KR20200137280A - Manufacturing Method of Self-healing Filler and Eco-friendly Soil Filler Composition Using the Self-healing Filler - Google Patents

Manufacturing Method of Self-healing Filler and Eco-friendly Soil Filler Composition Using the Self-healing Filler Download PDF

Info

Publication number
KR20200137280A
KR20200137280A KR1020190063359A KR20190063359A KR20200137280A KR 20200137280 A KR20200137280 A KR 20200137280A KR 1020190063359 A KR1020190063359 A KR 1020190063359A KR 20190063359 A KR20190063359 A KR 20190063359A KR 20200137280 A KR20200137280 A KR 20200137280A
Authority
KR
South Korea
Prior art keywords
self
filler
healing
weight
water
Prior art date
Application number
KR1020190063359A
Other languages
Korean (ko)
Other versions
KR102262518B1 (en
Inventor
안상욱
황지순
민관홍
김진응
Original Assignee
주식회사 인트켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트켐 filed Critical 주식회사 인트켐
Priority to KR1020190063359A priority Critical patent/KR102262518B1/en
Publication of KR20200137280A publication Critical patent/KR20200137280A/en
Application granted granted Critical
Publication of KR102262518B1 publication Critical patent/KR102262518B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0675Mortars activated by rain, percolating or sucked-up water; Self-healing mortars or concrete
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

The present invention relates to a method for manufacturing a self-healing filler having crack recovery performance and an eco-friendly soil filler composition using the same and, more specifically, to a method for manufacturing a self-healing filler, which impregnates a porous material with a self-healing material to increase long-term crack recovery performance, and an eco-friendly soil filler composition using the same. According to the present invention, the method comprises: a first step of pulverizing a porous material, screening the pulverized porous material by a particle size of 0.5 to 10 mm, and dissolving and saturating water-soluble carbonate in water to prepare an impregnation liquid; a second step of immersing the screened pulverized porous material in the impregnation liquid to perform ultrasonic impregnation; and a third step of performing drying. The eco-friendly soil filler composition comprises 25 to 40 wt% of fly ash, 5 to 10 wt% of calcium hydroxide, 5 to 10 wt% of a self-healing filler, 0.5 to 2 wt% of a water repellent, 2 to 5 wt% of a swelling agent, and 45 to 60 wt% calcium carbonate.

Description

자기치유형 충진재의 제조방법 및 그 자기치유형 충진재를 이용한 친환경 지반채움재 조성물{Manufacturing Method of Self-healing Filler and Eco-friendly Soil Filler Composition Using the Self-healing Filler}Manufacturing Method of Self-healing Filler and Eco-friendly Soil Filler Composition Using the Self-healing Filler {Manufacturing Method of Self-healing Filler and Eco-friendly Soil Filler Composition Using the Self-healing Filler}

본 발명은 균열복원 성능을 가지는 자기치유형 충진재와 이를 이용한 지반채움재 조성물에 관한 것으로, 더욱 상세하게는 ALC 등 다공성 재료에 자기치유 소재를 효과적으로 함침시켜 장기적으로 균열복원 성능을 높일 수 있는 자기치유형 충진재의 제조방법과 그 제조방법으로 제조된 충진재를 바람직하게 이용한 친환경 지반채움재 조성물에 관한 것이다.The present invention relates to a self-healing filler material having a crack recovery performance and a ground filler composition using the same, and more particularly, a self-healing type that can effectively impregnate a self-healing material into a porous material such as ALC to increase crack recovery performance in the long term. It relates to a method of manufacturing a filler and an eco-friendly ground filler composition preferably using the filler prepared by the method.

1990년대 이후 지속적인 사회적 고도성장기를 통해 사회기반시설물이면서 사회적으로도 필요한 교통, 주택 등의 시설물 포화로 인해 지하철, 철도 등의 시설물과 상·하수관로가 지중화되고 있는 추세이다. 지하에 매설된 상하수관로는 도로 또는 건축시설물 아래에 매설되어 있어 손상여부 확인이 쉽지가 않고 파손시에 막대한 비용과 어려운 현장여건으로 인해 보수교체가 쉽지 않은 상황이며 문제가 발생하는 부분에 대해서만 긴급 보수 대처하는 수준에 있다. Since the 1990s, facilities such as subways and railroads and water and sewage pipes have become underground due to the saturation of facilities such as transportation and housing that are socially necessary as well as social infrastructure through the period of continuous social growth. Water and sewage pipes buried underground are buried under roads or construction facilities, so it is not easy to check whether they are damaged.In the event of damage, it is difficult to repair and replace due to enormous costs and difficult site conditions, and emergency repairs only for areas where problems occur. You are at the level of coping.

그런데 상하수관의 손상으로 인해 누수된 물은 인접한 토사와 함께 흘러내리면서 시설물 근처에 공동을 발생시키게 되며 이러한 현상이 지속되는 경우 주변의 물리적인 하중에 의해 지반함몰(싱크홀)현상이 발생하게 된다. 지반함몰 침하 발생은 대부분 2012년 이후 발생하며 해마다 지속적으로 늘어나고 있으며, 도심지에서 이러한 지반함몰 증가 요인으로는 시설물 과밀화, 지하매설시설물 노후와 손상, SOC(Social Overhead Capital)시설물의 지하화 등을 들 수 있으며 사회적 추세를 반영시에 도심지 지반함몰은 점점 증가할 것으로 보여지며 함몰 전 발생공동에 대한 빠른 복구가 절실한 상황이다. However, water leaked due to damage to the water supply and sewer pipes flows down with adjacent soil and creates a cavity near the facility. If this phenomenon persists, a ground depression (sink hole) phenomenon occurs due to the surrounding physical load. . Most of the occurrence of ground sinking has occurred since 2012 and has been increasing year by year.In urban areas, the causes of such ground depression increase include overcrowding of facilities, deterioration and damage of underground facilities, and undergrounding of SOC (Social Overhead Capital) facilities. When reflecting the social trend, the submerged urban ground is expected to increase gradually, and there is a desperate need for rapid restoration of the cavity before the submersion.

국내에서 최근들어 도심지에서 공동 및 지반함몰현상이 급격히 증가하고 있는데 이는 도심지에서의 굴착공사 증가추세와 연관이 있으며 지반 굴착 공사시에 공사시점에서 매설물의 파손보다는 지반굴착으?? 인해 주변 매설물이 파손되기 때문에 굴착 후 시공을 한 후에 조금씩 함몰된 지반이 하중에 의해 함몰되면서 피해가 발생하게 된다. In Korea, the phenomenon of joint and ground depression in urban areas has been rapidly increasing in recent years. This is related to the increasing trend of excavation work in urban areas. In the case of ground excavation work, ground excavation rather than damage of buried materials at the time of construction? Because the surrounding buried material is damaged, the ground gradually depressed after construction after excavation is depressed by the load, causing damage.

국내에서 공동 및 지반함몰 발생시에 현장 대처방안으로 빠른 교통통행과 주변시설물의 2차 피해방지를 위해 골재, 마사토 등으로 채운 후 다짐공정과 상부면 모르타르/아스팔트 시공으로 마감하여 처리하고 있다. 그러나 이러한 방법은 단순히 공동을 채우기 위한 임시대책에 불과하여 지반 내 누수로 인해 추가 지속적인 공동발생 여지가 있으며 채움다짐시 지반 하단부 하중으로 인해 매설시설물의 추가 파손문제가 나타날 우려가 있다. 이에 따라 지하지반의 공동 발생시에 추가적인 공동 확산 또는 지반함몰(싱크홀)을 예방하기 위해서는 새로운 지반채움재가 필요한 실정이고, 특히 지반함몰 발생시 추가적인 사고예방과 원활한 교통흐름을 위해 단시간내에 지반함몰부위에 대한 채움시공이 가능한 지반채움재가 필요한 실정이다.In order to prevent secondary damage to nearby facilities and rapid traffic passage as a countermeasure for the occurrence of joint and ground depression in Korea, it is filled with aggregates, Masato, etc., and then finished with compaction process and mortar/asphalt construction on the upper surface. However, since this method is merely a temporary measure to fill the cavity, there is a possibility of additional continuous cavity occurrence due to leakage in the ground, and there is a concern that additional damage to the buried facility may appear due to the load at the bottom of the ground when filling compaction. Accordingly, a new ground fill material is needed to prevent additional cavity spread or ground sinking (sink hole) in the event of a ground sinking. In particular, in the event of a ground depression, for additional accident prevention and smooth traffic flow, the There is a need for a ground filling material capable of filling construction.

KR 10-1303622 B1KR 10-1303622 B1 KR 10-1308084 B1KR 10-1308084 B1

본 발명은 종래 지반채움재를 개선하고자 개발된 것으로, 균열발생시 스스로 복원하고 치유할 수 있어 2차적인 공동 및 지반함몰을 최소화하여 유지관리 비용을 절감할 수 있고 유동성이 우수하여 신속하게 채움시공이 가능하며 더불어 순환자원을 재활용하면서 시멘트 사용을 배제하여 친환경을 확보할 수 있는 새로운 지반채움재 조성물을 제공하는데 기술적 과제가 있다.The present invention was developed to improve the conventional ground filling material, and it can self-repair and heal when cracks occur, thereby minimizing secondary cavities and ground depression to reduce maintenance costs, and excellent fluidity, enabling rapid filling construction. In addition, there is a technical problem in providing a new ground-filling composition that can secure eco-friendliness by excluding the use of cement while recycling recycled resources.

또한 본 발명은 지반채움재에 유리하게 사용할 수 있는 자기치유형 충진재의 제조방법으로 자기치유 소재를 다공성 재료에에 효과적으로 함침시켜 제조할 수 있는 자기치유형 충진재의 제조방법을 제공하고자 한다.In addition, the present invention is to provide a method of manufacturing a self-healing type filler that can be produced by effectively impregnating a porous material with a self-healing material as a method of manufacturing a self-healing type filler that can be advantageously used for a ground filler.

상기한 기술적 과제를 해결하기 위해 본 발명은, 다공성 재료를 분쇄하여 입도 0.5~10mm로 선별하여 준비하고, 수용성 탄산염을 물에 포화용해시켜 함침액으로 준비하는 제1단계; 선별된 다공성 재료 분쇄물을 함침액에 침지하고 초음파 함침으로 함침하는 제2단계; 건조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 자기치유형 충진재의 제조방법을 제공한다.In order to solve the above technical problem, the present invention comprises: a first step of preparing a porous material by pulverizing a particle size of 0.5 to 10 mm and preparing a water-soluble carbonate as an impregnation solution by saturating and dissolving a water-soluble carbonate in water; A second step of immersing the selected pulverized porous material in an impregnation solution and impregnation by ultrasonic impregnation; A third step of drying; it provides a method of manufacturing a self-dental type filler comprising a.

또한 본 발명은 지반채움재에서, 플라이애시 25~40중량%, 수산화칼슘 5~10중량%, 자기치유형 충진재 5~10중량%, 발수제 0.5~2중량%, 팽윤제 2~5중량%, 탄산칼슘 45~60중량%를 포함하여 조성되는 것을 특징으로 하는 친환경 지반채움재 조성물을 제공한다.In addition, the present invention in the ground filling material, fly ash 25 to 40% by weight, calcium hydroxide 5 to 10% by weight, self-tooth type filler 5 to 10% by weight, water repellent 0.5 to 2% by weight, swelling agent 2 to 5% by weight, calcium carbonate It provides an eco-friendly ground filler composition comprising 45 to 60% by weight.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 본 발명에 따른 지반채움재는 균열발생시 스스로 복원하고 치유할 수 있어 2차적인 공동 및 지반함몰을 최소화하여 유지관리 비용을 절감할 수 있고 유동성이 우수하여 신속하게 채움시공이 가능하다. 특히 AlC, 플라이애시 등 순환자원을 재활용하면서 시멘트 사용을 배제하기 때문에 친환경을 확보하고 토양 오염을 줄일 수 있다. First, the ground filling material according to the present invention can self-recover and heal when cracks occur, thereby minimizing secondary cavities and ground depression, thereby reducing maintenance costs, and excellent fluidity, enabling rapid filling construction. In particular, recycling of recycled resources such as AlC and fly ash eliminates the use of cement, thus securing eco-friendliness and reducing soil pollution.

둘째, 본 발명은 다공성 재료에 수용성 탄산염을 함침시킬 수 있는 방법을 최적화하기 때문에 함침효과를 극대화할 수 있으며, 우수한 품질의 자기치유형 충진재를 효율적으로 생산할 수 있다.Second, since the present invention optimizes a method for impregnating a porous material with a water-soluble carbonate, the impregnation effect can be maximized, and an excellent quality self-dental filler can be efficiently produced.

본 발명은 자기치유형 충진재를 이용한 지반채움재에 관한 것으로, 다공성 재료를 분쇄하여 적정한 입도의 분쇄물로 준비한 후 자기치유 소재를 함침시켜 자기치유형 충진재로 제조한다는데 특징이 있다. The present invention relates to a ground filling material using a self-healing filler, and is characterized in that a porous material is pulverized to prepare a pulverized product having an appropriate particle size, and then a self-healing material is impregnated to produce a self-healing filler.

구체적으로 본 발명에 따른 자기치유형 충진재는, 다공성 재료를 분쇄하여 입도 0.5~10mm로 선별하여 준비하고, 수용성 탄산염을 물에 포화용해시켜 함침액으로 준비하는 제1단계; 선별된 다공성 재료 분쇄물을 함침액에 침지하고 초음파 함침으로 함침하는 제2단계; 건조하는 제3단계;를 통해 제조된다. 자기치유 결정 생성에 기여하는 수용성 탄산염을 다공성 재료에 함침 건조하여 자기치유형 충진재로 제조하는 것이다. Specifically, the magnetic tooth type filler according to the present invention comprises: a first step of preparing a porous material by pulverizing a particle size of 0.5 to 10 mm and preparing a water-soluble carbonate as an impregnation solution by saturating and dissolving a water-soluble carbonate in water; A second step of immersing the selected pulverized porous material in an impregnation solution and impregnation by ultrasonic impregnation; It is manufactured through a third step of drying. A water-soluble carbonate that contributes to the formation of self-healing crystals is impregnated into a porous material and dried to form a self-healing type filler.

제1단계는 재료 준비단계로, 다공성 재료를 분쇄하여 적정한 입도의 분쇄물로 준비하고, 수용성 탄산염을 물에 포화용해시켜 함침액으로 준비하는 과정이다. 다공성 재료로는 ALC(Autoclaved Lightweight Concrete), 인공경량골재, 제올라이트, 메조실리카, 다공성 알루미나 산화물 중 하나 이상을 선택하면 적당하며, 특히 절건비중 0.45~0.75의 폐ALC는 자원재활용 차원에서 유리한 재료가 된다. 다공성 재료는 분쇄하여 입도 0.5~ 10mm로 선별하여 준비하는 것이 바람직한데, 0.5mm 미만이면 내부 기공이 불규칙하여 충진재로서 강도 확보가 어렵고, 10mm 초과하면 수용성 탄산염의 함침율이 낮아지는 문제가 있다. 함침액은 수용성 탄산염을 물에 포화용해시켜 준비하는데, 이때 수용성 탄산염으로 탄산마그네슘(MgCO3), 탄산나트륨(Na2CO3) 중 하나 이상 선택하면 적당하며, 수용성 탄산염의 용해도를 고려하여 적당량의 물에 포화용해시켜 준비한다. 수용성 탄산염은 다공성 재료 분쇄물 100중량부에 대하여 30~70중량부 준비하는데, 이 범위에서 잔류이온이 남지않게 하면서 효과적으로 다공성 재료에 흡착시킬 수 있다.The first step is a material preparation step, in which a porous material is pulverized to prepare a pulverized product having an appropriate particle size, and a water-soluble carbonate is saturated and dissolved in water to prepare an impregnation solution. As the porous material, it is appropriate to select one or more of ALC (Autoclaved Lightweight Concrete), artificial lightweight aggregate, zeolite, mesosilica, and porous alumina oxide. In particular, waste ALC with an absolute dry weight of 0.45 to 0.75 becomes an advantageous material in terms of resource recycling. . It is preferable to prepare a porous material by pulverizing and selecting a particle size of 0.5 to 10 mm.If it is less than 0.5 mm, it is difficult to secure strength as a filler due to irregular internal pores, and if it exceeds 10 mm, there is a problem that the impregnation rate of water-soluble carbonate is lowered. The impregnation solution is prepared by saturating and dissolving a water-soluble carbonate in water.At this time, it is appropriate to select at least one of magnesium carbonate (MgCO 3 ) and sodium carbonate (Na 2 CO 3 ) as the water-soluble carbonate, and an appropriate amount of water in consideration of the solubility of the water-soluble carbonate. Prepare by saturating and dissolving in. The water-soluble carbonate is prepared in an amount of 30 to 70 parts by weight based on 100 parts by weight of the pulverized material of the porous material, and within this range, it can be effectively adsorbed to the porous material while leaving no residual ions.

제2단계는 함침단계로, 다공성 재료 분쇄물에 수용성 탄산염의 탄산이온을 흡착시키기 위한 과정이 된다. 함침은 아래 시험예에서 확인되는 바와 같이 함침효율이 우수한 초음파 함침으로 실시하며, 초음파 함침은 초음파 함침 장비를 사용하여 액체 중에 초음파를 발진시켜서 발생한 음압 효과와 기포의 진동 효과로 인해 탄산염 수용액을 다공성 재료의 내부 기공에 침투시켜 흡착시킬 수 있는 방법이다. 초음파 함침은 30~60분으로 주파수 25~40KHz으로 진행하면 적당하다. The second step is an impregnation step, which is a process for adsorbing carbonate ions of a water-soluble carbonate to the pulverized material of the porous material. Impregnation is performed by ultrasonic impregnation with excellent impregnation efficiency as shown in the test examples below, and the ultrasonic impregnation is performed by using an ultrasonic impregnation device to generate a negative pressure effect by oscillating ultrasonic waves in a liquid and the vibration effect of bubbles, so that an aqueous carbonate solution is used as a porous material It is a method that can be adsorbed by infiltrating the inner pores of Ultrasonic impregnation is suitable for 30 to 60 minutes, with a frequency of 25 to 40 KHz.

제3단계는 건조 양생 단계로, 초음파 함침물에서 수분을 증발시키면서 건조 양생하는 과정이 된다. 80~110℃ 건조기에서 30분~120분 동안 절건이 될 때까지 양생하면 적당하다. 이로써 다공성 재료 분쇄물에 탄산이온이 흡착된 재료가 되며, 이러한 재료는 자기치유형 충진재로 유리하게 사용할 수 있다.The third step is a dry curing step, which is a process of drying and curing while evaporating moisture from the ultrasonic impregnation. It is appropriate to cure it in a dryer at 80~110℃ for 30~120 minutes until it is completely dry. As a result, carbonate ions are adsorbed to the pulverized porous material, and such a material can be advantageously used as a self-healing filler.

위와 같이 제조된 자기치유형 충진재는 지반의 공동 내지 지반함몰부를 채우기 위한 지반채움재 용도로 더욱 바람직하게 사용할 수 있다. 지반채움재로 사용할 경우에는 플라이애시 25~40중량%, 수산화칼슘 5~10중량%, 자기치유형 충진재 5~10중량%, 발수제 0.5~2중량%, 팽윤제 2~5중량%, 탄산칼슘 45~60중량%를 포함하여 조성할 수 있으며, 이러한 조성재료와 조성범위는 지반채움재로의 용도를 고려하여 친환경성과 함께 유동성 및 강도발현을 동시에 고려한 결과이다. 여기서 플라이애시와 수산화칼슘은 서로 반응하여 경화함으로써 강도를 발현하는 결합재가 되며, 발수제와 팽윤제는 방수성과 팽윤성을 발현하여 자지치유형 충진재 함께 균열복원에 기여하는 재료가 되며, 탄산칼슘을 필러가 된다. 발수제로는 스테아르산 칼슘과 스테아르산 아연 중 하나 이상 선택하여 사용하고, 팽윤제로는 벤토나이트를 사용하면 바람직하다. 이와 같은 지반채움재는 시멘트를 배제하기 때문에 토양 오염을 줄일 수 있는 친환경 지반채움재가 된다. The self-toothed filler prepared as described above may be more preferably used as a ground filler for filling the cavity or depression of the ground. When used as a ground filler, 25 to 40% by weight of fly ash, 5 to 10% by weight of calcium hydroxide, 5 to 10% by weight of self-healing filler, 0.5 to 2% by weight of a water repellent, 2 to 5% by weight of a swelling agent, 45 to calcium carbonate The composition may include 60% by weight, and these composition materials and composition ranges are the result of simultaneously considering the environment-friendliness, fluidity and strength development in consideration of the use as a ground filling material. Here, fly ash and calcium hydroxide react with each other to become a bonding material that develops strength by curing, and the water repellent and swelling agent become a material that contributes to crack recovery together with the self-supporting type filler by expressing waterproof and swelling properties, and calcium carbonate as a filler. . It is preferable to use one or more of calcium stearate and zinc stearate as the water repellent, and bentonite as the swelling agent. Since such a ground fill material excludes cement, it becomes an eco-friendly ground fill material that can reduce soil pollution.

이하에서는 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on test examples. However, the following test examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[시험예] 함침방법에 따른 함침효율[Test Example] Impregnation efficiency according to the impregnation method

입도 1.00 ~ 4.75mm의 폐ALC 분쇄물 100중량부에 탄산나트륨(Na2CO3) 50중량부 준비하고, 탄산나트륨을 6배의 물에 포화용해시켜 함침액을 준비하고, 함침액에 폐ALC 분쇄물을 다양한 함침방법으로 함침시켰다. 함침방법의 종류에 따라 중량변화를 확인하였으며, 그 결과는 아래 [표 1]과 같이 나타냈다.Prepare 50 parts by weight of sodium carbonate (Na 2 CO 3 ) in 100 parts by weight of waste ALC pulverized product with a particle size of 1.00 to 4.75 mm, and prepare an impregnation solution by saturated dissolution of sodium carbonate in 6 times of water, and waste ALC pulverized product in the impregnation solution. Was impregnated with various impregnation methods. The weight change was confirmed according to the type of impregnation method, and the results are shown in [Table 1] below.

함침방법에 따른 중량변화Weight change according to impregnation method 함침방법Impregnation method 30분30 minutes 60분60 minutes 침지Immersion 14.2%14.2% 14.5%14.5% 120도120 degrees 24.7%24.7% 26.6%26.6% 진공vacuum 22.4%22.4% 28.6%28.6% 초음파
(주파수 25~40KHz)
ultrasonic wave
(Frequency 25~40KHz)
26.3%26.3% 31.0%31.0%

위의 [표 1]에서와 같이 초음파 함침방법으로 함침하는 경우에 중량변화가 가장 크게 나타냈으며, 이로부터 초음파 함침방법이 가장 효과적으로 탄산이온을 함침시킨 것이라 할 수 있다.As shown in [Table 1] above, when impregnating with the ultrasonic impregnation method, the weight change was the greatest, and from this, it can be said that the ultrasonic impregnation method impregnates carbonate ions most effectively.

[시험예2] 함침여부에 따른 자기치유 성능[Test Example 2] Self-healing performance according to impregnation

함침여부에 따른 자기치유 성능을 시험하였으며, ALC 분쇄물을 탄산나트륨 수용액으로 초음파 함침(60분, 주파수 25~40KHz)하여 제조한 함침 ALC를 사용한 모르타르 시험체와 탄산나트륨과 ALC 분쇄물을 그대로 사용한 모르타트 시험체에 대해 비교 시험하였다. 자기치유 성능은 투수시험으로 확인하였으며, 투수시험은 14일 동안 수중양생한 후 14일째에 균열유도장치를 이용하여 동일한 하중 속도 2,000±200N/s으로 균열을 유도한 시험체에 대해 균열폭과 투수량을 측정하는 방식으로 진행하였다. 투수량은 일주일 간격으로 28일까지(0, 7, 14, 21, 28일) 측정하였으며, 초기 투수량은 균열을 유도한 후 바로 측정하였고 그 이후의 투수량은 수중양생 중에 있는 시험체를 꺼내어 온도 20±1℃, 습도 65±2% 조건으로 4시간 이상 건조를 진행하고 난 뒤에 측정하였다. 투수량 결과값은 데이터 로거를 저울에 연결하여 분당 측정되는 물의 양을 측정하였으며, 한 Type당 3개씩 12분 동안 측정하여 중간에 6개의 값을 획득하였다. 측정한 투수량 값으로 투수감소율{Reduction rate of water flow(%)=(1-Qt/Q0)×100}을 환산하였으며, 투수감소율을 곧 자기치유율로 하였다.Self-healing performance was tested depending on whether or not impregnated, and mortar test specimen using impregnated ALC prepared by ultrasonic impregnation (60 minutes, frequency 25-40KHz) of ALC pulverized product with sodium carbonate aqueous solution and mortar test specimen using sodium carbonate and ALC pulverized product It was tested for comparison. The self-healing performance was confirmed by the water permeation test, and the water permeability test was performed on the 14th day after being cured in water for 14 days, and the crack width and the water permeability were measured for the specimen inducing the crack at the same load rate of 2,000±200N/s using a crack induction device. It proceeded in such a way. The water permeability was measured up to 28 days (0, 7, 14, 21, 28 days) at weekly intervals, and the initial water permeability was measured immediately after inducing the crack. After that, the water permeation amount was taken out of the specimen under water curing and the temperature was 20±1. After drying for 4 hours or more under conditions of ℃ and humidity of 65±2%, the measurement was performed. The water permeability result was measured by connecting a data logger to a scale to measure the amount of water measured per minute, and three values per type were measured for 12 minutes to obtain six values in the middle. The measured water permeability value was converted to the reduction rate of water flow (%) = (1-Q t /Q 0 ) x 100}, and the permeation reduction rate was directly defined as the self-healing rate.

함침여부에 따른 자기치유율Self-healing rate according to impregnation 구분division OPCOPC 함침 ALCImpregnation ALC ALCALC Na2CO3Na2CO3 water 표준사Standard yarn 자기치유율Self-healing rate 1One 100100 4040 200200 68.4%68.4% 22 82.582.5 17.517.5 4040 200200 83.9%83.9% 33 82.582.5 12.112.1 5.45.4 4040 200200 74.1%74.1% 44 80.580.5 12.112.1 7.47.4 4040 200200 77.6%77.6%

위의 [표 2]에서 보는 바와 같이 함침 ALC를 사용한 시험체는 ALC와 탄산나트륨을 그대로 사용한 시험체보다 향상된 지가치유율을 나타냈으며, 특히 탄산나트륨을 더 많이 사용한 시험체보다도 더 향상된 자기치유율을 나타냈다. As shown in [Table 2] above, the test specimen using the impregnated ALC showed improved land value healing rate than the test specimen using the ALC and sodium carbonate as it was, and in particular, showed more improved self-healing rate than the test specimen using more sodium carbonate.

[시험예3] 지반채움재 성능[Test Example 3] Ground Filling Material Performance

1. 지반채움재 조성1. Ground filling material composition

아래 [표 2]와 같이 지반채움재를 조성하였으며, 보는 바와 같이 충진재로 사용하는 탄산칼슘을 시험예1에서 초음파 함침에 의해 제조된 함침 ALC로 치환하고 치환율을 증가시키면서 조성하였다. A ground filler was formed as shown in [Table 2] below, and as shown, calcium carbonate used as a filler was substituted with impregnated ALC prepared by ultrasonic impregnation in Test Example 1, and the substitution rate was increased.

지반채움재 배합Mixture of ground fill material 구분division Ca(OH)2Ca(OH)2 함침 ALCImpregnation ALC 스테아르산 칼슘Calcium stearate 벤토나이트Bentonite 플라이애시Fly ash CaCO3CaCO3 1One 77 00 0.70.7 2.32.3 3030 6060 22 77 44 0.70.7 2.32.3 3030 5656 33 77 88 0.70.7 2.32.3 3030 5252 44 77 1212 0.70.7 2.32.3 3030 4848 55 77 88 00 00 3030 5555 66 77 88 1One 00 3030 5454 77 77 88 00 22 3030 5353 88 77 88 00 33 3030 5252

위의 [표 2]와 같이 조성한 지반채움재 100중량부에 물 60중량부로 배합하고, 이렇게 배합한 시험체에 대하여 압축강도와 유동성을 측정하고, 자기치유 성능을 확인하기 위해 투수시험을 진행하였다. 투수시험은 시험예2에서와 동일한 방법으로 진행하였다. 시험결과 아래 [표 4]와 같은 결과를 나타냈다.100 parts by weight of the ground fill material composed as shown in [Table 2] above was mixed with 60 parts by weight of water, and the compressive strength and fluidity were measured with respect to the thus-mixed test sample, and a water permeability test was conducted to confirm the self-healing performance. The permeability test was carried out in the same manner as in Test Example 2. The results of the test were shown in [Table 4] below.

지반채움채 성능Ground fill performance flowflow 압축강도Compressive strength 치유율Healing rate 1One 2828 00 77 1414 2121 2828 1One 250이상250 or more 0.520.52 2.362.36 00 8.28.2 15.615.6 27.427.4 36.236.2 22 250이상250 or more 0.440.44 2.152.15 00 25.225.2 52.7.52.7. 65.265.2 72.672.6 33 250이상250 or more 0.370.37 1.721.72 00 28.928.9 56.156.1 75.975.9 87.187.1 44 240240 0.340.34 1.431.43 00 30.830.8 57.957.9 80.480.4 88.388.3 55 250이상250 or more 0.460.46 2.342.34 00 25.825.8 33.433.4 48.548.5 65.465.4 66 250이상250 or more 0.380.38 1.841.84 00 12.812.8 29.529.5 52.752.7 69.569.5 77 250이상250 or more 0.350.35 1.961.96 00 33.933.9 51.751.7 56.156.1 73.973.9 88 250이상250 or more 0.410.41 2.132.13 00 32.432.4 53.053.0 62.762.7 75.675.6

위의 [표 4]에서 보는 바와 같이, 함침 ALC의 사용량이 증가할수록 압축강도와 유동성은 저하하고 자기치유율은 증가하는 것으로 나타냈으며(시험체 1~4), 이러한 시험결과에 따라 함침 ALC는 10중량% 이내로 사용하는 것이 바람직하다고 본다. 스테아르산 칼슘은 사용여부에 따라 압축강도는 떨어지나 자기치유율은 증진되는 것으로 확인되었으며(시험체 5,6), 벤토나이트는 사용량이 증가할수록 압축강도와 자기치유율 향상에 기여하는 것으로 확인되었다(시험체 5,7,8). 이러한 결과에 따라 자기치유재 충진재와 함께 발수제(스테아르산 칼슘) 및 팽윤제(벤토나이트)를 사용한다면 유동성과 함께 소정의 압축강도를 확보하면서 자기치유 성능을 크게 향상시킬 수 있을 것으로 기대된다.As shown in [Table 4] above, as the amount of impregnated ALC increased, the compressive strength and fluidity decreased, and the self-healing rate increased (Test Samples 1 to 4). It is considered desirable to use within %. Depending on whether or not calcium stearate was used, it was confirmed that the compressive strength decreased but the self-healing rate improved (Test Samples 5 and 6), and it was confirmed that bentonite contributed to the improvement of compressive strength and self-healing rate as the amount used increased (Test Samples 5 and 7 ,8). According to these results, if a water repellent (calcium stearate) and a swelling agent (bentonite) are used together with the self-healing filler, it is expected that the self-healing performance can be greatly improved while securing a predetermined compressive strength with fluidity.

Claims (4)

다공성 재료를 분쇄하여 입도 0.5~10mm로 선별하여 준비하고, 수용성 탄산염을 물에 포화용해시켜 함침액으로 준비하는 제1단계;
선별된 다공성 재료 분쇄물을 함침액에 침지하고 초음파 함침으로 함침하는 제2단계;
건조하는 제3단계;
를 포함하여 이루어지는 것을 특징으로 하는 자기치유형 충진재의 제조방법.
A first step of preparing a porous material by pulverizing and selecting a particle size of 0.5 to 10 mm, and saturating and dissolving a water-soluble carbonate in water to prepare an impregnation solution;
A second step of immersing the selected pulverized porous material in an impregnation liquid and impregnating with ultrasonic impregnation;
A third step of drying;
Method for producing a self-tooth-type filler comprising a.
제1항에서,
상기 제1단계는, ALC(Autoclaved Lightweight Concrete), 인공경량골재, 제올라이트, 메조실리카, 다공성 알루미나 산화물 중에서 하나 이상 선택된 다공성 재료 100중량부에, 탄산마그네슘(MgCO3)과 탄산나트륨(Na2CO3) 중에서 하나 이상 선택된 수용성 탄산염 30~70중량부를 사용하면서 이루어지고,
상기 제2단계는, 주파수 25~40KHz에서 30~60분 동안 초음파 함침하면서 이루어지는 것을 특징으로 하는 자기치유형 충진재의 제조방법.
In claim 1,
The first step is 100 parts by weight of a porous material selected from one or more of ALC (Autoclaved Lightweight Concrete), artificial lightweight aggregate, zeolite, mesosilica, and porous alumina oxide, magnesium carbonate (MgCO 3 ) and sodium carbonate (Na 2 CO 3 ) It is made while using 30 to 70 parts by weight of a water-soluble carbonate selected from one or more,
The second step is a method of manufacturing a magnetic tooth type filler, characterized in that the ultrasonic impregnation at a frequency of 25 ~ 40KHz for 30 ~ 60 minutes.
제1항 또는 제2항에 따라 제조된 자기치유형 충진재를 이용한 지반채움재 조성물에서,
플라이애시 25~40중량%, 수산화칼슘 5~10중량%, 자기치유형 충진재 5~10중량%, 발수제 0.5~2중량%, 팽윤제 2~5중량%, 탄산칼슘 45~60중량%를 포함하여 조성되는 것을 특징으로 하는 친환경 지반채움재 조성물.
In the ground filler composition using the self-tooth-type filler prepared according to claim 1 or 2,
Including 25 to 40% by weight of fly ash, 5 to 10% by weight of calcium hydroxide, 5 to 10% by weight of self-healing filler, 0.5 to 2% by weight of water repellent, 2 to 5% by weight of swelling agent, and 45 to 60% by weight of calcium carbonate Eco-friendly ground filler composition, characterized in that the composition.
제3항에서,
상기 발수제는, 스테아르산 칼슘과 스테아르산 아연 중 하나 이상 선택되고,
상기 팽윤제는, 벤토나이트인 것을 특징으로 하는 친환경 지반채움재 조성물.
In paragraph 3,
The water repellent is selected from one or more of calcium stearate and zinc stearate,
The swelling agent is an eco-friendly ground filler composition, characterized in that the bentonite.
KR1020190063359A 2019-05-29 2019-05-29 Eco-friendly Soil Filler Composition Using Self-healing Filler KR102262518B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190063359A KR102262518B1 (en) 2019-05-29 2019-05-29 Eco-friendly Soil Filler Composition Using Self-healing Filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190063359A KR102262518B1 (en) 2019-05-29 2019-05-29 Eco-friendly Soil Filler Composition Using Self-healing Filler

Publications (2)

Publication Number Publication Date
KR20200137280A true KR20200137280A (en) 2020-12-09
KR102262518B1 KR102262518B1 (en) 2021-06-09

Family

ID=73786855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190063359A KR102262518B1 (en) 2019-05-29 2019-05-29 Eco-friendly Soil Filler Composition Using Self-healing Filler

Country Status (1)

Country Link
KR (1) KR102262518B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978744A (en) * 2021-02-24 2021-06-18 赤峰市奇运蒙脱石精细化工有限公司 Rotary mixing method for bentonite raw material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104179A (en) * 2009-09-14 2012-09-20 스미토모 오사카 시멘트 가부시키가이샤 Cement admixture, process for producing same, and cement composition, mortar, and concrete each containing the admixture
KR101303622B1 (en) 2013-02-21 2013-09-11 주식회사 인트켐 Concrete admixture, cement compound and self healing smart concrete using the same
KR101308084B1 (en) 2013-02-21 2013-09-12 주식회사 인트켐 Repairing method of reinforced concrete structures using inorganic self-healing materials
KR20150121297A (en) * 2014-04-17 2015-10-29 한국건설생활환경시험연구원 Eco-friendly aggregate decreasing heat and alkalinity, and method for manufacturing the same, concrete composition
KR101701996B1 (en) * 2016-04-25 2017-02-02 (주)대우건설 Liquidity mixed composition using carbon dioxide collecting by-product
KR101966101B1 (en) * 2017-11-27 2019-04-05 주식회사 인트켐 Hybrid Admixture Composition for Self-Healing Properties and Cement Binder Composition Using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104179A (en) * 2009-09-14 2012-09-20 스미토모 오사카 시멘트 가부시키가이샤 Cement admixture, process for producing same, and cement composition, mortar, and concrete each containing the admixture
KR101303622B1 (en) 2013-02-21 2013-09-11 주식회사 인트켐 Concrete admixture, cement compound and self healing smart concrete using the same
KR101308084B1 (en) 2013-02-21 2013-09-12 주식회사 인트켐 Repairing method of reinforced concrete structures using inorganic self-healing materials
KR20150121297A (en) * 2014-04-17 2015-10-29 한국건설생활환경시험연구원 Eco-friendly aggregate decreasing heat and alkalinity, and method for manufacturing the same, concrete composition
KR101701996B1 (en) * 2016-04-25 2017-02-02 (주)대우건설 Liquidity mixed composition using carbon dioxide collecting by-product
KR101966101B1 (en) * 2017-11-27 2019-04-05 주식회사 인트켐 Hybrid Admixture Composition for Self-Healing Properties and Cement Binder Composition Using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978744A (en) * 2021-02-24 2021-06-18 赤峰市奇运蒙脱石精细化工有限公司 Rotary mixing method for bentonite raw material

Also Published As

Publication number Publication date
KR102262518B1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
CN110105014B (en) High-performance concrete and preparation method thereof
Gomes et al. Hydric behavior of earth materials and the effects of their stabilization with cement or lime: study on repair mortars for historical rammed earth structures
US20200062646A1 (en) Sustainable construction material and method of preparation and use thereof
Wang et al. Improving performance of recycled aggregate concrete with superfine pozzolanic powders
KR101303622B1 (en) Concrete admixture, cement compound and self healing smart concrete using the same
KR101308084B1 (en) Repairing method of reinforced concrete structures using inorganic self-healing materials
CN109761575B (en) TRD continuous wall curing agent and using method and application thereof
KR102087707B1 (en) Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment
CN107879681B (en) Concrete slurry, alkali-activated light rubber recycled concrete and preparation method thereof
KR20100133118A (en) Concrete block manufacture method to use refreshing aggregate
KR102106800B1 (en) Manufacturing Method Of Hybrid Waterproofing Admixture With Self-Healing Properties And Cement Binder Composition Using The Waterproofing Admixture
KR102262518B1 (en) Eco-friendly Soil Filler Composition Using Self-healing Filler
CN110143789A (en) A kind of self-repair concrete and preparation method thereof
Xing et al. Experimental study of epoxy resin repairing of cracks in fractured rocks
WO2020003430A1 (en) Concrete repairing method and repairing agent
JP3884118B2 (en) Concrete repair liquid containing bone aggregate, concrete containing the same, and method for producing the same
KR101363982B1 (en) Lightweight concrete composition and manufacturing method thereof
KR101847453B1 (en) Soil surfacing method with soil improvement compounds
Li et al. Study on strength test and application of lime soil in pavement base modified by soda residue
Isa et al. The use of rubber manufacturing waste as concrete additive
CN111807806A (en) Earthen site crack repair slurry using original soil and preparation and use method thereof
CN105585295A (en) Light grouting material for grouting treatment of highway goaf and preparation method of light grouting material
KR102416477B1 (en) Liquidity filling using stone aggregate wastewater treatment sludge
KR20200127566A (en) Repair method of concrete structure using high durable mortar and anti-corrosion primer containing ion exchange resin and anion fixing inhibitor component
KR101000324B1 (en) Hardened product using soil and sea sand

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant