KR20200130601A - red tide and green tide monitoring system using drone - Google Patents

red tide and green tide monitoring system using drone Download PDF

Info

Publication number
KR20200130601A
KR20200130601A KR1020190054984A KR20190054984A KR20200130601A KR 20200130601 A KR20200130601 A KR 20200130601A KR 1020190054984 A KR1020190054984 A KR 1020190054984A KR 20190054984 A KR20190054984 A KR 20190054984A KR 20200130601 A KR20200130601 A KR 20200130601A
Authority
KR
South Korea
Prior art keywords
light
green algae
drone
red tide
filter
Prior art date
Application number
KR1020190054984A
Other languages
Korean (ko)
Other versions
KR102211700B1 (en
Inventor
나용범
Original Assignee
주식회사 한국씨앤에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국씨앤에스 filed Critical 주식회사 한국씨앤에스
Priority to KR1020190054984A priority Critical patent/KR102211700B1/en
Publication of KR20200130601A publication Critical patent/KR20200130601A/en
Application granted granted Critical
Publication of KR102211700B1 publication Critical patent/KR102211700B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • B64C2201/024
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Business, Economics & Management (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tourism & Hospitality (AREA)
  • Mechanical Engineering (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Development Economics (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a red and green algae monitoring system using a drone. The monitoring system comprises: the drone which is capable of flying by a plurality of propellers mounted on a main body; and a calculation unit which is mounted on the main body of the drone to irradiate light on a water surface to be measured, detects a Raman signal of water and a fluorescence signal of chlorophyll a from the light received from the water surface to calculate the concentrations of red and green algae, and transmits the calculated concentrations to a manager terminal through a communication network. According to the red and green algae monitoring system using a drone, it provides an advantage of maintaining stable measurement accuracy regardless of a change in distance from the water surface, while supporting the measurement of the concentration of red and green algae during flight.

Description

드론을 이용한 적조 및 녹조 모니터링 시스템{red tide and green tide monitoring system using drone}Red tide and green tide monitoring system using drone}

본 발명은 드론을 이용한 적조 및 녹조 모니터링 시스템에 관한 것으로서, 상세하게는 적조 및 녹조 농도를 용이하게 측정하며 측정 정밀도를 향상시킬 수 있게 구축된 드론을 이용한 적조 및 녹조 모니터링 시스템에 관한 것이다.The present invention relates to a red tide and green algae monitoring system using a drone, and more particularly, to a red tide and green algae monitoring system using a drone constructed to easily measure the concentration of red tide and green algae and improve measurement accuracy.

1970년대 산업화 이후 배출오염원의 증가로 인하여 국내의 많은 호수와 하천들이 오염되었고 조류의 대량발생 등의 부영양화현상도 빈번히 발생하여 큰 사회문제가 되고 있다.Since industrialization in the 1970s, many lakes and rivers in Korea have been polluted due to the increase in pollutant sources, and eutrophication such as mass generation of algae frequently occurs, which is a big social problem.

녹조 또는 적조는 하천과 호수 등에서 수온이 상승하고 물의 흐름이 완만해지면서 수중의 녹조 또는 남조류가 대량으로 증식하여 수체가 녹색 또는 남색을 띄는 현상을 말한다.Green algae or red tide refers to a phenomenon in which the water temperature rises in rivers and lakes and the flow of water becomes gentle, and the water body becomes green or indigo due to the proliferation of green algae or blue-green algae in a large amount.

이러한 녹조 또는 적조 발생은 생태계 파괴로 인한 토종 동물의 사멸 또는 서식처 이동, 개체군 변화, 먹이 손실이 야기되는 심각한 문제를 발생시킨다.The occurrence of such green algae or red tide causes serious problems that cause the loss of native animals or habitat migration, population change, and food loss due to the destruction of the ecosystem.

이와 같이 수계에 많은 악영향을 미치는 조류는 탄소 동화 작용을 하는 단순한 단세포, 다세포성 미생물로서 남조류, 녹조류, 규조류 등으로 구분된다.As described above, algae that have many adverse effects on the water system are simple single-celled, multicellular microorganisms that act as carbon assimilation, and are classified into blue-green algae, green algae, and diatoms.

남조류는 부영양화된 수역에서 우점하는 조류로 질소 고정능을 가지며, 불리한 환경에서 내구성이 강한 휴면포자를 형성하여 견디다가 환경이 좋아지면 발아하여 재증식하며, 높은 수온과 pH에 대한 적응성이 강하기 때문에 여름철 대량 증식이 일어날 수 있다. 그리고 녹조류는 계절적으로는 늦봄부터 초가을에 걸쳐 증식하며 상수도 시설에서는 침전지나 완속여과지의 여과막을 형성하며 급격히 증식하면 물에 냄새를 나게 하며 여과지를 폐쇄시키는 경우가 있다. 규조류는 클로로필-a와 b 외에 규조소, 크산토필 등의 색소를 포함하고 해수로부터 담수, 토양속 등 도처에 생식하고 부유성, 부착성인 것이 있으며 부유성인 것은 호수 등에서 초봄에 대증식을 일으켜 정수처리에 영향을 준다. Blue-green algae are dominant algae in eutrophied waters. They have nitrogen-fixing ability. They form and endure dormant spores, which are durable in adverse environments, and germinate and regrow when the environment improves. Mass proliferation can occur. In addition, green algae grow seasonally from late spring to early autumn, and in waterworks, they form a filtration membrane of a sedimentation basin or a slow filter basin, and when they grow rapidly, the water smells and the filter paper may be closed. In addition to chlorophyll-a and b, diatoms contain pigments such as diatoms and xanthophylls, and inhabit everywhere from seawater to fresh water and in soil, and some are floating and adherent. Affects

한편, 적조는 식물성 플랑크톤(phytoplankton), 특히 와편모조류가 대량으로 번식하여 바닷물 색깔을 적색 혹은 황갈색으로 변화시키는 것을 말한다. 수중에 유기물질이 풍부한 상태에서 일조량과 수온이 적당할 경우 적조가 나타난다. 대량 번식된 플랑크톤의 분해를 위하여 산소가 많이 소비되므로 물고기는 산소 부족으로 대량 폐사하는 상황이 발생된다. 또한, 대량 번식된 플랑크톤은 물고기의 아가미에 붙어서 물고기를 질식시키기도 하며, 편모 조류인 코콜리디니움은 독을 내뿜어 물고기를 죽인다.On the other hand, red tide refers to phytoplankton, in particular, to change the color of seawater to red or yellowish brown by reproducing in large quantities. Red tides appear when the amount of sunlight and water temperature are adequate in a state rich in organic matter in water. Since a lot of oxygen is consumed for the decomposition of large-scale plankton, fish die in large quantities due to lack of oxygen. In addition, the large-proliferated plankton attaches to the gills of the fish and suffocates the fish, while the flagella algae cocolidinium releases poison and kills the fish.

적조는 연안해역에서 대부분 발생되며, 표층수의 수온이 상승한 경우나 폭우, 장마 등으로 인한 담수의 유입으로 영양염이 크게 증가한 경우 또는 무풍상태가 계속되어 해수의 혼합이 잘 안되는 경우 등에 일어나고 있다.Red tide occurs mostly in coastal waters, and occurs when the surface water temperature rises, when nutrients increase significantly due to the inflow of fresh water due to heavy rain or rainy season, or when the mixing of seawater is difficult due to continuous windless conditions.

우리나라의 경우 7, 8월 장마 기간 중 육지의 오염물질이 바다로 대량 유입되어 바닷물을 부영양화시키면서 9월부터 적조가 집중 발생하고 있다.In Korea, during the rainy season in July and August, a large amount of land pollutants flows into the sea and eutrophies the seawater, and red tides have been intensively occurring from September.

현재 적조 경보는 국립수산진흥원과 수산연구소에서 적조현상이 발생하여 그 세력이 크거나 유독종이 출현하여 어업피해가 발생될 위험이 있을 때 적조 경보를 발령한다. 적조 경보에는 적조주의보, 적조경보, 적조속보, 적조해제가 있으며, 적조생물의 밀도가 크면 피해도 클 것으로 예상되나 반드시 그렇지는 않고, 주로 적조 원인 생물에 따라서 피해가 달라진다. 따라서 적조경보 발령 시 유독성 적조생물의 출현 여부에 대해 각별히 주의를 기울여야 할 것이다. 왜냐하면 대량 폐사 이외 마비성 패독이나 설사성 패독이 문제되기 때문이다.The current red tide warning is issued by the National Fisheries Promotion Agency and the Fisheries Research Institute when there is a risk of damage to fisheries due to the occurrence of a red tide phenomenon, or the appearance of poisonous species. There are red tide warning, red tide warning, red tide warning, and red tide clearing. If the density of red tide creatures is high, the damage is expected to be great, but this is not necessarily the case, and the damage varies depending on the creature that causes the red tide. Therefore, special attention should be paid to whether toxic red tide organisms appear when the red tide warning is issued. This is because paralytic shellfish or diarrheal shellfish is a problem other than mass death.

이러한 적조 발생에 대한 탐지 방법은 종래에는 직접 바다에서 채수하여 현미경을 이용해 취수된 해수의 적조농도를 육안 체크하고, 그 확인 결과 적조 농도가 기준치 이상 검출되면 부근 해역에 인위적으로 적조 경보를 내려 해상에 적조가 발생 되었음을 알리게 된다. 또한, 등록특허 제10-0252381호에서는 적조를 탐지하는 수단으로 적조 센서를 사용하여 적조를 감지하고 있음을 알 수 있다. 적조 감지 센서로 클로로필 센서나 탁도계 등을 사용할 수도 있고, 유류 오염 등과 같은 유해물질의 농도를 측정할 수 있는 센서를 사용하고 있다고 기술하고 있다.The detection method for such red tide is conventionally collected directly from the sea and visually checks the red tide concentration of the collected seawater using a microscope, and if the red tide concentration is detected above the standard value, an artificial red tide alarm is sent to the sea area. It informs that a red tide has occurred. In addition, in Korean Patent No. 10-0252381, it can be seen that red tide is detected using a red tide sensor as a means for detecting red tide. It is described that a chlorophyll sensor or a turbidimeter may be used as a red tide sensor, and a sensor capable of measuring the concentration of harmful substances such as oil pollution is used.

하지만, 채수에 의한 적조 탐지 방법은 채수한 후 분석하는데 시간을 요할 뿐만 아니라, 넓은 해역을 광범위하게 조사할 수 없다는 한계가 있으며, 적조 감지센서를 이용하여 적조를 탐지하는 방법은 고정 부위에서만 적조를 감지하므로, 이동하면서 유해 적조를 탐지할 수 없고, 유해 적조의 빠른 확산 속도 및 발생 판정 속도 등을 고려할 때 신속성 면에서 떨어진다는 문제점이 있다.However, the red tide detection method by collecting water not only takes time to analyze after collecting the water, but also has a limitation in that it cannot be extensively investigated in a wide area, and the method of detecting red tide using a red tide sensor detects red tide only in a fixed area. Therefore, there is a problem that it is not possible to detect a harmful red tide while moving, and it is inferior in terms of speed when considering the rapid spreading speed and occurrence determination speed of the harmful red tide.

근래에 들어, 수중에 존재하는 클로로필-a에서 발생하는 형광량을 측정하여 수중 조류의 존재를 정량적으로 측정하는 방식을 사용하고 있다.Recently, a method of quantitatively measuring the presence of algae in water has been used by measuring the amount of fluorescence generated from chlorophyll-a present in water.

상기와 같은 방식은 녹조발생 지역을 방문해서 측정대상 시료를 별도로 채수하여 측정하므로 실시간 모니터링(real-time monitoring)이 불가능하다는 문제점이 발생하고, 이로 인해서 녹조 및 적조 발생시 이에 대한 대응이 빠르게 이루어지지 못한다는 문제점이 발생한다.In the above-described method, a problem that real-time monitoring is impossible because the sample to be measured is collected and measured separately by visiting the green algae occurrence area, and thus, response to the occurrence of green algae or red tide cannot be made quickly. The problem arises.

이러한 문제점을 개선하기 위하여 레이저 광원을 이용하여 원격으로 녹조 및 적조를 측정하는 장치가 국내 공개특허 제10-2015-0122086호에 개시되어 있다. 그런데, 상기 장치의 경우 원거리에서 측정이 가능하나 이동성을 갖추지 못하여 대면적에 걸쳐 측정을 할 수 없는 단점이 있다.In order to improve this problem, a device for remotely measuring green algae and red algae using a laser light source is disclosed in Korean Patent Application Publication No. 10-2015-0122086. However, in the case of the above device, it is possible to measure from a long distance, but there is a disadvantage that it cannot be measured over a large area because it does not have mobility.

본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 비행상태에서 적조 및 녹조의 발생농도를 측정할 수 있도록 지원하면서 수면과의 거리 변화에 관계없이 측정 정밀도를 안정적을 유지할 수 있는 드론을 이용한 적조 및 녹조 모니터링 시스템을 제공하는데 그 목적이 있다.The present invention was invented to solve the above problems, using a drone capable of maintaining stable measurement accuracy regardless of a change in distance to the surface while supporting measurement of the occurrence concentration of red tide and green algae in flight. Its purpose is to provide a red tide and green algae monitoring system.

상기의 목적을 달성하기 위하여 본 발명에 따른 드론을 이용한 적조 및 녹조 모니터링 시스템은 본체에 장착된 복수 개의 프로펠러에 의해 비행할 수 있도록 된 드론과; 상기 드론의 본체에 탑재되어 측정대상 수면에 광을 조사하고 수면으로부터 역으로 수신된 광으로부터 물의 라만신호와 클로로필a의 형광신호를 검출하여 적조 및 녹조의 발생농도를 산출하고, 산출된 적조 및 녹조의 발생농도를 통신망을 통해 관리자 단말기로 송출하는 산출유닛;을 구비한다.In order to achieve the above object, the red tide and green algae monitoring system using a drone according to the present invention includes a drone capable of flying by a plurality of propellers mounted on a body; It is mounted on the body of the drone to irradiate light on the water surface to be measured, and detects the Raman signal of water and the fluorescent signal of chlorophylla from the light received from the water surface to calculate the concentrations of red and green algae, and calculated red and green algae. It includes; a calculation unit for transmitting the generated concentration of the to the manager terminal through the communication network.

바람직하게는 상기 산출유닛은 적조 및 녹조의 발생농도(n)를 이하의 산출식에 의해 산출하고,

Figure pat00001
, 여기서, A는 알고 있는 상수이고, h1은 물의 라만신호의 세기이고, h2는 클로로필a의 형광신호의 세기이다.Preferably, the calculation unit calculates the occurrence concentration (n) of red tide and green algae by the following calculation formula,
Figure pat00001
, Where A is a known constant, h1 is the intensity of the Raman signal of water, and h2 is the intensity of the fluorescence signal of chlorophyll a.

바람직하게는 상기 산출유닛은 수면에 450nm의 레이저 광을 출사하는 레이저 광원과; 광을 검출하는 광검출부와; 수면으로부터 역으로 수신되는 광에 대해 530nm의 물의 라만신호가 투과되게 필터링 하여 상기 광검출부로 제공하는 제1필터와, 680nm의 클로로필a의 형광신호가 투과되게 필터링 하되 상기 광검출부의 광수신축에 대해 직교하는 방향을 따라 상기 제1필터에 대해 연장되게 결합된 제2필터를 갖는 필터 유닛과; 상기 필터 유닛을 상기 광수신축에 대해 직교하는 방향을 따라 이동시킬 수 있도록 된 필터이동부와; 상기 제1필터와 상기 제2필터가 상기 광수신축에 대해 설정된 단위 측정주기마다 순차적으로 배치되게 상기 필터 이동부를 제어하고, 상기 광검출부에서 검출된 신호를 이용하여 적조 및 녹조의 발생농도를 산출하는 산출부;를 구비한다.Preferably, the calculation unit includes a laser light source for emitting 450 nm of laser light to the water surface; A light detection unit for detecting light; Filtering so that the Raman signal of 530 nm water is transmitted to the light received from the surface of the water to be transmitted to the light detection unit, and the fluorescent signal of chlorophyll a of 680 nm is filtered so that the light is transmitted through the light receiving axis of the light detection unit. A filter unit having a second filter coupled to extend with respect to the first filter in an orthogonal direction; A filter moving part configured to move the filter unit in a direction orthogonal to the light receiving axis; Controlling the filter moving unit so that the first filter and the second filter are sequentially arranged at each unit measurement period set for the light receiving axis, and calculating the occurrence concentration of red tide and green algae using a signal detected by the light detection unit. It includes a; calculation unit.

본 발명에 따른 드론을 이용한 적조 및 녹조 모니터링 시스템에 의하면, 비행상태에서 적조 및 녹조의 발생농도를 측정할 수 있도록 지원하면서 수면과의 거리 변화에 관계없이 측정 정밀도를 안정적을 유지할 수 있는 장점을 제공한다.According to the red tide and green algae monitoring system using a drone according to the present invention, while supporting the measurement of the occurrence concentration of red tide and green algae in flight, it provides the advantage of maintaining a stable measurement accuracy regardless of a change in distance to the water surface. do.

도 1은 본 발명에 따른 드론을 이용한 적조 및 녹조 모니터링 시스템을 나타내 보인 도면이고,
도 2는 도 1의 산출유닛의 제1실시예를 나타내 보인 도면이고,
도 3은 도 1의 산출유닛의 제2실시예를 나타내 보인 도면이고,
도 4는 도 1의 산출유닛의 제3실시에를 나타내 보인 도면이다.
1 is a view showing a red tide and green algae monitoring system using a drone according to the present invention,
2 is a view showing a first embodiment of the calculation unit of FIG. 1,
3 is a view showing a second embodiment of the calculation unit of FIG. 1,
4 is a view showing a third embodiment of the calculation unit of FIG. 1.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 드론을 이용한 적조 및 녹조 모니터링 시스템을 더욱 상세하게 설명한다.Hereinafter, a red tide and green algae monitoring system using a drone according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 드론을 이용한 적조 및 녹조 모니터링 시스템을 나타내 보인 도면이고, 도 2는 도 1의 산출유닛의 제1실시예를 나타내 보인 도면이다.1 is a diagram showing a red tide and green algae monitoring system using a drone according to the present invention, and FIG. 2 is a diagram showing a first embodiment of the calculation unit of FIG. 1.

도 1 및 도 2를 참조하면, 본 발명에 따른 적조 및 녹조 모니터링 시스템(100)은 드론(110)과 산출유닛(150)을 구비한다.1 and 2, the red tide and green algae monitoring system 100 according to the present invention includes a drone 110 and a calculation unit 150.

드론(110)은 본체(120)에 장착된 복수 개의 프로펠러(131)에 의해 비행할 수 있도록 되어 있다.The drone 110 is designed to be able to fly by a plurality of propellers 131 mounted on the main body 120.

드론(110)의 본체(120)는 수직 이착륙 및 비행이 가능한 통상적인 구조로 되어 있으며, 후술되는 산출유닛(150)을 탑재할 수 있도록 되어 있다.The body 120 of the drone 110 has a conventional structure capable of vertical take-off and landing and flight, and is capable of mounting a calculation unit 150 to be described later.

본체(120)는 외측면에 복수 개의 프로펠러(131) 탑재용 지지바(133)가 형성되어 있고, 하부에 산출유닛(150)을 탑재할 수 있으면서 지면 안착용 지지다리(125)가 형성된 하부 프레임(123)을 갖는 구조로 되어 있다.The main body 120 is a lower frame having a plurality of propellers 131 mounting support bars 133 formed on the outer surface of the body 120, the calculation unit 150 can be mounted at the bottom while the ground mounting support legs 125 are formed It has a structure with (123).

하부 프레임(113)의 수평상으로 연장되어 중앙이 빈 사각틀 형상을 형성하는 수평지지바(123a)에는 후술되는 산출유닛(150)에 진동이 인가되는 것을 억제하기 위한 진동감쇠유닛(140)이 장착되어 있다.A vibration damping unit 140 for suppressing the application of vibration to the calculation unit 150 to be described later is mounted on the horizontal support bar 123a extending horizontally of the lower frame 113 to form a square frame shape with an empty center. Has been.

진동감쇠유닛(140)은 수평지지바(123a)에 일단이 결합되어 상방으로 연장되되 진동을 흡수하는 복수 개의 완충부재(141)와, 완충부재(141)의 상부에 결합되어 수평지지바(123a)에 대해 이격되게 설치되는 판형상의 안착판(143)을 갖는 구조로 되어 있다.The vibration damping unit 140 has one end coupled to the horizontal support bar 123a and extending upward, but is coupled to a plurality of buffer members 141 that absorb vibration, and the horizontal support bar 123a. ) Has a structure having a plate-shaped seating plate 143 that is installed spaced apart from each other.

완충부재(141)는 진동 및 충격을 흡수하는 고무소재로 일정길이 연장된 구조로 형성된 것을 적용하거나, 내부에 에어가 충진되어 진동 및 충격을 흡수하는 에어서스펜션 등 다양한 구조가 적용될 수 있다. The buffer member 141 may be formed of a rubber material that absorbs vibration and shock and has a structure extending for a predetermined length, or various structures such as an air suspension absorbing vibration and shock by filling air therein may be applied.

본체(120)의 구조는 도시된 구조와 다르게 형성될 수 있음은 물론이다. It goes without saying that the structure of the main body 120 may be formed differently from the illustrated structure.

프로펠러(131)는 지지바(133)에 각각 탑재된 구동모터(137)에 의해 회전될 수 있게 되어 있다. 도시된 예에서는 본체(110)의 방향전환을 포함한 비행 조정을 수행할 수 있도록 4개의 프로펠러(121)가 적용되어 있고, 도시된 예와 다르게 프로펠러는 6개 또는 8개가 적용될 수 있음은 물론이다.The propeller 131 can be rotated by a drive motor 137 mounted on the support bar 133, respectively. In the illustrated example, four propellers 121 are applied to perform flight adjustment including direction change of the main body 110, and, unlike the illustrated example, six or eight propellers may be applied.

이러한 드론(110)은 후술되는 산출유닛(150)에 대해 독립적으로 작동되게 구축 될 수 있고, 이 경우 드론(110)은 무선통신부(미도시)를 통해 원격 조정기(미도시)로부터 수신된 신호를 처리하며 구동모터(137)의 구동을 제어하는 제어부(미도시)에 의해 비행이 조정된다.Such a drone 110 may be built to operate independently of the calculation unit 150 to be described later, in this case, the drone 110 receives a signal received from a remote controller (not shown) through a wireless communication unit (not shown). The flight is adjusted by a control unit (not shown) that processes and controls the driving of the driving motor 137.

이와는 다르게 드론(110)은 후술되는 산출유닛(150)과 함께 원격조종기(미도시)를 통해 제어되도록 구축되는 경우 원격조정기는 후술되는 통신부(175)를 통해 비행조정과 관련된 비행조정제어신호 및 산출유닛(150)의 구동 조정신호를 사용자의 조작설정에 대응되게 송출할 수 있도록 구축되면 된다. 이 경우 산출부(171)는 통신부(175)를 통해 수신된 비행조정제어신호에 따라 모터(137)를 구동하는 비행구동부(173)의 구동을 제어하도록 구축하면 된다.Unlike this, when the drone 110 is built to be controlled through a remote controller (not shown) together with the calculation unit 150 to be described later, the remote controller is a flight control signal and calculation related to flight control through the communication unit 175 to be described later. It may be constructed so that the driving control signal of the unit 150 can be transmitted corresponding to the user's operation setting. In this case, the calculation unit 171 may be constructed to control the driving of the flight driving unit 173 that drives the motor 137 according to the flight adjustment control signal received through the communication unit 175.

산출유닛(150)은 드론(110)의 안착판(143)의 저부에 탑재되어 하방에 대향되는 측정대상 수면(10)에 광을 조사하고 수면(10)으로부터 역으로 수신된 광으로부터 물의 라만신호와 클로로필a의 형광신호를 검출하여 적조 및 녹조의 발생농도를 산출하고, 산출된 적조 및 녹조의 발생농도를 통신망(180)을 통해 관리자 단말기(200)로 송출하도록 구축되어 있다.The calculation unit 150 is mounted on the bottom of the mounting plate 143 of the drone 110 to irradiate light to the water surface 10 to be measured facing downward, and a Raman signal of water from the light received from the water surface 10 in reverse. It is constructed to detect the fluorescence signal of and chlorophyll a to calculate the occurrence concentration of red tide and green algae, and to transmit the calculated red tide and green algae occurrence concentration to the manager terminal 200 through the communication network 180.

산출유닛(150)은 하우징(151), 광원(152), 광출사 및 수집 광학계, 광검출부(160), 산출부(171), 통신부(175)를 구비한다.The calculation unit 150 includes a housing 151, a light source 152, a light output and collection optical system, a light detection unit 160, a calculation unit 171, and a communication unit 175.

광원(152)은 안착판(143)을 통해 장착된 하우징(151) 내에 장착되어 있고, 450nm의 레이저 광을 수면(10)에 출사하는 레이저 광원이 적용되어 있다.The light source 152 is mounted in the housing 151 mounted through the seating plate 143, and a laser light source that emits 450 nm of laser light to the water surface 10 is applied.

광출사 및 수집광학계는 광원(152)에서 출사되는 광을 하우징(151) 외부로 출사하고, 외부에서 하우징(151) 내로 수신되는 광을 광검출부(160)로 입사되게 구축되어 있다.The light output and collection optical system is constructed so that light emitted from the light source 152 is emitted to the outside of the housing 151 and light received from the outside into the housing 151 is incident on the light detection unit 160.

광출사 및 수집광학계는 다이크로닉 미러(154), 제1 및 제2반사경(155)(158), 제1 및 제2렌즈(156a)(156b)를 구비한다.The light output and collection optical system includes a dichroic mirror 154, first and second reflectors 155 and 158, and first and second lenses 156a and 156b.

다이크로닉 미러(154)는 광원(152)의 광축과 경사지게 배치되어 광원(152)에서 출사된 광은 제1반사경(155)을 향하는 방향으로 반사시키고, 제1반사경(155)에서 역으로 입사되는 제2반사경(158)을 향하는 방향으로 투과시킨다.The dichroic mirror 154 is disposed to be inclined with the optical axis of the light source 152 so that the light emitted from the light source 152 is reflected in a direction toward the first reflector 155 and is incident backward from the first reflector 155 It is transmitted in a direction toward the second reflector 158 that is used.

제1 및 제2렌즈(156a)(156b)는 광원(152)에서 다이크로닉 미러(154), 제1반사경(155)을 거쳐 진행되는 광을 집속 및 수면(10)에 포커싱할 수 있게 적용되어 있다. 제1렌즈(156a)는 광원(152)에서 다이크로닉 미러(154), 제1반사경(155)을 거쳐 진행되는 광을 평형광으로 변환하는 콜리메이팅 렌즈가 적용되었고, 제2렌즈(156a)는 제1렌즈를 거쳐 진행되는 평행광을 수면(10)에 포커싱할 수 있는 집속렌즈가 적용되었다. 집속 및 포커싱용 렌즈의 개수는 도시된 예와 다르게 적용될 수 있음은 물론이다.The first and second lenses 156a and 156b are applied so that the light traveling from the light source 152 through the dichroic mirror 154 and the first reflector 155 can be focused and focused on the water surface 10 Has been. As the first lens 156a, a collimating lens for converting light traveling from the light source 152 through the dichroic mirror 154 and the first reflector 155 to balanced light is applied, and the second lens 156a A focusing lens capable of focusing parallel light traveling through the first lens onto the water surface 10 is applied. It goes without saying that the number of focusing and focusing lenses may be applied differently from the illustrated example.

제2반사경은 다이크로닉미러(154)를 통해 수신된 광의 경로를 변환하여 광검출부(160)에 수신되게 반사한다. 도 2에서 실선은 광원(152)에서 출사된 광의 광출사경로를 나타내고, 점선은 수면(10)으로 반사되어 수신된 광의 광수신 경로를 나타낸다.The second reflector converts the path of the light received through the dichroic mirror 154 and reflects the light to be received by the light detector 160. In FIG. 2, a solid line represents a light exit path of light emitted from the light source 152, and a dotted line represents a light reception path of light reflected to the water surface 10 and received.

광검출부(160)는 수면(10)으로부터 역으로 수신되는 광을 검출하며, 수신된 광에 대해 530nm의 물의 라만신호와 680nm의 클로로필a의 형광신호를 각각 분광하고, 분광된 530nm의 물의 라만신호와 680nm의 클로로필a의 형광신호에 대응되는 전기적 신호를 산출부(171)에 제공한다.The photodetector 160 detects light that is reversely received from the water surface 10, and spectralizes the Raman signal of water of 530 nm and the fluorescent signal of chlorophyll a of 680 nm for the received light, respectively, and the spectroscopic Raman signal of water of 530 nm. And an electrical signal corresponding to the fluorescent signal of chlorophyll a of 680 nm and is provided to the calculation unit 171.

산출부(171)는 광검출부(160)에서 수신된 광으로부터 물의 라만신호와 클로로필a의 형광신호를 검출하여 적조 및 녹조의 발생농도를 산출하고, 산출된 적조 및 녹조의 발생농도를 통신부(175)를 통해 관리자 단말기(200)로 송출되게 처리한다.The calculation unit 171 calculates the occurrence concentration of red tide and green algae by detecting the Raman signal of water and the fluorescent signal of chlorophyll a from the light received by the light detection unit 160, and calculates the generated concentration of red tide and green algae. ) To be transmitted to the manager terminal 200 through the process.

산출부(171)는 수면(10)과 하우징(151)과의 이격거리 변화에 따른 수신광의 세기 변화에도 적조 및 녹조의 발생농도(n)의 측정 정밀도를 안정적으로 유지하기 위해 아래의 수학식 1을 통해 산출한다. The calculation unit 171 is the following equation in order to stably maintain the measurement accuracy of the occurrence concentration (n) of red tide and green algae even when the intensity of the received light changes according to the change of the separation distance between the water surface 10 and the housing 151. It is calculated through 1.

Figure pat00002
Figure pat00002

여기서, A는 실험에 의해 산출되어 알고 있는 상수이고, h1은 물의 라만신호의 세기이고, h2는 클로로필a의 형광신호의 세기이다.Here, A is a constant calculated and known by an experiment, h1 is the intensity of the Raman signal of water, and h2 is the intensity of the fluorescence signal of chlorophyll a.

이러한 수학식1에 의해 적조 및 녹조의 발생농도(n)를 산출하면 드론(110)의 수면(10)과의 수직 이격거리 변화에 관계없이 적조 및 녹조의 발생농도(n)에 대한 측정 정밀도를 안정적으로 유지할 수 있다.If the occurrence concentration (n) of red tide and green algae is calculated by Equation 1, the measurement accuracy for the occurrence concentration (n) of red tide and green algae is determined regardless of the change in vertical separation distance from the water surface 10 of the drone 110. Can keep it stable.

산출부(171)는 앞서 설명된 바와 같이 통신부(175)를 통해 비행조정 제어신호가 수신되면 비행 구동부(173)를 통해 프로펠러(131)를 구동하는 모터(137)를 제어한다.The calculation unit 171 controls the motor 137 that drives the propeller 131 through the flight driving unit 173 when a flight adjustment control signal is received through the communication unit 175 as described above.

통신부(175)는 산출부(171)에 제어되어 측정된 적조 및 녹조의 발생농도를 통신망(180)을 통해 등록된 관리자 단말기(200)로 전송한다.The communication unit 175 transmits the measured red tide and green algae occurrence concentrations controlled by the calculation unit 171 to the registered manager terminal 200 through the communication network 180.

관리자 단말기(200)는 스마트폰이 적용될 수 있고, 통신망(180)을 통해 산출유닛(150)으로부터 전송된 적조 및 녹조의 발생농도 데이터를 수집 처리하는 수집처리모듈(미도시)이 내장되어 있다.The manager terminal 200 may be applied with a smartphone, and has a built-in collection processing module (not shown) that collects and processes the occurrence concentration data of red tide and green algae transmitted from the calculation unit 150 through the communication network 180.

관리자 단말기(200)의 수집처리모듈은 실행되면 통신망(180)을 통해 산출유닛(150)으로부터 전송된 적조 및 녹조의 발생농도 데이터를 기억부에 저장하고, 표시부를 통해 설정된 표시방식으로 표시되게 처리한다.When the collection processing module of the manager terminal 200 is executed, it stores the occurrence concentration data of red tide and green algae transmitted from the calculation unit 150 through the communication network 180 in the storage unit, and processes it to be displayed in the display method set through the display unit. do.

한편, 광원에서 출사되는 광의 출사경로와 수면으로부터 입사된 광의 수신경로를 다르게 구축할 수 있고 그 일 예를 도 3을 참조하여 설명한다.On the other hand, the exit path of light emitted from the light source and the reception path of light incident from the water surface can be constructed differently, and an example thereof will be described with reference to FIG. 3.

도 3을 참조하면, 광원(152)에서 출사된 광은 제1 및 제2렌즈(156a)(156b)를 통해 외부로 출사된다.Referring to FIG. 3, light emitted from a light source 152 is emitted to the outside through first and second lenses 156a and 156b.

참조부호 157은 제2렌즈(156b)를 산출부(171)에 제어되어 광축상으로 이동할 수 있게 구축된 포커싱 조정부이다.Reference numeral 157 denotes a focusing adjustment unit constructed so that the second lens 156b is controlled by the calculation unit 171 to move along the optical axis.

수면(10)에서 산란된 광을 검출하는 광수신 경로는 수신광을 집속하여 광검출부(160)로 제공하는 광집속렌즈(163)와, 광집속렌즈(163)로부터 광검출부(160)로 이어지는 광수신축(160a) 상에서 입출되면서 광검출부(160)에 수신되는 광의 파장을 조정하는 필터유닛(165)이 마련되어 있다.The light receiving path for detecting the light scattered from the water surface 10 is a light focusing lens 163 that focuses the received light and provides it to the light detection unit 160, and leads from the light focusing lens 163 to the light detection unit 160. A filter unit 165 is provided that adjusts the wavelength of light received by the photodetector 160 while being input/output on the light receiving shaft 160a.

필터유닛(165)은 수면(10)으로부터 산란되어 역으로 수신되는 광에 대해 530nm의 물의 라만신호가 투과되게 필터링 하여 광검출부(160)로 제공하는 제1필터(165a)와, 680nm의 클로로필a의 형광신호가 투과되게 필터링 하되 광검출부(160)의 광수신축(160a)에 대해 직교하는 방향을 따라 제1필터(165a)에 대해 연장되게 결합된 제2필터(165b)를 갖는 구조로 되어 있다.The filter unit 165 filters the light scattered from the water surface 10 to transmit a Raman signal of 530 nm water to transmit and provide a first filter 165a to the light detection unit 160 and a chlorophyll a of 680 nm. It has a structure having a second filter 165b coupled to extend with respect to the first filter 165a along a direction orthogonal to the light receiving axis 160a of the photodetector 160 while filtering the fluorescent signal of .

필터 이동부로 적용된 실린더(167)는 로드에 결합된 필터 유닛(165)을 광수신축(160a)에 대해 직교하는 방향을 따라 산출부(171)에 제어되어 이동시킬 수 있도록 되어 있다. 필터 유닛(165)을 왕복 이동시키는 방식는 도시된 예와 다른 구조가 적용될 수 있음은 물론이다.The cylinder 167 applied as the filter moving part is controlled by the calculation part 171 to move the filter unit 165 coupled to the rod in a direction orthogonal to the light receiving shaft 160a. It goes without saying that a structure different from the illustrated example may be applied to the method of reciprocating the filter unit 165.

이 경우 광검출부(160)는 분광기능을 갖는 것을 적용하지 않고 입사된 광의 세기에 대응되는 전기적 신호를 출력하는 광검출기를 적용하면 된다.In this case, the photodetector 160 may not apply a spectroscopic function, but a photodetector that outputs an electrical signal corresponding to the intensity of the incident light.

또한, 산출부(171)는 제1필터(165a)와 제2필터(165b)가 광수신축(160a)에 대해 설정된 단위 측정주기마다 순차적으로 배치되게 필터 이동부로 적용된 실린더(167)를 제어하고, 광검출부에서 광수신축(160a)에 배치된 제1필터(165a)를 통해 수신된 물의 라만신호와 광수신축(160a)에 제2필터(165b)가 배치되었을 때 수신된 클로로필a의 형광신호를 이용하여 앞서 설명된 수학식1을 이용하여 적조 및 녹조의 발생농도를 산출하도록 구축되면 된다.In addition, the calculation unit 171 controls the cylinder 167 applied as the filter moving unit so that the first filter 165a and the second filter 165b are sequentially disposed at each unit measurement period set for the light receiving axis 160a, The photodetector uses the Raman signal of water received through the first filter 165a disposed on the light receiving shaft 160a and the fluorescent signal of chlorophyll a received when the second filter 165b is disposed on the light receiving shaft 160a. Thus, it may be constructed to calculate the occurrence concentration of red tide and green algae using Equation 1 described above.

한편, 산란광 수신 구조의 또 다른 예를 도 4를 참조하여 설명한다.Meanwhile, another example of a structure for receiving scattered light will be described with reference to FIG. 4.

도 4를 참조하면, 광집속렌즈(163)의 광수신축(160a) 상에 설치된 빔스플릿터(264)를 통해 광을 분기하여 물의 라만신호와 클로로필a의 형광신호를 분리 검출할 수 있도록 되어 있다.Referring to FIG. 4, light is diverged through a beam splitter 264 installed on the light receiving axis 160a of the light focusing lens 163 to separate and detect the Raman signal of water and the fluorescent signal of chlorophyll a. .

빔스플릿터(264)는 광집속렌즈(163)의 광수신축(160a) 상에 광집속렌즈(163)와 제1광검출기(161) 사이에 설치되어 입사된 광의 일부는 투과시키고, 일부는 직교되는 방향으로 반사시킨다.The beam splitter 264 is installed between the light focusing lens 163 and the first photodetector 161 on the light receiving axis 160a of the light focusing lens 163 to transmit part of the incident light, and partly at right angles. Reflected in the direction

제1필터(265)는 빔스플릿터(264)와 제1광검출기(161) 사이에 설치되어 빔스플릿터(264)를 통해 진행되는 광에 대해 530nm의 물의 라만신호가 투과되게 필터링 하여 제1광검출기(161)로 제공한다.The first filter 265 is installed between the beam splitter 264 and the first photodetector 161 to filter the light traveling through the beam splitter 264 so that a Raman signal of 530 nm is transmitted. It is provided as a photodetector 161.

제2필터(266)은 광수신축(160a) 에 대해 직교되는 방향을 따라 빔스플릿터(264)에서 반사되는 광을 입사받을 수 있게 배치되어 있고, 입사된 광에 대해 클로로필a의 형광신호가 투과되게 필터링 하여 제2광검출기(162)에 제공한다.The second filter 266 is arranged to receive light reflected from the beam splitter 264 along a direction orthogonal to the light receiving axis 160a, and a fluorescent signal of chlorophyll a is transmitted through the incident light. Filtering so that it is provided to the second photodetector 162.

제2광검출기(162)는 제2필터(266)를 투과한 광을 수신할 수 있게 배치되어 있다.The second photodetector 162 is arranged to receive light that has passed through the second filter 266.

이 경우 산출부(171)는 제1 및 제2광검출기(161)(162)에서 각각 출력되는 물의 라만신호와 클로로필a의 형광신호로부터 앞서 설명된 수학식 1을 이용하여 적조 및 녹조의 발생농도를 산출한다.In this case, the calculation unit 171 uses the above-described Equation 1 from the Raman signal of water and the fluorescence signal of chlorophyll a respectively output from the first and second photodetectors 161 and 162 to generate the concentrations of red tide and green algae. Yields

이상에서 설명된 드론을 이용한 적조 및 녹조 모니터링 시스템에 의하면, 비행상태에서 적조 및 녹조의 발생농도를 측정할 수 있도록 지원하면서 수면과의 거리 변화에 관계없이 측정 정밀도를 안정적을 유지할 수 있는 장점을 제공한다.According to the red tide and green algae monitoring system using the drone described above, while supporting the measurement of the occurrence concentration of red tide and green algae in flight, it provides the advantage of maintaining stable measurement accuracy regardless of changes in distance from the surface of the water. do.

110: 드론 150: 산출유닛
151: 하우징 152: 광원
160: 광검출부 171: 산출부
175: 통신부
110: drone 150: calculation unit
151: housing 152: light source
160: light detection unit 171: calculation unit
175: Ministry of Communications

Claims (3)

본체에 장착된 복수 개의 프로펠러에 의해 비행할 수 있도록 된 드론과;
상기 드론의 본체에 탑재되어 측정대상 수면에 광을 조사하고 수면으로부터 역으로 수신된 광으로부터 물의 라만신호와 클로로필a의 형광신호를 검출하여 적조 및 녹조의 발생농도를 산출하고, 산출된 적조 및 녹조의 발생농도를 통신망을 통해 관리자 단말기로 송출하는 산출유닛;을 구비하는 것을 특징으로 하는 드론을 이용한 적조 및 녹조 모니터링 시스템.
A drone capable of flying by a plurality of propellers mounted on the body;
It is mounted on the body of the drone to irradiate light on the water surface to be measured, and detects the Raman signal of water and the fluorescent signal of chlorophylla from the light received from the water surface to calculate the concentrations of red and green algae, and calculated red and green algae. A red tide and green algae monitoring system using a drone, comprising: a calculation unit that transmits the concentration of the occurrence to the manager terminal through a communication network.
제1항에 있어서, 상기 산출유닛은
적조 및 녹조의 발생농도(n)를 이하의 산출식에 의해 산출하고,
Figure pat00003

여기서, A는 알고 있는 상수이고, h1은 물의 라만신호의 세기이고, h2는 클로로필a의 형광신호의 세기인 것을 특징으로 하는 드론을 이용한 적조 및 녹조 모니터링 시스템.
The method of claim 1, wherein the calculation unit
The occurrence concentration (n) of red tide and green algae is calculated by the following calculation formula,
Figure pat00003

Here, A is a known constant, h1 is the intensity of the Raman signal of water, and h2 is the intensity of the fluorescence signal of chlorophyll a, the red tide and green algae monitoring system using a drone, characterized in that.
제2항에 있어서, 상기 산출유닛은
수면에 450nm의 레이저 광을 출사하는 레이저 광원과;
광을 검출하는 광검출부와;
수면으로부터 역으로 수신되는 광에 대해 530nm의 물의 라만신호가 투과되게 필터링 하여 상기 광검출부로 제공하는 제1필터와, 680nm의 클로로필a의 형광신호가 투과되게 필터링 하되 상기 광검출부의 광수신축에 대해 직교하는 방향을 따라 상기 제1필터에 대해 연장되게 결합된 제2필터를 갖는 필터 유닛과;
상기 필터 유닛을 상기 광수신축에 대해 직교하는 방향을 따라 이동시킬 수 있도록 된 필터이동부와;
상기 제1필터와 상기 제2필터가 상기 광수신축에 대해 설정된 단위 측정주기마다 순차적으로 배치되게 상기 필터 이동부를 제어하고, 상기 광검출부에서 검출된 신호를 이용하여 적조 및 녹조의 발생농도를 산출하는 산출부;를 구비하는 것을 특징으로 하는 드론을 이용한 적조 및 녹조 모니터링 시스템.

The method of claim 2, wherein the calculation unit
A laser light source for emitting 450 nm of laser light onto the water surface;
A light detection unit for detecting light;
Filtering so that the Raman signal of 530 nm water is transmitted to the light received from the surface of the water to be transmitted to the light detection unit, and the fluorescent signal of chlorophyll a of 680 nm is filtered so that the light is transmitted through the light receiving axis of the light detection unit. A filter unit having a second filter coupled to extend with respect to the first filter in an orthogonal direction;
A filter moving part configured to move the filter unit in a direction orthogonal to the light receiving axis;
Controlling the filter moving unit so that the first filter and the second filter are sequentially arranged at each unit measurement period set for the light receiving axis, and calculating the occurrence concentration of red tide and green algae using a signal detected by the light detection unit. A red tide and green algae monitoring system using a drone, comprising: a calculation unit.

KR1020190054984A 2019-05-10 2019-05-10 red tide and green tide monitoring system using drone KR102211700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190054984A KR102211700B1 (en) 2019-05-10 2019-05-10 red tide and green tide monitoring system using drone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190054984A KR102211700B1 (en) 2019-05-10 2019-05-10 red tide and green tide monitoring system using drone

Publications (2)

Publication Number Publication Date
KR20200130601A true KR20200130601A (en) 2020-11-19
KR102211700B1 KR102211700B1 (en) 2021-02-04

Family

ID=73679106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190054984A KR102211700B1 (en) 2019-05-10 2019-05-10 red tide and green tide monitoring system using drone

Country Status (1)

Country Link
KR (1) KR102211700B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414760A (en) * 2022-01-22 2022-04-29 山东广为海洋科技有限公司 Real-time monitoring system for seawater pollution
CN114923867A (en) * 2022-07-19 2022-08-19 中国海洋大学 Red tide monitoring method and device based on FY-3D MERSI-II data
WO2023120849A1 (en) * 2021-12-23 2023-06-29 주식회사 마하테크 Sea-level oil detection device capable of flat-top collimated light irradiation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543481B1 (en) 2023-03-20 2023-06-19 주식회사 디앤샤인 Microalgae Monitoring System by Location using IoT Sensor Network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446037B1 (en) * 2013-04-11 2014-10-01 (주)동양화학 Remote monitoring system of water temperature per depth, red and green tide occurrence with lidar and process for monitoring thereof
KR20150009576A (en) * 2012-05-09 2015-01-26 이스라 비숀 아게 Method and apparatus for electroluminescence inspection and/or photoluminescence inspection
KR20150122086A (en) * 2014-04-21 2015-10-30 (주)링크옵틱스 green tide and red tide remote monitoring apparatus
JP2017087917A (en) * 2015-11-09 2017-05-25 株式会社日立製作所 Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
KR20180000325A (en) * 2017-07-03 2018-01-02 (주)해동기술개발공사 Water quality monitoring system and method based on drone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150009576A (en) * 2012-05-09 2015-01-26 이스라 비숀 아게 Method and apparatus for electroluminescence inspection and/or photoluminescence inspection
KR101446037B1 (en) * 2013-04-11 2014-10-01 (주)동양화학 Remote monitoring system of water temperature per depth, red and green tide occurrence with lidar and process for monitoring thereof
KR20150122086A (en) * 2014-04-21 2015-10-30 (주)링크옵틱스 green tide and red tide remote monitoring apparatus
JP2017087917A (en) * 2015-11-09 2017-05-25 株式会社日立製作所 Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
KR20180000325A (en) * 2017-07-03 2018-01-02 (주)해동기술개발공사 Water quality monitoring system and method based on drone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120849A1 (en) * 2021-12-23 2023-06-29 주식회사 마하테크 Sea-level oil detection device capable of flat-top collimated light irradiation
KR20230096665A (en) * 2021-12-23 2023-06-30 주식회사 마하테크 Oil detection device on the sea capable of irradiating flat-top collimated beam
CN114414760A (en) * 2022-01-22 2022-04-29 山东广为海洋科技有限公司 Real-time monitoring system for seawater pollution
CN114923867A (en) * 2022-07-19 2022-08-19 中国海洋大学 Red tide monitoring method and device based on FY-3D MERSI-II data
CN114923867B (en) * 2022-07-19 2022-10-11 中国海洋大学 Red tide monitoring method and device based on FY-3D MERSI-II data

Also Published As

Publication number Publication date
KR102211700B1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
KR102211700B1 (en) red tide and green tide monitoring system using drone
Woelfel et al. Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line
Perkins et al. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms?
KR102215071B1 (en) crude oil and green and red tide detection apparatus
Gitelson et al. Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis
Coble et al. Colored dissolved organic matter in the coastal ocean: an optical tool for coastal zone environmental assessment and management
Erickson et al. In situ phytoplankton analysis: there’s plenty of room at the bottom
Kerr et al. The early stages of marine biofouling and its effect on two types of optical sensors
CN102539394A (en) Device and method for carrying out in-situ detection on photosynthesis activity of algae in water body based on fluorescence method
CN105432528B (en) A kind of minitype aquatic animal wild environment pilot system and method
KR101663163B1 (en) green tide and red tide remote monitoring apparatus
Cimoli et al. Spatial variability in sea-ice algal biomass: an under-ice remote sensing perspective
Mostajir et al. Microbial food web structural and functional responses to oyster and fish as top predators
Cranford et al. Phytoplankton depletion by mussel aquaculture: high resolution mapping, ecosystem modeling and potential indicators of ecological carrying capacity
Fischer et al. Short‐term sedimentation pulses recorded with a fluorescence sensor and sediment traps at 9‐m depth in the Canary basin
Häder et al. The impacts of climate change on marine phytoplankton
KR102211701B1 (en) red tide and green tide generation region information supply system using drone
D'sa et al. Monitoring water quality in Florida Bay with remotely sensed salinity and in situ bio-optical observations
Ziervogel et al. Do benthic diatoms influence erosion thresholds of coastal subtidal sediments?
Mangoni et al. Photosynthetic rate and size structure of the phytoplankton community in transitional waters of the Northern Adriatic Sea
Varghese et al. Collection and estimation of zooplankton
Baker et al. Estimation of planktonic wind drift by transmissometry 1
Busch Phytoplankton dynamics and bio-optical variables associated with Harmful Algal Blooms in aquaculture zones
Nguyen Flocculation dynamics of cell-associated suspended particulate matter
Sin et al. Semidiurnal dynamics of phytoplankton size structure and taxonomic composition in a macrotidal temperate estuary

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant