KR20200132076A - Wet Type Manufacturing Method of Nano Powder - Google Patents

Wet Type Manufacturing Method of Nano Powder Download PDF

Info

Publication number
KR20200132076A
KR20200132076A KR1020190056938A KR20190056938A KR20200132076A KR 20200132076 A KR20200132076 A KR 20200132076A KR 1020190056938 A KR1020190056938 A KR 1020190056938A KR 20190056938 A KR20190056938 A KR 20190056938A KR 20200132076 A KR20200132076 A KR 20200132076A
Authority
KR
South Korea
Prior art keywords
reaction
powder
reactant
wet
nano
Prior art date
Application number
KR1020190056938A
Other languages
Korean (ko)
Other versions
KR102199812B1 (en
Inventor
박춘성
하재상
이규석
Original Assignee
(주)다인스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다인스 filed Critical (주)다인스
Priority to KR1020190056938A priority Critical patent/KR102199812B1/en
Priority to PCT/KR2019/011217 priority patent/WO2020230955A1/en
Priority to CN201910961904.3A priority patent/CN111943212A/en
Publication of KR20200132076A publication Critical patent/KR20200132076A/en
Application granted granted Critical
Publication of KR102199812B1 publication Critical patent/KR102199812B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for preparing wet nanopowder and, particularly, to a method for preparing, as nanopowder, silicon oxide (SiO_x) powder for a secondary battery negative electrode material.

Description

습식 나노 분말 제조방법{Wet Type Manufacturing Method of Nano Powder}Wet Type Manufacturing Method of Nano Powder

본 발명은 습식 나노 분말 제조방법에 관한 것으로서, 특히, 나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조하는 방법에 관한 것이다.The present invention relates to a wet nano-powder manufacturing method, and in particular, to a method of manufacturing a silicon oxide (SiO x ) powder for a secondary battery negative electrode material as a nano-powder.

나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조하는 방법으로는 건식의 기상분무법 또는 습식의 액상제조법 등이 있다. 일반적으로 건식의 기상분무법은 금속실리콘에 미량의 산소를 반응시켜 실리콘 산화물(SiOx)을 제조하여 생성반응 조건의 조절에서 입경의 컨트롤이 용이하고, 입도 분포가 양호하며, 깨끗한 표면을 갖는다는 장점이 있으나, 초미립자의 입도선별이 곤란하고, 반복적인 소결과 분쇄 과정이 필요하여 제조단가의 상승 및 제조시간이 크게 늘어나는 단점이 있고, 입자크기의 균일성이나 화학조성의 균질성에 문제가 있다.As a method of manufacturing a silicon oxide (SiO x ) powder for a negative electrode material of a secondary battery as a nano powder, there is a dry vapor phase spraying method or a wet liquid manufacturing method. In general, the dry vapor phase spraying method produces silicon oxide (SiO x ) by reacting a trace amount of oxygen with metallic silicon, so it is easy to control the particle size, have good particle size distribution, and have a clean surface in the control of the reaction conditions. However, there are disadvantages in that it is difficult to select the particle size of ultra-fine particles, and it requires repetitive sintering and pulverization processes to increase manufacturing cost and greatly increase manufacturing time, and there is a problem with uniformity of particle size or homogeneity of chemical composition.

반면, 습식의 액상제조법은 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응시켜 실리콘 산화물(SiOx) 결정을 성장시키는 방법으로서 고상반응법에 의해 제조된 분말에 비해, 입자가 매우 작으며 표면적이 크고 입자크기의 분포가 균일하며 균질한 조성비를 얻을 수 있는 장점이 있다.On the other hand, the wet liquid manufacturing method is a method of growing silicon oxide (SiO x ) crystals by reacting STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol). Compared to the powder manufactured by the solid phase reaction method, the particles are very It is small, has a large surface area, has a uniform particle size distribution, and has the advantage of obtaining a homogeneous composition ratio.

그러나, 나노 분말로서 실리콘 산화물(SiOx)을 습식의 액상제조법으로 제조하기 위한 많은 시도가 이루어지고 있으나, 실리콘 산화물(SiOx)의 결정 성장, 결정 입자 크기의 균일성, 발열 제어, 부산물 처리 등을 더욱 향상시켜서 안정적으로 물성이 우수한 실리콘 산화물(SiOx)을 제조하기 위한 방법이 절실히 요구되고 있다.However, many attempts have been made to manufacture silicon oxide (SiO x ) as a nano powder by a wet liquid manufacturing method, but crystal growth of silicon oxide (SiO x ), uniformity of crystal grain size, heat control, by-product treatment, etc. There is an urgent need for a method for manufacturing silicon oxide (SiO x ) having excellent physical properties by further improving

따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)의 발열 반응 조건, 특히 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응 용기에 투입하는 순서 및 투입 속도 등을 정밀하게 조절하여 효과적으로 물성이 우수한 나노 분말로서의 이차전지 음극재용 SiOx 분말을 제조하는 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been devised to solve the above-described problems, and an object of the present invention is the exothermic reaction conditions of STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol), especially STC (SiCl 4 ) and ethylene glycol An object of the present invention is to provide a method of producing SiO x powder for a negative electrode material of a secondary battery effectively as a nano-powder having excellent physical properties by precisely controlling the order and speed of injecting (EG, Ethylene Glycol) into a reaction vessel.

상기 과제를 해결하기 위하여, 본 발명은,In order to solve the above problems, the present invention,

금속산화물의 나노 분말을 제조하기 위한 습식 나노 분말 제조방법에 있어서, 반응 용기에서 제1 반응 물질인 금속염화물과 제2 반응 물질인 다가 알코올 또는 물을 습식 반응시켜 겔 상태의 금속산화물을 생성하기 위한 반응 단계; 및 상기 겔 상태의 금속산화물을 열처리하여 고상 금속산화물을 생성하기 위한 열처리 단계;를 포함하고, 상기 반응 단계에서 상기 제1 반응 물질을 먼저 상기 반응 용기에 전량 투입한 후 상기 제2 반응 물질을 일정한 투입 속도로 투입하면서 반응시키는, 습식 나노 분말 제조방법을 제공한다.In the wet nano-powder manufacturing method for producing a metal oxide nano-powder, for producing a gel-like metal oxide by wet-reacting a metal chloride as a first reactant and a polyhydric alcohol or water as a second reactant in a reaction vessel Reaction step; And a heat treatment step of heat-treating the gel metal oxide to generate a solid metal oxide, wherein in the reaction step, the first reactant is first added to the reaction vessel, and then the second reactant is It provides a method for producing a wet nanopowder that reacts while being added at an input rate.

여기서, 상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:1.5 미만고, 상기 제2 반응 물질의 투입 속도는 5.0 vol%/min 미만인 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.Here, the volume mixing ratio of the first reactant and the second reactant is less than 1:1.5, and the input rate of the second reactant is less than 5.0 vol%/min.It provides a method for producing a wet nanopowder. .

그리고, 상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:0.5 내지 1:1.0인 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.And, the volume mixing ratio of the first reactant material and the second reactant material is 1:0.5 to 1:1.0, characterized in that, it provides a wet nano-powder manufacturing method.

나아가, 상기 제2 반응 물질의 투입 속도는 0.5 vol% 내지 2.0 vol%/min 인 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.Further, it provides a method for producing a wet nano-powder, characterized in that the rate of addition of the second reaction material is 0.5 vol% to 2.0 vol% / min.

한편, 상기 제1 반응 물질은 STC(SiCl4)을 포함하고, 상기 제2 반응 물질은 에틸렌글리콜(EG, Ethylene Glycol)을 포함하는 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.Meanwhile, the first reactant material includes STC (SiCl 4 ), and the second reactant material includes ethylene glycol (EG, Ethylene Glycol). It provides a method for manufacturing a wet nano powder.

여기서, 상기 반응 단계; 및 상기 열처리 단계; 사이에 상기 반응 용기를 이송받아 내열성 커버를 덮기 위한 커버 단계; 를 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.Here, the reaction step; And the heat treatment step. A cover step for receiving the reaction vessel and covering the heat-resistant cover; It provides a wet nano-powder manufacturing method comprising a.

그리고, 상기 반응 단계에서 상기 반응 용기 내로 불활성 기체가 공급되는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.In addition, in the reaction step, it provides a wet nano-powder manufacturing method, characterized in that the inert gas is supplied into the reaction vessel.

나아가, 상기 열처리 단계에서 상기 열처리가 이루어지는 동안 상기 반응 용기 외부에 불활성 기체를 공급하여 부산물 발생을 억제하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.Further, in the heat treatment step, while the heat treatment is performed, an inert gas is supplied to the outside of the reaction vessel to provide a wet nano-powder manufacturing method characterized in that the generation of by-products is suppressed.

한편, 상기 반응 단계, 상기 커버 단계 및 상기 열처리 단계로 이루어진 그룹으로부터 선택되는 하나 이상의 단계에서 상기 반응 용기 내에 산성 가스가 잔존하지 않도록 상기 산성 가스를 배출하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.On the other hand, it provides a wet nano-powder manufacturing method, characterized in that discharging the acidic gas so that the acidic gas does not remain in the reaction vessel in at least one step selected from the group consisting of the reaction step, the cover step, and the heat treatment step. do.

한편, 상기 제1 반응 물질은 사염화티탄(TiCl4)을 포함하고, 상기 제2 반응 물질은 다가 알코올 또는 물(H2O)을 포함하며, 상기 겔 상태의 금속산화물은 이산화티타늄(TiO2)을 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.Meanwhile, the first reactant material includes titanium tetrachloride (TiCl 4 ), the second reactant material includes polyhydric alcohol or water (H 2 O), and the gel-like metal oxide is titanium dioxide (TiO 2 ) It provides a wet nano-powder manufacturing method comprising a.

본 발명에 따른 나노 분말을 제조하는 방법에 따르면, STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)의 발열 반응 조건, 특히 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응 용기에 투입하는 순서 및 투입 속도 등을 정밀하게 조절하여 효과적으로 물성이 우수한 나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조할 수 있다.According to the method for manufacturing the nanostructured powder according to the invention, STC (SiCl 4) and ethylene glycol exothermic reaction conditions of the (EG, Ethylene Glycol), especially STC (SiCl 4) and ethylene glycol (EG, Ethylene Glycol) and the reaction vessel By precisely controlling the order and speed of addition to the material, silicon oxide (SiO x ) powder for a secondary battery negative electrode material as a nano powder having excellent physical properties can be effectively prepared.

본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는 첨부도면은, 본 발명에 대한 실시예를 제공하고 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법을 개략적으로 나타내는 흐름도이다.
도 2는 도 1에서 반응 단계를 세분화한 흐름도이다.
도 3은 상기 반응 단계에서 반응 생성물 및 반응 생성물의 소성 후 소성 물질 상태를 도시한다.
도 4은 도 1에서 열처리 단계를 세분화한 흐름도이다.
도 5 및 도 6은 티타늄(Ti) 재질의 반응 용기에 STC(SiCl4) 투입 후 에틸렌글리콜(EG)를 아래 표 1에 기재된 투입 속도로 반응 단계에서 반응되어 생성된 반응 생성물을 소성 단계를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)의 측정 결과를 도시한다.
도 7 및 도 8은 티타늄(Ti) 재질의 반응 용기에 STC(SiCl4) 투입 후 1.0 vol%/min 의 투입 속도로 에틸렌글리콜(EG)을 표 2에 기재된 체적 배합비로 투입하여 반응 생성물을 생성한 후 열처리를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)을 측정의 측정 결과를 도시한다.
The accompanying drawings, which are included as part of the detailed description to aid understanding of the present invention, provide embodiments of the present invention and describe the technical spirit of the present invention together with the detailed description.
1 is a flowchart schematically showing a method of manufacturing a wet nanopowder according to an embodiment of the present invention.
FIG. 2 is a detailed flowchart of a reaction step in FIG. 1.
3 shows a reaction product and a state of a fired material after firing of the reaction product in the reaction step.
4 is a detailed flowchart of a heat treatment step in FIG. 1.
5 and 6 show the reaction product produced by adding STC (SiCl 4 ) to a reaction vessel made of titanium (Ti) and then reacting ethylene glycol (EG) at the rate of addition shown in Table 1 below through a sintering step. A nano-powder was prepared and applied as a negative electrode material of a secondary battery to produce a secondary battery, and measurement results of the capacity and reversible capacity according to the number of charging cycles of each secondary battery are shown.
7 and 8 show that after STC (SiCl 4 ) was added to a reaction vessel made of titanium (Ti), ethylene glycol (EG) was added at an injection rate of 1.0 vol%/min at the volume mixing ratio shown in Table 2 to generate a reaction product. After that, nano-powder was prepared through heat treatment and applied as a negative electrode material of the secondary battery to produce a secondary battery, and the capacity and the specific capacity of each secondary battery were measured according to the number of charging cycles. Shows the measurement results.

이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In this case, the same components in each drawing are indicated by the same reference numerals as possible. In addition, detailed descriptions of functions and/or configurations already known are omitted. In the following, a part necessary for understanding an operation according to various embodiments will be mainly described, and a description of elements that may obscure the subject matter of the description will be omitted. In addition, some elements of the drawings may be exaggerated, omitted, or schematically illustrated. The size of each component does not fully reflect the actual size, and therefore, the contents described herein are not limited by the relative size or spacing of the components drawn in each drawing.

도 1은 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법을 개략적으로 나타내는 흐름도이다.1 is a flowchart schematically showing a method of manufacturing a wet nanopowder according to an embodiment of the present invention.

본 발명에 따른 습식 나노 분말 제조방법에 의하여 제조되는 나노 분말은 이차전지 음극재용 SiOx 분말일 수 있으며, 상기 나노 분말은 이차전지 음극재용 SiOx 분말 이외에도 도료, 선블록, 태양전지 투명전극에 사용되는 이산화티타늄(TiO2) 분말 등일 수 있다.The nano-powder prepared by the wet nano-powder manufacturing method according to the present invention may be SiO x powder for a secondary battery negative electrode material, and the nano-powder is used for paints, sun blocks, solar cell transparent electrodes in addition to SiOx powder for negative electrode materials of secondary batteries. It may be titanium dioxide (TiO 2 ) powder.

따라서, 도 1 이하의 도면을 참조하여 이차전지 음극재용 SiOx 분말을 제조하는 과정을 참조하여 설명하지만, 이하에서 설명되는 습식 나노 분말 제조방법에 의하여 제조될 수 있는 나노 분말은 반응물질로 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)가 사용되는 이차전지 음극재용 SiOx 분말일 수 있으며, 이외에도 이산화티타늄(TiO2) 분말일 수 있으며, 상기 반응물질로 사염화티탄(TiCl4)와 물(H2O) 또는 2가 알코올이 적용되며, 동일한 공정으로 제조될 수 있음이 이해되어야 한다.Therefore, with reference to the drawings in FIG. 1 below, the process of manufacturing SiO x powder for a secondary battery anode material will be described with reference to the process, but the nanopowder that can be prepared by the wet nanopowder manufacturing method described below is used as a reactant. SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol) may be a SiO x powder for a secondary battery negative electrode material, in addition to titanium dioxide (TiO 2 ) powder, and as the reaction material, titanium tetrachloride (TiCl 4 ) and water It is to be understood that (H 2 O) or dihydric alcohol is applied and can be prepared in the same process.

도 1을 참조하면, 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법은, 반응 단계(S100) 및 열처리 단계(S200)를 포함한다. 이외에도, 상기 열처리 단계(S200) 종료 후 생성물을 분쇄, 카본 블랜딩 등 후속 공정을 수행하는 단계가 더 포함될 수 있다.Referring to FIG. 1, a method of manufacturing a wet nano-powder according to an embodiment of the present invention includes a reaction step (S100) and a heat treatment step (S200). In addition, a step of performing a subsequent process such as pulverizing the product and carbon blending after the heat treatment step S200 is finished may be further included.

상기 반응 단계(S100)는 내부에 교반기가 구비되고 밀폐 가능한 반응 용기에 제1 반응 물질로서 STC(SiCl4), 테트라클로라이드(TiCl4) 등과 같은 금속염화물을 첨가한 후 또 제2 반응 물질로서 에틸렌글리콜 등의 다가 알코올 또는 물(H2O)을 정밀하게 조절된 속도로 첨가하고 이러한 반응 물질들을 밀폐된 상태로 예를 들어 50 내지 300℃의 온도 하에서 2 내지 72시간 동안 교반 및 반응시킴으로써 목적한 물성을 보유하는 나노 분말을 제조할 수 있는 반응 생성물을 생성할 수 있다.In the reaction step (S100), a metal chloride such as STC (SiCl 4 ) and tetrachloride (TiCl 4 ) as a first reaction material is added to a reaction vessel that is equipped with a stirrer and can be sealed, and then ethylene as a second reaction material. Polyhydric alcohol such as glycol or water (H 2 O) is added at a precisely controlled rate, and these reaction substances are stirred and reacted for 2 to 72 hours under a temperature of 50 to 300°C in a sealed state. It is possible to produce a reaction product capable of producing a nano-powder having physical properties.

그리고, 상기 반응 단계(S100)는 상기 제1 반응 물질과 상기 제2 반응 물질 사이의 발열 반응 과정에서 반응성 조절을 위하여 에탄올을 추가로 공급하거나 불필요하고 목적하지 않은 반응을 억제하기 위해 N2/Ar와 같은 불활성 가스를 추가로 공급할 수 있으며, 또한 반응 과정에서 발생되는 염산(HCl) 가스 등의 산성 가스를 배출하면서 수행될 수 있다.In addition, in the reaction step (S100), ethanol is additionally supplied to control reactivity in the exothermic reaction process between the first and second reactants, or N 2 /Ar to suppress unnecessary and undesired reactions. An inert gas such as may be additionally supplied, and it may be performed while discharging an acidic gas such as hydrochloric acid (HCl) gas generated in the reaction process.

도 2는 도 1에서 반응 단계를 세분화한 흐름도이다.FIG. 2 is a detailed flowchart of a reaction step in FIG. 1.

도 2를 참조하면, 본 발명자들은 제1 반응 물질로서 금속염화물과 제2 반응 물질로서 다가 알코올 또는 물의 발열 반응을 통해 나노 분말을 제조함에 있어서 반응 용기에 제2 반응 물질인 다가 알코올 또는 물을 먼저 전량 투입한 후 제1 반응 물질인 금속염화물을 후속적으로 첨가하는 경우 여러 가지 문제가 발생할 수 있고, 반응 용기에 제1 반응 물질인 금속염화물을 먼저 전량 투입한 후 제2 반응 물질인 다가 알코올 또는 물을 후속적으로 첨가하는 경우에도 제1 반응 물질과 제2 반응 물질의 배합비 및 후속적으로 첨가되는 제2 반응 물질의 첨가 속도에 따라 제조되는 생성물의 물성이 상이할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하게 되었다.Referring to FIG. 2, in preparing nano powders through an exothermic reaction of a metal chloride as a first reactant and a polyhydric alcohol or water as a second reactant, the second reactant polyhydric alcohol or water is first added to the reaction vessel. Various problems may occur if the first reactant metal chloride is subsequently added after the entire amount is added, and the first reactant metal chloride is first added to the reaction vessel and then the second reactant polyhydric alcohol or Even when water is subsequently added, by experimentally confirming that the physical properties of the produced product may be different depending on the mixing ratio of the first and second reactants and the rate of addition of the subsequently added second reactant. The present invention has been completed.

도 3은 상기 반응 단계에서 반응 생성물 및 반응 생성물의 소성 후 소성 물질 상태를 도시한다.3 shows a reaction product and a state of a fired material after firing of the reaction product in the reaction step.

구체적으로, 도 3(a)는 다가 알코올 또는 물을 먼저 전량 투입 후 금속염화물을 후속적으로 투입하는 경우 반응 생성물의 상태이며, 도 3(b)는 상기 반응 물질의 체적 배합비가 1:1.5 이상이거나 후속적으로 투입되는 반응 물질의 투입 속도가 5 vol%/min 이상인 경우의 반응 생성물의 상태를 도시하며, 도 3(c)는 도 3(b)에 도시된 반응 생성물을 소성 단계를 거친 소성 물질의 상태를 도시하며, 도 3(d)는 상기 반응 물질로서 금속염화물과 다가 알코올 또는 물의 체적 배합비는 1:1.5 미만이고, 상기 반응 물질 중 후속적으로 투입되는 다가 알코올 또는 물의 투입 속도는 5 vol%/min 미만인 경우의 반응 생성물의 상태를 도시하며, 도 3(e)는 도 3(d)에 도시된 반응 생성물을 소성 단계를 거친 소성 물질의 상태를 도시한다.Specifically, FIG. 3(a) shows the state of the reaction product when the total amount of polyhydric alcohol or water is first added and then the metal chloride is subsequently added, and FIG. 3(b) shows the volume mixing ratio of the reaction material is 1:1.5 or more. Or the state of the reaction product when the rate of addition of the reaction material to be subsequently added is 5 vol%/min or more, and FIG. 3(c) is a sintering step of the reaction product shown in FIG. 3(b). 3(d) shows the reaction material, wherein the volume mixing ratio of the metal chloride and the polyhydric alcohol or water is less than 1:1.5, and the polyhydric alcohol or water input rate of the reaction material is 5 It shows the state of the reaction product when it is less than vol%/min, and FIG. 3(e) shows the state of the fired material through the firing step of the reaction product shown in FIG. 3(d).

도 3(a)에 도시된 바와 같이, 상기 반응 단계(S100)에서 다가 알코올 또는 물을 먼저 전량 투입 후 금속염화물을 후속적으로 투입하는 경우 상기 다가 알코올 또는 물의 액층 상부에서 금속염화물과의 급격한 반응이 일어나 액층 하부에서 급격한 온도 상승(60 내지 100℃이 일어나고 다량의 산성 가스가 배출될 수 있다.As shown in FIG. 3(a), in the reaction step (S100), when the entire amount of polyhydric alcohol or water is first added and then the metal chloride is subsequently added, a rapid reaction with the metal chloride on the upper part of the liquid layer of the polyhydric alcohol or water As a result, a rapid temperature rise (60 to 100°C) occurs in the lower part of the liquid layer, and a large amount of acid gas may be discharged.

또한, 이러한 경우 상기 액층의 상부에 스폰지상의 금속산화물이 생성되고 상기 액층의 하부에는 미반응 다가 알코올 또는 물이 잔존하게 되며, 추가적인 반응을 위해 교반 시간을 증가시키는 경우 상기 상부의 스폰지상의 금속산화물이 분해되면서 하부의 다가 알코올 또는 물에 다량 흡수되어 겔화되는 문제가 발생할 수 있다.In addition, in this case, a sponge-like metal oxide is generated on the upper portion of the liquid layer, and unreacted polyhydric alcohol or water remains at the lower portion of the liquid layer. If the stirring time is increased for an additional reaction, the sponge-like metal oxide on the upper portion is As it is decomposed, a problem of gelation may occur by being absorbed in a large amount by polyhydric alcohol or water at the bottom.

한편, 상기 하부의 미반응 다가 알코올 또는 물을 걸러내고 상기 상부의 스폰지상의 금속산화물을 상기 열처리 단계(S100) 중 후술하는 소성 단계에서 소성하게 되면 백색의 금속산화물이 생성되는 이는 2차 전지용 음극재 소재로 사용할 수 없다.On the other hand, when the unreacted polyhydric alcohol or water of the lower part is filtered out and the sponge-like metal oxide of the upper part is calcined in the sintering step described later during the heat treatment step (S100), a white metal oxide is generated. Cannot be used as a material.

따라서, 상기 반응 단계(S100)에서 반응 물질의 투입은 금속염화물을 먼저 전량 투입한 후 다가 알코올 또는 물을 후속적으로 투입함으로써 상기와 같은 문제를 해결할 수 있다.Therefore, in the reaction step (S100), the above-described problem can be solved by adding the entire amount of metal chloride first and then subsequently adding polyhydric alcohol or water.

다만, 상기 반응 단계(S100)에서 반응 물질 중 금속염화물을 먼저 투입 후 다가 알코올 또는 물을 후속적으로 투입하는 경우에도 반응 물질들의 배합비와 후속 투입되는 반응 물질의 투입 속도에 따라 반응에 의해 생성되는 생성물의 물성 및 이로부터 제조되는 나노 분말의 물성이 상이할 수 있다.However, even when the metal chloride of the reactants is first added and then polyhydric alcohol or water is subsequently added in the reaction step (S100), the reaction is generated by the reaction according to the mixing ratio of the reactants and the input rate of the reactant Physical properties of the product and the properties of the nanopowder prepared therefrom may be different.

구체적으로, 상기 반응 물질로서 금속염화물과 다가 알코올 또는 물의 체적 배합비는 1:1.5 미만, 예를 들어, 1:0.2 내지 1:1 , 바람직하게는 1:0.5 내지 1:1.0, 더욱 바람직하게는 1:0.3 내지 1:0.6 일 수 있고, 상기 반응 물질 중 후속적으로 투입되는 다가 알코올 또는 물의 투입 속도는 금속염화물대비 5vol%/min 미만, 바람직하게는 2 vol%/min 이하, 예를 들어, 0.5 vol%/min 내지 2 vol%/min , 더욱 바람직하게는 0.5 vol%/min 내지 1 vol%/min 로 조절될 수 있다.Specifically, the volume mixing ratio of the metal chloride and the polyhydric alcohol or water as the reaction material is less than 1:1.5, for example, 1:0.2 to 1:1, preferably 1:0.5 to 1:1.0, more preferably 1 :0.3 to 1:0.6, the rate of addition of the polyhydric alcohol or water subsequently added in the reaction material is less than 5 vol%/min, preferably 2 vol%/min or less, for example, 0.5 It may be adjusted to vol%/min to 2 vol%/min, more preferably 0.5 vol%/min to 1 vol%/min.

여기서, 상기 반응 물질의 체적 배합비가 1:1.5 이상이거나 후속적으로 투입되는 반응 물질의 투입 속도가 5 vol%/min 이상인 경우, 도 3(b)에 도시된 바와 같이, 반응 용기 내의 반응 생성물이 겔 형태로 존재하여 생성물 주변에 미반응 다가 알코올 또는 물이 과량 잔류하며, 도 3(c)에 도시된 바와 같이, 반응 생성물을 소성하여 생성되는 소성 생성물 또는 이를 통해 제조되는 나노 입자는 흑갈색을 띠고, 특히 산화규소(SiOx)의 경우 x값이 1.7 초과 1.8 이하로 과도하여 입경이 증가하고, 리튬이온전지인 코인셀에 적용시 가역용량이 900 내지 1,100 mAh/g이고 가역비가 50% 수준으로 불충분하다.Here, when the volume mixing ratio of the reaction material is 1:1.5 or more or the input rate of the reaction material to be subsequently added is 5 vol%/min or more, as shown in FIG. 3(b), the reaction product in the reaction vessel is Exist in the form of a gel, and an excess of unreacted polyhydric alcohol or water remains around the product, and as shown in Fig. 3(c), the sintered product produced by sintering the reaction product or the nanoparticles produced through it has a dark brown color. , In particular, in the case of silicon oxide (SiOx), the x value exceeds 1.7 and becomes 1.8 or less, resulting in an increase in particle size.When applied to a coin cell, a lithium ion battery, the reversible capacity is 900 to 1,100 mAh/g and the reversible ratio is insufficient at 50% Do.

반면, 상기 반응 물질의 체적 배합비가 1:0.5 내지 1:1.0이고 후속적으로 투입되는 반응 물질의 투입 속도가 1 내지 2 vol%/min 인 경우 반응 용기 내의 반응 생성물이 도 3(d)에 도시된 바와 같이, 백색 설탕 분말 형태로 형성되고 생성물 주변에 미반응 다가 알코올 또는 물이 소량만 잔류하며, 도 3(e)에 도시된 바와 같이, 반응 생성물을 소성하여 생성되는 소성 생성물 또는 이를 통해 제조되는 나노 입자는 흑색을 띠고, 특히 산화규소(SiOx)의 경우 x값이 1.4 내지 1.7로 범위를 만족하는 미립자로 형성될 수 있으며, 리튬이온전지인 코인셀에 적용시 가역용량이 1,700 내지 1,900 mAh/g이고 가역비가 65% 수준으로 충분한 성능을 확보할 수 있다.On the other hand, when the volume mixing ratio of the reaction material is 1:0.5 to 1:1.0 and the rate of addition of the reaction material to be subsequently added is 1 to 2 vol%/min, the reaction product in the reaction vessel is shown in FIG. 3(d). As described above, it is formed in the form of white sugar powder, and only a small amount of unreacted polyhydric alcohol or water remains around the product, and as shown in Fig. 3(e), a calcined product generated by calcining the reaction product or manufactured through it The nanoparticles are black, and especially in the case of silicon oxide (SiOx), the x value can be formed as fine particles satisfying the range of 1.4 to 1.7, and when applied to a coin cell, a lithium ion battery, the reversible capacity is 1,700 to 1,900 mAh. /g, and the reversible ratio is 65%, so sufficient performance can be secured.

본 발명의 일 실시예에 따른 습식 나노 분말 제조방법은, 상기 반응 단계(S100) 및 상기 열처리 단계(S200) 사이에 상기 반응 용기를 이송받아 내열성 커버를 덮어 상기 열처리 단계(S200)에서의 상기 반응 용기의 열화 및 손상을 방지하고 상기 반응 용기의 열화 또는 손상에 따른 이물질, 부산물 등이 생성물에 첨가되지 않도록 하기 위한 커버 단계(미도시)를 추가로 포함할 수 있다.In the method of manufacturing a wet nano-powder according to an embodiment of the present invention, the reaction vessel is transferred between the reaction step (S100) and the heat treatment step (S200) to cover the heat-resistant cover and the reaction in the heat treatment step (S200). It may further include a covering step (not shown) for preventing deterioration and damage of the container and preventing foreign substances, by-products, etc. from being added to the product due to deterioration or damage of the reaction container.

도 4은 도 1에서 열처리 단계를 세분화한 흐름도이다.4 is a detailed flowchart of a heat treatment step in FIG. 1.

도 4을 참조하면, 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법의 열처리 단계(S200)는, 제1 대기 단계(S210), 예열 단계(S220), 소성 단계(S230), 제2 대기 단계(S240), 냉각 단계(S250), 언로딩 단계(S260) 및 분쇄 단계(S270)를 포함할 수 있다.4, the heat treatment step (S200) of the wet nano-powder manufacturing method according to an embodiment of the present invention includes a first waiting step (S210), a preheating step (S220), a firing step (S230), and a second waiting step. It may include a step S240, a cooling step S250, an unloading step S260, and a crushing step S270.

상기 반응 단계(S100) 또는 상기 커버 단계로부터 이송된 반응 용기는 100℃정도의 분위기 상태의 제1 대기 단계(S210)에서 대기한 후, 400℃정도의 분위기 상태의 예열 단계(S220)에서 소정의 시간 동안의 예열을 거쳐, 소성 단계(S230)로 이송될 수 있다.The reaction vessel transferred from the reaction step (S100) or the cover step waits in the first standby step (S210) in an atmospheric state of about 100°C, and then a predetermined amount in the preheating step (S220) in an atmospheric state of about 400°C. After preheating for a period of time, it may be transferred to the firing step (S230).

상기 제1 대기 단계(S210)는 상기 예열 단계(S220)와 상기 소성 단계(S230)에서 발생되는 열이 외부로 전달되는 것을 방지하고, 열손실을 최소화하기 위해 수행되며, 상기 예열 단계(S220)는 상기 반응 용기 내의 겔 형태의 반응물에서 발생되는 HCl 등의 가스를 90% 이상 제거해주기 위해 수행될 수 있다.The first waiting step (S210) is performed to prevent heat generated in the preheating step (S220) and the firing step (S230) from being transferred to the outside, and to minimize heat loss, and the preheating step (S220) May be performed to remove 90% or more of gas such as HCl generated from the gel-like reaction product in the reaction vessel.

상기 소성 단계(S230)는 소성로 내부에 N2/Ar와 같은 같은 불활성 기체가 공급되는 분위기 상태에서, 겔 상태의 반응 생성물을 예를 들어 600 내지 900 ℃에서 1 내지 5시간 동안 열처리하여, 습식 나노 분말 결정 성장이 이루어질 수 있도록 한다.In the firing step (S230), in an atmosphere in which an inert gas such as N 2 /Ar is supplied to the inside of the kiln, the gel reaction product is heat-treated at 600 to 900°C for 1 to 5 hours, and wet nano Allows powder crystal growth to occur.

상기 소성 단계(S230)에서 열처리 온도가 600 ℃미만에서는 결정화가 이루어지지 않아, 상기 나노 분말을 이차전지의 음극재로 사용시에 리튬과의 반응이 용이치 않으며, 900 ℃를 초과하는 경우에는 겔내 탄화반응으로 인해 습식 나노 분말 결정 성장이 일어나지 않을 수 있다.In the sintering step (S230), when the heat treatment temperature is less than 600°C, crystallization is not performed, so when using the nano-powder as a negative electrode material for a secondary battery, reaction with lithium is not easy, and when it exceeds 900°C, carbonization in the gel Wet nano-powder crystal growth may not occur due to the reaction.

또한, 상기 소성로 내부에 N2/Ar와 같은 같은 불활성 기체의 공급이 부족하면, 상기 생성물이 대기중의 O2와 반응하여 반응 용기 내에 SiO2 등의 발생으로 습식 나노 분말의 품질이 저하될 수 있으므로, 위와 같이 불활성 기체의 공급이 필요하다.In addition, if the supply of an inert gas such as N 2 /Ar in the kiln is insufficient, the product reacts with O 2 in the atmosphere, and the quality of the wet nano powder may be degraded due to the generation of SiO 2 in the reaction vessel. Therefore, it is necessary to supply inert gas as above.

상기 제2 대기 단계(S240)는 상기 소성 단계(S230)에서 처리가 종료된 반응 용기의 이송을 대기시키며, 상기 소성 단계(S230)에서 발생되는 열이 외부로 전달되는 것을 방지하고, 상기 소성 반응을 마무리하기 위하여 수행될 수 있다.The second waiting step (S240) waits for the transfer of the reaction vessel that has been processed in the firing step (S230), prevents heat generated in the firing step (S230) from being transferred to the outside, and the firing reaction Can be done to finish.

상기 제2 대기 단계(S240)에서 상기 냉각 단계(S250)로 이송된 반응 용기는 배출 전에 냉각되고, 언로딩 단계(S260)에서 밖으로 배출되어 작업자가 제품 취급이 가능하도록 한다.The reaction vessel transferred from the second waiting step (S240) to the cooling step (S250) is cooled before being discharged and discharged to the outside in the unloading step (S260) so that the worker can handle the product.

상기 언로딩 단계(S260)에서 반응 용기가 밖으로 배출되면 상기 분쇄 단계(S270)에서 고상 습식 나노 분말로 분쇄가 이루어지고, 블랜딩 단계(미도시)에서 카본 블랜딩이 이루어질 수 있다. 분쇄는 ADM(Air Dry Mill) 분쇄기를 이용한 건식 분쇄 및 카본 블랜딩이 수행될 수 있으며 입경 100 나노미터(nm) 내지 10 마이크로미터(μm)로 분쇄되어 카본과 블랜딩될 수 있도록 할 수 있다.When the reaction vessel is discharged to the outside in the unloading step (S260), pulverization is performed in the pulverizing step (S270) into solid wet nano-powder, and carbon blending may be performed in the blending step (not shown). The pulverization may be performed by dry pulverization and carbon blending using an ADM (Air Dry Mill) pulverizer, and may be pulverized to a particle diameter of 100 nanometers (nm) to 10 micrometers (μm) to be blended with carbon.

상술한 바와 같이, 본 발명에 따른 나노 분말을 제조하는 방법에 따르면, 금속염화물과 다가 알코올 또는 물, 예를 들어 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)의 발열 반응의 반응 조건, 발열 반응 조건, 특히 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응 용기에 투입하는 순서 및 투입 속도 등을 정밀하게 조절하여 습식 나노 분말의 결정 성장, 결정 입자 크기의 균일성 등을 향상시켜서 안정적으로 물성이 우수한 습식 나노 분말을 제조할 수 있다.As described above, according to the method of manufacturing a nanopowder according to the present invention, the reaction conditions of an exothermic reaction of a metal chloride and a polyhydric alcohol or water, for example, STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol), The exothermic reaction conditions, in particular STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol), are precisely controlled in the order and rate of addition to the reaction vessel to control the crystal growth of wet nano powders and the uniformity of crystal particle size. By improving it, it is possible to stably manufacture a wet nano powder having excellent physical properties.

[실시예][Example]

1. 다가 알코올 투입 속도에 따른 2차 전지 용량 및 수명 평가1. Evaluation of secondary battery capacity and life according to polyhydric alcohol input rate

티타늄(Ti) 재질의 반응 용기에 STC(SiCl4) 투입 후 에틸렌글리콜(EG)를 아래 표 1에 기재된 투입 속도로 투입하면서 반응 생성물을 생성한 후 열처리를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)을 측정했으며, 측정결과는 도 5 및 도 6의 그래프에 도시된 바와 같다.After adding STC (SiCl 4 ) to a reaction vessel made of titanium (Ti), ethylene glycol (EG) was added at the rate shown in Table 1 below to generate a reaction product, and then heat treatment to produce nano powders, which were then used as secondary batteries. A secondary battery was manufactured by applying it as an anode material of, and the reversible capacity according to the capacity and the number of charging cycles of each secondary battery was measured, and the measurement results are shown in the graphs of FIGS. 5 and 6. As it is.

조건-ACondition-A 조건-BCondition-B 조건-CCondition-C 투입 속도 vol%/min Dosing speed vol%/min 5 vol%/min 5 vol%/min 1 vol%/min 1 vol%/min 2 vol%/min 2 vol%/min

도 5 및 도 6에 나타난 바와 같이, 다가 알코올의 투입 속도가 5 vol%/min 이상인 조건-A의 경우 2차 전지의 용량이 불충분하고 충전 사이클 수가 50회 근방에서 가역용량이 거의 없어져 전지의 수명이 다하는 것으로 확인된 반면, 다가 알코올의 투입 속도가 5 vol%/min 미만인 조건-B 및 조건-C의 경우 2차 전지의 용량이 증가하고 수명이 연장되었으며, 특히 투입 속도가 1.0 vol%/min 이하인 조건-B의 경우 2차 전지의 용량이 가장 크고 수명이 가장 긴 것으로 확인되었다.5 and 6, in the case of Condition-A in which the addition rate of polyhydric alcohol is 5 vol%/min or more, the capacity of the secondary battery is insufficient and the reversible capacity is almost disappeared in the vicinity of 50 charging cycles. On the other hand, in the case of Condition-B and Condition-C in which the addition rate of polyhydric alcohol was less than 5 vol%/min, the capacity of the secondary battery was increased and the life was extended, and in particular, the injection rate was 1.0 vol%/min. In the case of Condition-B below, it was confirmed that the secondary battery had the largest capacity and the longest life.

2. 반응 물질 배합비에 따른 2차 전지 용량 및 수명 평가2. Evaluation of secondary battery capacity and life according to the mixing ratio of reactants

티타늄(Ti) 재질의 반응 용기에 반응 물질인 STC(SiCl4) 투입 후 1 vol%/min 의 투입 속도로 에틸렌글리콜(EG)을 아래 표 2에 기재된 체적 배합비로 투입하여 반응 생성물을 생성한 후 열처리를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)을 측정했으며, 측정결과는 도 7 및 도 8의 그래프에 도시된 바와 같다.After adding STC (SiCl 4 ) as a reaction material to a reaction vessel made of titanium (Ti), ethylene glycol (EG) was added at a rate of 1 vol%/min at the volume mixing ratio shown in Table 2 below to generate a reaction product. Nano powder was prepared through heat treatment and applied as a negative electrode material of the secondary battery to produce a secondary battery, and the capacity of each secondary battery and the specific capacity according to the number of charging cycles were measured. The measurement results are as shown in the graphs of FIGS. 7 and 8.

조건-ACondition-A 조건-BCondition-B 조건-CCondition-C 조건-DCondition-D 체적 배합비(STC:EG)Volume mixing ratio (STC:EG) 1:0.11:0.1 1:0.5 1:0.5 1:1.0 1:1.0 1:1.5 1:1.5

도 7 및 도 8에 나타난 바와 같이, 반응 물질의 체적 배합비가 1:1.5 이상인 조건-D의 경우 2차 전지의 용량이 불충분하고 충전 사이클 수가 50회 근방에서 가역용량이 거의 없어져 전지의 수명이 다하는 것으로 확인된 반면, 반응 물질의 체적 배합비가 1:1.5 미만인 조건-A 내지 조건-C의 경우 2차 전지의 용량이 증가하고 수명이 연장되었으며, 특히 반응 물질의 체적 배합비가 1:0.5 인 조건-B의 경우 2차 전지의 용량이 가장 크고 수명이 가장 긴 것으로 확인되었다.7 and 8, in the case of Condition-D in which the volume mixing ratio of the reactant material is 1:1.5 or more, the capacity of the secondary battery is insufficient, and the reversible capacity almost disappears in the vicinity of 50 charging cycles, resulting in the end of the battery life. On the other hand, in the case of conditions-A to condition-C in which the volume mixing ratio of the reactants is less than 1:1.5, the capacity of the secondary battery is increased and the lifespan is extended, and in particular, the volume mixing ratio of the reactants is 1:0.5. In the case of B, it was confirmed that the secondary battery had the largest capacity and the longest life.

이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.As described above, in the present invention, specific matters such as specific components, etc., and limited embodiments and drawings have been described, but this is provided only to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. , Anyone having ordinary knowledge in the field to which the present invention belongs will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the spirit of the present invention is limited to the described embodiments and should not be defined, and all technical ideas that have equivalent or equivalent modifications to the claims as well as the claims to be described later are included in the scope of the present invention. Should be interpreted as.

S100 : 반응 단계
S200 : 열처리 단계
S100: reaction step
S200: heat treatment step

Claims (10)

금속산화물의 나노 분말을 제조하기 위한 습식 나노 분말 제조방법에 있어서,
반응 용기에서 제1 반응 물질인 금속염화물과 제2 반응 물질인 다가 알코올 또는 물을 습식 반응시켜 겔 상태의 금속산화물을 생성하기 위한 반응 단계; 및
상기 겔 상태의 금속산화물을 열처리하여 고상 금속산화물을 생성하기 위한 열처리 단계; 를 포함하고,
상기 반응 단계에서 상기 제1 반응 물질을 먼저 상기 반응 용기에 전량 투입한 후 상기 제2 반응 물질을 일정한 투입 속도로 투입하면서 반응시키는, 습식 나노 분말 제조방법.
In the wet nano-powder manufacturing method for preparing a nano-powder of metal oxide,
A reaction step of wet-reacting a metal chloride as a first reaction material and a polyhydric alcohol or water as a second reaction material to produce a gelatinous metal oxide in a reaction vessel; And
A heat treatment step of heat-treating the gel-like metal oxide to generate a solid metal oxide; Including,
In the reaction step, the first reaction material is first added to the reaction vessel in its entirety, and then the second reaction material is added at a constant input rate to react.
제1항에 있어서,
상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:1.5 미만이고,상기 제2 반응 물질의 투입 속도는 5 vol%/min 미만인 것을 특징으로 하는, 습식 나노 분말 제조방법.
The method of claim 1,
The volume mixing ratio of the first reactant and the second reactant is less than 1:1.5, and the injection rate of the second reactant is less than 5 vol%/min.
제2항에 있어서,
상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:0.5 내지 1:1.0 인 것을 특징으로 하는, 습식 나노 분말 제조방법.
The method of claim 2,
The volume mixing ratio of the first reactant and the second reactant is 1:0.5 to 1:1.0, characterized in that, wet nanopowder manufacturing method.
제2항에 있어서,
상기 제2 반응 물질의 투입 속도는 0.5 vol% 내지 2 vol%/min인 것을 특징으로 하는, 습식 나노 분말 제조방법.
The method of claim 2,
The method of manufacturing a wet nano-powder, characterized in that the injection rate of the second reaction material is 0.5 vol% to 2 vol%/min.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 제1 반응 물질은 STC(SiCl4)을 포함하고, 상기 제2 반응 물질은 에틸렌글리콜(EG, Ethylene Glycol)을 포함하는 것을 특징으로 하는, 습식 나노 분말 제조방법.
The method according to any one of claims 1 to 4,
The first reactant material comprises STC (SiCl 4 ), and the second reactant material comprises ethylene glycol (EG, Ethylene Glycol).
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 반응 단계; 및
상기 열처리 단계; 사이에 상기 반응 용기를 이송받아 내열성 커버를 덮기 위한 커버 단계; 를 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법.
The method according to any one of claims 1 to 4,
The reaction step; And
The heat treatment step; A cover step for receiving the reaction vessel and covering the heat-resistant cover; Wet nano-powder manufacturing method comprising a.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 반응 단계에서 상기 반응 용기 내로 불활성 기체가 공급되는 것을 특징으로 하는 습식 나노 분말 제조방법.
The method according to any one of claims 1 to 4,
Wet nano-powder manufacturing method, characterized in that the inert gas is supplied into the reaction vessel in the reaction step.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 열처리 단계에서 상기 열처리가 이루어지는 동안 상기 반응 용기 외부에 불활성 기체를 공급하여 부산물 발생을 억제하는 것을 특징으로 하는 습식 나노 분말 제조방법.
The method according to any one of claims 1 to 4,
In the heat treatment step, while the heat treatment is performed, an inert gas is supplied to the outside of the reaction vessel to suppress generation of by-products.
제6항에 있어서,
상기 반응 단계, 상기 커버 단계 및 상기 열처리 단계로 이루어진 그룹으로부터 선택되는 하나 이상의 단계에서 상기 반응 용기 내에 산성 가스가 잔존하지 않도록 상기 산성 가스를 배출하는 것을 특징으로 하는 습식 나노 분말 제조방법.
The method of claim 6,
The method of producing a wet nano powder, characterized in that the acidic gas is discharged so that the acidic gas does not remain in the reaction vessel in at least one step selected from the group consisting of the reaction step, the cover step, and the heat treatment step.
제1항 내지 제4항 중 어느 하나의 항에 있어서,
상기 제1 반응 물질은 사염화티탄(TiCl4)을 포함하고, 상기 제2 반응 물질은 다가 알코올 또는 물(H2O)을 포함하며, 상기 겔 상태의 금속산화물은 이산화티타늄(TiO2)을 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법.
The method according to any one of claims 1 to 4,
The first reaction material includes titanium tetrachloride (TiCl 4 ), the second reaction material includes polyhydric alcohol or water (H 2 O), and the gel-like metal oxide includes titanium dioxide (TiO 2 ). Wet nano powder manufacturing method, characterized in that.
KR1020190056938A 2019-05-15 2019-05-15 Wet Type Manufacturing Method of Nano Powder KR102199812B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190056938A KR102199812B1 (en) 2019-05-15 2019-05-15 Wet Type Manufacturing Method of Nano Powder
PCT/KR2019/011217 WO2020230955A1 (en) 2019-05-15 2019-08-30 Method for preparing wet nanopowder
CN201910961904.3A CN111943212A (en) 2019-05-15 2019-10-11 Wet process for preparing nano powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190056938A KR102199812B1 (en) 2019-05-15 2019-05-15 Wet Type Manufacturing Method of Nano Powder

Publications (2)

Publication Number Publication Date
KR20200132076A true KR20200132076A (en) 2020-11-25
KR102199812B1 KR102199812B1 (en) 2021-01-07

Family

ID=73289892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190056938A KR102199812B1 (en) 2019-05-15 2019-05-15 Wet Type Manufacturing Method of Nano Powder

Country Status (3)

Country Link
KR (1) KR102199812B1 (en)
CN (1) CN111943212A (en)
WO (1) WO2020230955A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299868B (en) * 2021-03-02 2023-01-06 南京理工大学 Vanadium oxide surface modification method based on humidity regulation and control anaerobic heat treatment technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130076935A (en) * 2011-12-29 2013-07-09 주식회사 포스코 Titanium dioxide nano particle, titanate, lithium titanate nano particle and method for preparation methods thereof
KR20130139554A (en) * 2012-06-13 2013-12-23 주식회사 예일전자 Manufacturing method of silicon oxide, and anode material for secondary battery, including silicon oxide manufactured by the same
KR20140033515A (en) * 2012-01-09 2014-03-18 주식회사 예일전자 Silicon oxide for anode material of secondary battery, manufacturing method thereof, and anode material of secondary battery using silicon oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574295B2 (en) * 2010-11-11 2014-08-20 有限会社シーエス技術研究所 High purity silicon fine powder production equipment
KR101280153B1 (en) * 2012-01-03 2013-06-28 군산대학교산학협력단 Method for preparing nano crystalline anatase titanium dioxide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130076935A (en) * 2011-12-29 2013-07-09 주식회사 포스코 Titanium dioxide nano particle, titanate, lithium titanate nano particle and method for preparation methods thereof
KR20140033515A (en) * 2012-01-09 2014-03-18 주식회사 예일전자 Silicon oxide for anode material of secondary battery, manufacturing method thereof, and anode material of secondary battery using silicon oxide
KR20130139554A (en) * 2012-06-13 2013-12-23 주식회사 예일전자 Manufacturing method of silicon oxide, and anode material for secondary battery, including silicon oxide manufactured by the same

Also Published As

Publication number Publication date
CN111943212A (en) 2020-11-17
KR102199812B1 (en) 2021-01-07
WO2020230955A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
EP3460887B1 (en) Cathode active material for all-solid-state lithium secondary battery
CN111033828B (en) Positive electrode active material for all-solid-state lithium secondary battery
JP5971109B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
WO2012131881A1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR100228145B1 (en) A spinel-type lithium manganese complex oxide for a cathode active material of a lithium secondary battery
CN1232438A (en) Lithium/nickel/cobalt composite oxide, process for preparing same, and cathode active material for rechargeable battery
Hsieh et al. Infrared-assisted synthesis of lithium nickel cobalt alumina oxide powders as electrode material for lithium-ion batteries
JP2006134852A (en) Method of manufacturing crystalline material nano particulate anode active material using self-blending eutectic method for high output lithium secondary battery
JP6318956B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN106558699A (en) Electrode for lithium ion secondary battery material, its manufacture method, electrode for lithium ion secondary battery and lithium rechargeable battery
JP6436335B2 (en) Transition metal composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using the same
US20160190589A1 (en) Electrode material and method for manufacturing same
JP6568333B1 (en) Positive electrode active material, method for producing the same, positive electrode, and lithium ion battery
CN115133114A (en) Solid electrolyte material, preparation method thereof and battery
KR102199812B1 (en) Wet Type Manufacturing Method of Nano Powder
JP6903387B2 (en) Manufacturing method of lithium titanium phosphate
KR101913221B1 (en) Fabrication Method of Lithium Complex Oxide
KR102381256B1 (en) Manufacturing method of silicon oxide powder for cathode material of secondary battery and secondary battery using the same
US11404720B2 (en) Method for producing lithium titanium phosphate
EP3543215A1 (en) Method for manufacturing lithium-titanium composite oxide by controlling particle size of slurry through wet milling
KR102040212B1 (en) Material for electrode of lithium ion secondary battery and methods of fabricating the same
KR20220028930A (en) MANUFACTURING DEVICE OF HIGH CAPACITY SiOx ANODE MATERIAL AND MANUFACTURING METHOD USING THE SAME
KR20230083643A (en) Synthesis of cathode active material for secondary battery using solution sintering
CN115548294A (en) High-nickel positive electrode material, preparation method thereof and lithium ion battery
CN116153557A (en) Preparation method of chromium lithium titanate

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant