KR20200130093A - Auto-induction Plasmid - Google Patents

Auto-induction Plasmid Download PDF

Info

Publication number
KR20200130093A
KR20200130093A KR1020200036190A KR20200036190A KR20200130093A KR 20200130093 A KR20200130093 A KR 20200130093A KR 1020200036190 A KR1020200036190 A KR 1020200036190A KR 20200036190 A KR20200036190 A KR 20200036190A KR 20200130093 A KR20200130093 A KR 20200130093A
Authority
KR
South Korea
Prior art keywords
plasmid
promoter
protein
gene
sequence
Prior art date
Application number
KR1020200036190A
Other languages
Korean (ko)
Other versions
KR102286426B1 (en
Inventor
채영기
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Publication of KR20200130093A publication Critical patent/KR20200130093A/en
Application granted granted Critical
Publication of KR102286426B1 publication Critical patent/KR102286426B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to an auto-induction plasmid which simplifies a protein production process, does not require use of special modifications, and is efficient and economical. In the plasmid of the present invention, a gene for encoding a target protein is operatively linked to a promoter.

Description

자동유도 플라스미드{Auto-induction Plasmid}Auto-induction Plasmid

본 발명은 단백질 생산과정을 단순화하고, 특수한 변형을 사용할 필요가 없는 효율적이고 경제적인 자동유도성 플라스미드에 관한 것이다.The present invention relates to an efficient and economical autoinducible plasmid that simplifies the protein production process and does not require the use of special modifications.

바실러스는 대장균 및 효모와 함께 산업적으로 유용한 단백질을 생산하는 주요한 숙주로 사용되어 왔다. 바실러스 균의 단백질 생산 숙주로서의 장점은, (1) 인체에 무해하고, (2) 많은 양의 단백질을 세포 외로 분비할 수 있으며, (3) 내독소를 생산하지 않고, (4) FDA에 의해 GRAS (generally regared as safe)로 규정되어 있으며, (5) codon bias가 없고, (6) 유전자 조작, 형질전환 및 대량배양이 용이하며, (7) 게놈정보가 알려져 있다는 점이다. 현재, 전 세계 산업효소의 약 60% 정도가 바실러스를 숙주균으로 사용하고 있으며, 인체에 무해한 GRAS(generally regarded as safe) 미생물이라는 특성으로 인해 식품용 또는 의약용 단백질 생산에 적합하다고 알려져 있다.Bacillus, along with E. coli and yeast, has been used as a major host for producing industrially useful proteins. The advantages of Bacillus as a protein production host are: (1) harmless to the human body, (2) able to secrete large amounts of protein outside the cell, (3) not producing endotoxins, and (4) GRAS by FDA It is defined as (generally regared as safe), (5) there is no codon bias, (6) genetic manipulation, transformation and mass culture are easy, and (7) genomic information is known. Currently, about 60% of the world's industrial enzymes use Bacillus as a host bacteria, and it is known to be suitable for the production of proteins for food or medicine due to its nature as a generally regarded as safe (GRAS) microorganism that is harmless to the human body.

고전적으로 유용 효소 또는 단백질을 대량으로 생산하기 위하여, 돌연변이 유도물질 처리, 자외선 또는 방사선 조사 등을 통해 숙주균을 돌연변이 시키는 방법이 사용되어 왔으나, 상기 방법들은 비선택적 돌연변이로 인해 종종 숙주균의 성장속도가 저하되거나, 배지조성 및 배양조건을 최적화시키기 까다로운 경우가 많다. 또한, 돌연변이 균주의 경우에는 균주 퇴화가 일어나며, 각각의 목적 단백질 생산을 위한 숙주균을 따로 개발해야 하므로 시간과 노력이 많이 소요되는 고전적인 방법이다. 최근에는 유전공학의 발달로 인해 다양한 발현시스템이 개발되어 유용한 단백질의 생산이 시도되었다. 이 보고에 의하면, IPTG 및 당과 같은 특정 발현 유도 인자를 이용하여 발현을 인위적으로 유도하는 방법, 세포 성장 주기 의존성 프로모터에 의한 방법 및 자동유도 발현 등이 개발되었다. 그러나, 발현 유도 인자의 단가가 생산성에 영향을 미치거나, 세포 성장기에 많은 양의 단백질이 발현되어 세포성장에 영향을 주거나, 저온조건을 유지시키기 위해 생산단가가 높아지는 등 여러 문제점이 여전히 남아 있다. 아울러, 상기 여러 발현시스템이 개발되었으나, 아직 바실러스를 숙주균으로 생산된 단백질 의약품이 시장진입에 성공한 예가 없는데, 그 이유는, (1) 대장균과 비교하여 여전히 강력하고 조절 가능한 프로모터가 없고, (2) 많은 단백질 분해효소의 존재로 인해 발현된 단백질의 안정성에 문제가 있고, (3) 발현된 단백질의 세포 외 분비시 세포막에 존재하는 단백질 분해효소에 의한 분해가 일어나기 때문이라고 해석되고 있다.Traditionally, in order to produce useful enzymes or proteins in large quantities, methods of mutating host bacteria through treatment with mutagenesis, ultraviolet or irradiation, etc. have been used, but these methods often result in the growth rate of host bacteria due to nonselective mutations. Is reduced, or it is difficult to optimize the medium composition and culture conditions. In addition, in the case of mutant strains, strain degeneration occurs, and since host bacteria for producing each target protein must be developed separately, it is a classic method that takes a lot of time and effort. In recent years, due to the development of genetic engineering, various expression systems have been developed, and production of useful proteins has been attempted. According to this report, a method for artificially inducing expression using specific expression inducing factors such as IPTG and sugar, a method using a cell growth cycle dependent promoter, and automatic induction expression have been developed. However, several problems remain, such as the unit price of the expression inducing factor affects productivity, a large amount of protein is expressed during cell growth, affects cell growth, or increases the production cost to maintain low temperature conditions. In addition, although the above-described expression systems have been developed, there is no example of successful market entry of protein drugs produced by Bacillus as a host bacteria, because (1) there is still no strong and controllable promoter compared to E. coli, (2 ) There is a problem in the stability of the expressed protein due to the presence of many proteolytic enzymes, and (3) it is interpreted that the decomposition by proteolytic enzymes present in the cell membrane occurs when the expressed protein is secreted outside the cell.

바실러스의 경우, 바실러스 서틸러스의 단백질 분해효소 aprE의 프로모터를 이용한 발현시스템, 나란한 두 종류의 프로모터를 이용한 시스템, 바실러스 츄린겐시스 cryIIIA의 프로모터를 이용한 시스템 등이 개발되어 있다. 이러한 시스템들은 세포 성장기에도 단백질 발현이 진행되어 목적단백질의 대량발현시 세포성장에 영향을 주거나, 세포에 독성을 나타내는 단백질의 발현이 어렵다. 한편 바실러스 서틸리스 pstS 프로모터를 이용하여 세포성장 정지기에 특이적으로 발현이 가능한 시스템을 개발한 적이 있다.In the case of Bacillus, an expression system using a promoter of Bacillus certilus proteolytic enzyme  aprE, a system using two types of promoters in parallel, and a system using a promoter of Bacillus thuringiensis  cryIIIA have been developed. In these systems, protein expression proceeds even during the cell growth phase, so that when mass expression of a target protein is expressed, it is difficult to express a protein that affects cell growth or exhibits toxicity to cells. Meanwhile, Bacillus certilis   pstS   promoter has been used to develop a system capable of specifically expressing the cell growth arrest phase.

한편, 발현 숙주로 많이 사용되고 있는 대장균의 경우 발현된 단백질이 대부분 세포 내에 존재하기 때문에 물리적, 화학적 또는 효소적 세포파괴 방법이 필요하다. 따라서, 목적단백질의 대량생산을 위해서는 세포파괴를 위한 저렴한 방법이 필수적으로 요구되고 있다. 바실러스의 경우 세포성장 정지기 후반에 이르면 자동으로 세포가 파괴되어 세포내에 있던 단백질이 배지로 노출되는데, 이러한 특징은 세포 내에서 발현된 단백질의 효율적인 회수가 가능하게 한다.On the other hand, in the case of Escherichia coli, which is widely used as an expression host, since most of the expressed proteins are present in cells, a physical, chemical or enzymatic cell destruction method is required. Therefore, in order to mass-produce a protein of interest, an inexpensive method for cell destruction is required. In the case of Bacillus, at the end of the cell growth arrest period, the cells are automatically destroyed and the proteins in the cells are exposed to the medium, and this feature enables efficient recovery of the proteins expressed in the cells.

한국공개특허 제10-2007-0053765호Korean Patent Publication No. 10-2007-0053765

본 발명은 단백질 생산과정을 단순화하고, 특수한 변형을 사용할 필요가 없는 효율적이고 경제적인 자동유도성 플라스미드를 제공함에 그 목적이 있다.An object of the present invention is to provide an efficient and economical autoinducible plasmid that simplifies the protein production process and does not require the use of special modifications.

1. 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자를 포함하는 재조합 플라스미드.1. Recombinant plasmid containing a promoter gene consisting of the sequence of SEQ ID NO: 1.

2. 위 1에 있어서, 목적 단백질을 코딩하는 유전자가 상기 프로모터와 작동가능하도록 연결된(operatively linked) 플라스미드.2. The plasmid according to 1 above, wherein the gene encoding the protein of interest is operatively linked with the promoter.

3. 위 1에 있어서, 상기 플라스미드는 작동유전자(operator)를 구비한 프로모터 유전자가 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자로 치환된 것인 플라스미드.3. The plasmid according to the above 1, wherein the plasmid has a promoter gene having an operator substituted with a promoter gene consisting of the sequence of SEQ ID NO: 1.

4. 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자를 포함하는 재조합 플라스미드로 형질전환된 숙주 미생물.4. A host microorganism transformed with a recombinant plasmid containing a promoter gene consisting of the sequence of SEQ ID NO: 1.

5. 위 4에 있어서, 목적 단백질을 코딩하는 유전자가 상기 프로모터와 작동가능하도록 연결된(operatively linked) 미생물.5. The microorganism according to 4 above, wherein the gene encoding the target protein is operatively linked with the promoter.

6. 위 4에 있어서, 상기 플라스미드는 작동유전자(operator)를 구비한 프로모터 유전자가 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자로 치환된 것인 미생물.6. The microorganism according to the above 4, wherein the plasmid has a promoter gene having an operator substituted with a promoter gene consisting of the sequence of SEQ ID NO: 1.

7. 위 4에 있어서, 상기 미생물은 대장균(E.coli), 슈도모나스(Pseudomonas), 시아노박테리아(cyanobacteria) 및 바실러스(Bacillus)로 이루어진 군에서 선택된 적어도 하나의 균주인 미생물.7. The microorganism according to the above 4, wherein the microorganism is at least one strain selected from the group consisting of E. coli, Pseudomonas, cyanobacteria, and Bacillus.

8. 위 1 내지 7 중 어느 한 항의 플라스미드 또는 미생물을 포함하는 단백질 생산용 조성물.8. A composition for producing a protein containing the plasmid or microorganism of any one of the above 1 to 7.

9. 위 4 내지 7 중 어느 한 항의 미생물을 배양하는 단계를 포함하는 목적 단백질의 생산방법.9. A method of producing a protein of interest comprising culturing the microorganism of any one of the above 4 to 7.

10. 위 9에 있어서, 목적 단백질을 회수하는 단계를 더 포함하는 생산방법.10. In the above 9, the production method further comprising the step of recovering the target protein.

11. 위 9에 있어서, 상기 배양은 TB 배지에서 이루어지는 것인 생산방법.11. The production method according to the above 9, wherein the culture is made in TB medium.

본 발명의 자동유도성 플라스미드는 단백질 생산과정을 단순화하고, 특수한 변형을 사용할 필요가 없어 매우 효율적이고 경제적인 장점이 있다.The auto-inducible plasmid of the present invention simplifies the protein production process and does not require the use of special modifications, thereby being very efficient and economical.

도 1은 본 발명 플라스미드(pVP65KR-gab-SacB(-))를 도식화한 것이다.
도 2는 LB(Luria-Bertani) 배지에서 IPTG 유도 하 성장된 Rosetta2(DE3)pLysS/pVP65KR-SacB(-)의 단백질 생산 정도를 나타내는 사진이다.
도 3은 TB(Terrific Broth) 배지에서 성장된 XL10-Gold/pVP65KR-gab-SacB(-)의 단백질 생산 정도를 나타내는 사진이다.
1 is a schematic diagram of the plasmid of the present invention (pVP65KR-gab-SacB(-)).
FIG. 2 is a photograph showing the protein production level of Rosetta2(DE3)pLysS/pVP65KR-SacB(-) grown under IPTG induction in LB (Luria-Bertani) medium.
3 is a photograph showing the degree of protein production of XL10-Gold/pVP65KR-gab-SacB(-) grown in TB (Terrific Broth) medium.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자를 포함하는 재조합 플라스미드를 제공한다.The present invention provides a recombinant plasmid comprising a promoter gene consisting of the sequence of SEQ ID NO: 1.

본 발명에서 용어, "프로모터"는 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산 서열을 말한다. In the present invention, the term "promoter" refers to an untranslated nucleic acid sequence upstream of the coding region that includes a binding site for a polymerase and has an activity to initiate transcription of a lower gene of a promoter into mRNA.

본 발명의 프로모터 유전자 서열은 일정 정도 변형이 가능하다. 본 기술 분야의 당업자라면 이러한 인위적인 변형에 의해 70% 이상의 상동성이 유지되는 염기서열이 본 발명에서 목적하는 유전자 발현을 위한 프로모터 활성을 보유하는 한, 본 발명의 염기서열로부터 유래된 것과 균등한 것임을 쉽게 이해할 것이다.The promoter gene sequence of the present invention can be modified to a certain degree. Those skilled in the art know that the nucleotide sequence in which 70% or more homology is maintained by such artificial modification is equivalent to that derived from the nucleotide sequence of the present invention as long as it retains the promoter activity for expression of the gene of interest in the present invention. It will be easy to understand.

본 발명에서 용어, "상동성"이란 서열번호 1의 핵산 서열과의 동일한 정도를 나타내는 것으로 상동성의 비교는 육안으로나 구입이 용이한 비교 프로그램을 이용하여 2개 이상의 서열간의 상동성을 백분율(%)로 계산할 수 있다. 본 발명의 서열번호 1의 서열과 바람직하게는 70% 이상, 보다 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상 동일한 핵산 서열을 포함한다.In the present invention, the term "homology" refers to the degree of homology with the nucleic acid sequence of SEQ ID NO: 1, and the comparison of homology is performed with the naked eye or by using an easy-to-purchase comparison program. Can be calculated as A nucleic acid sequence identical to the sequence of SEQ ID NO: 1 of the present invention is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably 95% or more.

또한, 본 발명의 프로모터는 프로모터 활성을 보유하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이된 프로모터 핵산 서열을 갖는 변이체를 포함한다. 이러한 서열 변이를 통하여 본 발명의 프로모터와 동일한 활성을 나타낼 수도 있으나, 바람직하게는 활성이 증가된 프로모터 등 목적에 적합하게 프로모터의 기능을 개선시킬 수 있다. 상기 변이는 본 발명의 분야에서 공지된 다양한 방법에 의하여 이루어질 수 있으며, 그 예는 error-prone PCR법, DNA shuffling법, site-directed mutagenesis법 등이 있다. In addition, the promoter of the present invention includes variants having a promoter nucleic acid sequence in which one or more nucleic acid bases are mutated by substitution, deletion, insertion, or a combination thereof, as long as it retains promoter activity. Through such sequence variation, the same activity as the promoter of the present invention may be exhibited, but the function of the promoter can be improved suitably for a purpose, such as a promoter with increased activity. The mutation can be made by various methods known in the field of the present invention, examples of which include error-prone PCR, DNA shuffling, and site-directed mutagenesis.

상기 모든 범주의 프로모터 유전자는 목적 단백질 유전자의 발현을 유도하는 발현 벡터의 프로모터 성분으로 제공되고, 상기 프로모터를 이용한 다양한 플라스미드의 변형은 본 발명의 범주에 포함된다.Promoter genes of all categories are provided as promoter components of expression vectors for inducing expression of a gene of interest, and modifications of various plasmids using the promoter are included in the scope of the present invention.

본 발명에서 용어 "플라스미드"란 적당한 숙주 내에서 목적 유전자가 발현할 수 있도록 프로모터 등의 필수적인 조절 요소를 포함하는 유전자 작제물을 의미하는 것으로서, 숙주 세포 또는 미생물의 게놈내로 통합되어 있는 형태일 수도 있다.In the present invention, the term "plasmid" refers to a gene construct including essential regulatory elements such as a promoter so that the gene of interest can be expressed in a suitable host, and may be a form integrated into the genome of a host cell or microorganism. .

본 발명에서 "작동가능하게 연결된(operably linked)"는 일반적 기능을 수행하도록 본 발명의 프로모터 또는 그의 변이체 핵산 서열과 목적하는 단백질을 코딩하는 뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 말한다. 재조합 플라스미드와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용한다.In the present invention, "operably linked" refers to a functionally linked nucleotide sequence encoding a protein of interest with a promoter or variant nucleic acid sequence thereof of the present invention to perform a general function. The operative linkage with the recombinant plasmid can be prepared using gene recombination techniques well known in the art, and site-specific DNA cleavage and linkage use enzymes generally known in the art.

본 발명에서 "조절 요소"란 단백질을 암호화하는 핵산 서열의 전사, 번역 또는 발현의 증진을 돕거나 이에 영향을 미치는 비해독화된 핵산 서열을 의미한다. 본 발명의 플라스미드는 조절 요소로 본 발명의 프로모터 또는 그의 변이체를 필수적으로 포함하고, 단백질의 발현에 영향을 미칠 수 있는 발현 조절 서열, 예를 들어, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서, 막 표적화 또는 분비를 위한 신호서열 등을 포함할 수 있다.In the present invention, the term "regulatory element" refers to an untranslated nucleic acid sequence that helps or affects the transcription, translation, or expression of a nucleic acid sequence encoding a protein. The plasmid of the present invention essentially contains a promoter or a variant thereof of the present invention as a regulatory element, and an expression control sequence capable of affecting the expression of a protein, for example, an initiation codon, a stop codon, a polyadenylation signal, an enhancer , A signal sequence for membrane targeting or secretion, and the like.

또한, 플라스미드는 복제가능한 발현 플라스미드인 경우, 복제가 개시되는 특정 핵산 서열인 복제원점(replication origin)을 포함할 수 있다.In addition, in the case of a replicable expression plasmid, the plasmid may include a replication origin, which is a specific nucleic acid sequence from which replication is initiated.

또한, 플라스미드는 선택마커(selection marker)를 포함할 수 있다. 선택마커는 플라스미드로 형질전환된 세포 또는 미생물을 선별하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서 선별 마커를 발현하는 세포 또는 미생물만 생존하므로 형질전환된 개체를 선별 가능하다.In addition, the plasmid may include a selection marker. The selectable marker is for selecting cells or microorganisms transformed with a plasmid, and markers that confer a selectable phenotype such as drug resistance, nutritional demand, resistance to cytotoxic agents, or expression of surface proteins may be used. Since only cells or microorganisms expressing a selection marker survive in an environment treated with a selective agent, a transformed individual can be selected.

본 발명의 플라스미드는 목적 단백질을 코딩하는 유전자가 상기 프로모터와 작동가능하도록 연결된(operatively linked) 것일 수 있고, 구체적으로는 상기 프로모터의 하위 영역에 연결된 것일 수 있다. The plasmid of the present invention may be one in which a gene encoding a protein of interest is operatively linked to the promoter, and specifically, may be linked to a lower region of the promoter.

상기 목적 단백질을 코딩하는 유전자로서, 의학, 산업적으로 유용한 목적 단백질에는 호르몬, 사이토카인, 효소, 응고인자, 수송 단백질, 수용체, 조절 단백질, 구조 단백질, 전사 인자, 항원, 항체 등일 수 있으며, 구체적으로, MBP(Maltose Binding Protein)를 코딩하는 유전자, mCherry 단백질을 코딩하는 유전자, 제 8인자(Factor VIII), 크리스마스 팩터(Factor IX), 조직플라스미노겐활성제(tissue plasminogen activator), 인슐린(insulin), 글루카곤(glucagon), 성장호르몬(growth hormone), 생식선자극호르몬(gonadotrophin), 적혈구생성소(erythropoietin), 콜로니자극인자(colony stimulating factor), 인터페론(interferon), 인터류킨(interleukin), 백신항원(vaccine antigen), 단클론항체(monoclonal antibody) 및 종양괴사인자(tumor necrosis factor)로 이루어진 군에서 선택된 적어도 하나를 코딩하는 유전자일 수 있으나, 반드시 이에 제한되지 아니한다.As a gene encoding the protein of interest, the protein of interest that is useful medically and industrially may include hormones, cytokines, enzymes, coagulation factors, transport proteins, receptors, regulatory proteins, structural proteins, transcription factors, antigens, antibodies, etc., specifically , Gene encoding MBP (Maltose Binding Protein), gene encoding mCherry protein, factor VIII, Christmas factor IX, tissue plasminogen activator, insulin, Glucagon, growth hormone, gonadotrophin, erythropoietin, colony stimulating factor, interferon, interleukin, vaccine antigen ), a monoclonal antibody, and a tumor necrosis factor, but may be a gene encoding at least one selected from the group consisting of, but is not limited thereto.

상기 프로모터 유전자는 숙주 성장 정지기(stationary-phase)에 활성이 유도되는 것일 수 있는데, 이는 본 발명의 플라스미드로 형질전환된 세포 또는 미생물의 성장 주기에 있어서, 최대 세포 분열 속도에 도달하는 숙주 성장 정지기(stationary-phase)에 특별한 단백질 생산 개시 물질, 예를 들면 IPTG, lactose 등을 별도로 배지상에 첨가하지 아니하여도 단백질을 자동적으로 생산할 수 있고, 단백질 생산용 별도 미생물로의 추가적 형질전환 단계를 거치지 아니하여도 우수한 효율로 단백질 생산이 가능하여 매우 경제적이고, 높은 효용가치를 지니는 주된 원인일 수 있다.The promoter gene may be one in which activity is induced in the host growth stationary phase, which is, in the growth cycle of cells or microorganisms transformed with the plasmid of the present invention, host growth arrests reaching the maximum cell division rate. Protein production can be automatically produced without adding special protein production initiating substances, such as IPTG, lactose, etc., on the medium to the stationary-phase, and an additional transformation step with a separate microorganism for protein production is required. It is possible to produce proteins with excellent efficiency even without passing through, which is very economical and may be the main cause of high utility value.

본 발명의 플라스미드는 기본 골격으로서 pVP, pQE, pET, pMAL, pGEX 및 pGEM으로 이루어진 군에서 선택된 하나의 벡터 골격을 사용할 수 있으나, 특별히 이에 제한되지 아니하고, 본 발명의 프로모터 서열을 재조합 할 수 있는 벡터 골격이라면 당업계에 주지된 벡터 골격 어떠한 것이든 특별히 제한되지 아니한다.The plasmid of the present invention may use a vector skeleton selected from the group consisting of pVP, pQE, pET, pMAL, pGEX and pGEM as a basic skeleton, but is not particularly limited thereto, and a vector capable of recombining the promoter sequence of the present invention If it is a skeleton, any vector skeleton well known in the art is not particularly limited.

본 발명의 플라스미드의 기본 골격으로서 상기 당업계 주지된 벡터 골격을 사용하는 경우, 이의 작동유전자(operator)를 포함하는 기존 프로모터(promoter)는 본 발명의 프로모터로 치환될 수 있고, 이러한 경우, 상기 벡터 골격의 프로모터 및 작동유전자 서열 인근에 상보적으로 결합하는 프라이머 쌍을 이용하여 본 발명의 프로모터로 치환시키는 과정에 의해 치환될 수 있다.When using the vector backbone known in the art as the basic backbone of the plasmid of the present invention, the existing promoter including its operator may be substituted with the promoter of the present invention. In this case, the vector It can be substituted by the process of replacing the promoter with the promoter of the present invention using a pair of primers that complementarily bind near the promoter and the operator gene sequence of the backbone.

상기 치환에 있어 구체적인 예를 들자면, 당업계에 주지된 벡터 골격으로서 pVP(pVP65K)를 사용하는 경우, 이의 기본 프로모터 및 작동유전자인 T5 프로모터 및 lac 작동유전자를 본 발명의 프로모터로 치환될 수 있고, 이러한 경우, 서열번호 2 및 3의 서열로 각각 이루어진 프라이머 쌍을 이용하여 본 발명의 프로모터로 치환시킬 수 있다.As a specific example of the substitution, when using pVP (pVP65K) as a vector backbone well known in the art, its basic promoter and operator T5 promoter and lac operator may be substituted with the promoter of the present invention, In this case, the promoter of the present invention can be substituted by using a pair of primers each consisting of the sequences of SEQ ID NOs: 2 and 3.

본 발명은 상술한 플라스미드로 형질전환된 숙주 미생물을 제공한다.The present invention provides a host microorganism transformed with the plasmid described above.

상기 숙주 미생물에 있어서 특별한 제한은 없는데, 이는 본 발명의 프로모터 고유의 특성으로서, 균주를 가리지 아니하고 어떠한 균주든 본 발명의 플라스미드를 포함하는 경우라면 우수한 효율로 목적 단백질을 생산할 수 있다.There is no particular limitation on the host microorganism, which is a characteristic of the promoter of the present invention, and any strain including the plasmid of the present invention can produce a target protein with excellent efficiency, regardless of strain.

숙주 미생물의 구체적인 예를 들자면, 대장균(E.coli), 슈도모나스(Pseudomonas), 시아노박테리아(cyanobacteria) 및 바실러스(Bacillus)로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 상술한 바대로, 이에 제한되는 것이 아니다.As a specific example of the host microorganism, it may be at least one selected from the group consisting of E. coli, Pseudomonas, cyanobacteria, and Bacillus, but as described above, It is not.

상기 형질전환은 당업계 통상적인 방법에 의해 실시될 수 있고, 예를 들면, 자연도입법, 열 충격법, 전기충격법 등을 통해 도입할 수 있으나, 특별히 이에 제한되지 않는다.The transformation may be performed by a method conventional in the art, and may be introduced through, for example, a natural introduction method, a heat shock method, an electric shock method, etc., but is not particularly limited thereto.

상기 플라스미드와 관련한 구체적인 내용은 상술한 바와 같다.Specific details related to the plasmid are as described above.

본 발명은 상기 플라스미드 또는 미생물을 포함하는 단백질 생산용 조성물을 제공한다.The present invention provides a composition for producing a protein comprising the plasmid or microorganism.

본 발명의 조성물은 목적 단백질을 우수한 효율로 생산하기 위한 보조물질을 추가적으로 포함할 수 있고, 구체적인 예를 들면, 염, 에탄올, 소르비톨 및 과산화수소수로 이루어진 군에서 선택된 적어도 하나의 약한 스트레스 처리 물질를 더 포함할 수 있으나, 반드시 이에 제한되지 않는다.The composition of the present invention may additionally contain an auxiliary material for producing a protein of interest with excellent efficiency, and for specific examples, it further includes at least one weak stress treatment material selected from the group consisting of salt, ethanol, sorbitol, and aqueous hydrogen peroxide. However, it is not necessarily limited thereto.

상기 플라스미드 및 미생물에 관련한 구체적인 내용은 상술한 바와 같다.Specific details related to the plasmid and microorganism are as described above.

본 발명은 상술한 미생물을 배양하는 단계를 포함하는 목적 단백질의 생산방법을 제공한다.The present invention provides a method for producing a target protein comprising culturing the above-described microorganism.

또한, 본 발명의 생산방법은 목적 단백질을 회수하는 단계를 더 포함할 수 있고, 이러한 회수는 추가적인 단백질 정제 과정과 같이, 생산된 단백질을 목적 용도로 사용하기 위해 수행되는 당업계 통상의 과정과 결부되어 수행될 수 있다.In addition, the production method of the present invention may further include the step of recovering the target protein, and this recovery is associated with a conventional process in the art to use the produced protein for a purpose, such as an additional protein purification process. Can be done.

또한, 상기 배양에 있어서 특정 배지로 제한되지 아니하나, 바람직하게는 글리세롤을 함유하고 있어 세포의 생장의 지속성이 높고, 동부피의 배양액 대비 세포 성장효과가 우수하다는 측면에서 TB 배지에서 이루어질 수 있고, 이는 하기 실시예에서 구체적인 데이터로 제시하였다.In addition, in the culture, it is not limited to a specific medium, but preferably contains glycerol, so that the persistence of cell growth is high, and the cell growth effect is excellent compared to the culture medium of the eastern coat. It is presented as specific data in the following examples.

본 발명의 생산방법은 상술한 바대로, 특별한 단백질 생산 개시 물질, 예를 들면 IPTG, lactose 등을 별도로 배지상에 첨가하지 아니하여도 단백질을 자동적으로 생산할 수 있고, 단백질 생산용 별도 미생물로의 추가적 형질전환 단계를 거치지 아니하여도 우수한 효율로 단백질 생산이 가능하여 매우 경제적인 장점이 있다.As described above, the production method of the present invention can automatically produce proteins without adding a special protein production initiating substance, such as IPTG, lactose, etc., on a separate medium, and additionally to a separate microorganism for protein production. It has a very economical advantage because it is possible to produce proteins with excellent efficiency without going through the transformation step.

본 발명의 생산방법은 프로모터의 세기를 조절하기 위하여 저온에서 배양하거나, 염, 에탄올, 소르비톨 및 과산화수소수로 이루어진 군에서 선택된 적어도 하나의 약한 스트레스 처리 물질을 가하여 더 포함하여 프로모터의 세기를 변화시킴에 따라, 목적 단백질의 생산 정도를 조절하는 단계를 더 포함할 수 있다.The production method of the present invention further comprises culturing at low temperature to control the strength of the promoter, or by adding at least one weak stress treatment material selected from the group consisting of salt, ethanol, sorbitol and hydrogen peroxide to change the strength of the promoter. Accordingly, it may further include the step of controlling the production level of the target protein.

상기 미생물과 관련된 구체적인 사항은 상술한 바와 같다.Specific matters related to the microorganism are as described above.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. Hereinafter, examples will be described in detail to illustrate the present invention in detail.

실험방법Experiment method

1. 벡터, 유전자, 올리고뉴클레오티드 및 키트1. Vectors, genes, oligonucleotides and kits

pVP65K 벡터는 Eukaryotic Structural Genomics (http://www.uwstructuralgenomics.org/) 센터에서 입수하였고, pVP80K 벡터는 DNASU (http://www.dnasu.org) 에서 구입하였다. MBP-mCherry-8xHis 유전자 블록은 Integrated DNA Technologies (http://www.idtdna.com) 에 의해 합성되었다. QuikChange Lightning Site-Directed Mutagenesis 키트는 Agilent (http://www.agilent.com) 에서 구입했다. 모든 올리고 뉴클레오티드는 Cosmogenetech co, Ltd. (http://www.cosmogenetech.com) 에 의해 합성되었다.The pVP65K vector was obtained from the Eukaryotic Structural Genomics (http://www.uwstructuralgenomics.org/) center, and the pVP80K vector was purchased from DNASU (http://www.dnasu.org). The MBP-mCherry-8xHis gene block was synthesized by Integrated DNA Technologies (http://www.idtdna.com). The QuikChange Lightning Site-Directed Mutagenesis kit was purchased from Agilent (http://www.agilent.com). All oligonucleotides are Cosmogenetech co, Ltd. (http://www.cosmogenetech.com) synthesized by.

2. 대장균 균주2. E. coli strain

Rosetta2(DE3) pLysS는 Merck KGaA (http://www.merckmillipore.com) 에서 구입했고, XL10-Gold는 QuikChange Lightning Site-Directed Mutagenesis 키트에 포함되었다.Rosetta2(DE3) pLysS was purchased from Merck KGaA (http://www.merckmillipore.com) and XL10-Gold was included in the QuikChange Lightning Site-Directed Mutagenesis kit.

3. 플라스미드의 설계3. Plasmid design

pVP65K 벡터(서열번호 8)를 초기 주형으로 사용하였다. MBP-mCherry-8xHis 유전자 블록(서열번호 11)을 NcoI 및 NotI로 절단하고, 원래의 MBP(Maltose Binding Protein) 유전자를 대체하기 위해 동일한 제한효소로 미리 절단한 pVP65K와 연결시켰다. 이 유전자 블록의 3개 유전자 단편은 내부 정지 코돈이 없는 동일한 판독 영역(reading frame)을 공유하여, 바로 옆에 표적 단백질을 부착할 수 있는 단일 융합 단백질을 생성한다. 생성된 플라스미드를 pVP65KR로 명명하고, mCherry(적색 형광 단백질의 변이체)의 적색을 나타내는 "R"로 표시하였다. 이어서, pVP65KR의 바르나제(barnase) 유전자가 포함된 부분(서열번호 12)을 레반수크라아제(levansucrase, SacB) 유전자(서열번호 13)로 대체하였다. 레반수크라아제 유전자는 pVP80K 벡터로부터, 서열번호 4 및 5의 서열로 각각 이루어진 2개의 올리고뉴클레오티드를 이용하여 PCR로 증폭시켰다. 생성된 PCR 산물을 정제하고, SgfI 및 SacI로 분해하였으며, 이전의 동일한 제한효소 세트로 분해시킨 pVP65KR과 연결시켰다. 생성된 플라스미드를 pVP65KR-SacB로 명명하였다. SacB 유전자 내부의 HindIII 사이트는 서열번호 6 및 7의 서열로 각각 이루어진 2개의 돌연변이 프라이머 쌍을 갖는 QuikChange Lightning Site-Directed Mutagenesis 키트를 사용하여 제거하였다. 생성된 플라스미드를 pVP65KR-SacB(-)로 명명하였다((-)는 고유의 HindIII의 제거를 나타낸다). pVP65KR-SacB(-)의 T5 프로모터(T5 promoter, 서열번호 9) 및 lac 작동유전자(lac operator, 서열번호 10)는, 서열번호 2 및 3의 서열로 각각 이루어진 프라이머 쌍을 갖는 QuikChange Lightning Site-Directed Mutagenesis 키트를 사용하여, 서열번호 1의 서열로 이루어진 하이브리드 정지상 프로모터(hybrid stationary phase promoter)로 치환되었다. 생성된 플라스미드를 pVP65KR-gab-SacB(-)로 명명하였다.The pVP65K vector (SEQ ID NO: 8) was used as an initial template. The MBP-mCherry-8xHis gene block (SEQ ID NO: 11) was digested with NcoI and NotI, and ligated with pVP65K previously digested with the same restriction enzyme to replace the original MBP (Maltose Binding Protein) gene. The three gene fragments of this gene block share the same reading frame with no internal stop codons, resulting in a single fusion protein capable of attaching the target protein right next to it. The resulting plasmid was named pVP65KR, and indicated by "R" indicating red color of mCherry (a variant of red fluorescent protein). Subsequently, the portion containing the barnase gene (SEQ ID NO: 12) of pVP65KR was replaced with a levansucrase (SacB) gene (SEQ ID NO: 13). The levan sucrase gene was amplified by PCR using two oligonucleotides each consisting of the sequences of SEQ ID NOs: 4 and 5 from the pVP80K vector. The resulting PCR product was purified, digested with SgfI and SacI, and ligated with pVP65KR digested with the same restriction enzyme set previously. The resulting plasmid was named pVP65KR-SacB. The HindIII site inside the SacB gene was removed using a QuikChange Lightning Site-Directed Mutagenesis kit having two mutant primer pairs each consisting of the sequences of SEQ ID NOs: 6 and 7. The resulting plasmid was named pVP65KR-SacB(-) ((-) indicates the removal of the native HindIII). The T5 promoter (T5 promoter, SEQ ID NO: 9) and the lac operator (SEQ ID NO: 10) of pVP65KR-SacB(-) are QuikChange Lightning Site-Directed, each having a primer pair consisting of the sequences of SEQ ID NOs: 2 and 3 Using the Mutagenesis kit, it was substituted with a hybrid stationary phase promoter consisting of the sequence of SEQ ID NO: 1. The resulting plasmid was named pVP65KR-gab-SacB(-).

4. 대장균의 배양4. Culture of E. coli

(1) mCherry 생산 비교 실험 (1) mCherry production comparison experiment

50mL의 LB 배지에 pVP65KR-SacB(-)를 함유한 Rosetta2(DE3) pLysS의 완전 성장된 LB 배양액을 접종하였다. 배양은 37℃에서 진탕 배양기로 수행하였다. IPTG를 600mM의 OD가 0.8에 도달 할 때 0.5mM의 최종 농도로 첨가하고, 배양물을 3시간 후에 수거하였다. 수확된 세포를 10 mL의 Tris · HCl pH 8.0으로 재현탁 하였다.A fully grown LB culture solution of Rosetta2(DE3) pLysS containing pVP65KR-SacB(-) was inoculated in 50 mL of LB medium. Incubation was performed at 37°C with a shaking incubator. IPTG was added to a final concentration of 0.5 mM when an OD of 600 mM reached 0.8, and the culture was harvested after 3 hours. The harvested cells were resuspended in 10 mL of Tris HCl pH 8.0.

50 mL의 LB 또는 TB 배지에 pVP65KR-SacB(-)가 있는 XL10-Gold LB 배양액 50 μL를 접종하고, 37℃에서 18시간 동안 진탕 배양기에서 성장시켰다.50 μL of XL10-Gold LB culture medium with pVP65KR-SacB(-) was inoculated in 50 mL of LB or TB medium, and grown in a shaking incubator at 37°C for 18 hours.

50 mL의 LB 배지에 Rosetta2(DE3) pLysS 세포의 50 mL LB 배양물을 밤새 별도로 성장시켰고, XL10-Gold 배양물과 섞어서 동일한 원심 튜브에서 수확하였다. 수확된 세포를 10 mL의 Tris · HCl pH 8.0으로 재현탁하였다. 50 mL LB cultures of Rosetta2(DE3) pLysS cells were grown separately overnight in 50 mL of LB medium, mixed with XL10-Gold cultures, and harvested in the same centrifuge tube. The harvested cells were resuspended in 10 mL of Tris HCl pH 8.0.

(2) MBP 생산 비교 실험(2) MBP production comparison experiment

50 mL의 OvernightExpress® LB 배지에 pVP65KR-SacB(-)를 함유한 Rosetta2(DE3) pLysS의 완전 성장된 LB 배양액 50 μL를 접종하였다. 37℃에서 18시간 동안 진탕 배양기에서 성장시켰다. 원심분리기로 수확된 세포를 10 mL의 Tris · HCl pH 8.0으로 재현탁하였다.50 μL of fully grown LB culture solution of Rosetta2(DE3) pLysS containing pVP65KR-SacB(-) was inoculated in 50 mL of OvernightExpress® LB medium. It was grown in a shaking incubator at 37° C. for 18 hours. Cells harvested by centrifuge were resuspended in 10 mL of Tris HCl pH 8.0.

50 mL의 TB 배지에 pVP65KR-SacB(-)를 함유한 Rosetta2(DE3) pLysS의 완전 성장된 LB 배양액을 접종하였다. 배양은 37℃에서 진탕 배양기로 수행하였다. 원심분리기로 수확된 세포를 10 mL의 Tris · HCl pH 8.0으로 재현탁하였다.50 mL of TB medium was inoculated with a fully grown LB culture solution of Rosetta2(DE3) pLysS containing pVP65KR-SacB(-). Incubation was performed at 37°C with a shaking incubator. Cells harvested by centrifuge were resuspended in 10 mL of Tris HCl pH 8.0.

50 mL의 TB 배지에 pVP65KR-gad-SacB(-)가 있는 XL10-Gold의 완전 성장된 LB 배양액 50 μL를 접종하고, 37℃에서 18시간 동안 진탕 배양기에서 성장시켰다.50 μL of a fully grown LB culture medium of XL10-Gold with pVP65KR-gad-SacB(-) was inoculated in 50 mL of TB medium, and grown in a shaking incubator at 37°C for 18 hours.

50 mL의 LB 배지에 Rosetta2(DE3) pLysS 세포의 50 mL LB 배양물을 밤새 별도로 성장시켰고, XL10-Gold 배양물과 섞어서 동일한 원심 튜브에서 수확하였다. 수확된 세포를 10 mL의 Tris · HCl pH 8.0으로 재현탁하였다.50 mL LB cultures of Rosetta2(DE3) pLysS cells were grown separately overnight in 50 mL of LB medium, mixed with XL10-Gold cultures, and harvested in the same centrifuge tube. The harvested cells were resuspended in 10 mL of Tris HCl pH 8.0.

5. 세포 용해 및 단백질 정량5. Cell Lysis and Protein Quantification

mCherry 단백질 생성은 적색의 강도에 의해 질적으로 모니터링 되었다. 수확 후, 동결 및 해동에 의해 세포를 용해시켰다. 1 mg의 DNaseI를 첨가하여 DNA 분자에 의한 끈적거림을 제거했다. Triton X-100을 1%의 최종 농도로 첨가하였고, 세포 용해물을 4℃에서 30분 동안 20,000g에서 원심분리 하였다. 1 mL의 상등액을 UV 분광 광도계로 587 nm에서 흡광도를 측정하기 위해 사용하였다. 상등액에서 mCherry 단백질의 농도를 계산하기 위해 72000 M-1 · cm-1의 흡광 계수를 사용했다.The production of mCherry protein was monitored qualitatively by the intensity of red. After harvesting, cells were lysed by freezing and thawing. 1 mg of DNaseI was added to eliminate stickiness caused by DNA molecules. Triton X-100 was added to a final concentration of 1%, and the cell lysate was centrifuged at 20,000 g for 30 minutes at 4°C. 1 mL of the supernatant was used to measure the absorbance at 587 nm with a UV spectrophotometer. In order to calculate the concentration of mCherry protein in the supernatant, an extinction coefficient of 72000 M -1 · cm -1 was used.

MBP는 칼럼크로마토그래피로 정제하고 정량하였다. 50mL 배지에서 배양한 세포를 수확하고 10mL 완충용액에 재현탁하고 동결 및 해동에 의해 세포를 용해시켰다. 1 mg의 DNaseI를 첨가하여 DNA 분자에 의한 끈적거림을 제거하고, Triton X-100을 1%의 최종 농도로 첨가하였다. 세포 용해물을 4℃에서 30분 동안 20,000g에서 원심분리하여 상층액을 분리하였다. 상층액을 HisTrap 컬럼에 로딩하고 NPI-10 용액 (10mM sodium phosphate pH 7.0, 300mM NaCl, 10mM imidazole) 40mL로 세척한 후, NPI-500 (10mM sodium phosphate pH 7.0, 300mM NaCl, 500mM imidazole)의 조성비율을 점차적으로 증가시켜가면서 MBP를 용출하였다. MBP는 약 30% NPI-500에서 용출되었으며, 용출부피는 12-15mL 범위였다. MBP 단백질의 농도를 계산하기 위해 280nm에서 66350 M-1 · cm-1의 흡광 계수를 사용했다.MBP was purified and quantified by column chromatography. Cells cultured in 50 mL medium were harvested, resuspended in 10 mL buffer solution, and lysed by freezing and thawing. 1 mg of DNaseI was added to remove stickiness due to DNA molecules, and Triton X-100 was added to a final concentration of 1%. The cell lysate was centrifuged at 20,000 g for 30 minutes at 4° C. to separate the supernatant. The supernatant was loaded on the HisTrap column and washed with 40 mL of NPI-10 solution (10mM sodium phosphate pH 7.0, 300mM NaCl, 10mM imidazole), and the composition ratio of NPI-500 (10mM sodium phosphate pH 7.0, 300mM NaCl, 500mM imidazole) MBP was eluted while gradually increasing. MBP was eluted at about 30% NPI-500, and the elution volume was in the range of 12-15 mL. To calculate the concentration of MBP protein, an extinction coefficient of 66350 M -1 ·cm -1 at 280 nm was used.

280nm에서 흡광도를 측정하고 이를 질량으로 환산하였고, 600nm에서 흡광도를 측정하여 배양된 세포의 양으로 환산하였다. The absorbance was measured at 280 nm and converted into mass, and the absorbance was measured at 600 nm and converted into the amount of cultured cells.

실험결과Experiment result

1. 플라스미드의 설계1. Plasmid design

합성된 유전자 블록은 MBP, mCherry 단백질 및 8개의 히스티딘 스트레치(8xHis)에 대한 유전자를 순차적으로 포함하고 있다. 8xHis는 정제과정을 단순화하기 위해, 표적 단백질의 N- 말단에 부착되어야 한다. MBP 및 mCherry 유전자의 중지 코돈(stop codon)을 제거하여, TVMV 프로테아제에 의해 표적 단백질로 절단될 하나의 단일 융합 단백질을 생산하는, 중단없는 번역이 되도록 하였다. TVMV 프로테아제의 절단 부위는 mCherry와 8xHis 사이에 있다. TVMV 프로테아제는 동일한 플라스미드의 상류에 존재하는 동족(coognate) 유전자로부터 생산되었다. 따라서 표적 단백질과 MBP-mCherry 단편 간 일대일 비율이 유지되므로, 세포 용해물의 587 nm에서의 흡광도를 측정하여 생성된 (가용성+불용성) 표적 단백질의 양을 정량할 수 있다. 서브 클론 과정을 용이하게 하기 위해, 우리는 치사 유전자(lethal gene)를 유지하기로 결정했었고, 이는 생존한 콜로니가 표적 유전자의 정확한 삽입을 거의 보장했기 때문이었으나, 우리는 바르나제(barnase)에의 레반수크라아제(levansucrase, SacB) 유전자를 선호했다. 후자는 정확하게 구축된 플라스미드의 선택에 더 효과적인 것처럼 보이지만, 그것의 활성을 억제할 수 있는 BR610과 같은 특별한 균주와 함께 사용해야 한다. SacB 유전자는, 그 치사가 자당의 존재에 달려있기 때문에, 널리 사용되는 많은 균주와 호환이 가능하다. 플라스미드 자체의 제조를 위해, 수크로오즈가 정확한 플라스미드의 선택에 추가적으로 사용되는 경우에만, 카나마이신(kanamucin)에 의해 선택될 수 있다. The synthesized gene block sequentially contained genes for MBP, mCherry protein and eight histidine stretches (8xHis). 8xHis should be attached to the N-terminus of the target protein to simplify the purification process. The stop codons of the MBP and mCherry genes were removed, resulting in uninterrupted translation, producing one single fusion protein to be cleaved into the target protein by the TVMV protease. The cleavage site of the TVMV protease is between mCherry and 8xHis. The TVMV protease was produced from a coognate gene present upstream of the same plasmid. Therefore, since the one-to-one ratio between the target protein and the MBP-mCherry fragment is maintained, the amount of the resulting (soluble + insoluble) target protein can be quantified by measuring the absorbance at 587 nm of the cell lysate. To facilitate the subclonal process, we decided to keep the lethal gene, because the surviving colonies almost guaranteed the correct insertion of the target gene, but we did a levan to barnase. They preferred the sucrase (SacB) gene. The latter appears to be more effective in the selection of correctly constructed plasmids, but must be used with a special strain such as BR610 that can inhibit its activity. The SacB gene is compatible with many widely used strains because its lethality depends on the presence of sucrose. For the preparation of the plasmid itself, it can be selected by kanamycin only if sucrose is additionally used in the selection of the correct plasmid.

2. mCherry 생산 비교 실험 결과 2. Comparison of mCherry production results

(1) 대장균의 배양(1) Cultivation of E. coli

T7 리소자임은 기저 수준(basal level)에서 Rosetta2(DE3) pLysS 내에서 생산되었지만, 수확된 세포를 동결 및 해동으로 간단히 용해시킬 만큼 충분했다. 우리는 이 균주를 사용하여, XL10-Gold 세포를 수확 단계에서 혼합하고, 완충액에 재현탁한 다음, 동결 및 해동시켜 단백질을 용해시켰다. 소량의 DNaseI가 DNA 가닥을 파괴하는 데에 효과적이었으며, Triton X-100은 UV 분광 광도계로 분석할 수 있을 만큼 상등액을 투명하게 만드는 데 유용했다. 우리는 TB에서 본 발명의 자가유도 플라스미드의 효과를 비교하기 위해, LB에서 mid-log 단계에서 IPTG를 첨가하는 전형적인 유도절차를 사용했다. 우리는 동일한 양의 LB 또는 TB 배양물을 사용하여 mCherry 단백질의 전체 수율을 비교했다. 하기 표 1에서 볼 수 있듯, TB에서의 최종 세포 수는 LB에서 얻은 세포의 3배 이상이다. 숙주 균주인 Rosetta2(DE3) pLysS와 XL10-Gold는 모두 LB에서 매우 유사한 OD600을 산출했다.T7 lysozyme was produced in Rosetta2 (DE3) pLysS at the basal level, but was sufficient to lyse the harvested cells simply by freezing and thawing. We used this strain to mix XL10-Gold cells at the harvest stage, resuspend in buffer, then freeze and thaw to lyse the protein. A small amount of DNaseI was effective in breaking the DNA strands, and Triton X-100 was useful in making the supernatant transparent enough to be analyzed with a UV spectrophotometer. We used a typical induction procedure to add IPTG in the mid-log stage in LB to compare the effect of the present self-inducing plasmid on TB. We compared the overall yield of mCherry protein using the same amount of LB or TB cultures. As can be seen in Table 1 below, the final number of cells in TB is at least three times that of cells obtained from LB. The host strains Rosetta2 (DE3) pLysS and XL10-Gold both produced very similar OD600s in LB.

(2) 단백질 정량(2) protein quantification

원심분리된 세포 용해물을 사용하여 흡광도를 측정하였다. 수확시 LB 세포 펠렛은 TB에서보다 더 강렬한 붉은색을 띠지만, 같은 양의 완충액에 재현탁한 후 후자는 더 강렬해진다. 흡광도는 mCherry의 최대 흡수 인 587 nm에서 측정되었다. 우리는 독립적으로 성장한 세 가지 배지의 평균을 세우고, 하기 표 1에 세부사항을 요약했다. 하기 표 1을 참조하면, 세포는 LB보다 TB에서 더 많이 성장했다. 적색은 LB보다 TB에서 덜 강했지만, 적색의 총량은 LB보다 TB에서 더 컸다. 세포는 TB에서 더 많이 자랐지만, TB에서의 IPTG 유도는 LB보다 많거나 적은 단백질을 생성했다. 흥미롭게도, LB에서의 자가유도 플라스미드를 갖는 XL10-Gold는 원래 플라스미드 및 IPTG 유도와 같이 많은 단백질을 생산하였다. 실제로, 우리는 YT, 2xYT 및 SOC 미디어를 시도했지만 이들 중 누구도 TB에서보다 많은 단백질을 생산하지 않았다. 따라서, 우리는 TB가 본 발명의 자가유도 플라스미드의 가장 적합한 성장배지라는 결론을 내렸다. Absorbance was measured using the centrifuged cell lysate. At harvest, the LB cell pellet has a more intense red color than in TB, but the latter becomes more intense after resuspending in the same amount of buffer. The absorbance was measured at 587 nm, the maximum absorption of mCherry. We averaged the three media grown independently and summarized the details in Table 1 below. Referring to Table 1 below, cells grew more in TB than in LB. Red was less intense in TB than in LB, but the total amount of red was greater in TB than in LB. Cells grew more in TB, but IPTG induction in TB produced more or less protein than LB. Interestingly, XL10-Gold with an autoinducing plasmid in LB produced as many proteins as the original plasmid and IPTG induction. In fact, we tried YT, 2xYT and SOC media, but none of these produced more protein than in TB. Therefore, we concluded that TB is the most suitable growth medium for the self-inducing plasmid of the present invention.

PlasmidPlasmid Host strainHost strain MediumMedium Induction methodInduction method Average OD600 Average OD 600 Average mCherry concentration (mg/L)Average mCherry concentration (mg/L) pVP65KR-SacB(-)pVP65KR-SacB(-) Rosetta2(DE3)pLysSRosetta2(DE3)pLysS LBLB IPTGIPTG 2.6 ± 0.172.6 ± 0.17 63 ± 1663 ± 16 pVP65KR-gab-SacB(-)pVP65KR-gab-SacB(-) XL10-GoldXL10-Gold TBTB NoneNone 8.9 ± 0.548.9 ± 0.54 160 ± 47160 ± 47

본 발명의 자동유도(autoinducible) 플라스미드(또는 벡터)는 단백질 생산과정을 단순화할 뿐만 아니라, Rosetta2(DE3)와 같은 특수 변형을 사용할 필요가 없다. 본 발명의 플라스미드의 추가적 및 실질적인 이점은, mCherry 유전자의 발현과 강렬한 분홍색으로의 색 변화로 인해 확인할 수 있듯, 표적 단백질 유전자가 가용성 또는 천연 단백질의 생산을 보장하지는 않지만, 동일한 수준으로 발현된다는 것이다.The autoinducible plasmid (or vector) of the present invention not only simplifies the protein production process, but also does not require the use of special modifications such as Rosetta2 (DE3). An additional and practical advantage of the plasmid of the present invention is that the target protein gene is expressed at the same level, although it does not guarantee the production of a soluble or natural protein, as can be seen due to the expression of the mCherry gene and the color change to intense pink.

3. MBP 생산 비교 실험 결과3. MBP production comparison experiment results

세가지 배양 조건 별로 3번 반복한 실험결과는 표 2와 같다. MBP 생산량을 세포의 양을 감안하여 OD당 평균한 결과는 비교예 1은 0.46mg, 비교예 2는 0.33mg, 실시예 1은 0.53mg 이었다.The experimental results repeated three times for each of the three culture conditions are shown in Table 2. The result of averaged MBP production per OD in consideration of the amount of cells was 0.46 mg in Comparative Example 1, 0.33 mg in Comparative Example 2, and 0.53 mg in Example 1.

따라서, 세포당 MBP 생산량은 본 발명의 자동유도플라스미드에서 가장 높았으며, 특수 호스트나 배지를 사용하지 않기 때문에 가성비도 높다는 것을 확인하였다.Therefore, it was confirmed that the production of MBP per cell was the highest in the auto-induction plasmid of the present invention, and the cost-effectiveness ratio was also high because no special host or medium was used.

샘플Sample PlasmidPlasmid Host strainHost strain MediumMedium Induction methodInduction method OD600 OD 600 평균MBP
(mg)
Average MBP
(mg)
비교예1Comparative Example 1 pVP65KR-SacB(-)pVP65KR-SacB(-) Rosetta2(DE3)pLysSRosetta2(DE3)pLysS LBLB IPTGIPTG 10.3410.34 0.460.46 10.5610.56 10.3610.36 비교예 2Comparative Example 2 pVP65KR-SacB(-)pVP65KR-SacB(-) Rosetta2(DE3)pLysSRosetta2(DE3)pLysS TBTB NoneNone 6.246.24 0.330.33 7.227.22 6.216.21 실시예 1Example 1 pVP65KR-gab-SacB(-)pVP65KR-gab-SacB(-) XL10-GoldXL10-Gold TBTB NoneNone 7.237.23 0.530.53 7.847.84 7.557.55

<110> SEJONG UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION <120> Auto-induction Plasmid <130> 20P02019 <150> KR 10-2019-0055078 <151> 2019-05-10 <160> 13 <170> KoPatentIn 3.0 <210> 1 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> gab promoter sequence <400> 1 gccttgcttc cattgcggat gtaaaagcgg ctagtattta 40 <210> 2 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> forward primer sequence replacing with gab promoter <400> 2 ctatcactga tagggactcg agaaagcctt gcttccattg cggatgtaaa agcggctagt 60 atttatttca cacagaattc attaaag 87 <210> 3 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> reverse primer sequence replacing with gab promoter <400> 3 ctttaatgaa ttctgtgtga aataaatact agccgctttt acatccgcaa tggaagcaag 60 gctttctcga gtccctatca gtgatag 87 <210> 4 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer sequence amplifying levansucrase gene <400> 4 ggttgcgatc gccatgaaca tcaaaaagtt tgcaaaacaa gc 42 <210> 5 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> primer sequence amplifying levansucrase gene <400> 5 ccttgaacaa ggacaattaa cagttaacaa attgtttaaa ctgaattcga gctcacac 58 <210> 6 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer sequence removing HindIII site <400> 6 atgttcagca ggaagctcgg cgcaaacgtt gattg 35 <210> 7 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer sequence removing HindIII site <400> 7 caatcaacgt ttgcgccgag cttcctgctg aacat 35 <210> 8 <211> 7174 <212> DNA <213> Artificial Sequence <220> <223> pVP65K vector sequence <400> 8 cgtacgtcta gggcggcgga tttgtcctac tcaggagagc gttcaccgac aaacaacaga 60 taaaacgaaa ggcccagtct ttcgactgag cctttcgttt tatttgatgc ctctagcacg 120 cgtatcattg gatctttatt agtccatgat ggcggcaaca gtttttttgg ccatgaagtc 180 atcttccggc gcatcttcaa ccagggtaaa ggaaccccag ctgattttat ccgcgttgaa 240 tttccagttt ttgcaccaac catccgcggc atcgagataa gtcgccacga atttttccgg 300 aaattccacg aagtagttgc taccgttggt ggtatgagtc aggctgtgga tgcccagaat 360 gttgccatca atgatggaaa ctagtgggct gccacactgg ccatctttag tggtgatcca 420 gtgctgccag aaagaagtgt cttctttatg cacaatgtga gaggattcag acaccaggct 480 ggacacgctt ttctgctgaa agttggtgga caccatgcac acacgatctt tgatggtcgg 540 ctgacggaat ttcagtttct gcgggaacgg cgggaagtct ttagccattt tgataacgat 600 aatgtcacgg ccttcaaccg gtttcatctg cagctgggta gagtttttga ctttgaattc 660 accgtgcatg gttttgatgg tcagttcgcc attgttacga cgaaacagat gctggttggc 720 aatgatatac gggccaaaac caatgccaaa cagacgttca ctatgaccat ccgaggagtt 780 ttccagcagg catacgcaag cagagatcgg attaaaatcg cgcacgccct tcagcaaagc 840 cttagacata tcttacctcc ttaaatcaat tcggtcagtg cgtcctgctg atgtgctcag 900 tatctctatc actgataggg atgtcaatct ctatcactga tagggactcg agaaatcata 960 aaaaatttat ttgctttgtg agcggataac aattataata gattcaattg tgagcggata 1020 acaatttcac acagaattca ttaaagagga gaaattaacc atgggtaaaa tcgaagaagg 1080 taaactggta atctggatta acggcgataa aggctataac ggtctcgctg aagtcggtaa 1140 gaaattcgag aaagataccg gaattaaagt caccgttgag catccggata aactggaaga 1200 gaaattccca caggttgcgg caactggcga tggccctgac attatcttct gggcacacga 1260 ccgctttggt ggctacgctc aatctggcct gttggctgaa atcaccccgg acaaagcgtt 1320 ccaggacaag ctgtatccgt ttacctggga tgcggtacgt tacaacggca agctgattgc 1380 ttacccgatc gctgttgaag cgttatcgct gatttataac aaagatctgc tgccgaaccc 1440 gccaaaaacc tgggaagaga tcccggcgct ggataaagaa ctgaaagcga aaggtaagag 1500 cgcgctgatg ttcaacctgc aagaaccgta cttcacctgg ccgctgattg ctgctgacgg 1560 gggttatgcg ttcaagtatg aaaacggcaa gtacgacatt aaagacgtgg gcgtggataa 1620 cgctggcgcg aaagcgggtc tgaccttcct ggttgacctg attaaaaaca aacacatgaa 1680 tgcagacacc gattactcca tcgcagaagc tgcctttaat aaaggcgaaa cagcgatgac 1740 catcaacggc ccgtgggcat ggtccaacat cgacaccagc aaagtgaatt atggtgtaac 1800 ggtactgccg accttcaagg gtcaaccatc caaaccgttc gttggcgtgc tgagcgcagg 1860 tattaacgcc gccagtccga acaaagagct ggcaaaagag ttcctcgaaa actatctgct 1920 gactgatgaa ggtctggaag cggttaataa agacaaaccg ctgggtgccg tagcgctgaa 1980 gtcttacgag gaagagttgg cgaaagatcc acgtattgcc gccactatgg aaaacgccca 2040 gaaaggtgaa atcatgccga acatcccgca gatgtccgct ttctggtatg ccgtgcgtac 2100 tgcggtgatc aacgccgcca gcggtcgtca gactgtcgat gaagccctga aagacgcgca 2160 gactttaatt aacggcgacg gtgccgggga aaccgtgcgt ttccagtctc atcaccatca 2220 tcaccatcac catgcatccg cgatcgcggc cgcgttggaa taagtaaagg aatcacatgg 2280 cacaggttat caacacgttt gacggggttg cggattatct tcagacatat cataagctac 2340 ctgataatta cattacaaaa tcagaagcac aagccctcgg ctgggtggca tcaaaaggga 2400 accttgcaga cgtcgctccg gggaaaagca tcggcggaga catcttctca aacaaggaag 2460 gcaaactccc gggcaaaagc ggacgaacat ggcgtgaagc ggatattaac tatacatcag 2520 gcttcagaaa ttcagaccgg attctttact caagcgactg gctgatttac aaaacaacgg 2580 accattatca gacctttaca aaaatcagat aattaggcac cccaggcttt acactttatg 2640 ctttcggctc gtataatgtg tggattttga gttaggatcc gtcgagattt tcaggagcta 2700 aggaagctaa aatggagaaa aaaatcactg gatataccac cgttgatata tcccaatggc 2760 atcgtaaaga acattttgag gcatttcagt cagttgctca atgtacctat aaccagaccg 2820 ttcagctgga tattacggcc tttttaaaga ccgtaaagaa aaataagcac aagttttatc 2880 cggcctttat tcacattctt gcccgcctga tgaatgctca tccggaattc cgtatggcaa 2940 tgaaagacgg tgagctggtg atatgggata gtgttcaccc ttgttacacc gttttccatg 3000 agcaaactga aacgttttca tcgctctgga gtgaatacca cgacgatttc cggcagtttc 3060 tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat ttccctaaag 3120 ggtttattga gaatatgttt ttcgtctcag ccaatccctg ggtgagtttc accagttttg 3180 atttaaacgt ggccaatatg gacaacttct tcgcccccgt tttcacgatg ggcaaatatt 3240 atacgcaagg cgacaaggtg ctgatgccgc tggcgattca ggttcatcat gccgtttgtg 3300 atggcttcca tgtcggcaga atgcttaatg aattacaaca gtactgcgat gagtggcagg 3360 gcggggcgta atgtttaaac gaattcgagc tcggtacccg gggatcctct agagtcgacc 3420 tgcaggcatg caagctgatc cggctgctaa caaagcccga aaggaagctg agttggctgc 3480 tgccaccgct gagcaataac tagcaaactc gtttctcgtt cagctttctt gtacaaagtg 3540 gtgatggcgc gcctgtagga cgtcgacggt accatcgata cgcgttcgaa gcttcgcctg 3600 gggtaatgac tctctagctt gaggcatcaa ataaaacgaa aggctcagtc gaaagactgg 3660 gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc tgagtaggac aaatccgccc 3720 tctagattac gtgcagtcga tgataagctg tcaaacatga gaattgtgcc taatgagtga 3780 gctaacttac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt 3840 gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgcc 3900 agggtggttt ttcttttcac cagtgagacg ggcaacagct gattgccctt caccgcctgg 3960 ccctgagaga gttgcagcaa gcggtccacg ctggtttgcc ccagcaggcg aaaatcctgt 4020 ttgatggtgg ttaacggcgg gatataacat gagctgtctt cggtatcgtc gtatcccact 4080 accgagatat ccgcaccaac gcgcagcccg gactcggtaa tggcgcgcat tgcgcccagc 4140 gccatctgat cgttggcaac cagcatcgca gtgggaacga tgccctcatt cagcatttgc 4200 atggtttgtt gaaaaccgga catggcactc cagtcgcctt cccgttccgc tatcggctga 4260 atttgattgc gagtgagata tttatgccag ccagccagac gcagacgcgc cgagacagaa 4320 cttaatgggc ccgctaacag cgcgatttgc tggtgaccca atgcgaccag atgctccacg 4380 cccagtcgcg taccgtcttc atgggagaaa ataatactgt tgatgggtgt ctggtcagag 4440 acatcaagaa ataacgccgg aacattagtg caggcagctt ccacagcaat ggcatcctgg 4500 tcatccagcg gatagttaat gatcagccca ctgacgcgtt gcgcgagaag attgtgcacc 4560 gccgctttac aggcttcgac gccgcttcgt tctaccatcg acaccaccac gctggcaccc 4620 agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga 4680 ctggaggtgg caacgccaat cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg 4740 ttgggaatgt aattcagctc cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa 4800 acgtggctgg cctggttcac cacgcgggaa acggtctgat aagagacacc ggcatactct 4860 gcgacatcgt ataacgttac tggtttcaca ttcaccaccc tgaattgact ctcttccggg 4920 cgctatcatg ccataccgcg aaaggttttg cgccattcga tggtgtcgga acctagagct 4980 gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg 5040 tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg 5100 gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata 5160 ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 5220 aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct 5280 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 5340 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 5400 ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 5460 cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 5520 actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 5580 cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 5640 tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 5700 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 5760 caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 5820 agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 5880 tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 5940 tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 6000 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 6060 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 6120 aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 6180 atatgagtaa acttggtctg acagccctag gtcagaagaa ctcgtcaaga aggcgataga 6240 aggcgatgcg ctgcgaatcg ggagcggcga taccgtaaag cacgaggaag cggtcagccc 6300 attcgccgcc aagctcttca gcaatatcac gggtagccaa cgctatgtcc tgatagcggt 6360 ccgccacacc cagccggcca cagtcgatga atccagaaaa gcggccattt tccaccatga 6420 tattcggcaa gcaggcatcg ccatgagtca cgacgagatc ctcaccatcc ggcatacgcg 6480 ccttgagcct ggcgaacagt tcggctggcg cgagcccctg atgctcttcg tccagatcat 6540 cctgatcgac aagaccggct tccatccgag tgcgtgctcg ctcgatgcga tgtttcgctt 6600 ggtggtcgaa tgggcaggta gccggatcaa gcgtatgcag ccgccgcatt gcatcagcca 6660 tgatggatac tttctcggca ggagcaaggt gagatgacag gagatcctgc cccggcactt 6720 cgcccaatag cagccagtcc cttcccgctt cagtgacaac gtcgagcaca gctgcgcaag 6780 gaacgcccgt cgtggccagc cacgatagcc gcgctgcctc gtcctgcagt tcattcaggg 6840 caccggacag gtcggtcttg acaaaaagaa ccgggcgccc ctgcgctgac agccggaaca 6900 cggcggcatc agagcagccg attgtctgtt gtgcccagtc atagccgaat agcctctcca 6960 cccaagcggc cggagaacct gcgtgcaatc catcttgttc aagcatgcga aacgaccgtc 7020 atcctgtctc ttgatcagat cttgatcccc tgcgccatca gatccttggc ggcaagaaag 7080 ccatccagtt tactttgcag ggcttcccaa ccttaccaga gggcgcccca gctggcaatt 7140 cttttgaagc tcacgctgcc gcaagcactc aggg 7174 <210> 9 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> T5 promoter sequence in pVP65K vector <400> 9 tcataaaaaa tttatttgct ttgtgagcgg ataacaatta taata 45 <210> 10 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> lac operator sequence in pVP65K vector <400> 10 ttgtgagcgg ataacaa 17 <210> 11 <211> 2000 <212> DNA <213> Artificial Sequence <220> <223> MBP-mCherry-8xHis gene block <400> 11 gaaattaacc atgggtaaaa tcgaagaagg taaactggta atctggatta acggcgataa 60 aggctataac ggtctcgctg aagtcggtaa gaaattcgag aaagataccg gaattaaagt 120 caccgttgag catccggata aactggaaga gaaattccca caggttgcgg caactggcga 180 tggccctgac attatcttct gggcacacga ccgctttggt ggctacgctc aatctggcct 240 gttggctgaa atcaccccgg acaaagcgtt ccaggacaag ctgtatccgt ttacctggga 300 tgcggtacgt tacaacggca agctgattgc ttacccgatc gctgttgaag cgttatcgct 360 gatttataac aaagatctgc tgccgaaccc gccaaaaacc tgggaagaga tcccggcgct 420 ggataaagaa ctgaaagcga aaggtaagag cgcgctgatg ttcaacctgc aagaaccgta 480 cttcacctgg ccgctgattg ctgctgacgg gggttatgcg ttcaagtatg aaaacggcaa 540 gtacgacatt aaagacgtgg gcgtggataa cgctggcgcg aaagcgggtc tgaccttcct 600 ggttgacctg attaaaaaca aacacatgaa tgcagacacc gattactcca tcgcagaagc 660 tgcctttaat aaaggcgaaa cagcgatgac catcaacggc ccgtgggcat ggtccaacat 720 cgacaccagc aaagtgaatt atggtgtaac ggtactgccg accttcaagg gtcaaccatc 780 caaaccgttc gttggcgtgc tgagcgcagg tattaacgcc gccagtccga acaaagagct 840 ggcaaaagag ttcctcgaaa actatctgct gactgatgaa ggtctggaag cggttaataa 900 agacaaaccg ctgggtgccg tagcgctgaa gtcttacgag gaagagttgg cgaaagatcc 960 acgtattgcc gccactatgg aaaacgccca gaaaggtgaa atcatgccga acatcccgca 1020 gatgtccgct ttctggtatg ccgtgcgtac tgcggtgatc aacgccgcca gcggtcgtca 1080 gactgtcgat gaagccctga aagacgcgca gactatggtt tccaagggcg aggaggataa 1140 catggctatc attaaagagt tcatgcgctt caaagttcac atggagggtt ctgttaacgg 1200 tcacgagttc gagatcgaag gcgaaggcga gggccgtccg tatgaaggca cccagaccgc 1260 caaactgaaa gtgactaaag gcggcccgct gccttttgcg tgggacatcc tgagcccgca 1320 atttatgtac ggttctaaag cgtatgttaa acacccagcg gatatcccgg actatctgaa 1380 gctgtctttt ccggaaggtt tcaagtggga acgcgtaatg aattttgaag atggtggtgt 1440 cgtgaccgtc actcaggact cctccctgca ggatggcgag ttcatctata aagttaaact 1500 gcgtggtact aattttccat ctgatggccc ggtgatgcag aaaaagacga tgggttggga 1560 ggcgtctagc gaacgcatgt atccggaaga tggtgcgctg aaaggcgaaa ttaaacagcg 1620 cctgaaactg aaagatggcg gccattatga cgctgaagtg aaaaccacgt acaaagccaa 1680 gaaacctgtg cagctgcctg gcgcgtacaa tgtgaatatt aaactggaca tcacctctca 1740 taatgaagat tatacgatcg tagagcaata tgagcgcgcg gagggtcgtc attctaccgg 1800 tggcatggat gagctgtaca aaggggaaac cgtgcgtttc cagtctcatc accatcatca 1860 ccatcaccat gcatccgcga tcgcggccgc gttggaataa gtaaaggaat cacatggcac 1920 aggttatcaa cacgtttgac ggggttgcgg attatcttca gacatatcat aagctacctg 1980 ataattacat tacaaaatca 2000 <210> 12 <211> 336 <212> DNA <213> Artificial Sequence <220> <223> barnase sequence in pVP65KR vector <400> 12 atggcacagg ttatcaacac gtttgacggg gttgcggatt atcttcagac atatcataag 60 ctacctgata attacattac aaaatcagaa gcacaagccc tcggctgggt ggcatcaaaa 120 gggaaccttg cagacgtcgc tccggggaaa agcatcggcg gagacatctt ctcaaacaag 180 gaaggcaaac tcccgggcaa aagcggacga acatggcgtg aagcggatat taactataca 240 tcaggcttca gaaattcaga ccggattctt tactcaagcg actggctgat ttacaaaaca 300 acggaccatt atcagacctt tacaaaaatc agataa 336 <210> 13 <211> 1421 <212> DNA <213> Artificial Sequence <220> <223> Levansucrase (SacB) sequence in pVP65KR vector <400> 13 atgaacatca aaaagtttgc aaaacaagca acagtattaa cctttactac cgcactgctg 60 gcaggaggcg caactcaagc gtttgcgaaa gaaacgaacc aaaagccata taaggaaaca 120 tacggcattt cccatattac acgccatgat atgctgcaaa tccctgaaca gcaaaaaaat 180 gaaaaatatc aagttcctga attcgattcg tccacaatta aaaatatctc ttctgcaaaa 240 ggcctggacg tttgggacag ctggccatta caaaacgctg acggcactgt cgcaaactat 300 cacggctacc acatcgtctt tgcattagcc ggagatccta aaaatgcgga tgacacatcg 360 atttacatgt tctatcaaaa agtcggcgaa acttctattg acagctggaa aaacgctggc 420 cgcgtcttta aagacagcga caaattcgat gcaaatgatt ctatcctaaa agaccaaaca 480 caagaatggt caggttcagc cacatttaca tctgacggaa aaatccgttt attctacact 540 gatttctccg gtaaacatta cggcaaacaa acactgacaa ctgcacaagt taacgtatca 600 gcatcagaca gctctttgaa catcaacggt gtagaggatt ataaatcaat ctttgacggt 660 gacggaaaaa cgtatcaaaa tgtacagcag ttcatcgatg aaggcaacta cagctcaggc 720 gacaaccata cgctgagaga tcctcactac gtagaagata aaggccacaa atacttagta 780 tttgaagcaa acactggaac tgaagatggc taccaaggcg aagaatcttt atttaacaaa 840 gcatactatg gcaaaagcac atcattcttc cgtcaagaaa gtcaaaaact tctgcaaagc 900 gataaaaaac gcacggctga gttagcaaac ggcgctctcg gtatgattga gctaaacgat 960 gattacacac tgaaaaaagt gatgaaaccg ctgattgcat ctaacacagt aacagatgaa 1020 attgaacgcg cgaacgtctt taaaatgaac ggcaaatggt acctgttcac tgactcccgc 1080 ggatcaaaaa tgacgattga cggcattacg tctaacgata tttacatgct tggttatgtt 1140 tctaattctt taactggccc atacaagccg ctgaacaaaa ctggccttgt gttaaaaatg 1200 gatcttgatc ctaacgatgt aacctttact tactcacact tcgctgtacc tcaagcgaaa 1260 ggaaacaatg tcgtgattac aagctatatg acaaacagag gattctacgc agacaaacaa 1320 tcaacgtttg cgccaagctt cctgctgaac atcaaaggca agaaaacatc tgttgtcaaa 1380 gacagcatcc ttgaacaagg acaattaaca gttaacaaat t 1421 <110> SEJONG UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION <120> Auto-induction Plasmid <130> 20P02019 <150> KR 10-2019-0055078 <151> 2019-05-10 <160> 13 <170> KoPatentIn 3.0 <210> 1 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> gab promoter sequence <400> 1 gccttgcttc cattgcggat gtaaaagcgg ctagtattta 40 <210> 2 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> forward primer sequence replacing with gab promoter <400> 2 ctatcactga tagggactcg agaaagcctt gcttccattg cggatgtaaa agcggctagt 60 atttatttca cacagaattc attaaag 87 <210> 3 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> reverse primer sequence replacing with gab promoter <400> 3 ctttaatgaa ttctgtgtga aataaatact agccgctttt acatccgcaa tggaagcaag 60 gctttctcga gtccctatca gtgatag 87 <210> 4 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer sequence amplifying levansucrase gene <400> 4 ggttgcgatc gccatgaaca tcaaaaagtt tgcaaaacaa gc 42 <210> 5 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> primer sequence amplifying levansucrase gene <400> 5 ccttgaacaa ggacaattaa cagttaacaa attgtttaaa ctgaattcga gctcacac 58 <210> 6 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer sequence removing HindIII site <400> 6 atgttcagca ggaagctcgg cgcaaacgtt gattg 35 <210> 7 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer sequence removing HindIII site <400> 7 caatcaacgt ttgcgccgag cttcctgctg aacat 35 <210> 8 <211> 7174 <212> DNA <213> Artificial Sequence <220> <223> pVP65K vector sequence <400> 8 cgtacgtcta gggcggcgga tttgtcctac tcaggagagc gttcaccgac aaacaacaga 60 taaaacgaaa ggcccagtct ttcgactgag cctttcgttt tatttgatgc ctctagcacg 120 cgtatcattg gatctttatt agtccatgat ggcggcaaca gtttttttgg ccatgaagtc 180 atcttccggc gcatcttcaa ccagggtaaa ggaaccccag ctgattttat ccgcgttgaa 240 tttccagttt ttgcaccaac catccgcggc atcgagataa gtcgccacga atttttccgg 300 aaattccacg aagtagttgc taccgttggt ggtatgagtc aggctgtgga tgcccagaat 360 gttgccatca atgatggaaa ctagtgggct gccacactgg ccatctttag tggtgatcca 420 gtgctgccag aaagaagtgt cttctttatg cacaatgtga gaggattcag acaccaggct 480 ggacacgctt ttctgctgaa agttggtgga caccatgcac acacgatctt tgatggtcgg 540 ctgacggaat ttcagtttct gcgggaacgg cgggaagtct ttagccattt tgataacgat 600 aatgtcacgg ccttcaaccg gtttcatctg cagctgggta gagtttttga ctttgaattc 660 accgtgcatg gttttgatgg tcagttcgcc attgttacga cgaaacagat gctggttggc 720 aatgatatac gggccaaaac caatgccaaa cagacgttca ctatgaccat ccgaggagtt 780 ttccagcagg catacgcaag cagagatcgg attaaaatcg cgcacgccct tcagcaaagc 840 cttagacata tcttacctcc ttaaatcaat tcggtcagtg cgtcctgctg atgtgctcag 900 tatctctatc actgataggg atgtcaatct ctatcactga tagggactcg agaaatcata 960 aaaaatttat ttgctttgtg agcggataac aattataata gattcaattg tgagcggata 1020 acaatttcac acagaattca ttaaagagga gaaattaacc atgggtaaaa tcgaagaagg 1080 taaactggta atctggatta acggcgataa aggctataac ggtctcgctg aagtcggtaa 1140 gaaattcgag aaagataccg gaattaaagt caccgttgag catccggata aactggaaga 1200 gaaattccca caggttgcgg caactggcga tggccctgac attatcttct gggcacacga 1260 ccgctttggt ggctacgctc aatctggcct gttggctgaa atcaccccgg acaaagcgtt 1320 ccaggacaag ctgtatccgt ttacctggga tgcggtacgt tacaacggca agctgattgc 1380 ttacccgatc gctgttgaag cgttatcgct gatttataac aaagatctgc tgccgaaccc 1440 gccaaaaacc tgggaagaga tcccggcgct ggataaagaa ctgaaagcga aaggtaagag 1500 cgcgctgatg ttcaacctgc aagaaccgta cttcacctgg ccgctgattg ctgctgacgg 1560 gggttatgcg ttcaagtatg aaaacggcaa gtacgacatt aaagacgtgg gcgtggataa 1620 cgctggcgcg aaagcgggtc tgaccttcct ggttgacctg attaaaaaca aacacatgaa 1680 tgcagacacc gattactcca tcgcagaagc tgcctttaat aaaggcgaaa cagcgatgac 1740 catcaacggc ccgtgggcat ggtccaacat cgacaccagc aaagtgaatt atggtgtaac 1800 ggtactgccg accttcaagg gtcaaccatc caaaccgttc gttggcgtgc tgagcgcagg 1860 tattaacgcc gccagtccga acaaagagct ggcaaaagag ttcctcgaaa actatctgct 1920 gactgatgaa ggtctggaag cggttaataa agacaaaccg ctgggtgccg tagcgctgaa 1980 gtcttacgag gaagagttgg cgaaagatcc acgtattgcc gccactatgg aaaacgccca 2040 gaaaggtgaa atcatgccga acatcccgca gatgtccgct ttctggtatg ccgtgcgtac 2100 tgcggtgatc aacgccgcca gcggtcgtca gactgtcgat gaagccctga aagacgcgca 2160 gactttaatt aacggcgacg gtgccgggga aaccgtgcgt ttccagtctc atcaccatca 2220 tcaccatcac catgcatccg cgatcgcggc cgcgttggaa taagtaaagg aatcacatgg 2280 cacaggttat caacacgttt gacggggttg cggattatct tcagacatat cataagctac 2340 ctgataatta cattacaaaa tcagaagcac aagccctcgg ctgggtggca tcaaaaggga 2400 accttgcaga cgtcgctccg gggaaaagca tcggcggaga catcttctca aacaaggaag 2460 gcaaactccc gggcaaaagc ggacgaacat ggcgtgaagc ggatattaac tatacatcag 2520 gcttcagaaa ttcagaccgg attctttact caagcgactg gctgatttac aaaacaacgg 2580 accattatca gacctttaca aaaatcagat aattaggcac cccaggcttt acactttatg 2640 ctttcggctc gtataatgtg tggattttga gttaggatcc gtcgagattt tcaggagcta 2700 aggaagctaa aatggagaaa aaaatcactg gatataccac cgttgatata tcccaatggc 2760 atcgtaaaga acattttgag gcatttcagt cagttgctca atgtacctat aaccagaccg 2820 ttcagctgga tattacggcc tttttaaaga ccgtaaagaa aaataagcac aagttttatc 2880 cggcctttat tcacattctt gcccgcctga tgaatgctca tccggaattc cgtatggcaa 2940 tgaaagacgg tgagctggtg atatgggata gtgttcaccc ttgttacacc gttttccatg 3000 agcaaactga aacgttttca tcgctctgga gtgaatacca cgacgatttc cggcagtttc 3060 tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat ttccctaaag 3120 ggtttattga gaatatgttt ttcgtctcag ccaatccctg ggtgagtttc accagttttg 3180 atttaaacgt ggccaatatg gacaacttct tcgcccccgt tttcacgatg ggcaaatatt 3240 atacgcaagg cgacaaggtg ctgatgccgc tggcgattca ggttcatcat gccgtttgtg 3300 atggcttcca tgtcggcaga atgcttaatg aattacaaca gtactgcgat gagtggcagg 3360 gcggggcgta atgtttaaac gaattcgagc tcggtacccg gggatcctct agagtcgacc 3420 tgcaggcatg caagctgatc cggctgctaa caaagcccga aaggaagctg agttggctgc 3480 tgccaccgct gagcaataac tagcaaactc gtttctcgtt cagctttctt gtacaaagtg 3540 gtgatggcgc gcctgtagga cgtcgacggt accatcgata cgcgttcgaa gcttcgcctg 3600 gggtaatgac tctctagctt gaggcatcaa ataaaacgaa aggctcagtc gaaagactgg 3660 gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc tgagtaggac aaatccgccc 3720 tctagattac gtgcagtcga tgataagctg tcaaacatga gaattgtgcc taatgagtga 3780 gctaacttac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt 3840 gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgcc 3900 agggtggttt ttcttttcac cagtgagacg ggcaacagct gattgccctt caccgcctgg 3960 ccctgagaga gttgcagcaa gcggtccacg ctggtttgcc ccagcaggcg aaaatcctgt 4020 ttgatggtgg ttaacggcgg gatataacat gagctgtctt cggtatcgtc gtatcccact 4080 accgagatat ccgcaccaac gcgcagcccg gactcggtaa tggcgcgcat tgcgcccagc 4140 gccatctgat cgttggcaac cagcatcgca gtgggaacga tgccctcatt cagcatttgc 4200 atggtttgtt gaaaaccgga catggcactc cagtcgcctt cccgttccgc tatcggctga 4260 atttgattgc gagtgagata tttatgccag ccagccagac gcagacgcgc cgagacagaa 4320 cttaatgggc ccgctaacag cgcgatttgc tggtgaccca atgcgaccag atgctccacg 4380 cccagtcgcg taccgtcttc atgggagaaa ataatactgt tgatgggtgt ctggtcagag 4440 acatcaagaa ataacgccgg aacattagtg caggcagctt ccacagcaat ggcatcctgg 4500 tcatccagcg gatagttaat gatcagccca ctgacgcgtt gcgcgagaag attgtgcacc 4560 gccgctttac aggcttcgac gccgcttcgt tctaccatcg acaccaccac gctggcaccc 4620 agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga 4680 ctggaggtgg caacgccaat cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg 4740 ttgggaatgt aattcagctc cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa 4800 acgtggctgg cctggttcac cacgcgggaa acggtctgat aagagacacc ggcatactct 4860 gcgacatcgt ataacgttac tggtttcaca ttcaccaccc tgaattgact ctcttccggg 4920 cgctatcatg ccataccgcg aaaggttttg cgccattcga tggtgtcgga acctagagct 4980 gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg 5040 tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg 5100 gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata 5160 ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 5220 aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct 5280 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 5340 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 5400 ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 5460 cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 5520 actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 5580 cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 5640 tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 5700 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 5760 caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 5820 agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 5880 tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 5940 tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 6000 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 6060 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 6120 aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 6180 atatgagtaa acttggtctg acagccctag gtcagaagaa ctcgtcaaga aggcgataga 6240 aggcgatgcg ctgcgaatcg ggagcggcga taccgtaaag cacgaggaag cggtcagccc 6300 attcgccgcc aagctcttca gcaatatcac gggtagccaa cgctatgtcc tgatagcggt 6360 ccgccacacc cagccggcca cagtcgatga atccagaaaa gcggccattt tccaccatga 6420 tattcggcaa gcaggcatcg ccatgagtca cgacgagatc ctcaccatcc ggcatacgcg 6480 ccttgagcct ggcgaacagt tcggctggcg cgagcccctg atgctcttcg tccagatcat 6540 cctgatcgac aagaccggct tccatccgag tgcgtgctcg ctcgatgcga tgtttcgctt 6600 ggtggtcgaa tgggcaggta gccggatcaa gcgtatgcag ccgccgcatt gcatcagcca 6660 tgatggatac tttctcggca ggagcaaggt gagatgacag gagatcctgc cccggcactt 6720 cgcccaatag cagccagtcc cttcccgctt cagtgacaac gtcgagcaca gctgcgcaag 6780 gaacgcccgt cgtggccagc cacgatagcc gcgctgcctc gtcctgcagt tcattcaggg 6840 caccggacag gtcggtcttg acaaaaagaa ccgggcgccc ctgcgctgac agccggaaca 6900 cggcggcatc agagcagccg attgtctgtt gtgcccagtc atagccgaat agcctctcca 6960 cccaagcggc cggagaacct gcgtgcaatc catcttgttc aagcatgcga aacgaccgtc 7020 atcctgtctc ttgatcagat cttgatcccc tgcgccatca gatccttggc ggcaagaaag 7080 ccatccagtt tactttgcag ggcttcccaa ccttaccaga gggcgcccca gctggcaatt 7140 cttttgaagc tcacgctgcc gcaagcactc aggg 7174 <210> 9 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> T5 promoter sequence in pVP65K vector <400> 9 tcataaaaaa tttatttgct ttgtgagcgg ataacaatta taata 45 <210> 10 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> lac operator sequence in pVP65K vector <400> 10 ttgtgagcgg ataacaa 17 <210> 11 <211> 2000 <212> DNA <213> Artificial Sequence <220> <223> MBP-mCherry-8xHis gene block <400> 11 gaaattaacc atgggtaaaa tcgaagaagg taaactggta atctggatta acggcgataa 60 aggctataac ggtctcgctg aagtcggtaa gaaattcgag aaagataccg gaattaaagt 120 caccgttgag catccggata aactggaaga gaaattccca caggttgcgg caactggcga 180 tggccctgac attatcttct gggcacacga ccgctttggt ggctacgctc aatctggcct 240 gttggctgaa atcaccccgg acaaagcgtt ccaggacaag ctgtatccgt ttacctggga 300 tgcggtacgt tacaacggca agctgattgc ttacccgatc gctgttgaag cgttatcgct 360 gatttataac aaagatctgc tgccgaaccc gccaaaaacc tgggaagaga tcccggcgct 420 ggataaagaa ctgaaagcga aaggtaagag cgcgctgatg ttcaacctgc aagaaccgta 480 cttcacctgg ccgctgattg ctgctgacgg gggttatgcg ttcaagtatg aaaacggcaa 540 gtacgacatt aaagacgtgg gcgtggataa cgctggcgcg aaagcgggtc tgaccttcct 600 ggttgacctg attaaaaaca aacacatgaa tgcagacacc gattactcca tcgcagaagc 660 tgcctttaat aaaggcgaaa cagcgatgac catcaacggc ccgtgggcat ggtccaacat 720 cgacaccagc aaagtgaatt atggtgtaac ggtactgccg accttcaagg gtcaaccatc 780 caaaccgttc gttggcgtgc tgagcgcagg tattaacgcc gccagtccga acaaagagct 840 ggcaaaagag ttcctcgaaa actatctgct gactgatgaa ggtctggaag cggttaataa 900 agacaaaccg ctgggtgccg tagcgctgaa gtcttacgag gaagagttgg cgaaagatcc 960 acgtattgcc gccactatgg aaaacgccca gaaaggtgaa atcatgccga acatcccgca 1020 gatgtccgct ttctggtatg ccgtgcgtac tgcggtgatc aacgccgcca gcggtcgtca 1080 gactgtcgat gaagccctga aagacgcgca gactatggtt tccaagggcg aggaggataa 1140 catggctatc attaaagagt tcatgcgctt caaagttcac atggagggtt ctgttaacgg 1200 tcacgagttc gagatcgaag gcgaaggcga gggccgtccg tatgaaggca cccagaccgc 1260 caaactgaaa gtgactaaag gcggcccgct gccttttgcg tgggacatcc tgagcccgca 1320 atttatgtac ggttctaaag cgtatgttaa acacccagcg gatatcccgg actatctgaa 1380 gctgtctttt ccggaaggtt tcaagtggga acgcgtaatg aattttgaag atggtggtgt 1440 cgtgaccgtc actcaggact cctccctgca ggatggcgag ttcatctata aagttaaact 1500 gcgtggtact aattttccat ctgatggccc ggtgatgcag aaaaagacga tgggttggga 1560 ggcgtctagc gaacgcatgt atccggaaga tggtgcgctg aaaggcgaaa ttaaacagcg 1620 cctgaaactg aaagatggcg gccattatga cgctgaagtg aaaaccacgt acaaagccaa 1680 gaaacctgtg cagctgcctg gcgcgtacaa tgtgaatatt aaactggaca tcacctctca 1740 taatgaagat tatacgatcg tagagcaata tgagcgcgcg gagggtcgtc attctaccgg 1800 tggcatggat gagctgtaca aaggggaaac cgtgcgtttc cagtctcatc accatcatca 1860 ccatcaccat gcatccgcga tcgcggccgc gttggaataa gtaaaggaat cacatggcac 1920 aggttatcaa cacgtttgac ggggttgcgg attatcttca gacatatcat aagctacctg 1980 ataattacat tacaaaatca 2000 <210> 12 <211> 336 <212> DNA <213> Artificial Sequence <220> <223> barnase sequence in pVP65KR vector <400> 12 atggcacagg ttatcaacac gtttgacggg gttgcggatt atcttcagac atatcataag 60 ctacctgata attacattac aaaatcagaa gcacaagccc tcggctgggt ggcatcaaaa 120 gggaaccttg cagacgtcgc tccggggaaa agcatcggcg gagacatctt ctcaaacaag 180 gaaggcaaac tcccgggcaa aagcggacga acatggcgtg aagcggatat taactataca 240 tcaggcttca gaaattcaga ccggattctt tactcaagcg actggctgat ttacaaaaca 300 acggaccatt atcagacctt tacaaaaatc agataa 336 <210> 13 <211> 1421 <212> DNA <213> Artificial Sequence <220> <223> Levansucrase (SacB) sequence in pVP65KR vector <400> 13 atgaacatca aaaagtttgc aaaacaagca acagtattaa cctttactac cgcactgctg 60 gcaggaggcg caactcaagc gtttgcgaaa gaaacgaacc aaaagccata taaggaaaca 120 tacggcattt cccatattac acgccatgat atgctgcaaa tccctgaaca gcaaaaaaat 180 gaaaaatatc aagttcctga attcgattcg tccacaatta aaaatatctc ttctgcaaaa 240 ggcctggacg tttgggacag ctggccatta caaaacgctg acggcactgt cgcaaactat 300 cacggctacc acatcgtctt tgcattagcc ggagatccta aaaatgcgga tgacacatcg 360 atttacatgt tctatcaaaa agtcggcgaa acttctattg acagctggaa aaacgctggc 420 cgcgtcttta aagacagcga caaattcgat gcaaatgatt ctatcctaaa agaccaaaca 480 caagaatggt caggttcagc cacatttaca tctgacggaa aaatccgttt attctacact 540 gatttctccg gtaaacatta cggcaaacaa acactgacaa ctgcacaagt taacgtatca 600 gcatcagaca gctctttgaa catcaacggt gtagaggatt ataaatcaat ctttgacggt 660 gacggaaaaa cgtatcaaaa tgtacagcag ttcatcgatg aaggcaacta cagctcaggc 720 gacaaccata cgctgagaga tcctcactac gtagaagata aaggccacaa atacttagta 780 tttgaagcaa acactggaac tgaagatggc taccaaggcg aagaatcttt atttaacaaa 840 gcatactatg gcaaaagcac atcattcttc cgtcaagaaa gtcaaaaact tctgcaaagc 900 gataaaaaac gcacggctga gttagcaaac ggcgctctcg gtatgattga gctaaacgat 960 gattacacac tgaaaaaagt gatgaaaccg ctgattgcat ctaacacagt aacagatgaa 1020 attgaacgcg cgaacgtctt taaaatgaac ggcaaatggt acctgttcac tgactcccgc 1080 ggatcaaaaa tgacgattga cggcattacg tctaacgata tttacatgct tggttatgtt 1140 tctaattctt taactggccc atacaagccg ctgaacaaaa ctggccttgt gttaaaaatg 1200 gatcttgatc ctaacgatgt aacctttact tactcacact tcgctgtacc tcaagcgaaa 1260 ggaaacaatg tcgtgattac aagctatatg acaaacagag gattctacgc agacaaacaa 1320 tcaacgtttg cgccaagctt cctgctgaac atcaaaggca agaaaacatc tgttgtcaaa 1380 gacagcatcc ttgaacaagg acaattaaca gttaacaaat t 1421

Claims (11)

서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자를 포함하는 재조합 플라스미드.
Recombinant plasmid containing a promoter gene consisting of the sequence of SEQ ID NO: 1.
청구항 1에 있어서, 목적 단백질을 코딩하는 유전자가 상기 프로모터와 작동가능하도록 연결된(operatively linked) 플라스미드.
The plasmid of claim 1, wherein the gene encoding the protein of interest is operatively linked with the promoter.
청구항 1에 있어서, 상기 플라스미드는 작동유전자(operator)를 구비한 프로모터 유전자가 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자로 치환된 것인 플라스미드.
The plasmid of claim 1, wherein the plasmid has a promoter gene having an operator replaced with a promoter gene consisting of the sequence of SEQ ID NO: 1.
서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자를 포함하는 재조합 플라스미드로 형질전환된 숙주 미생물.
Host microorganism transformed with a recombinant plasmid containing a promoter gene consisting of the sequence of SEQ ID NO: 1.
청구항 4에 있어서, 목적 단백질을 코딩하는 유전자가 상기 프로모터와 작동가능하도록 연결된(operatively linked) 미생물.
The microorganism according to claim 4, wherein the gene encoding the protein of interest is operatively linked with the promoter.
청구항 4에 있어서, 상기 플라스미드는 작동유전자(operator)를 구비한 프로모터 유전자가 서열번호 1의 서열로 이루어진 프로모터(promoter) 유전자로 치환된 것인 미생물.
The microorganism according to claim 4, wherein the plasmid has a promoter gene having an operator substituted with a promoter gene consisting of the sequence of SEQ ID NO: 1.
청구항 4에 있어서, 상기 미생물은 대장균(E.coli), 슈도모나스(Pseudomonas), 시아노박테리아(cyanobacteria) 및 바실러스(Bacillus)로 이루어진 군에서 선택된 적어도 하나의 균주인 미생물.
The microorganism of claim 4, wherein the microorganism is at least one strain selected from the group consisting of E. coli, Pseudomonas, cyanobacteria, and Bacillus.
청구항 1 내지 3 중 어느 한 항의 플라스미드 또는 청구항 4 내지 7 중 어느 한 항의 미생물을 포함하는 단백질 생산용 조성물.
A composition for producing a protein comprising the plasmid of any one of claims 1 to 3 or the microorganism of any one of claims 4 to 7.
청구항 4 내지 7 중 어느 한 항의 미생물을 배양하는 단계를 포함하는 목적 단백질의 생산방법.
A method for producing a protein of interest comprising culturing the microorganism of any one of claims 4 to 7.
청구항 9에 있어서, 목적 단백질을 회수하는 단계를 더 포함하는 생산방법.
The method of claim 9, further comprising recovering the protein of interest.
청구항 9에 있어서, 상기 배양은 TB 배지에서 이루어지는 것인 생산방법.The method of claim 9, wherein the culture is performed in a TB medium.
KR1020200036190A 2019-05-10 2020-03-25 Auto-induction Plasmid KR102286426B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190055078 2019-05-10
KR20190055078 2019-05-10

Publications (2)

Publication Number Publication Date
KR20200130093A true KR20200130093A (en) 2020-11-18
KR102286426B1 KR102286426B1 (en) 2021-08-05

Family

ID=73697753

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200036190A KR102286426B1 (en) 2019-05-10 2020-03-25 Auto-induction Plasmid

Country Status (1)

Country Link
KR (1) KR102286426B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070053765A (en) 2004-08-19 2007-05-25 네이쳐 테크놀로지 코포레이션 Process for plasmid dna fermentation
KR20080067614A (en) * 2005-08-20 2008-07-21 스캐랩 게노믹스, 엘엘씨 Reduced genome e. coli
KR20180092361A (en) * 2017-02-09 2018-08-20 세종대학교산학협력단 Vector for mass production of TVMV protease and method for mass production of TVMV protease using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070053765A (en) 2004-08-19 2007-05-25 네이쳐 테크놀로지 코포레이션 Process for plasmid dna fermentation
KR20080067614A (en) * 2005-08-20 2008-07-21 스캐랩 게노믹스, 엘엘씨 Reduced genome e. coli
KR101379436B1 (en) * 2005-08-20 2014-03-28 스캐랩 게노믹스, 엘엘씨 Reduced genome e. coli
KR20180092361A (en) * 2017-02-09 2018-08-20 세종대학교산학협력단 Vector for mass production of TVMV protease and method for mass production of TVMV protease using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Biotechnol. Prog.2007,23,585-598 *
EMBO J. 1987, 6, 3139-44 *
J. Bacteriol. 1985, 164,70-7 *
J. Biotechnol. 2006, 123, 273-80 *
Methods in Enzymology 155 (1987.12.) *

Also Published As

Publication number Publication date
KR102286426B1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
CN111378051B (en) PE-P2 guided editing system and application thereof in genome base editing
CN110846363B (en) Method for producing rebaudioside D by one-pot method
CN113631704A (en) Polypeptides useful for gene editing and methods of use
US9181531B2 (en) Process for purifying VLPs
CN110423772B (en) Cytosine base editing plasmid for Acinetobacter baumannii and application of cytosine base editing plasmid
CA2912131C (en) Oligonucleotides comprising capsid specific packaging sequences and methods of manufacture thereof
CN107964551A (en) The structure of watermelon mosaic virus infectious clone expression vector and application
CN112921047A (en) Shewanella electrogenesis strain for over-expressing cytochrome protein and construction method and application thereof
CN109777826A (en) Small zucchini yellow mosaic virus infectious clone expression vector and its construction method
CN108203715B (en) Construction of overexpression vector of watermelon strain of papaya ringspot virus
CN110923272B (en) Biosynthesis method of beta-alanine
KR102286426B1 (en) Auto-induction Plasmid
CN113699180B (en) Application of gene BnaCYP705a12 in brassinolide biosynthesis and production of transgenic plants
CN115197928B (en) Asparaase mutant and preparation method and application thereof
KR102090078B1 (en) Method of Plant Transformation Vector for Gene Editing of Implicated with Drought Stress Tolerance and Their Applications
JP2001340090A (en) Lactobacillus shuttle vector
CN110669115B (en) Rice blast bacterium mitochondrion autophagy related pathogenic factor, gene and application
CN110511954B (en) Recombinant vector, expression system and application suitable for corynebacterium glutamicum to secrete and express xylanase
WO2022101286A1 (en) Fusion protein for editing endogenous dna of a eukaryotic cell
KR20170068303A (en) Isolated polynucleotide comprising promoter region, host cell comprising the same and Method of expressing a target gene using the host cell
KR102076338B1 (en) Virus-induced gene silencing in pepper using broad bean wilt virus 2
KR101919757B1 (en) Vector for mass production of TVMV protease and method for mass production of TVMV protease using the same
CN108486143B (en) Fungus RNA interference vector pBHt2-CHSA Intron, construction method and application
US20190062767A1 (en) Method and system for expressing foreign gene in a plant
KR102090076B1 (en) Method of Plant Transformation Vector for Gene Editing of Self-incompatibility Character in Chinese Cabbage and Their Applications

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right