이온수송체 활성을 감소시킴으로써 심근세포의 과도한 이온 불균형 및 산성화를 방지하므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This is the effect of decreasing the activity of NBC, an ion transporter of cardiomyocytes, compared to the case where only cardiac arrest fluid without oh8dG is treated, when 100 μg/mL oh8dG is treated or when cardiac arrest fluid is treated after pretreatment with 100 μg/mL oh8dG. Indicates that it is excellent. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention prevents excessive ion imbalance and acidification of cardiomyocytes by reducing ion transporter activity, so that damage to the heart tissue during cardiac arrest can be prevented.

<< 실험예Experimental example 4> 심정지 시 심장손상 방지용 조성물 처리 시 NBC 활성조절 평가 4> Evaluation of NBC activity control when treating a composition for preventing heart damage during cardiac arrest

본 발명의 심정지 시 심장손상 방지용 조성물의 NBC 활성 조절을 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 하기 도 8 및 도 9에 나타내었다.In order to evaluate the control of the NBC activity of the composition for preventing heart damage during cardiac arrest of the present invention, the following experiment was performed, and the results are shown in FIGS. 8 and 9 below.

Sodium/Bicarbonate Cotransporter(NBC)인 NBCe1-B를 24시간 동안 과발현시킨 HEK293T 세포(인간 배아 신장 세포)에 oh8dG를 처리하지 않은 경우를 대조군으로 두고, 상기 HEK293T 세포에 10 μg/mL 농도의 oh8dG 또는 100 μg/mL 농도의 oh8dG을 각각 1시간 동안 처리한 경우를 실험군으로 두었다.The case where oh8dG was not treated in HEK293T cells (human embryonic kidney cells) overexpressing NBCe1-B, a sodium/bicarbonate cotransporter (NBC) for 24 hours, was set as a control, and oh8dG or 100 at a concentration of 10 μg/mL in the HEK293T cells. A case where oh8dG at a concentration of μg/mL was treated for 1 hour each was set as an experimental group.

이후, Sodium/Hydrogen Exchanger(NHE)를 억제하는 5-(N-Ethyl-N-isopropyl) Amiloride (EIPA)를 Na+이 있는 HCO3 - 용액(Na++HCO3 -)과 Na+이 없는 HCO3 - 용액(HCO3 -)에 섞어 실험 과정 동안 흘려주었다. BCECF-AM을 사용하여 세포 내 pH 변화를 측정하였는데, 시간에 따른 세포 내 pH 변화(기울기)를 통해 NBCe-1B의 활성이 얼마나 변화하는지 확인하였다.Since, Sodium / Hydrogen Exchanger (NHE) 5- (N-Ethyl-N-isopropyl) HCO 3 for Amiloride (EIPA) in the Na + that inhibit-solution (Na + + HCO 3 -) and Na + is not HCO 3 - solution (HCO 3 -) was mixed with a flow over the course of the experiment. BCECF-AM was used to measure the intracellular pH change, and it was confirmed how much the activity of NBCe-1B changes through the intracellular pH change (slope) over time.

대조군보다 10 μg/mL oh8dG을 처리한 경우에 NBCe-1B의 활성이 감소하였고, 이보다도 100 μg/mL oh8dG을 처리한 경우에 NBCe-1B의 활성이 감소하였다(도 8 및 도 9 참조).When treated with 10 μg/mL oh8dG than the control, the activity of NBCe-1B decreased, and more than that, when treated with 100 μg/mL oh8dG, the activity of NBCe-1B decreased (see FIGS. 8 and 9).

이는 oh8dG를 처리하는 경우에 NBC 활성이 감소하는 효과가 있음을 나타내는데, 특히 활성산소와 무관하게 NBC 활성을 감소시킬 수 있음을 확인한 것이다. 즉 심정지액 처리에 따라 활성산소가 증가된 상태가 아닌 조직세포에서도, oh8dG 처리에 의해 NBC 활성이 줄어드는 효과가 나타난 것이다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 활성산소가 발생하지 않은 조직이라 해도, 세포의 과도한 이온 불균형 및 산성화로 인한 조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that treatment with oh8dG has an effect of reducing NBC activity, and in particular, it is confirmed that NBC activity can be reduced regardless of active oxygen. In other words, even in tissue cells in which the active oxygen was not increased by the cardiac arrest fluid treatment, the effect of reducing NBC activity was exhibited by the oh8dG treatment. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention can prevent damage to tissues due to excessive ionic imbalance and acidification of cells even in tissues in which reactive oxygen is not generated.

<< 실험예Experimental example 5> 5> 심정지된Cardiac arrest 심근세포의Cardiomyocyte 세포사멸 정도 평가 Assessment of the degree of apoptosis

본 발명의 심정지 시 심장손상 방지용 조성물의 심정지 시 세포사멸 정도의 감소 효과를 평가하기 위하여 하기와 같이 TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay를 수행하였으며, 그 결과를 도 10 및 11에 나타내었다.Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed as follows to evaluate the effect of the composition for preventing heart damage during cardiac arrest of the present invention on reducing the degree of apoptosis during cardiac arrest, and the results are shown in FIGS. 10 and 11 .

TUNEL assay는 세포사멸의 확인방법으로 잘 알려진 실험법으로서, 세포사멸로 나타나는 DNA 단편화(fragmentation)를 측정하여 세포사멸의 정도를 확인할 수 있다.The TUNEL assay is a well-known test method for confirming apoptosis, and the degree of apoptosis can be confirmed by measuring DNA fragmentation resulting from apoptosis.

8주령의 수컷 쥐에서 심장을 분리하여 좌심실 부분만 4가지 경우로 나누어 ep-tube(eppendorf tube)에 담았다. 1) 심정지 직후, 2) 심정지액을 2시간 처리한 경우, 3) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 1시간 처리한 경우 및 4) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG를 2시간 처리한 경우인데, oh8dG를 처리한 경우인 3) 및 4)는, Mold에 조각을 담고 OCT compound를 채워 액체질소에서 얼려주었다. 4가지 경우 모두, Cryo secion(동결조직 절편기)기계를 이용하여 슬라이스로 자른 조직을 슬라이드 글라스에 붙여주었다. TUNEL assay 염색에는 TransDetect® Fluorescein TUNEL cell apoptosis Detection Kit (FA201-01) 제품을 이용하여 실험을 진행하였다.The heart was isolated from 8-week-old male rats, and only the left ventricle was divided into 4 cases and placed in an ep-tube (eppendorf tube). 1) Immediately after cardiac arrest, 2) When cardiac arrest fluid was treated for 2 hours, 3) When oh8dG at a concentration of 100 μg/mL was treated for 1 hour with the cardiac arrest fluid treatment, and 4) 100 μg/mL with the cardiac arrest fluid treatment In the case of treatment with the concentration of oh8dG for 2 hours, in the case of treatment with oh8dG, 3) and 4), pieces were placed in a mold, filled with OCT compound, and frozen in liquid nitrogen. In all four cases, a tissue cut into slices was attached to a slide glass using a cryo secion machine. TransDetect ® Fluorescein staining for TUNEL assay The experiment was conducted using the product of TUNEL cell apoptosis detection kit (FA201-01).

소수성 펜을 이용하여 조직 바깥쪽에 가이드라인을 그리고, PBS로 10분씩 3번 세척하였고, 4% paraformaldehyde를 이용하여 상온에서 30분 동안 조직을 고정시켰다. 그리고 PBS로 10분간 3번씩 다시 세척한 후, Permeabilization 용액으로 상온에서 5분간 처리하고, 다시 PBS로 3번씩 세척하였다. Labeling solution과 TdT(Terminal deoxynucleotidyl transferase)를 1:25로 섞어 37℃에서 1시간 동안 빛을 차단한 상태에서 조직에 처리하였고, 이를 다시 PBS로 세척한 뒤, Mounting 용액이 들어있는 DAPI 용액을 상온에서 5분간 붙여주었다. 염색된 슬라이드를 형광현미경을 이용하여 488 nm의 파장에서 확인하였다.A guideline was drawn on the outside of the tissue with a hydrophobic pen, washed three times with PBS for 10 minutes each, and the tissue was fixed for 30 minutes at room temperature using 4% paraformaldehyde. Then, after washing again 3 times with PBS for 10 minutes, treated with Permeabilization solution for 5 minutes at room temperature, and washed again with PBS 3 times. Labeling solution and TdT (Terminal deoxynucleotidyl transferase) were mixed at 1:25 and treated on the tissue under light blocking for 1 hour at 37°C. After washing this again with PBS, DAPI solution containing the mounting solution was added at room temperature. Attached for 5 minutes. The stained slides were confirmed at a wavelength of 488 nm using a fluorescence microscope.

대조군인 심정지액(HTK) 처리 없는 심정지 직후보다 심정지액을 처리하고 2시간이 지난 후 TUNEL positive cells(조직 손상 척도)가 증가하였지만, 심정지액과 함께 100 μg/mL oh8dG를 처리한 경우에는 TUNEL positive cells가 효과적으로 감소하되, oh8dG 처리시간이 길수록 더 감소하였다(도 10 및 도 11 참조). 이는 100 μg/mL oh8dG 없이 심정지액만 처리하면 세포사멸 정도가 증가하지만, 100 μg/mL oh8dG를 함께 처리하면 세포사멸 정도가 감소하는 것을 나타낸다.TUNEL positive cells (tissue damage scale) increased 2 hours after cardiac arrest than immediately after cardiac arrest without cardiac arrest (HTK) treatment, the control group, but TUNEL positive cells were treated with 100 μg/mL oh8dG with cardiac arrest fluid. The cells effectively decreased, but the longer the oh8dG treatment time, the more decreased (see FIGS. 10 and 11). This indicates that treatment with only cardiac arrest fluid without 100 μg/mL oh8dG increases the degree of apoptosis, but treatment with 100 μg/mL oh8dG decreases the degree of apoptosis.

상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용하여 세포사멸을 감소시키므로, 심정지 시 심장조직의 손상을 억제할 수 있음을 알 수 있다. 이하 실험예들에서는 세포사멸에 관여하는 세포사멸인자에 대한 분석실험을 수행하였다.From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention reduces apoptosis when used together with cardiac arrest fluid, and thus it can be seen that damage to the heart tissue during cardiac arrest can be suppressed. In the following experimental examples, assays for apoptosis factors involved in apoptosis were performed.

<< 실험예Experimental example 6> 6> 심정지된Cardiac arrest 심근세포의Cardiomyocyte 세포사멸인자인Apoptosis factor PAR PAR 감소여부Whether to decrease 측정 Measure

심정지액의 노출에 의해 세포사멸인자들의 발현이 증가하는데, 본 발명의 심정지 시 심장손상 방지용 조성물의 처리를 통한 세포사멸인자인 PAR(Poly-ADP-ribose) 감소효과를 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 도 12 및 도 13에 나타내었다. The expression of apoptosis factors is increased by exposure to cardiac arrest fluid.In order to evaluate the effect of reducing poly-ADP-ribose, apoptosis factor PAR (Poly-ADP-ribose) through treatment of the composition for preventing heart damage during cardiac arrest of the present invention, the following experiment Was performed, and the results are shown in FIGS. 12 and 13.

DNA가 손상된 세포에서 PARP(Poly-ADP-ribose polymerase)가 활성화되면, 세포의 ATP를 격감시킬 수 있고 이는 세포사멸로 이어질 수 있으므로, PAR의 발현정도는 세포사멸의 척도가 될 수 있다.When PARP (Poly-ADP-ribose polymerase) is activated in DNA-damaged cells, ATP of cells can be depleted and this can lead to apoptosis, so the level of expression of PAR can be a measure of apoptosis.

8주령의 수컷 쥐에서 심장을 분리하여 심장 조직을, 1) 심정지 직후, 2) 심정지액(HTK) 2시간 처리한 경우, 3) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 1시간 처리한 경우 및 4) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG를 2시간 처리한 경우로 나누어 실험을 진행하였다. 각 경우의 심장 조직을 OCT compound(Optimal Cutting Temperature compound)를 이용해 액체질소에서 동결하였고, 동결된 조직을 미세절편(두께 10 μm)하였다. Heart tissue was removed from 8-week-old male rats, 1) immediately after cardiac arrest, 2) treated with cardiac arrest fluid (HTK) for 2 hours, 3) oh8dG at a concentration of 100 μg/mL for 1 hour with the cardiac arrest solution treatment The experiment was conducted by dividing into the case of treatment and 4) the case where oh8dG at a concentration of 100 μg/mL was treated for 2 hours together with the cardiac arrest solution treatment. The heart tissue in each case was frozen in liquid nitrogen using an OCT compound (Optimal Cutting Temperature compound), and the frozen tissue was micro-sectioned (10 μm thick).

슬라이드 위에 조직 절편을 붙이고 소수성 펜을 이용하여 조직 주변에 가이드라인을 그리고, PBS로 10분간 3번 세척하였다. 메탄올을 이용해 -20℃에서 10분간 조직을 고정시키고, 4℃에서 글라이신(glycine)을 처리한 후, blocking 용액을 1시간 처리하였다. 이후, PAR 항체를 1:100으로 blocking 용액과 혼합한 후, 조직에 처리하여 4℃에서 24시간 동안 두었다. incu-buffer를 이용해 3번씩 10분간 세척한 후, 2차 항체인 FITC를 상온에서 1시간 동안 붙여주었으며, PBS로 3번씩 10분간 세척한 후, 핵을 염색할 수 있는 DAPI가 붙어있는 mounting 용액을 처리하고 cover-slip으로 조직을 덮었다. 염색된 슬라이드를 공촛점 현미경을 이용해 DAPI(450 nm), FITC(488 nm)의 파장에서 PAR의 발현정도를 측정하였다.A tissue section was attached to the slide, and a guideline was drawn around the tissue using a hydrophobic pen, and washed three times with PBS for 10 minutes. The tissue was fixed at -20°C for 10 minutes using methanol, glycine was treated at 4°C, and the blocking solution was treated for 1 hour. Thereafter, the PAR antibody was mixed with the blocking solution at 1:100, and then treated on the tissue and placed at 4°C for 24 hours. After washing 3 times with an incu-buffer for 10 minutes, FITC, a secondary antibody, was attached for 1 hour at room temperature, and after washing 3 times with PBS for 10 minutes, a mounting solution with DAPI for staining the nuclei was applied. Treated and covered with a cover-slip Using a confocal microscope, the stained slide was measured for expression of PAR at wavelengths of DAPI (450 nm) and FITC (488 nm).

대조군인 심정지액(HTK) 처리 없는 심정지 직후보다 심정지액을 처리하고 2시간이 지난 후에 PAR의 발현이 증가하였다. 그리고 심정지액만 처리한 경우보다, 심정지액과 함께 100 μg/mL 농도의 oh8dG가 처리된 경우는 PAR의 발현이 감소하되, oh8dG 처리시간이 길수록 PAR의 발현이 감소하였다(도 12 및 13 참조). The expression of PAR increased after 2 hours after treatment with cardiac arrest than immediately after cardiac arrest without cardiac arrest (HTK) treatment as a control group. And, compared to the case where only cardiac arrest fluid was treated, when oh8dG at a concentration of 100 μg/mL was treated with cardiac arrest fluid, the expression of PAR decreased, but as the oh8dG treatment time increased, the expression of PAR decreased (see FIGS. 12 and 13). .

이는 oh8dG 없이 심정지액만 처리되면 세포사멸이 증가하지만, 100 μg/mL oh8dG를 함께 처리하면 세포사멸이 감소하는 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용하여 세포사멸인자의 발현을 감소시키므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that apoptosis increases when only cardiac arrest fluid is treated without oh8dG, but apoptosis decreases when treated with 100 μg/mL oh8dG. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention is used together with cardiac arrest fluid to reduce the expression of apoptosis factors, so that damage to the heart tissue during cardiac arrest can be prevented.

<< 실험예Experimental example 7> 7> 심정지된Cardiac arrest 심근세포의Cardiomyocyte 세포사멸인자인Apoptosis factor HSP60HSP60 감소여부Whether to decrease 측정 Measure

심정지액의 노출에 의해 세포사멸인자들의 발현이 증가하는데, 본 발명의 심정지 시 심장손상 방지용 조성물의 처리를 통한 세포사멸인자인 HSP60(heat shock protein 60) 감소효과를 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 도 14 및 도 15에 나타내었다.The expression of apoptosis factors is increased by exposure to cardiac arrest fluid.In order to evaluate the effect of reducing the apoptosis factor HSP60 (heat shock protein 60) through the treatment of the composition for preventing heart damage during cardiac arrest of the present invention, the following experiment was performed. Was performed, and the results are shown in FIGS. 14 and 15.

HSP60은 세포 내 스트레스를 나타내는 단백질로서, 심정지 후에 미토콘드리아의 HSP60이 감소되는 것이 미토콘드리아를 보존하는데 도움이 됨이 잘 알려져있으므로, HSP60의 발현정도는 세포사멸의 척도가 될 수 있다.HSP60 is a protein that indicates intracellular stress, and it is well known that the reduction of HSP60 in mitochondria after cardiac arrest helps to preserve mitochondria, so the level of expression of HSP60 can be a measure of apoptosis.

실험예 6과 마찬가지로 1) 심정지 직후, 2) 심정지액을 2시간 처리한 경우, 3) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 1시간 처리한 경우 및 4) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG를 2시간 처리한 경우의 심장 조직을 준비하였다. 각 경우의 심장 조직을 OCT compound(Optimal Cutting Temperature compound)를 이용해 액체질소에서 동결하였고, 동결된 조직을 cryo-section하였다. As in Experimental Example 6, 1) immediately after cardiac arrest, 2) when the cardiac arrest solution was treated for 2 hours, 3) when oh8dG at a concentration of 100 μg/mL was treated for 1 hour together with the cardiac arrest solution treatment, and 4) the cardiac arrest solution treatment and Together, a heart tissue was prepared when oh8dG at a concentration of 100 μg/mL was treated for 2 hours. Heart tissue in each case was frozen in liquid nitrogen using an OCT compound (Optimal Cutting Temperature compound), and the frozen tissue was cryo-sectioned.

슬라이드 위에 조직 절편을 붙이고 4%의 PFA로 상온에서 고정시켰으며, PBS로 2번씩 10분 동안 세척하고, 0.5%의 triton-X를 상온에서 5분간 처리했으며, 4℃에서 글라이신(glycine)을 처리한 후, blocking 용액을 1시간 처리하였다. HSP60 항체를 1:100으로 blocking 용액과 혼합한 후, 조직에 처리하여 4℃에서 24시간 동안 두었다. incu-buffer를 이용해 세척하고, 2차 항체인 Rhodamine을 1시간 동안 상온에서 붙여주었으며, DAPI가 붙어있는 mounting 용액을 처리하고 cover-slip으로 조직을 덮었다. 염색된 슬라이드를 공촛점 현미경을 이용해 DAPI(450 nm), Rhodamine(595 nm)의 파장에서 HSP60의 발현정도를 측정하였다.Tissue sections were attached to the slide, fixed at room temperature with 4% PFA, washed twice with PBS for 10 minutes, treated with 0.5% triton-X for 5 minutes at room temperature, and treated with glycine at 4°C. After that, the blocking solution was treated for 1 hour. After mixing the HSP60 antibody 1:100 with the blocking solution, the tissue was treated and placed at 4°C for 24 hours. After washing with an incu-buffer, Rhodamine, a secondary antibody, was applied at room temperature for 1 hour, a mounting solution with DAPI was treated, and the tissue was covered with a cover-slip. Using a confocal microscope, the stained slide was measured for expression of HSP60 at wavelengths of DAPI (450 nm) and Rhodamine (595 nm).

대조군인 심정지액(HTK) 처리 없는 심정지 직후보다 심정지액을 처리하고 2시간이 지난 후에 HSP60의 발현이 증가하였다. 그리고 대조군 및 심정지액만 처리한 경우보다, 심정지액과 함께 100 μg/mL oh8dG가 처리된 경우는 HSP60의 발현이 감소하되, oh8dG 처리시간이 길수록 HSP60의 발현이 감소하였다(도 14 및 15 참조). The expression of HSP60 increased after 2 hours after treatment with cardiac arrest than immediately after cardiac arrest without cardiac arrest (HTK) treatment as a control group. And, compared to the case where only the control and cardiac arrest fluid were treated, the expression of HSP60 decreased when 100 μg/mL oh8dG was treated with cardiac arrest fluid, but the expression of HSP60 decreased as the oh8dG treatment time increased (see FIGS. 14 and 15). .

이는 oh8dG 없이 심정지액만 처리되면 세포사멸이 증가하지만, 100 μg/mL oh8dG를 함께 처리하면 세포사멸이 감소하는 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용하여 세포사멸인자의 발현을 감소시키므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that apoptosis increases when only cardiac arrest fluid is treated without oh8dG, but apoptosis decreases when treated with 100 μg/mL oh8dG. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention is used together with cardiac arrest fluid to reduce the expression of apoptosis factors, so that damage to the heart tissue during cardiac arrest can be prevented.

<< 실험예Experimental example 8> 8> 심정지된Cardiac arrest 심근세포의Cardiomyocyte 세포사멸인자인Apoptosis factor BclBcl -2, P-53 또는 -2, P-53 or BAXBAX 감소여부Whether to decrease 측정 Measure

심정지액의 노출에 의해 세포사멸인자들의 발현이 증가하는데, 본 발명의 심정지 시 심장손상 방지용 조성물의 처리를 통한 세포사멸인자인 Bcl-2(B-cell lymphoma 2), P-53 또는 BAX 감소효과를 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 도 16 및 도 17에 나타내었다.Expression of apoptosis factors is increased by exposure to cardiac arrest fluid, and the effect of reducing Bcl-2 (B-cell lymphoma 2), P-53 or BAX, which is apoptosis factor, through treatment of the composition for preventing heart damage during cardiac arrest of the present invention In order to evaluate, the following experiment was performed, and the results are shown in FIGS. 16 and 17.

Bcl-2, p53 및 BAX는 세포사멸을 조절하는 단백질로 잘 알려져있어, 이들의 발현정도는 세포사멸의 척도가 될 수 있으므로, 겔 전기영동법을 통해 RNA 발현정도를 측정하였다.Bcl-2, p53, and BAX are well known as proteins that control apoptosis, and their expression level can be a measure of apoptosis, so the level of RNA expression was measured by gel electrophoresis.

8주령의 수컷 쥐에서 심근조직을 3가지 경우로 나누어 ep-tube에 담았다. 1) 심정지액(HTK)에 2시간 처리한 경우, 2) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 1시간 처리한 경우 및 3) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 2시간 처리한 경우로 모두, Hybrid-RiboEX extraction system을 이용하여 심근 조직에서 RNA를 분리하였다. In 8-week-old male rats, myocardial tissue was divided into 3 cases and placed in ep-tubes. 1) When treated with cardiac arrest solution (HTK) for 2 hours, 2) When treated with oh8dG at a concentration of 100 μg/mL for 1 hour with the cardiac arrest solution treatment, and 3) when treated with the cardiac arrest solution at a concentration of 100 μg/mL In all cases where oh8dG was treated for 2 hours, RNA was isolated from the myocardial tissue using a Hybrid-Ribo EX extraction system.

분리된 RNA는 분광광도계인 ND-1000으로 그 농도를 측정하였다. 그리고 RT-PCR 키트를 이용해 42℃에서 1시간, 94℃에서 5분의 조건으로 cDNA를 합성하고, GAPDH, Bcl-2, P-53 및 BAX의 프라이머를 상기 cDNA와 섞어 95℃에서 5분, 95℃에서 30초, 58℃에서 1분 그리고 72℃에서 1분 동안 45 cycle의 조건으로 합성하였다. 이렇게 만들어진 PCR 생성물은 1% 아가로스(agarose) 겔에 로딩하고 100 mV에서 24분간 전기 영동한 뒤, GelDocXR을 이용해 전기영동된 밴드를 확인하였다.The isolated RNA was measured for its concentration with ND-1000, a spectrophotometer. And cDNA was synthesized under conditions of 1 hour at 42°C and 5 minutes at 94°C using an RT-PCR kit, and primers of GAPDH, Bcl-2, P-53 and BAX were mixed with the cDNA for 5 minutes at 95°C, It was synthesized under the conditions of 45 cycles for 30 seconds at 95°C, 1 minute at 58°C and 1 minute at 72°C. The resulting PCR product was loaded on a 1% agarose gel, electrophoresed at 100 mV for 24 minutes, and then the electrophoretic band was confirmed using GelDoc XR .

심정지액을 처리하고 2시간이 지난 후와 비교할 때, 심정지액과 함께 100 μg/mL oh8dG가 처리된 경우는 Bcl-2, P-53 또는 BAX의 RNA 발현정도가 감소하되, oh8dG 처리시간이 길수록 Bcl-2 또는 P-53의 RNA 발현정도는 더욱 감소하였다(도 16 및 도 17 참조).Compared to 2 hours after treatment with cardiac arrest, when 100 μg/mL oh8dG was treated with cardiac arrest, the level of RNA expression of Bcl-2, P-53 or BAX decreased, but the longer oh8dG treatment time The level of RNA expression of Bcl-2 or P-53 was further reduced (see FIGS. 16 and 17).

이는 oh8dG 없이 심정지액만 처리되는 경우보다, 100 μg/mL oh8dG를 함께 처리하면 세포사멸이 감소하는 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용하여 세포사멸인자의 발현을 감소시키므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that apoptosis is reduced when treated with 100 μg/mL oh8dG than when only cardiac arrest fluid is treated without oh8dG. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention is used together with cardiac arrest fluid to reduce the expression of apoptosis factors, so that damage to the heart tissue during cardiac arrest can be prevented.

<< 실험예Experimental example 9> 9> 심정지된Cardiac arrest 심근세포의Cardiomyocyte CTGFCTGF 감소여부Whether to decrease 측정 Measure

본 발명의 심정지 시 심장손상 방지용 조성물의 처리를 통한 CTGF(connective tissue growth factor) 감소효과를 평가하기 위하여, CTGF의 프라이머를 사용한 것을 제외하고는 상기 실험예 8과 같은 실험을 수행하였으며, 그 결과를 도 18 및 도 19에 나타내었다.In order to evaluate the effect of reducing CTGF (connective tissue growth factor) through the treatment of the composition for preventing heart damage during cardiac arrest of the present invention, the same experiment as in Experimental Example 8 was performed, except that the primer of CTGF was used. It is shown in Figures 18 and 19.

CTGF는 섬유화 및 섬유세포의 성장, 분화 및 이동에 관여하므로, 겔 전기영동법을 통해 RNA 발현정도를 측정하였다.Since CTGF is involved in fibrosis and growth, differentiation and migration of fibroblasts, the level of RNA expression was measured by gel electrophoresis.

심정지액을 처리하고 2시간이 지난 후와 비교할 때, 심정지액과 함께 100 μg/mL oh8dG가 처리된 경우는 CTGF의 RNA 발현정도가 감소하되, oh8dG 처리시간이 길수록 CTGF의 RNA 발현정도는 더욱 감소하였다(도 18 및 도 19 참조).Compared to 2 hours after treatment with cardiac arrest fluid, when 100 μg/mL oh8dG is treated with cardiac arrest fluid, the level of RNA expression of CTGF decreases, but the longer oh8dG treatment time, the more the level of RNA expression of CTGF decreases. (See Figs. 18 and 19).

이는 oh8dG 없이 심정지액만 처리되는 경우보다, 100 μg/mL oh8dG를 함께 처리하면 섬유화의 발생이 감소하는 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용하여 심장의 섬유화의 발생을 감소시키므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that the incidence of fibrosis is reduced when treated with 100 μg/mL oh8dG than when only cardiac arrest fluid is treated without oh8dG. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention is used together with the cardiac arrest fluid to reduce the occurrence of fibrosis of the heart, so that damage to the heart tissue during cardiac arrest can be prevented.

<< 실험예Experimental example 10> 10> 심정지된Cardiac arrest 심근세포의Cardiomyocyte COX-2 또는 COX-2 or CTGFCTGF 감소여부Whether to decrease 측정 Measure

본 발명의 심정지 시 심장손상 방지용 조성물의 처리를 통한 COX-2(cyclooxygenase-2) 또는 CTGF(connective tissue growth factor) 감소효과를 평가하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 도 20 내지 도 22에 나타내었다.In order to evaluate the effect of reducing COX-2 (cyclooxygenase-2) or CTGF (connective tissue growth factor) through treatment of the composition for preventing heart damage during cardiac arrest of the present invention, the following experiment was performed, and the results are shown in FIGS. It is shown in 22.

COX-2는 염증이 있으면 발현정도가 높아지는 염증인자이고, CTGF는 섬유화 및 섬유세포의 성장, 분화 및 이동에 관여한다. 겔 전기영동법을 통해 이들의 단백질 발현정도를 측정하였다.COX-2 is an inflammatory factor that increases the level of expression when there is inflammation, and CTGF is involved in fibrosis and growth, differentiation and migration of fibroblasts. Their protein expression levels were measured by gel electrophoresis.

8주령의 수컷 쥐에서 분리한 심근조직을 3가지 경우로 나누어 ep-tube에 담았다. 1) 심정지액(HTK)에 2시간 처리한 경우, 2) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 1시간 처리한 경우 및 3) 상기 심정지액 처리와 함께 100 μg/mL 농도의 oh8dG을 2시간 처리한 경우로 모두, 약물처리 후에 lysis buffer를 200 uL씩 넣고, 초음파 처리(sonication)하여 세포를 깼다.Myocardial tissues isolated from 8-week-old male rats were divided into 3 cases and placed in ep-tubes. 1) When treated with cardiac arrest solution (HTK) for 2 hours, 2) When treated with oh8dG at a concentration of 100 μg/mL for 1 hour with the cardiac arrest solution treatment, and 3) when treated with the cardiac arrest solution at a concentration of 100 μg/mL In all cases where oh8dG was treated for 2 hours, 200 uL of lysis buffer was added after drug treatment, and the cells were broken by sonication.

이를 다시 원심분리기에 넣고 4℃, 12000 g에서 15분간 원심분리한 후, 상층액만을 얻어 Bradford assay를 통해 standard에 맞추어 정량한 후, 595 nm에서 흡광도를 재었다. 측정한 흡광도를 통해 샘플들을 정량하고 이를 다시 sample buffer (2x laemmli sample buffer + 2-Mercaptoethanol)에 섞고 37℃에서 15분간 가열(heating)하였다.This was put into a centrifuge again and centrifuged at 4° C. and 12000 g for 15 minutes, and then only the supernatant was obtained and quantified according to the standard through Bradford assay, and the absorbance was measured at 595 nm. Samples were quantified through the measured absorbance, mixed with a sample buffer (2x laemmli sample buffer + 2-Mercaptoethanol), and heated at 37° C. for 15 minutes.

8% SDS-gel에 각각의 샘플들을 10 μL씩 로딩한 후, 120 V에서 15분간 전기영동하고, 150 V에서 30분간 다시 전기영동하였다. 전기영동된 gel을 3M paper와 PVDF membrane 위에 올리고, 판에 끼워 transfer buffer를 넣고 300 mA에서 90분간 이동(transfer)시켰다. 이동된 membrane을 크기에 맞게 잘라, non-fat dry milk에 1시간 담가두고, 1차 항체인 COX-2, CTGF, β-actin을 붙여, 24시간 동안 4℃에 보관하였다. 24시간 후, TBST로 10분간 3번씩 세척한 후, 각각 항체에 맞게 HRP 2차 항체를 1시간 붙였다(COX-2: Rabbit, CTGF: Mouse). 그 후에 다시 TBST로 10분간 4번씩 세척한 후, ECL을 붙여 암실에서 Developer와 fixer를 이용해 발현을 확인하였다. After 10 μL of each sample was loaded on 8% SDS-gel, electrophoresis was performed at 120 V for 15 minutes, and electrophoresis was performed again at 150 V for 30 minutes. The electrophoresed gel was placed on 3M paper and PVDF membrane, inserted into a plate, and transferred to a transfer buffer at 300 mA for 90 minutes. The transferred membrane was cut to fit the size, immersed in non-fat dry milk for 1 hour, and the primary antibodies COX-2, CTGF, and β-actin were attached, and stored at 4°C for 24 hours. After 24 hours, after washing three times with TBST for 10 minutes, HRP secondary antibody was added for 1 hour according to each antibody (COX-2: Rabbit, CTGF: Mouse). After that, after washing 4 times with TBST again for 10 minutes, ECL was attached and expression was confirmed using a developer and fixer in a dark room.

심정지액을 처리하고 2시간이 지난 후와 비교할 때, 심정지액과 함께 100 μg/mL oh8dG가 처리된 경우는 COX-2 및 CTGF의 단백질 발현정도가 감소하였다(도 20 내지 도 22 참조).Compared to 2 hours after the cardiac arrest fluid was treated, when 100 μg/mL oh8dG was treated with cardiac arrest fluid, the protein expression levels of COX-2 and CTGF were decreased (see FIGS. 20 to 22).

이는 oh8dG 없이 심정지액만 처리되는 경우보다, 100 μg/mL oh8dG를 함께 처리하면 섬유화 및 염증의 발생이 감소하는 것을 나타낸다. 상기 결과를 통해, 본 발명의 심정지 시 심장손상 방지용 조성물은 심정지액과 함께 사용하여 심장의 섬유화 및 염증의 발생을 감소시키므로, 심정지 시 심장조직의 손상을 방지할 수 있음을 알 수 있다.This indicates that the incidence of fibrosis and inflammation was reduced when treated with 100 μg/mL oh8dG than when only cardiac arrest fluid was treated without oh8dG. From the above results, it can be seen that the composition for preventing heart damage during cardiac arrest of the present invention is used together with cardiac arrest fluid to reduce the occurrence of fibrosis and inflammation of the heart, so that damage to the heart tissue during cardiac arrest can be prevented.

Claims (11)

8-옥소-2'-디옥시구아노신을 유효성분으로 포함하는 심정지 시 심장손상 방지용 조성물.
A composition for preventing heart damage during cardiac arrest, comprising 8-oxo-2'-deoxyguanosine as an active ingredient.
제1항에 있어서,
심정지 시 심장손상은 심장수술을 위한 심정지 이후 재관류로 인한 심장손상인 것을 특징으로 하는, 심정지 시 심장손상 방지용 조성물.
The method of claim 1,
The composition for preventing heart damage during cardiac arrest, characterized in that the heart damage during cardiac arrest is a heart damage due to reperfusion after cardiac arrest for cardiac surgery.
제1항에 있어서,
심정지 시 심장손상 방지용 조성물은 심정지액과 동시적 또는 순차적으로 투여할 수 있는 것을 특징으로 하는 심정지 시 심장손상 방지용 조성물.
The method of claim 1,
The composition for preventing heart damage during cardiac arrest is a composition for preventing heart damage during cardiac arrest, characterized in that it can be administered simultaneously or sequentially with the cardiac arrest solution.
제1항에 있어서,
심정지 시 심장손상 방지용 조성물은 K+를 포함하는 심정지액에 8-옥소-2'-디옥시구아노신이 첨가된 심정지액인 것을 특징으로 하는, 심정지 시 심장손상 방지용 조성물.
The method of claim 1,
The composition for preventing heart damage during cardiac arrest is a cardiac arrest solution in which 8-oxo-2'-dioxyguanosine is added to the cardiac arrest solution containing K + . The composition for preventing heart damage during cardiac arrest.
제4항에 있어서,
K+의 농도가 1 내지 100 mM인 것을 특징으로 하는, 심정지 시 심장손상 방지용 조성물.
The method of claim 4,
A composition for preventing heart damage during cardiac arrest, characterized in that the concentration of K + is 1 to 100 mM.
제1항에 있어서,
심정지 시 심장손상 방지용 조성물은 활성산소의 증가를 억제하는 것을 특징으로 하는, 심정지 시 심장손상 방지용 조성물.
The method of claim 1,
The composition for preventing heart damage during cardiac arrest, characterized in that it suppresses the increase of free radicals, the composition for preventing heart damage during cardiac arrest.
제1항에 있어서,
심정지 시 심장손상 방지용 조성물은 심근세포의 이온수송체 활성을 감소시키는 것을 특징으로 하는, 심정지 시 심장손상 방지용 조성물
The method of claim 1,
The composition for preventing heart damage during cardiac arrest is characterized in that it reduces the activity of the ion transporter of cardiomyocytes, and the composition for preventing heart damage during cardiac arrest
제1항에 있어서,
심정지 시 심장손상 방지용 조성물은 PAR, HSP60, Bcl-2, P-53, BAX, COX-2 및 CTGF로 이루어진 군에서 선택되는 1종 이상을 감소시키는, 심정지 시 심장손상 방지용 조성물.
The method of claim 1,
The composition for preventing heart damage during cardiac arrest is a composition for preventing heart damage during cardiac arrest, which reduces at least one selected from the group consisting of PAR, HSP60, Bcl-2, P-53, BAX, COX-2 and CTGF.
심정지액 및 제1항의 심정지 시 심장손상 방지용 조성물을 포함하는 심장수술을 위한 심정지용 키트.
Cardiac arrest kit for cardiac surgery comprising a cardiac arrest fluid and a composition for preventing heart damage during cardiac arrest according to claim 1.
제9항에 있어서,
심정지액 및 상기 조성물을 동시적 또는 순차적으로 투여할 수 있는 것을 특징으로 하는 심장수술을 위한 심정지용 키트.
The method of claim 9,
Cardiac arrest kit for cardiac surgery, characterized in that the cardiac arrest fluid and the composition can be administered simultaneously or sequentially.
제9항에 있어서,
심정지액과 상기 조성물이 혼합되어 투여되는 것을 특징으로 하는 심장수술을 위한 심정지용 키트.
The method of claim 9,
Cardiac arrest kit for cardiac surgery, characterized in that the cardiac arrest solution and the composition are mixed and administered.
KR1020190158918A 2019-05-29 2019-12-03 Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2'-deoxyguanosine as an active ingredient KR102200030B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190063238 2019-05-29
KR20190063238 2019-05-29

Publications (2)

Publication Number Publication Date
KR20200137935A true KR20200137935A (en) 2020-12-09
KR102200030B1 KR102200030B1 (en) 2021-01-08

Family

ID=73787106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190158918A KR102200030B1 (en) 2019-05-29 2019-12-03 Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2'-deoxyguanosine as an active ingredient

Country Status (1)

Country Link
KR (1) KR102200030B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200145656A (en) * 2019-06-19 2020-12-30 가천대학교 산학협력단 Composition for preventing organ damage during preserving organ for transplantation containing 8-oxo-2'-deoxyguanosine as an active ingredient

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054953A (en) * 2005-11-24 2007-05-30 재단법인서울대학교산학협력재단 Composition for anti-inflammation
KR101816277B1 (en) * 2016-10-06 2018-01-08 가천대학교 산학협력단 Composition for treatment of corneal damage containing 7,8-dihydro-8-oxo-2'-deoxyguanosine or pharmaceutically acceptable salts thereof as an active ingredient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054953A (en) * 2005-11-24 2007-05-30 재단법인서울대학교산학협력재단 Composition for anti-inflammation
KR101816277B1 (en) * 2016-10-06 2018-01-08 가천대학교 산학협력단 Composition for treatment of corneal damage containing 7,8-dihydro-8-oxo-2'-deoxyguanosine or pharmaceutically acceptable salts thereof as an active ingredient

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALESSANDRO DI MINNO ET AL, ANTIOXID REDOX SIGNAL., 2016; 24(10): 548_555 *
MERLIN C THOMAS ET AL, J AM HEART ASSOC., 2018, 7(13):E008226 *
MIGUEL RIVERA ET AL, REV ESP CARDIOL., 2006; 59(11):1140_1145 *
STN 검색결과 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200145656A (en) * 2019-06-19 2020-12-30 가천대학교 산학협력단 Composition for preventing organ damage during preserving organ for transplantation containing 8-oxo-2'-deoxyguanosine as an active ingredient

Also Published As

Publication number Publication date
KR102200030B1 (en) 2021-01-08

Similar Documents

Publication Publication Date Title
McCully et al. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury
Xie et al. Coronary reperfusion following ischemia different expression of Bcl-2 and Bax proteins, and cardiomyocyte apoptosis
Marshall et al. Dissecting the complement pathway in hepatic injury and regeneration with a novel protective strategy
Solomon et al. Atriopeptin stimulation of rectal gland function in Squalus acanthias
Hattori et al. An essential role of the antioxidant gene Bcl-2 in myocardial adaptation to ischemia: an insight with antisense Bcl-2 therapy
Garbincius et al. The debate continues–what is the role of MCU and mitochondrial calcium uptake in the heart?
Liu et al. Protective effects of circulating microvesicles derived from ischemic preconditioning on myocardial ischemia/reperfusion injury in rats by inhibiting endoplasmic reticulum stress
Peralta et al. Endoplasmic reticulum stress inhibition enhances liver tolerance to ischemia/reperfusion
KR102200030B1 (en) Composition for preventing heart damage in case of heart arrest containing 8-Oxo-2&#39;-deoxyguanosine as an active ingredient
Lutz et al. The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation
WO2014028042A1 (en) Probenecid for treating cardiomyopathy, systolic cardiac dysfunction and the symptoms of congestive heart failure
Tan et al. β Adrenergic receptor desensitisation may serve a cardioprotective role
Luo et al. NMDA receptor dependent PGC-1α up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury
Zhou et al. Adiponectin receptor agonist AdipoRon modulates human and mouse platelet function
Kandemir et al. Effect of Melatonin on the Expression of VEGF-A and on the Degeneration of Follicle Reserve in Rat Ovary
Feng et al. Role of the Notch signaling pathway in fibrosis of denervated skeletal muscle
Li et al. Probucol attenuates atrial structural remodeling in prolonged pacing-induced atrial fibrillation in dogs
KR102344674B1 (en) Composition for preventing organ damage during preserving organ for transplantation containing 8-oxo-2&#39;-deoxyguanosine as an active ingredient
Huuskonen et al. Monoamine oxidase A inhibition protects the myocardium after experimental acute volume overload
Shi et al. Arsenite pre‐conditioning reduces UVB‐induced apoptosis in corneal epithelial cells through the anti‐apoptotic activity of 27 kDa heat shock protein (HSP27)
Tani et al. Role of circadian clock genes in sudden cardiac death: a pilot study
Zhang et al. Prolonged warm ischemia aggravates hepatic mitochondria damage and apoptosis in DCD liver by regulating Ca2+/CaM/CaMKII signaling pathway
Hachida et al. Protective effect of JTV519, a new 1, 4‐benzothiazepine derivative, on prolonged myocardial preservation
Zhang et al. Novel nanoliposomes alleviate contrast-induced nephropathy by mediating apoptosis response in New Zealand rabbits
Nowicki et al. The estimation of oxidative stress markers and apoptosis in right atrium auricles cardiomyocytes of patients undergoing surgical heart revascularisation with the use of warm blood cardioplegia.

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant