KR20200127947A - A document classification method with an explanation that provides words and sentences with high contribution in document classification - Google Patents

A document classification method with an explanation that provides words and sentences with high contribution in document classification Download PDF

Info

Publication number
KR20200127947A
KR20200127947A KR1020200144584A KR20200144584A KR20200127947A KR 20200127947 A KR20200127947 A KR 20200127947A KR 1020200144584 A KR1020200144584 A KR 1020200144584A KR 20200144584 A KR20200144584 A KR 20200144584A KR 20200127947 A KR20200127947 A KR 20200127947A
Authority
KR
South Korea
Prior art keywords
sentence
weight
document
word
neural network
Prior art date
Application number
KR1020200144584A
Other languages
Korean (ko)
Other versions
KR102264234B1 (en
Inventor
유태준
황이규
조면철
손동원
최홍섭
Original Assignee
주식회사 마인즈랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마인즈랩 filed Critical 주식회사 마인즈랩
Publication of KR20200127947A publication Critical patent/KR20200127947A/en
Application granted granted Critical
Publication of KR102264234B1 publication Critical patent/KR102264234B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/93Document management systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/3331Query processing
    • G06F16/334Query execution
    • G06F16/3347Query execution using vector based model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/268Morphological analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

According to an embodiment of the present invention, provided is a document classification method with an explanation for presenting a reason and/or a basis for classifying a document as a word and/or a sentence with high contribution. The document classification method with an explanation comprises the following steps of: dividing an input document into at least one sentence; dividing each of the at least one sentence into at least one word; generating a sentence feature value corresponding to each of the at least one sentence from the at least one word for each of the at least one sentence, and a first weight which is a weight of each of the at least one word included in each of the at least one sentence by using a trained first artificial neural network; generating a document feature value corresponding to the input document from the sentence feature value for each of the at least one sentence, and a second weight which is a weight of each of the at least one sentence by using a trained second artificial neural network; classifying the input document into a first item which is one of a plurality of classification items based on the document feature value; and generating explanation information including at least one of one or more words and sentences with high contribution in classifying the input document into the first item.

Description

문서 분류에 있어서 기여도가 높은 단어 및 문장을 제공하는 설명이 부가된 문서 분류 방법{A document classification method with an explanation that provides words and sentences with high contribution in document classification}A document classification method with an explanation that provides words and sentences with high contribution in document classification}

본 발명의 실시예들은 문서 분류 방법에 관한 것으로, 보다 상세하게는 문서 분류의 이유 및/또는 근거를 기여도가 높은 단어 및/또는 문장으로써 제시하는 문서 분류 방법에 관한 것이다.Embodiments of the present invention relate to a document classification method, and more particularly, to a document classification method in which a reason and/or basis for document classification is presented as words and/or sentences with high contribution.

종래기술에 따른 문서 분류 엔진들은 다음과 같은 문제점 및/또는 한계점을 갖는다.Document classification engines according to the prior art have the following problems and/or limitations.

1) 분류한 결과를 설명해주지 않음1) Does not explain the result of classification

딥러닝 기반 엔진들이 비판받는 가장 큰 이유 중 하나는 딥러닝 네트워크가 추론 결과에 대해 아무런 근거를 제시해주지 않는 블랙박스라는 인식이 있기 때문이다. One of the biggest reasons deep-learning-based engines are criticized is that deep-learning networks are perceived as black boxes that do not provide any basis for inference results.

IBM CEO 지니 로메티가 "설명할 수 없는 AI라면 퇴출되어야 한다"고 까지 말할 정도로 설명 가능한 AI에 대한 요구는 지금의 인공지능 열풍에 대한 중대한 도전이라 할 수 있다. The demand for explainable AI is a great challenge to the current AI craze, as IBM CEO Genie Rometty even says, "If AI cannot be explained, it should be eliminated."

대부분의 딥러닝 기반 엔진들이 그렇듯 딥러닝 기반 텍스트 분류기들 역시 분류 결과에 대한 이유나 근거를 전혀 설명해주지 않는다. Like most deep learning-based engines, deep-learning-based text classifiers do not explain the reason or rationale for the classification result at all.

물론 딥러닝 기반 텍스트 분류기들이 좋은 성능을 보이고 있지만, 실제로 텍스트 분석 영역에서는 결과에 대한 영감을 얻거나 모델을 개선하기 위해 데이터를 분석해보는 관점에서 볼 때 매우 제약이 크다. Of course, deep learning-based text classifiers show good performance, but in the realm of text analysis, they are very limited in terms of analyzing data to get inspiration for results or improve models.

2) 문장 단위가 아닌 문서 단위 분류가 어려움2) Difficulty classifying document units rather than sentence units

기존 딥러닝 기반 텍스트 분류 엔진들은 대부분 RNN 기반으로 작동하는데, LSTM이나 GRU 등 대표적인 RNN 기반 인공신경망이 긴 sequence를 잘 처리하지 못해서 문장 분류에는 문제가 없지만, 문서 분류에는 약점을 가지고 있다. Most of the existing deep learning-based text classification engines operate based on RNN.Since typical RNN-based artificial neural networks such as LSTM and GRU do not process long sequences well, there is no problem in classifying sentences, but they have a weakness in classifying documents.

이는 연속된 Sequence의 길이가 길어질수록 앞쪽 sequence의 정보가 뒤쪽으로 잘 전파되지 않기 때문이며, 따라서 문서를 이어 붙여 하나의 문장으로 처리해서 인코딩하는 방식의 RNN 기반 텍스트 분류기들이 긴 문서를 제대로 분류하지 못하는 원인이 된다. This is because the information of the front sequence does not propagate to the rear as the length of the continuous sequence increases. Therefore, the reason why RNN-based text classifiers of the method of concatenating documents and processing them into one sentence and encoding them do not properly classify long documents. Becomes.

3) 분류 카테고리의 개수에 제약이 있음3) There are restrictions on the number of classification categories

딥러닝 기반 텍스트 분류 엔진들의 또 다른 문제점으로 지적되는 점은 한 번에 분류하고자 하는 카테고리가 많을 경우 학습이 제대로 되지 않는 현상이다. 단 10개의 카테고리만 넘어가도 분류가 어려운 경우가 있는데, 이는 소위 말하는 Exploding Gradient 현상 때문이다. Gradient signal은 모든 Hidden state를 거치면서 시간/시퀀스 상 앞쪽으로 전달되게 되는데, parameter matrix를 계속해서 곱해가는 과정에서 가중치 행렬의 element가 1보다 큰 경우 gradient는 계속해서 커지게 되어 Exploding Gradient 현상이 나타나게 된다. 이는 기본적으로 많은 time step을 가지는 RNN 구조에서 흔히 나타날 수 있는 현상인데 특히 카테고리가 많을 경우 초기오차가 커 이런 현상이 일어날 가능성이 매우 높아진다.Another problem pointed out by deep learning-based text classification engines is that when there are many categories to be classified at once, learning is not performed properly. There are cases where classification is difficult even if only 10 categories are exceeded, because of the so-called Exploding Gradient phenomenon. Gradient signal is transmitted to the front in time/sequence while passing through all hidden states. In the process of continuously multiplying the parameter matrix, if the element of the weight matrix is greater than 1, the gradient continues to increase, resulting in an exploding gradient phenomenon. . This is basically a phenomenon that can often appear in RNN structures with many time steps. In particular, when there are many categories, the possibility of such a phenomenon is very high due to a large initial error.

본 발명은 기계 학습의 한계로 지적되는 문제점인 결과에 대한 해석이 어렵다는 점을 극복하기 위해 텍스트 분류 결과의 이유 혹은 근거를 제시하고자 한다.In order to overcome the difficulty of interpreting the result, which is a problem pointed out as a limitation of machine learning, the present invention intends to present the reason or basis for the text classification result.

또한 본 발명은 단문이 아닌, 긴 문서를 보다 정확하게 분류하고자 한다.In addition, the present invention is to more accurately classify long documents, not short texts.

본 발명의 일 실시예에 따른 설명이 부가된 문서 분류 방법은, 입력 문서를 적어도 하나의 문장으로 분리하는 단계; 상기 적어도 하나의 문장 각각을 적어도 하나의 단어로 분리하는 단계; 학습된 제1 인공 신경망을 이용하여, 상기 적어도 하나의 문장 각각에 대한 상기 적어도 하나의 단어로부터 상기 적어도 하나의 문장 각각에 대응되는 문장 특징값 및 상기 적어도 하나의 문장 각각에 포함된 적어도 하나의 단어 각각의 가중치인 제1 가중치를 생성하는 단계; 학습된 제2 인공 신경망을 이용하여, 상기 적어도 하나의 문장 각각에 대한 문장 특징값으로부터 상기 입력 문서에 대응되는 문서 특징값 및 상기 적어도 하나의 문장 각각의 가중치인 제2 가중치를 생성하는 단계; 상기 문서 특징값에 기초하여 상기 입력 문서의 분류에 관한 분류 정보를 생성하는 단계; 및 상기 제1 가중치 및 상기 제2 가중치 중 적어도 하나를 참조하여, 상기 분류의 이유를 포함하는 설명 정보를 생성하는 단계;를 포함할 수 있다.According to an embodiment of the present invention, a method for classifying a document with an explanation may include: separating an input document into at least one sentence; Dividing each of the at least one sentence into at least one word; Using the learned first artificial neural network, a sentence feature value corresponding to each of the at least one sentence from the at least one word for each of the at least one sentence and at least one word included in each of the at least one sentence Generating a first weight that is each weight; Generating a document feature value corresponding to the input document and a second weight that is a weight of each of the at least one sentence from the sentence feature value for each of the at least one sentence using the learned second artificial neural network; Generating classification information regarding classification of the input document based on the document feature value; And generating description information including a reason for the classification by referring to at least one of the first weight and the second weight.

상기 제1 인공 신경망은 문장 특징값이 표지된 적어도 하나의 제1 학습 데이터에 기반하여, 상기 제1 학습 데이터에 포함되는 학습 문장에 포함된 적어도 하나의 단어와 상기 문장 특징값 간의 상관관계 및 상기 학습 문장에 포함되는 적어도 하나의 단어와 상기 적어도 하나의 단어 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다.The first artificial neural network is based on at least one first learning data marked with a sentence feature value, the correlation between the sentence feature value and at least one word included in the learning sentence included in the first learning data, and the It may be a neural network that learns a correlation between at least one word included in a learning sentence and a weight of each of the at least one word.

상기 제2 인공 신경망은 문서 특징값이 표지된 적어도 하나의 제2 학습 데이터에 기반하여, 상기 제2 학습 데이터에 포함되는 학습 문서에 포함된 적어도 하나의 문장과 상기 문서 특징값 간의 상관관계 및 상기 학습 문서에 포함되는 적어도 하나의 문장과 상기 적어도 하나의 문장 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다.The second artificial neural network is based on at least one second learning data marked with a document feature value, and the correlation between the document feature value and at least one sentence included in the learning document included in the second learning data, and the It may be a neural network that learns a correlation between at least one sentence included in the training document and a weight of each of the at least one sentence.

상기 분류 정보를 생성하는 단계는 상기 입력 문서를 복수의 분류 항목 중 어느 하나의 항목인 제1 항목으로 분류하고, 상기 설명 정보를 생성하는 단계는 상기 입력 문서를 상기 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 단어를 결정하는 단계; 상기 입력 문서를 상기 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 문장을 결정하는 단계;를 포함할 수 있다.In the generating of the classification information, the input document is classified into a first item that is any one of a plurality of classification items, and the generating of the description information has a contribution to classifying the input document into the first item. Determining one or more words high; And determining at least one sentence having a high contribution to classifying the input document into the first item.

상기 기여도가 높은 하나 이상의 단어를 결정하는 단계는 상기 제1 가중치를 참조하여, 제1 단어의 가중치를 결정하는 단계; 상기 제2 가중치를 참조하여, 상기 제1 단어가 포함된 문장의 가중치를 결정하는 단계; 및 상기 제1 단어의 가중치 및 상기 제1 단어가 포함된 문장의 가중치에 기초하여 상기 제1 단어의 기여도를 산출하는 단계;를 포함할 수 있다.The determining of one or more words with high contribution may include determining a weight of a first word by referring to the first weight; Determining a weight of a sentence including the first word by referring to the second weight; And calculating a contribution degree of the first word based on the weight of the first word and the weight of the sentence including the first word.

기여도가 높은 하나 이상의 문장을 결정하는 단계는 제1 문장에 포함된 하나 이상의 단어들의 제1 가중치를 참조하여, 상기 제1 문장의 제3 가중치를 결정하는 단계; 상기 제2 가중치를 참조하여, 제1 문장의 제4 가중치를 결정하는 단계; 및 제3 가중치 및 상기 제4 가중치에 기초하여 상기 제1 문장의 기여도를 산출하는 단계;를 포함할 수 있다.The determining of one or more sentences with a high contribution may include determining a third weight of the first sentence by referring to a first weight of one or more words included in the first sentence; Determining a fourth weight of a first sentence by referring to the second weight; And calculating a contribution degree of the first sentence based on the third weight and the fourth weight.

상기 설명이 부가된 문서 분류 방법은 상기 설명 정보를 생성하는 단계 이후에 상기 분류 정보와 함께 상기 설명 정보를 제공하는 단계;를 포함할 수 있다.The document classification method to which the description is added may include providing the description information together with the classification information after the step of generating the description information.

본 발명에 따르면 문서의 분류의 이유 혹은 근거를 제시할 수 있다.According to the present invention, it is possible to present a reason or a basis for classification of a document.

또한 단문이 아닌, 긴 문서를 보다 정확하게 분류할 수 있다.It can also classify long documents more accurately than short texts.

도 1은 본 발명의 일 실시예에 따른 문서 분류 시스템의 구성을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 서버(100)에 구비되는 문서 분류 장치(110)의 구성을 개략적으로 도시한 도면이다.
도 3은 본 발명의 문서 분류 장치(110)에 의해 학습되는 인공 신경망의 예시적인 구조를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 제어부(112)가 입력 문서(510)로부터 적어도 하나의 문장(520) 및 적어도 하나의 단어(530)를 분리하는 과정을 설명하기 위한 도면이다.
도 5는 제어부(112)가 도 4의 첫 번째 문장(521)의 특징값(S_Feature_1) 및 제1 가중치(W1_1)를 생성하는 과정을 설명하기 위한 도면이다.
도 6은 제어부(112)가 입력 문서의 특징값(D_Feature) 및 제2 가중치(W2)를 생성하는 과정을 설명하기 위한 도면이다.
도 7은 본 발명의 일 실시예에 따른 제어부(112)가 설명 정보를 생성하는 과정을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 문서 분류 장치(110)에 의해 수행되는 문서 분류 방법을 설명하기 위한 흐름도이다.
도 9은 본 발명의 일 실시예에 따라 분류 정보 및 설명 정보가 사용자 단말(200)에 표시된 화면(610)의 예시이다.
1 is a diagram schematically showing the configuration of a document classification system according to an embodiment of the present invention.
2 is a diagram schematically showing the configuration of the document classification apparatus 110 provided in the server 100 according to an embodiment of the present invention.
3 is a diagram illustrating an exemplary structure of an artificial neural network learned by the document classification apparatus 110 of the present invention.
4 is a view for explaining a process of separating at least one sentence 520 and at least one word 530 from an input document 510 by the controller 112 according to an embodiment of the present invention.
FIG. 5 is a diagram for describing a process in which the control unit 112 generates a feature value S_Feature_1 and a first weight W1_1 of the first sentence 521 of FIG. 4.
6 is a diagram for explaining a process in which the controller 112 generates a feature value (D_Feature) and a second weight (W2) of an input document.
7 is a diagram for describing a process of generating description information by the controller 112 according to an embodiment of the present invention.
8 is a flowchart illustrating a document classification method performed by the document classification apparatus 110 according to an embodiment of the present invention.
9 is an example of a screen 610 in which classification information and description information are displayed on the user terminal 200 according to an embodiment of the present invention.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. Since the present invention can apply various transformations and have various embodiments, specific embodiments are illustrated in the drawings and will be described in detail in the detailed description. Effects and features of the present invention, and a method of achieving them will be apparent with reference to the embodiments described later in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various forms.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and when describing with reference to the drawings, the same or corresponding constituent elements are assigned the same reference numerals, and redundant descriptions thereof will be omitted. .

이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. 이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. 도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 형태는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. In the following embodiments, terms such as first and second are not used in a limiting meaning, but are used for the purpose of distinguishing one component from another component. In the following examples, the singular expression includes the plural expression unless the context clearly indicates otherwise. In the following embodiments, terms such as include or have means that the features or elements described in the specification are present, and do not preclude the possibility of adding one or more other features or elements in advance. In the drawings, components may be exaggerated or reduced in size for convenience of description. For example, the size and shape of each component shown in the drawings are arbitrarily shown for convenience of description, and thus the present invention is not necessarily limited to what is shown.

도 1은 본 발명의 일 실시예에 따른 문서 분류 시스템의 구성을 개략적으로 도시한 도면이다.1 is a diagram schematically showing the configuration of a document classification system according to an embodiment of the present invention.

도 1을 참조하면 본 발명의 일 실시예에 따른 문서 분류 시스템은 서버(100), 사용자 단말(200) 및 통신망(400)을 포함할 수 있다.Referring to FIG. 1, a document classification system according to an embodiment of the present invention may include a server 100, a user terminal 200, and a communication network 400.

본 발명의 일 실시예에 따른 문서 분류 시스템은 학습된 인공 신경망을 이용하여 문서를 분류하고, 문서를 분류의 이유(또는 설명)를 포함하는 설명 정보를 제공할 수 있다.The document classification system according to an embodiment of the present invention may classify a document using a learned artificial neural network and provide description information including a reason (or explanation) for classifying the document.

본 발명에서 제1 인공 신경망 및 제2 인공 신경망과 같은 '인공 신경망'은 문서의 분류를 위해 머신 러닝(Machine Learning) 또는 딥러닝(Deep Learning) 기법으로 학습된 신경망을 의미할 수 있다. 이와 같은 인공 신경망의 구조에 대해서는 도 3을 참조하여 후술한다.In the present invention, a'artificial neural network' such as a first artificial neural network and a second artificial neural network may mean a neural network that is learned by machine learning or deep learning for classification of documents. The structure of such an artificial neural network will be described later with reference to FIG. 3.

본 발명의 일 실시예에 따른 사용자 단말(200)은 사용자가 서버(100)에 의해 제공되는 다양한 서비스를 이용할 수 있도록 사용자와 서버(100)를 매개하는 다양한 형태의 장치를 의미할 수 있다. The user terminal 200 according to an embodiment of the present invention may refer to various types of devices that mediate the user and the server 100 so that the user can use various services provided by the server 100.

바꾸어 말하면, 본 발명의 일 실시예에 따른 사용자 단말(200)은 서버(100)와 데이터를 송수신 하는 다양한 장치를 의미할 수 있다.In other words, the user terminal 200 according to an embodiment of the present invention may refer to various devices that transmit and receive data with the server 100.

이와 같은 사용자 단말(200)은 도 1에 도시된 바와 같이, 휴대용 단말(201, 202, 203)을 의미할 수도 있고, 컴퓨터(204)를 의미할 수도 있다. As illustrated in FIG. 1, the user terminal 200 may refer to portable terminals 201, 202, and 203, or may refer to a computer 204.

한편 사용자 단말(200)은 상술한 기능을 수행하기 위해 콘텐츠 등을 표시하기 위한 표시수단, 이러한 콘텐츠에 대한 사용자의 입력을 획득하기 위한 입력수단을 구비할 수 있다. 이 때 입력수단 및 표시수단은 다양하게 구성될 수 있다. 가령 입력수단은 키보드, 마우스, 트랙볼, 마이크, 버튼, 터치패널 등을 포함할 수 있으나 이에 한정되지 않는다. Meanwhile, the user terminal 200 may include a display means for displaying content or the like in order to perform the above-described functions, and an input means for acquiring a user's input for such content. In this case, the input means and the display means may be configured in various ways. For example, the input means may include a keyboard, a mouse, a trackball, a microphone, a button, and a touch panel, but are not limited thereto.

본 발명의 일 실시예에 따른 통신망(400)은 문서 분류 시스템의 각 구성 간의 데이터 송수신을 매개하는 통신망을 의미할 수 있다. 가령 통신망(400)은 LANs(Local Area Networks), WANs(Wide Area Networks), MANs(Metropolitan Area Networks), ISDNs(Integrated Service Digital Networks) 등의 유선 네트워크나, 무선 LANs, CDMA, 블루투스, 위성 통신 등의 무선 네트워크를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다.The communication network 400 according to an embodiment of the present invention may mean a communication network that mediates data transmission/reception between components of a document classification system. For example, the communication network 400 is wired networks such as LANs (Local Area Networks), WANs (Wide Area Networks), MANs (Metropolitan Area Networks), ISDNs (Integrated Service Digital Networks), wireless LANs, CDMA, Bluetooth, satellite communication, etc. It may cover wireless networks of, but the scope of the present invention is not limited thereto.

본 발명의 일 실시예에 따른 서버(100)는 학습된 인공 신경망을 이용하여 문서를 분류하고, 문서를 분류의 이유를 포함하는 설명 정보를 제공할 수 있다. 이를 위해 서버(100)는 본 발명의 일 실시예에 따른 문서 분류 장치를 포함할 수 있다.The server 100 according to an embodiment of the present invention may classify a document using a learned artificial neural network, and provide explanatory information including a reason for classifying the document. To this end, the server 100 may include a document classification device according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 서버(100)에 구비되는 문서 분류 장치(110)의 구성을 개략적으로 도시한 도면이다.2 is a diagram schematically showing the configuration of the document classification apparatus 110 provided in the server 100 according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 통신부(111), 제어부(112) 및 메모리(113)를 포함할 수 있다. 또한 도면에는 도시되지 않았으나, 본 실시예에 따른 문서 분류 장치(110)는 입/출력부, 프로그램 저장부 등을 더 포함할 수 있다. Referring to FIG. 2, the document classification apparatus 110 according to an embodiment of the present invention may include a communication unit 111, a control unit 112, and a memory 113. Further, although not shown in the drawings, the document classification apparatus 110 according to the present embodiment may further include an input/output unit, a program storage unit, and the like.

통신부(111)는 문서 분류 장치(110)가 사용자 단말(200)과 같은 다른 네트워크 장치와 유무선 연결을 통해 제어 신호 또는 데이터 신호와 같은 신호를 송수신하기 위해 필요한 하드웨어 및 소프트웨어를 포함하는 장치일 수 있다. The communication unit 111 may be a device including hardware and software necessary for the document classification device 110 to transmit and receive a signal such as a control signal or a data signal through a wired or wireless connection with another network device such as the user terminal 200. .

제어부(112)는 프로세서(Processor)와 같이 데이터를 처리할 수 있는 모든 종류의 장치를 포함할 수 있다. 여기서, '프로세서(Processor)'는, 예를 들어 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다. 이와 같이 하드웨어에 내장된 데이터 처리 장치의 일 예로써, 마이크로프로세서(Microprocessor), 중앙처리장치(Central Processing Unit: CPU), 프로세서 코어(Processor Core), 멀티프로세서(Multiprocessor), ASIC(Application-Specific Integrated Circuit), FPGA(Field Programmable Gate Array) 등의 처리 장치를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다.The controller 112 may include all types of devices capable of processing data, such as a processor. Here, the'processor' may refer to a data processing device embedded in hardware having a circuit physically structured to perform a function expressed by, for example, a code or command included in a program. As an example of such a data processing device built into the hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, and an application-specific integrated (ASIC) Circuit) and processing devices such as a Field Programmable Gate Array (FPGA) may be covered, but the scope of the present invention is not limited thereto.

메모리(113)는 문서 분류 장치(110)가 처리하는 데이터를 일시적 또는 영구적으로 저장하는 기능을 수행한다. 가령 메모리(113)는 제1 신경망 및 제2 신경망을 구성하는 데이터들(가령 계수들)을 일시적 및/또는 영구적으로 저장할 수 있다. 물론 메모리(113)는 제1 신경망과 제2 신경망을 학습하기 위한 학습 데이터도 저장할 수 있다. 다만 이는 예시적인것으로 본 발명의 사상이 이에 한정되는 것은 아니다.The memory 113 temporarily or permanently stores data processed by the document classification apparatus 110. For example, the memory 113 may temporarily and/or permanently store data (eg, coefficients) constituting the first neural network and the second neural network. Of course, the memory 113 may also store training data for learning the first neural network and the second neural network. However, this is merely an example and the spirit of the present invention is not limited thereto.

메모리는 자기 저장 매체(Magnetic Storage Media) 또는 플래시 저장 매체(Flash Storage Media)를 포함할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다. The memory may include a magnetic storage medium or a flash storage medium, but the scope of the present invention is not limited thereto.

도 3은 본 발명의 문서 분류 장치(110)에 의해 학습되는 인공 신경망의 예시적인 구조를 설명하기 위한 도면이다.3 is a diagram illustrating an exemplary structure of an artificial neural network learned by the document classification apparatus 110 of the present invention.

본 발명의 일 실시예에 따른 인공 신경망은 도 3에 도시된 바와 같은 순환 인공 신경망(Recurrent Neural Network, RNN) 모델에 따른 인공 신경망에 가중치를 생성하기 위한 가중치 레이어(L4)를 더 포함하는 구조일 수 있다.The artificial neural network according to an embodiment of the present invention is a structure further including a weight layer (L4) for generating weights in the artificial neural network according to the recurrent neural network (RNN) model as shown in FIG. 3. I can.

도 3을 참조하면 순환 인공 신경망 모델에 따른 인공 신경망은 적어도 하나의 입력 노드(N1)를 포함하는 입력 레이어(L1), 복수의 히든 노드(N2)를 포함하는 히든 레이어(L2) 및 적어도 하나의 출력 노드(N3)를 포함하는 출력 레이어(L3)를 포함할 수 있다. 3, the artificial neural network according to the recurrent artificial neural network model includes an input layer L1 including at least one input node N1, a hidden layer L2 including a plurality of hidden nodes N2, and at least one It may include an output layer L3 including an output node N3.

이때 입력 레이어(L1)의 적어도 하나의 입력 노드(N1)에는 제어부(112)가 획득한 입력 데이터에 대응되는 값들이 입력될 수 있다. 가령 입력 노드(N1)에는 하나의 문장으로부터 생성된 적어도 하나의 단어에 대응되는 값(또는 벡터)이 입력될 수도 있고, 하나의 입력 문서로부터 생성된 적어도 하나의 문장들에 대응되는 문장 특징값(또는 벡터)이 입력될 수도 있다.In this case, values corresponding to the input data acquired by the controller 112 may be input to at least one input node N1 of the input layer L1. For example, a value (or vector) corresponding to at least one word generated from one sentence may be input to the input node N1, or a sentence feature value corresponding to at least one sentence generated from one input document ( Or, a vector) may be input.

히든 레이어(L2)는 도시된 바와 같이 전체적으로 연결된(Fully Connected) 하나 이상의 레이어를 포함할 수 있다. 히든 레이어(L2)가 복수의 레이어를 포함하는 경우, 인공 신경망은 각각의 히든 레이어 사이의 관계를 정의하는 함수(미도시)를 포함할 수 있다.As illustrated, the hidden layer L2 may include one or more layers that are fully connected. When the hidden layer L2 includes a plurality of layers, the artificial neural network may include a function (not shown) defining a relationship between each hidden layer.

출력 레이어(L3)의 적어도 하나의 출력 노드(N3)는 제어부(112)의 제어에 따라 인공 신경망이 입력 레이어(L1)의 입력 값으로부터 생성한 출력 값을 포함할 수 있다. 가령 입력 레이어(L1)에 하나의 문장으로부터 생성된 적어도 하나의 단어들에 대응되는 값이 입력된 경우, 출력 레이어(L3)에는 문장 특징값이 포함될 수 있다. 물론 입력 레이어(L1)에 하나의 입력 문서로부터 생성된 적어도 하나의 문장들에 대응되는 문장 특징값(또는 벡터)이 입력된 경우, 출력 레이어(L3)에는 문서 특징값이 포함될 수 있다. At least one output node N3 of the output layer L3 may include an output value generated by the artificial neural network from the input value of the input layer L1 under control of the controller 112. For example, when a value corresponding to at least one word generated from one sentence is input to the input layer L1, the sentence feature value may be included in the output layer L3. Of course, when a sentence feature value (or vector) corresponding to at least one sentence generated from one input document is input to the input layer L1, the output layer L3 may include the document feature value.

가중치 레이어(L4)의 적어도 하나의 출력 노드(N4)는 제어부(112)의 제어에 따라 인공 신경망이 입력 레이어에 입력된 복수의 항목들 각각에 대해 산출한 가중치를 포함할 수 있다. 가령 입력 레이어(L1)에 하나의 문장으로부터 생성된 적어도 하나의 단어들에 대응되는 값이 입력된 경우, 가중치 레이어(L4)에는 적어도 하나의 단어들 각각의 가중치가 포함될 수 있다. 이때 가중치 레이어(L4)에 포함되는 가중치는 적어도 하나의 단어 각각이 출력 레이어(L3)의 문장 특징값을 생성하는데 기여한 정도를 의미할 수 있다. At least one output node N4 of the weight layer L4 may include a weight calculated by the artificial neural network for each of a plurality of items input to the input layer under control of the controller 112. For example, when a value corresponding to at least one word generated from one sentence is input to the input layer L1, the weight layer L4 may include a weight of each of the at least one word. In this case, the weight included in the weight layer L4 may mean a degree to which each of the at least one word contributes to generating the sentence feature value of the output layer L3.

물론 입력 레이어(L1)에 하나의 입력 문서로부터 생성된 적어도 하나의 문장들에 대응되는 문장 특징값이 입력된 경우, 가중치 레이어(L4)에는 적어도 하나의 문장들 각각의 가중치가 포함될 수 있다. 이때 가중치 레이어(L4)에 포함되는 가중치는 적어도 하나의 문장 각각이 출력 레이어(L3)의 문서 특징값을 생성하는데 기여한 정도를 의미할 수 있다.Of course, when a sentence feature value corresponding to at least one sentence generated from one input document is input to the input layer L1, the weight layer L4 may include a weight of each of the at least one sentence. In this case, the weight included in the weight layer L4 may mean a degree to which each of the at least one sentence contributes to generating the document feature value of the output layer L3.

도 3에서는 이와 같은 가중치 레이어(L4)가 출력 레이어(L3) 이후에 배치되는 것으로 되시되었지만, 이는 예시적인것으로 가중치 레이어(L4)의 위치는 이에 한정되는 것이 아니다. In FIG. 3, it is assumed that such a weight layer L4 is disposed after the output layer L3, but this is exemplary, and the position of the weight layer L4 is not limited thereto.

가중치 레이어(L4)는 하나 이상의 레이어로 구성될 수도 있고, 도 3에 도시된 바와 같이 단일 레이어로 구성될 수도 있다. The weight layer L4 may be composed of one or more layers, or may be composed of a single layer as shown in FIG. 3.

한편 각 레이어의 각 노드에 포함되는 값은 벡터일 수 있다. 또한 각 노드는 해당 노드의 중요도에 대응되는 가중치를 포함할 수도 있다.Meanwhile, a value included in each node of each layer may be a vector. In addition, each node may include a weight corresponding to the importance of the node.

인공 신경망은 입력 레이어(L1)와 히든 레이어(L2)의 관계를 정의하는 제1 함수(F1) 및 히든 레이어(L2)와 출력 레이어(L3)의 관계를 정의하는 제2 함수(F2)를 포함할 수 있다. 물론 인공 신경망은 출력 레이어(L3)와 가중치 레이어(L4)의 관계를 정의하는 함수(미도시)를 더 포함할 수도 있다.The artificial neural network includes a first function (F1) that defines the relationship between the input layer (L1) and the hidden layer (L2), and a second function (F2) that defines the relationship between the hidden layer (L2) and the output layer (L3). can do. Of course, the artificial neural network may further include a function (not shown) defining a relationship between the output layer L3 and the weight layer L4.

제1 함수(F1)는 입력 레이어(L1)에 포함되는 입력 노드(N1)와 히든 레이어(L2)에 포함되는 히든 노드(N2)간의 연결관계를 정의할 수 있다. 이와 유사하게, 제2 함수(F2)는 히든 레이어(L2)에 포함되는 히든 노드(N2)와 출력 레이어(L2)에 포함되는 출력 노드(N2)간의 연결관계를 정의할 수 있다.The first function F1 may define a connection relationship between the input node N1 included in the input layer L1 and the hidden node N2 included in the hidden layer L2. Similarly, the second function F2 may define a connection relationship between the hidden node N2 included in the hidden layer L2 and the output node N2 included in the output layer L2.

이와 같은 제1 함수(F1), 제2 함수(F2), 히든 레이어 사이의 함수들 및 출력 레이어(L3)와 가중치 레이어(L4)의 관계를 정의하는 함수들은 이전 노드의 입력에 기초하여 결과물을 출력하는 순환 인공 신경망 모델을 포함할 수 있다.The first function (F1), the second function (F2), the functions between the hidden layers, and the functions that define the relationship between the output layer (L3) and the weight layer (L4) generate a result based on the input of the previous node. It may include an output recurrent artificial neural network model.

제어부(112)에 의해 인공 신경망이 학습되는 과정에서, 복수의 학습 데이터(또는 전처리된 학습 데이터)에 기초하여 상술한 함수들이 학습될 수 있다.In the process of learning the artificial neural network by the controller 112, the above-described functions may be learned based on a plurality of training data (or pre-processed training data).

본 발명의 일 실시예에 따른 인공 신경망은 표지(Labeled)된 학습 데이터를 기반으로 지도학습(Supervised Learning) 방식으로 학습될 수 있다. 이때 가중치 레이어(L4)에 출력되는 가중치들은 비지도 방식으로 학습될 수도 있다.The artificial neural network according to an embodiment of the present invention may be learned in a supervised learning method based on labeled learning data. In this case, weights output to the weight layer L4 may be learned in an unsupervised manner.

본 발명의 일 실시예에 따른 제어부(112)는 복수의 학습 데이터를 이용하여, 어느 하나의 입력 데이터를 인공 신경망에 입력하여 생성된 출력 값이 해당 학습 데이터에 표지된 값에 근접하도록 전술한 함수들을 갱신하는 과정을 반복하여 수행함으로써 인공 신경망을 학습시킬 수 있다. The control unit 112 according to an embodiment of the present invention uses a plurality of training data to input any one of the input data into the artificial neural network, so that the generated output value approaches the value marked in the corresponding training data. The artificial neural network can be trained by repeatedly performing the process of updating them.

이때 본 발명의 일 실시예에 따른 제어부(112)는 역전파(Back Propagation) 알고리즘에 따라 전술한 함수들을 갱신할 수 있다. 다만 이는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다.In this case, the control unit 112 according to an embodiment of the present invention may update the above-described functions according to a back propagation algorithm. However, this is merely an example and the spirit of the present invention is not limited thereto.

한편 도 3 및 도 4에서 설명한 인공 신경망의 종류 및/또는 구조는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다. 따라서 다양한 종류의 모델의 인공 신경망이 명세서를 통하여 설명하는 '인공 신경망'에 해당할 수 있다.Meanwhile, the types and/or structures of the artificial neural networks described in FIGS. 3 and 4 are exemplary, and the inventive concept is not limited thereto. Therefore, artificial neural networks of various kinds of models may correspond to'artificial neural networks' described through the specification.

본 발명에서 '제1 인공 신경망'은 하나의 문장을 구성하는 하나 이상의 단어들로부터 해당 문장의 특징값을 생성하고, 각 단어들의 가중치를 생성하도록 학습된 신경망일 수 있다. 이와 같은 제1 인공 신경망은 문장 특징값이 표지된 적어도 하나의 제1 학습 데이터에 기반하여, 제1 학습 데이터에 포함되는 학습 문장에 포함된 적어도 하나의 단어와 문장 특징값 간의 상관관계를 학습한 신경망일 수 있다. 또한 제1 인공 신경망은 학습 문장에 포함되는 적어도 하나의 단어와 적어도 하나의 단어 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다.In the present invention, the'first artificial neural network' may be a neural network that has been trained to generate a feature value of a corresponding sentence from one or more words constituting a sentence and generate weights of each word. Such a first artificial neural network learns a correlation between at least one word included in a learning sentence included in the first training data and a sentence feature value based on at least one first training data marked with a sentence feature value. It could be a neural network. In addition, the first artificial neural network may be a neural network that has learned a correlation between weights of at least one word and at least one word included in the training sentence.

본 발명에서 '제2 인공 신경망'은 하나의 문서를 구성하는 하나 이상의 문장들로부터 해당 문서의 특징값을 생성하고, 각 문장들의 가중치를 생성하도록 학습된 신경망일 수 있다. 이와 같은 제2 인공 신경망은 문서 특징값이 표지된 적어도 하나의 제2 학습 데이터에 기반하여, 제2 학습 데이터에 포함되는 학습 문서에 포함된 적어도 하나의 문장과 상기 문서 특징값 간의 상관관계를 학습한 신경망일 수 있다. 또한 제2 인공 신경망은 학습 문서에 포함되는 적어도 하나의 문장과 적어도 하나의 문장 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다.In the present invention, the'second artificial neural network' may be a neural network that has been trained to generate a feature value of a corresponding document from one or more sentences constituting a document and to generate weights of each sentence. Such a second artificial neural network learns a correlation between the document feature value and at least one sentence included in the learning document included in the second training data based on at least one second training data marked with the document feature value. It could be a neural network. In addition, the second artificial neural network may be a neural network that has learned a correlation between weights of at least one sentence and at least one sentence included in the training document.

한편 본 발명에서 '문서'는 텍스트를 포함하는 콘텐츠를 의미할 수 있다. 이때 문서는 텍스트만을 포함할 수도 있고, 텍스트 이외에 다른 유형의 개체(예를 들어 이미지, 영상 등)를 더 포함할 수도 있다. 문서가 텍스트 외에 다른 유형의 개체를 포함하는 경우, 제어부(112)는 문서에 포함된 텍스트만을 고려하여 문서를 분류할 수 있다.Meanwhile, in the present invention,'document' may mean content including text. In this case, the document may include only text, or may further include other types of objects (eg, images, images, etc.) in addition to text. When a document includes an object of a type other than text, the controller 112 may classify the document by considering only the text included in the document.

이하에서는 제1 인공 신경망이 제1 학습 데이터로, 제2 인공 신경망이 제2 학습 데이터로 학습이 되어 있음을 전제로, 도 4 내지 도 6을 함께 참조하여 제어부(112)의 동작을 설명한다.Hereinafter, the operation of the control unit 112 will be described with reference to FIGS. 4 to 6 on the premise that the first artificial neural network is trained with the first training data and the second artificial neural network is trained with the second training data.

본 발명의 일 실시예에 따른 제어부(112)는 입력 문서를 문장 단위로 분리하여 적어도 하나의 문장을 생성할 수 있다. 또한 제어부(112)는 생성된 적어도 하나의 문장 각각을 단어 단위로 분리하여 적어도 하나의 단어를 생성할 수 있다.The control unit 112 according to an embodiment of the present invention may generate at least one sentence by separating the input document into sentences. In addition, the controller 112 may generate at least one word by separating each of the generated at least one sentence into a word unit.

도 4는 본 발명의 일 실시예에 따른 제어부(112)가 입력 문서(510)로부터 적어도 하나의 문장(520) 및 적어도 하나의 단어(530)를 분리하는 과정을 설명하기 위한 도면이다.4 is a view for explaining a process of separating at least one sentence 520 and at least one word 530 from an input document 510 by the controller 112 according to an embodiment of the present invention.

설명의 편의를 위해서 입력 문서(510)는 영화 후기에 관한 것으로, 도 4에 도시된 바와 같이 3개의 문장으로 구성되는 것을 전제로 설명한다. For convenience of explanation, the input document 510 relates to the late movie, and will be described on the premise that it is composed of three sentences as shown in FIG. 4.

상술한 전제 하에 본 발명의 일 실시예에 따른 제어부(112)는 입력 문서(510)를 첫 번째 문장(521), 두 번째 문장(522) 및 세 번째 문장(523)으로 분리할 수 있다.Under the above-described premise, the controller 112 according to an embodiment of the present invention may divide the input document 510 into a first sentence 521, a second sentence 522, and a third sentence 523.

이어서 본 발명의 일 실시예에 따른 제어부(112)는 첫 번째 문장(521)을 하나 이상의 단어(531)로 분리할 수 있고, 나머지 문장(522, 523)도 이와 유사하게 단어(532, 533)로 분리할 수 있다.Subsequently, the control unit 112 according to an embodiment of the present invention may divide the first sentence 521 into one or more words 531, and the remaining sentences 522 and 523 are similar to the words 532 and 533. Can be separated by

본 발명의 일 실시예에 따른 제어부(112)는 학습된 제1 인공 신경망을 이용하여, 개별 문장 마다 문장 특징값 및 문장에 포함되는 단어 각각의 가중치인 제1 가중치를 생성할 수 있다.The control unit 112 according to an embodiment of the present invention may generate a sentence feature value for each individual sentence and a first weight that is a weight of each word included in the sentence by using the learned first artificial neural network.

전술한 바와 같이 제1 인공 신경망은 문장 특징값이 표지된 적어도 하나의 제1 학습 데이터에 기반하여, 제1 학습 데이터에 포함되는 학습 문장에 포함된 적어도 하나의 단어와 문장 특징값 간의 상관관계를 학습한 신경망일 수 있다. 또한 제1 인공 신경망은 학습 문장에 포함되는 적어도 하나의 단어와 적어도 하나의 단어 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다. 따라서 제1 인공 신경망에 문장을 구성하는 적어도 하나의 단어를 입력하고, 이에 대한 응답으로 문장 특징값 및 각각의 단어에 대한 가중치를 획득할 수 있다.As described above, the first artificial neural network determines the correlation between the sentence feature values and at least one word included in the learning sentence included in the first training data, based on the at least one first training data marked with the sentence feature value. It can be a learned neural network. In addition, the first artificial neural network may be a neural network that has learned a correlation between weights of at least one word and at least one word included in the training sentence. Accordingly, at least one word constituting a sentence is input to the first artificial neural network, and a sentence feature value and a weight for each word may be obtained as a response thereto.

도 5는 제어부(112)가 도 4의 첫 번째 문장(521)의 특징값(S_Feature_1) 및 제1 가중치(W1_1)를 생성하는 과정을 설명하기 위한 도면이다.FIG. 5 is a diagram for describing a process in which the control unit 112 generates a feature value S_Feature_1 and a first weight W1_1 of the first sentence 521 of FIG. 4.

제어부(112)는 제1 인공 신경망(NN1)에 첫 번째 문장(521)으로부터 분리된 하나 이상의 단어(531)를 입력하고, 이에 대한 응답으로 특징값(S_Feature_1) 및 제1 가중치(W1_1)를 획득할 수 있다. 이때 특징값(S_Feature_1)은 문장의 특징을 반영한 값을 포함할 수 있고, 제1 가중치(W1_1)는 특징값(S_Feature_1)의 결정에 각 단어가 기여한 정도를 포함할 수 있다.The controller 112 inputs one or more words 531 separated from the first sentence 521 into the first artificial neural network NN1, and acquires a feature value (S_Feature_1) and a first weight (W1_1) in response thereto. can do. In this case, the feature value S_Feature_1 may include a value reflecting the characteristics of the sentence, and the first weight W1_1 may include a degree to which each word contributes to the determination of the feature value S_Feature_1.

이와 유사하게 제어부(112)는 나머지 문장(522, 523)에 대해서도 특징값(S_Feature_2, S_Feature_3) 및 제1 가중치(미도시)를 산출할 수 있다.Similarly, the control unit 112 may calculate feature values S_Feature_2 and S_Feature_3 and a first weight (not shown) for the remaining sentences 522 and 523.

본 발명의 일 실시예에 따른 제어부(112)는 학습된 제2 인공 신경망(NN2)을 이용하여, 입력 문서의 문서 특징값(D_Feature) 및 문서(510)에 포함되는 문장(521, 522, 523) 각각의 가중치인 제2 가중치(W2)를 생성할 수 있다.The control unit 112 according to an embodiment of the present invention uses the learned second artificial neural network (NN2), the document feature value (D_Feature) of the input document and the sentences 521, 522, 523 included in the document 510. ) A second weight W2, which is each weight, may be generated.

이때 제2 인공 신경망(NN2)은 전술한 바와 같이 문서 특징값이 표지된 적어도 하나의 제2 학습 데이터에 기반하여, 제2 학습 데이터에 포함되는 학습 문서에 포함된 적어도 하나의 문장과 상기 문서 특징값 간의 상관관계를 학습한 신경망일 수 있다. 또한 제2 인공 신경망(NN2)은 학습 문서에 포함되는 적어도 하나의 문장과 적어도 하나의 문장 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다.At this time, the second artificial neural network (NN2) is based on at least one second training data marked with a document feature value as described above, and at least one sentence included in the training document included in the second training data and the document feature It may be a neural network that has learned the correlation between values. In addition, the second artificial neural network NN2 may be a neural network that has learned a correlation between weights of at least one sentence and at least one sentence included in the training document.

도 6은 제어부(112)가 입력 문서의 특징값(D_Feature) 및 제2 가중치(W2)를 생성하는 과정을 설명하기 위한 도면이다.6 is a diagram for explaining a process in which the controller 112 generates a feature value (D_Feature) and a second weight (W2) of an input document.

제어부(112)는 제2 인공 신경망(NN2)에 각 문장의 특징값(S_Feature_1, S_Feature_2, S_Feature_3)을 입력하고, 이에 대한 응답으로 문서 특징값(D_Feature) 및 제2 가중치(W2)를 획득할 수 있다. 이때 문서 특징값(D_Feature)은 문서의 특징을 반영한 값을 포함할 수 있고, 제2 가중치(W2)는 문서 특징값(D_Feature)의 결정에 각 문장이 기여한 정도를 포함할 수 있다.The control unit 112 may input feature values (S_Feature_1, S_Feature_2, S_Feature_3) of each sentence into the second artificial neural network (NN2), and obtain document feature values (D_Feature) and second weights (W2) in response thereto. have. In this case, the document feature value D_Feature may include a value reflecting the characteristics of the document, and the second weight W2 may include a degree to which each sentence contributes to the determination of the document feature value D_Feature.

본 발명의 일 실시예에 따른 제어부(112)는 제2 인공 신경망(NN2)에 의해 생성된 문서 특징값(D_Feature)에 기초하여 입력 문서의 분류에 관한 분류 정보(Class)를 생성할 수 있다.The controller 112 according to an embodiment of the present invention may generate classification information Class regarding classification of an input document based on the document feature value D_Feature generated by the second artificial neural network NN2.

가령 도 4에 도시된 바와 같이 입력 문서(510)가 영화 후기에 관한 것인 경우 제어부(112)는 입력 문서(510)가 해당 영화에 대한 긍적적인 후기인지 또는 부정적인 후기인지에 관한 정보를 포함하는 분류 정보(Class)를 생성할 수 있다. 예를 들어 제어부(112)는 도 4의 입력 문서(510)를 긍정적 후기로 분류하는 분류 정보를 생성할 수 있다.For example, as shown in FIG. 4, when the input document 510 relates to a movie review, the controller 112 includes information on whether the input document 510 is a positive review or a negative review of the movie. You can create classification information (Class). For example, the controller 112 may generate classification information for classifying the input document 510 of FIG. 4 as a positive review.

물론 제어부(112)는 문서 작성자의 성별, 문서 작성자의 연령대와 같은 다양한 기준에 따라 입력 문서(510)를 분류하여 분류 정보를 생성할 수도 있다. 다만 이와 같은 분류기준은 예시적인것으로 본 발명의 사상이 이에 한정되는 것은 아니다.Of course, the controller 112 may generate classification information by classifying the input document 510 according to various criteria such as the document creator's gender and the document creator's age group. However, such classification criteria are exemplary, and the spirit of the present invention is not limited thereto.

본 발명의 일 실시예에 따른 제어부(112)는 전술한 과정에 의해 산출된 제1 가중치(W1_1 등)와 제2 가중치(W2) 중 적어도 하나를 참조하여, 분류 정보의 생성 이유(또는 분류 정보의 생성 근거)를 포함하는 설명 정보를 생성할 수 있다.The control unit 112 according to an embodiment of the present invention refers to at least one of the first weight (W1_1, etc.) and the second weight (W2) calculated by the above-described process, and the reason for generating the classification information (or classification information). Descriptive information including (the basis for creating) can be generated.

도 7은 본 발명의 일 실시예에 따른 제어부(112)가 설명 정보를 생성하는 과정을 설명하기 위한 도면이다.7 is a diagram for describing a process of generating description information by the controller 112 according to an embodiment of the present invention.

설명의 편의를 위해서, 제어부(112)가 도 4에 도시된 입력 문서(510)에 대해서 제1 가중치(W1) 및 제2 가중치(W2)를 산출한 결과가 도 7에 도시된 바와 같으며, 제어부(112)가 입력 문서(510)를 '긍정적 후기'(또는 제1 항목)로 분류하였음을 전제로 설명한다.For convenience of explanation, the result of calculating the first weight W1 and the second weight W2 for the input document 510 shown in FIG. 4 by the control unit 112 is as shown in FIG. 7, The description will be made on the premise that the control unit 112 classified the input document 510 as a'positive review' (or first item).

상술한 가정 하에 본 발명의 일 실시예에 따른 제어부(112)는 입력 문서(510)를 제1 항목(긍정적 후기)으로 분류하는데 기여도가 높은 하나 이상의 단어를 결정할 수 있다. 이를 위해 제어부(112)는 제1 가중치(W1)를 참조하여, 각 단어의 가중치를 결정할 수 있다. 또한 제어부(112)는 제2 가중치(W2)를 참조하여, 각 단어가 포함된 문장의 가중치를 결정할 수 있다. 제어부(112)는 각 단어의 가중치 및 각 단어가 포함된 문장의 가중치에 기초하여 각 단어의 기여도(Wtot)를 산출할 수 있다. 제어부(112)는 산출된 기여도를 참조하여 입력 문서(510)를 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 단어를 결정할 수 있다. Based on the above-described assumption, the controller 112 according to an embodiment of the present invention may determine one or more words with a high contribution to classifying the input document 510 as a first item (positive review). To this end, the controller 112 may determine a weight of each word by referring to the first weight W1. Also, the controller 112 may determine a weight of a sentence including each word with reference to the second weight W2. The controller 112 may calculate the contribution Wtot of each word based on the weight of each word and the weight of a sentence including each word. The controller 112 may determine one or more words with a high contribution in classifying the input document 510 as a first item with reference to the calculated contribution level.

가령 제어부(112)는 'delightful'이라는 단어에 대해서, 제1 가중치(W1)를 참조하여 '단어의 가중치'를 결정하고, 제2 가중치(W2)를 참조하여 해당 단어가 포함된 '문장의 가중치'를 결정할 수 있다. 또한 제어부(112)는 산출된 '단어의 가중치' 및 '문장의 가중치'에 기초하여 'delightful'이라는 단어가 '긍정적 후기'라는 분류 정보를 생성하는데 기여한 기여도(0.318014)를 산출할 수 있다.For example, for the word'delightful', the controller 112 determines the'weight of the word' with reference to the first weight W1, and the'weight of the sentence containing the word' with reference to the second weight W2 'Can be determined. In addition, the controller 112 may calculate a contribution degree (0.318014) that contributed to the generation of classification information that the word'delightful' is'positive reviews' based on the calculated'word weight' and'text weight'.

본 발명의 일 실시예에서, 제어부(112)는 기여도가 높은 상위 n개(n은 자연수)의 단어가 포함되도록 설명 정보를 생성할 수 있다.In an embodiment of the present invention, the controller 112 may generate description information such that the high-order n words (n is a natural number) with a high contribution are included.

한편 제어부(112)는 입력 문서(510)를 제1 항목(긍정적 후기)으로 분류하는데 기여도가 높은 하나 이상의 문장을 결정할 수도 있다. 이를 위해 제어부(112)는 각 문장에 포함된 하나 이상의 단어들의 제1 가중치(W1)를 참조하여 각 문장의 제3 가중치를 결정할 수 있다. 즉 제어부(112)는 포함된 단어들의 가중치에 기반하여 각 문장 전체의 가중치인 제3 가중치를 결정할 수 있다. Meanwhile, the controller 112 may determine one or more sentences with a high contribution to classifying the input document 510 as a first item (positive review). To this end, the controller 112 may determine a third weight of each sentence by referring to the first weight W1 of one or more words included in each sentence. That is, the controller 112 may determine a third weight, which is a weight of the entire sentence, based on the weights of the included words.

또한 제어부(112)는 제2 가중치(W2)를 참조하여, 각 문장의 제4 가중치를 결정할 수 있다. 제어부(112)는 상술한 과정에 의해 산출된 제3 가중치 및 상기 제4 가중치에 기초하여 각 문장의 기여도를 산출할 수 있다. 제어부(112)는 산출된 기여도를 참조하여 입력 문서(510)를 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 문장을 결정할 수 있다. In addition, the controller 112 may determine the fourth weight of each sentence by referring to the second weight W2. The controller 112 may calculate a contribution degree of each sentence based on the third weight and the fourth weight calculated by the above-described process. The controller 112 may determine one or more sentences with a high contribution in classifying the input document 510 as a first item with reference to the calculated contribution level.

가령 제어부(112)는 'This is a delightful film.'이라는 문장에 대해서, 문장에 포함된 단어들의 제1 가중치(W1)를 참조하여 '구성 단어에 기반한 가중치'인 제3 가중치를 결정할 수 있다. 또한 제어부(112)는 '문장 자체의 가중치'인 제2 가중치(W2)를 참조하여, 해당 문장의 제4 가중치를 결정할 수 있다.For example, for the sentence'This is a delightful film.', the controller 112 may determine a third weight, which is a'weight based on the composition word', with reference to the first weight W1 of words included in the sentence. In addition, the controller 112 may determine a fourth weight of a corresponding sentence by referring to the second weight W2, which is a'weight of the sentence itself'.

제어부(112)는 산출된 제3 가중치 및 제4 가중치에 기초하여, 'This is a delightful film.'이라는 문장이 '긍정적 후기'라는 분류 정보를 생성하는데 기여한 기여도를 산출할 수 있다.Based on the calculated third and fourth weights, the controller 112 may calculate a contribution that contributes to the generation of classification information such as'This is a delightful film.' by the sentence'This is a delightful film.'

본 발명의 일 실시예에서, 제어부(112)는 기여도가 높은 상위 m개(m은 자연수)의 문장이 포함되도록 설명 정보를 생성할 수 있다.In an embodiment of the present invention, the control unit 112 may generate description information such that upper m (m is a natural number) sentences with a high contribution are included.

본 발명의 일 실시예에 따른 제어부(112)는 생성된 분류 정보와 함께 생성된 설명정보를 제공할 수 있다.The control unit 112 according to an embodiment of the present invention may provide the generated description information together with the generated classification information.

이로써 본 발명은 입력 분서에 대한 분류 정보뿐만 아니라, 분류의 근거를 명확하게 제시할 수 있다.Accordingly, the present invention can clearly present not only classification information for the input analysis, but also the basis for classification.

도 8은 본 발명의 일 실시예에 따른 문서 분류 장치(110)에 의해 수행되는 문서 분류 방법을 설명하기 위한 흐름도이다. 이하에서는 도 1 내지 도 7에서 설명한 내용과 중복하는 내용의 설명은 생략하되, 도 1 내지 도 7을 함께 참조하여 설명한다.8 is a flowchart illustrating a document classification method performed by the document classification apparatus 110 according to an embodiment of the present invention. Hereinafter, descriptions of contents overlapping with those described in FIGS. 1 to 7 will be omitted, but will be described with reference to FIGS. 1 to 7.

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 입력 문서를 문장 단위로 분리하여 적어도 하나의 문장을 생성할 수 있다.(S81) 또한 문서 분류 장치(110)는 생성된 적어도 하나의 문장 각각을 단어 단위로 분리하여 적어도 하나의 단어를 생성할 수 있다.(S82)The document classification apparatus 110 according to an embodiment of the present invention may generate at least one sentence by separating the input document into sentences. (S81) In addition, the document classification apparatus 110 may generate at least one sentence. At least one word may be generated by dividing each into word units (S82).

다시 도 4를 참조하여, 본 발명의 일 실시예에 따른 문서 분류 장치(110)가 입력 문서(510)로부터 적어도 하나의 문장(520) 및 적어도 하나의 단어(530)를 분리하는 과정을 설명한다. 설명의 편의를 위해서 입력 문서(510)는 영화 후기에 관한 것으로, 도 4에 도시된 바와 같이 3개의 문장으로 구성되는 것을 전제로 설명한다. Referring again to FIG. 4, a process of separating at least one sentence 520 and at least one word 530 from the input document 510 by the document classification apparatus 110 according to an embodiment of the present invention will be described. . For convenience of explanation, the input document 510 relates to the late movie, and will be described on the premise that it is composed of three sentences as shown in FIG. 4.

상술한 전제 하에 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 입력 문서(510)를 첫 번째 문장(521), 두 번째 문장(522) 및 세 번째 문장(523)으로 분리할 수 있다.Under the above-described premise, the document classification apparatus 110 according to an embodiment of the present invention may divide the input document 510 into a first sentence 521, a second sentence 522, and a third sentence 523. .

이어서 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 첫 번째 문장(521)을 하나 이상의 단어(531)로 분리할 수 있고, 나머지 문장(522, 523)도 이와 유사하게 단어(532, 533)로 분리할 수 있다.Subsequently, the document classification apparatus 110 according to an embodiment of the present invention may divide the first sentence 521 into one or more words 531, and the remaining sentences 522 and 523 may be similarly divided into words 532, 533).

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 학습된 제1 인공 신경망을 이용하여, 개별 문장 마다 문장 특징값 및 문장에 포함되는 단어 각각의 가중치인 제1 가중치를 생성할 수 있다.(S83)The document classification apparatus 110 according to an embodiment of the present invention may generate a sentence feature value for each individual sentence and a first weight, which is a weight of each word included in the sentence, using the learned first artificial neural network. (S83)

전술한 바와 같이 제1 인공 신경망은 문장 특징값이 표지된 적어도 하나의 제1 학습 데이터에 기반하여, 제1 학습 데이터에 포함되는 학습 문장에 포함된 적어도 하나의 단어와 문장 특징값 간의 상관관계를 학습한 신경망일 수 있다. 또한 제1 인공 신경망은 학습 문장에 포함되는 적어도 하나의 단어와 적어도 하나의 단어 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다. 따라서 제1 인공 신경망에 문장을 구성하는 적어도 하나의 단어를 입력하고, 이에 대한 응답으로 문장 특징값 및 각각의 단어에 대한 가중치를 획득할 수 있다.As described above, the first artificial neural network determines the correlation between the sentence feature values and at least one word included in the learning sentence included in the first training data, based on the at least one first training data marked with the sentence feature value. It can be a learned neural network. In addition, the first artificial neural network may be a neural network that has learned a correlation between weights of at least one word and at least one word included in the training sentence. Accordingly, at least one word constituting a sentence is input to the first artificial neural network, and a sentence feature value and a weight for each word may be obtained as a response thereto.

다시 도 5를 참조하면, 문서 분류 장치(110)는 제1 인공 신경망(NN1)에 첫 번째 문장(521)으로부터 분리된 하나 이상의 단어(531)를 입력하고, 이에 대한 응답으로 특징값(S_Feature_1) 및 제1 가중치(W1_1)를 획득할 수 있다. 이때 특징값(S_Feature_1)은 문장의 특징을 반영한 값을 포함할 수 있고, 제1 가중치(W1_1)는 특징값(S_Feature_1)의 결정에 각 단어가 기여한 정도를 포함할 수 있다. 이와 유사하게 문서 분류 장치(110)는 나머지 문장(522, 523)에 대해서도 특징값(S_Feature_2, S_Feature_3) 및 제1 가중치(미도시)를 산출할 수 있다.Referring to FIG. 5 again, the document classification apparatus 110 inputs one or more words 531 separated from the first sentence 521 into the first artificial neural network NN1, and a feature value S_Feature_1 in response thereto. And a first weight W1_1. In this case, the feature value S_Feature_1 may include a value reflecting the characteristics of the sentence, and the first weight W1_1 may include a degree to which each word contributes to the determination of the feature value S_Feature_1. Similarly, the document classification apparatus 110 may calculate feature values S_Feature_2 and S_Feature_3 and a first weight (not shown) for the remaining sentences 522 and 523.

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 학습된 제2 인공 신경망(NN2)을 이용하여, 입력 문서의 문서 특징값(D_Feature) 및 문서(510)에 포함되는 문장(521, 522, 523) 각각의 가중치인 제2 가중치(W2)를 생성할 수 있다.(S84)The document classification apparatus 110 according to an embodiment of the present invention uses the learned second artificial neural network NN2 to determine the document feature value D_Feature of the input document and the sentences 521 and 522 included in the document 510. , 523) A second weight W2, which is each weight, may be generated (S84).

이때 제2 인공 신경망(NN2)은 전술한 바와 같이 문서 특징값이 표지된 적어도 하나의 제2 학습 데이터에 기반하여, 제2 학습 데이터에 포함되는 학습 문서에 포함된 적어도 하나의 문장과 상기 문서 특징값 간의 상관관계를 학습한 신경망일 수 있다. 또한 제2 인공 신경망(NN2)은 학습 문서에 포함되는 적어도 하나의 문장과 적어도 하나의 문장 각각의 가중치 간의 상관관계를 학습한 신경망일 수 있다.At this time, the second artificial neural network (NN2) is based on at least one second training data marked with a document feature value as described above, and at least one sentence included in the training document included in the second training data and the document feature It may be a neural network that has learned the correlation between values. In addition, the second artificial neural network NN2 may be a neural network that has learned a correlation between weights of at least one sentence and at least one sentence included in the training document.

도 6을 참조하면, 문서 분류 장치(110)는 제2 인공 신경망(NN2)에 각 문장의 특징값(S_Feature_1, S_Feature_2, S_Feature_3)을 입력하고, 이에 대한 응답으로 문서 특징값(D_Feature) 및 제2 가중치(W2)를 획득할 수 있다. 이때 문서 특징값(D_Feature)은 문서의 특징을 반영한 값을 포함할 수 있고, 제2 가중치(W2)는 문서 특징값(D_Feature)의 결정에 각 문장이 기여한 정도를 포함할 수 있다.6, the document classification apparatus 110 inputs feature values (S_Feature_1, S_Feature_2, S_Feature_3) of each sentence into a second artificial neural network (NN2), and in response thereto, a document feature value (D_Feature) and a second The weight W2 can be obtained. In this case, the document feature value D_Feature may include a value reflecting the characteristics of the document, and the second weight W2 may include a degree to which each sentence contributes to the determination of the document feature value D_Feature.

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 제2 인공 신경망(NN2)에 의해 생성된 문서 특징값(D_Feature)에 기초하여 입력 문서의 분류에 관한 분류 정보(Class)를 생성할 수 있다.(S85)The document classification apparatus 110 according to an embodiment of the present invention may generate classification information (Class) regarding classification of an input document based on the document feature value (D_Feature) generated by the second artificial neural network (NN2). Yes. (S85)

가령 도 4에 도시된 바와 같이 입력 문서(510)가 영화 후기에 관한 것인 경우 문서 분류 장치(110)는 입력 문서(510)가 해당 영화에 대한 긍적적인 후기인지 또는 부정적인 후기인지에 관한 정보를 포함하는 분류 정보(Class)를 생성할 수 있다. 예를 들어 문서 분류 장치(110)는 도 4의 입력 문서(510)를 긍정적 후기로 분류하는 분류 정보를 생성할 수 있다.For example, as shown in FIG. 4, when the input document 510 relates to a movie review, the document classification device 110 retrieves information on whether the input document 510 is a positive review or a negative review of the movie. Included classification information (Class) can be generated. For example, the document classification apparatus 110 may generate classification information for classifying the input document 510 of FIG. 4 as a positive review.

물론 문서 분류 장치(110)는 문서 작성자의 성별, 문서 작성자의 연령대와 같은 다양한 기준에 따라 입력 문서(510)를 분류하여 분류 정보를 생성할 수도 있다. 다만 이와 같은 분류기준은 예시적인것으로 본 발명의 사상이 이에 한정되는 것은 아니다.Of course, the document classification apparatus 110 may generate classification information by classifying the input document 510 according to various criteria such as the document creator's gender and the document creator's age group. However, such classification criteria are exemplary, and the spirit of the present invention is not limited thereto.

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 전술한 과정에 의해 산출된 제1 가중치(W1_1 등)와 제2 가중치(W2) 중 적어도 하나를 참조하여, 분류 정보의 생성 이유(또는 분류 정보의 생성 근거)를 포함하는 설명 정보를 생성할 수 있다.(S86)The document classification apparatus 110 according to an embodiment of the present invention refers to at least one of the first weight (W1_1, etc.) and the second weight (W2) calculated by the above-described process, and the reason for generating the classification information (or Descriptive information including a basis for generation of classification information) may be generated (S86).

다시 도 7을 참조하여, 본 발명의 일 실시예에 따른 문서 분류 장치(110)가 설명 정보를 생성하는 과정을 설명한다. 설명의 편의를 위해서, 문서 분류 장치(110)가 도 4에 도시된 입력 문서(510)에 대해서 제1 가중치(W1) 및 제2 가중치(W2)를 산출한 결과가 도 7에 도시된 바와 같으며, 문서 분류 장치(110)가 입력 문서(510)를 '긍정적 후기'(또는 제1 항목)로 분류하였음을 전제로 설명한다.Referring back to FIG. 7, a process of generating description information by the document classification apparatus 110 according to an embodiment of the present invention will be described. For convenience of explanation, the result of calculating the first weight W1 and the second weight W2 for the input document 510 shown in FIG. 4 by the document classification apparatus 110 is as shown in FIG. 7. In addition, description will be made on the premise that the document classification apparatus 110 classifies the input document 510 as a'positive review' (or a first item).

상술한 가정 하에 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 입력 문서(510)를 제1 항목(긍정적 후기)으로 분류하는데 기여도가 높은 하나 이상의 단어를 결정할 수 있다. 이를 위해 문서 분류 장치(110)는 제1 가중치(W1)를 참조하여, 각 단어의 가중치를 결정할 수 있다. 또한 문서 분류 장치(110)는 제2 가중치(W2)를 참조하여, 각 단어가 포함된 문장의 가중치를 결정할 수 있다. 문서 분류 장치(110)는 각 단어의 가중치 및 각 단어가 포함된 문장의 가중치에 기초하여 각 단어의 기여도(Wtot)를 산출할 수 있다. 문서 분류 장치(110)는 산출된 기여도를 참조하여 입력 문서(510)를 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 단어를 결정할 수 있다. Under the above assumption, the document classification apparatus 110 according to an embodiment of the present invention may determine one or more words having a high contribution to classifying the input document 510 as a first item (positive review). To this end, the document classification apparatus 110 may determine a weight of each word by referring to the first weight W1. In addition, the document classification apparatus 110 may determine a weight of a sentence including each word by referring to the second weight W2. The document classification apparatus 110 may calculate a contribution degree Wtot of each word based on a weight of each word and a weight of a sentence including each word. The document classification apparatus 110 may determine one or more words having a high contribution in classifying the input document 510 as a first item by referring to the calculated contribution level.

가령 문서 분류 장치(110)는 'delightful'이라는 단어에 대해서, 제1 가중치(W1)를 참조하여 '단어의 가중치'를 결정하고, 제2 가중치(W2)를 참조하여 해당 단어가 포함된 '문장의 가중치'를 결정할 수 있다. 또한 문서 분류 장치(110)는 산출된 '단어의 가중치' 및 '문장의 가중치'에 기초하여 'delightful'이라는 단어가 '긍정적 후기'라는 분류 정보를 생성하는데 기여한 기여도(0.318014)를 산출할 수 있다.For example, for the word'delightful', the document classification apparatus 110 determines the'weight of the word' with reference to the first weight W1, and the'sentence containing the word' with reference to the second weight W2 The weight of 'can be determined. In addition, the document classification apparatus 110 may calculate a contribution (0.318014) that the word'delightful' contributes to generating classification information of'positive reviews' based on the calculated'word weight' and'text weight'. .

본 발명의 일 실시예에서, 문서 분류 장치(110)는 기여도가 높은 상위 n개(n은 자연수)의 단어가 포함되도록 설명 정보를 생성할 수 있다.In an embodiment of the present invention, the document classification apparatus 110 may generate description information such that the highest n (n is a natural number) words with a high contribution are included.

한편 문서 분류 장치(110)는 입력 문서(510)를 제1 항목(긍정적 후기)으로 분류하는데 기여도가 높은 하나 이상의 문장을 결정할 수도 있다. 이를 위해 문서 분류 장치(110)는 각 문장에 포함된 하나 이상의 단어들의 제1 가중치(W1)를 참조하여 각 문장의 제3 가중치를 결정할 수 있다. 즉 문서 분류 장치(110)는 포함된 단어들의 가중치에 기반하여 각 문장 전체의 가중치인 제3 가중치를 결정할 수 있다. Meanwhile, the document classification apparatus 110 may determine one or more sentences with a high contribution to classifying the input document 510 as a first item (positive review). To this end, the document classification apparatus 110 may determine a third weight of each sentence by referring to the first weight W1 of one or more words included in each sentence. That is, the document classification apparatus 110 may determine a third weight, which is a weight of the entire sentence, based on weights of included words.

또한 문서 분류 장치(110)는 제2 가중치(W2)를 참조하여, 각 문장의 제4 가중치를 결정할 수 있다. 문서 분류 장치(110)는 상술한 과정에 의해 산출된 제3 가중치 및 상기 제4 가중치에 기초하여 각 문장의 기여도를 산출할 수 있다. 문서 분류 장치(110)는 산출된 기여도를 참조하여 입력 문서(510)를 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 문장을 결정할 수 있다. In addition, the document classification apparatus 110 may determine a fourth weight of each sentence with reference to the second weight W2. The document classification apparatus 110 may calculate a contribution degree of each sentence based on the third weight and the fourth weight calculated by the above-described process. The document classification apparatus 110 may determine one or more sentences with a high contribution in classifying the input document 510 as a first item by referring to the calculated contribution level.

가령 문서 분류 장치(110)는 'This is a delightful film.'이라는 문장에 대해서, 문장에 포함된 단어들의 제1 가중치(W1)를 참조하여 '구성 단어에 기반한 가중치'인 제3 가중치를 결정할 수 있다. 또한 문서 분류 장치(110)는 '문장 자체의 가중치'인 제2 가중치(W2)를 참조하여, 해당 문장의 제4 가중치를 결정할 수 있다.For example, the document classification apparatus 110 may determine a third weight, which is a weight based on a composition word, with reference to the first weight W1 of words included in the sentence for the sentence'This is a delightful film.' have. In addition, the document classification apparatus 110 may determine a fourth weight of a corresponding sentence by referring to the second weight W2 which is'the weight of the sentence itself'.

문서 분류 장치(110)는 산출된 제3 가중치 및 제4 가중치에 기초하여, 'This is a delightful film.'이라는 문장이 '긍정적 후기'라는 분류 정보를 생성하는데 기여한 기여도를 산출할 수 있다.The document classification apparatus 110 may calculate a contribution that contributes to the generation of classification information that the sentence “This is a delightful film.” is “positive review” based on the calculated third and fourth weights.

본 발명의 일 실시예에서, 문서 분류 장치(110)는 기여도가 높은 상위 m개(m은 자연수)의 문장이 포함되도록 설명 정보를 생성할 수 있다.In an exemplary embodiment of the present invention, the document classification apparatus 110 may generate description information such that upper m (m is a natural number) sentences with a high contribution are included.

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 생성된 분류 정보와 함께 생성된 설명정보를 제공할 수 있다.(S87)The document classification apparatus 110 according to an embodiment of the present invention may provide the generated description information together with the generated classification information (S87).

이로써 본 발명은 입력 분서에 대한 분류 정보뿐만 아니라, 분류의 근거를 명확하게 제시할 수 있다.Accordingly, the present invention can clearly present not only classification information for the input analysis, but also the basis for classification.

도 9은 본 발명의 일 실시예에 따라 분류 정보 및 설명 정보가 사용자 단말(200)에 표시된 화면(610)의 예시이다.9 is an example of a screen 610 in which classification information and description information are displayed on the user terminal 200 according to an embodiment of the present invention.

전술한 바와 같이 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 문서의 분류 결과(621, 622)와 함께 설명 정보(가령 기여도가 높은 단어(612) 및 기여도가 높은 문장(611))를 제공할 수 있다.As described above, the document classification apparatus 110 according to an embodiment of the present invention includes description information (for example, a word 612 having a high contribution and a sentence 611 having a high contribution) together with the classification results 621 and 622 of the document. Can provide.

본 발명의 일 실시예에 따른 문서 분류 장치(110)는 입력 문서를 제1 항목으로 분류하는데 기여도가 높은 단어(612)를 제1 표시 방식으로 표시되도록 제공할 수 있다. The document classification apparatus 110 according to an embodiment of the present invention may provide a word 612 having a high contribution to classifying an input document as a first item to be displayed in a first display manner.

또한 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 입력 문서를 제1 항목으로 분류하는데 기여도가 높은 문장(611)을 제2 표시 방식으로 표시되도록 제공할 수 있다. In addition, the document classification apparatus 110 according to an embodiment of the present invention may provide a sentence 611 having a high contribution to classifying an input document as a first item to be displayed in a second display manner.

이때 제1 표시 방식 및 제2 표시 방식은 서로 구분되는 표시 방식으로, 입력 문서의 나머지 내용과 구분되도록 표시하는방식일 수 있다.In this case, the first display method and the second display method may be a display method to be distinguished from each other, and may be a method of displaying to be distinguished from the rest of the input document.

한편 본 발명의 일 실시예에 따른 문서 분류 장치(110)는 문서의 분류 결과(621)와 함께, 해당 결과의 신뢰도(622)를 함께 제공할 수 있다. 이때 신뢰도(622)는 전술한 제1 가중치(W1) 및 제2 가중치(W2)에 기초하여 산출되는 값일 수 있다.Meanwhile, the document classification apparatus 110 according to an embodiment of the present invention may provide both a classification result 621 of a document and a reliability 622 of the result. In this case, the reliability 622 may be a value calculated based on the first weight W1 and the second weight W2 described above.

이상 설명된 본 발명에 따른 실시예는 컴퓨터 상에서 다양한 구성요소를 통하여 실행될 수 있는 컴퓨터 프로그램의 형태로 구현될 수 있으며, 이와 같은 컴퓨터 프로그램은 컴퓨터로 판독 가능한 매체에 기록될 수 있다. 이때, 매체는 컴퓨터로 실행 가능한 프로그램을 저장하는 것일 수 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. The embodiment according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, and such a computer program may be recorded in a computer-readable medium. In this case, the medium may store a program executable by a computer. Examples of media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, magnetic-optical media such as floptical disks, and And ROM, RAM, flash memory, and the like may be configured to store program instructions.

한편, 상기 컴퓨터 프로그램은 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 프로그램의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함될 수 있다.Meanwhile, the computer program may be specially designed and configured for the present invention, or may be known and usable to those skilled in the computer software field. Examples of the computer program may include not only machine language codes produced by a compiler but also high-level language codes that can be executed by a computer using an interpreter or the like.

본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.The specific implementations described in the present invention are examples, and do not limit the scope of the present invention in any way. For brevity of the specification, descriptions of conventional electronic configurations, control systems, software, and other functional aspects of the systems may be omitted. In addition, the connection or connection members of the lines between the components shown in the drawings exemplarily represent functional connections and/or physical or circuit connections, and in an actual device, various functional connections that can be replaced or additionally It may be referred to as a connection, or circuit connections. In addition, if there is no specific mention such as "essential", "important", etc., it may not be an essential component for the application of the present invention.

따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the above-described embodiments and should not be defined, and all ranges equivalent to or equivalently changed from the claims to be described later as well as the claims to be described later are the scope of the spirit of the present invention. It will be said to belong to.

100: 서버
110: 문서 분류 장치
111: 통신부
112: 제어부
113: 메모리
200: 사용자 단말
400: 통신망
100: server
110: document sorting device
111: communication department
112: control unit
113: memory
200: user terminal
400: communication network

Claims (3)

설명이 부가된 문서 분류 방법에 있어서,
입력 문서를 적어도 하나의 문장으로 분리하는 단계;
상기 적어도 하나의 문장 각각을 적어도 하나의 단어로 분리하는 단계;
학습된 제1 인공 신경망을 이용하여, 상기 적어도 하나의 문장 각각에 대한 상기 적어도 하나의 단어로부터 상기 적어도 하나의 문장 각각에 대응되는 문장 특징값 및 상기 적어도 하나의 문장 각각에 포함된 적어도 하나의 단어 각각의 가중치인 제1 가중치를 생성하는 단계;
학습된 제2 인공 신경망을 이용하여, 상기 적어도 하나의 문장 각각에 대한 문장 특징값으로부터 상기 입력 문서에 대응되는 문서 특징값 및 상기 적어도 하나의 문장 각각의 가중치인 제2 가중치를 생성하는 단계;
상기 문서 특징값에 기초하여 상기 입력 문서를 복수의 분류 항목 중 어느하나의 항목인 제1 항목으로 분류하는 단계; 및
상기 입력 문서를 상기 제1 항목으로 분류하는데 기여도가 높은 하나 이상의 단어 및 문장 중 적어도 하나를 포함하는 설명 정보를 생성하는 단계;를 포함하는, 설명이 부가된 문서 분류 방법.
In the document classification method with an explanation,
Dividing the input document into at least one sentence;
Dividing each of the at least one sentence into at least one word;
Using the learned first artificial neural network, a sentence feature value corresponding to each of the at least one sentence from the at least one word for each of the at least one sentence and at least one word included in each of the at least one sentence Generating a first weight that is each weight;
Generating a document feature value corresponding to the input document and a second weight that is a weight of each of the at least one sentence from the sentence feature value for each of the at least one sentence using the learned second artificial neural network;
Classifying the input document into a first item that is any one of a plurality of classification items based on the document feature value; And
Generating description information including at least one of one or more words and sentences having a high contribution to classifying the input document into the first item; including, a document classification method with a description added.
청구항 1에 있어서
상기 설명 정보를 생성하는 단계는
상기 제1 가중치를 참조하여, 제1 단어의 가중치를 결정하는 단계;
상기 제2 가중치를 참조하여, 상기 제1 단어가 포함된 문장의 가중치를 결정하는 단계; 및
상기 제1 단어의 가중치 및 상기 제1 단어가 포함된 문장의 가중치에 기초하여 상기 제1 단어의 기여도를 산출하는 단계;를 포함하는, 설명이 부가된 문서 분류 방법.
The method according to claim 1
The step of generating the description information
Determining a weight of a first word by referring to the first weight;
Determining a weight of a sentence including the first word by referring to the second weight; And
Comprising the contribution of the first word based on the weight of the first word and the weight of the sentence including the first word; Containing, a document classification method with added description.
청구항 1에 있어서
상기 설명 정보를 생성하는 단계는
제1 문장에 포함된 하나 이상의 단어들의 제1 가중치를 참조하여, 상기 제1 문장의 제3 가중치를 결정하는 단계;
상기 제2 가중치를 참조하여, 제1 문장의 제4 가중치를 결정하는 단계; 및
제3 가중치 및 상기 제4 가중치에 기초하여 상기 제1 문장의 기여도를 산출하는 단계;를 포함하는, 설명이 부가된 문서 분류 방법.
The method according to claim 1
The step of generating the description information
Determining a third weight of the first sentence by referring to a first weight of one or more words included in the first sentence;
Determining a fourth weight of a first sentence by referring to the second weight; And
Comprising a third weight and the fourth weight based on the contribution of the first sentence; Containing, a description-added document classification method.
KR1020200144584A 2018-05-31 2020-11-02 A document classification method with an explanation that provides words and sentences with high contribution in document classification KR102264234B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180062903 2018-05-31
KR20180062903 2018-05-31
KR1020190064066A KR102264232B1 (en) 2018-05-31 2019-05-30 An explanation-added document classification method by an artificial neural network that learns the correlation between words, sentence feature values, and word weights

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190064066A Division KR102264232B1 (en) 2018-05-31 2019-05-30 An explanation-added document classification method by an artificial neural network that learns the correlation between words, sentence feature values, and word weights

Publications (2)

Publication Number Publication Date
KR20200127947A true KR20200127947A (en) 2020-11-11
KR102264234B1 KR102264234B1 (en) 2021-06-14

Family

ID=69003231

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020190064066A KR102264232B1 (en) 2018-05-31 2019-05-30 An explanation-added document classification method by an artificial neural network that learns the correlation between words, sentence feature values, and word weights
KR1020200144583A KR102264233B1 (en) 2018-05-31 2020-11-02 An explanation-added document classification method by an artificial neural network that learns the correlation between sentences, document feature values, and sentence weights
KR1020200144584A KR102264234B1 (en) 2018-05-31 2020-11-02 A document classification method with an explanation that provides words and sentences with high contribution in document classification
KR1020200144585A KR20200127948A (en) 2018-05-31 2020-11-02 Method of providing document classification information with description

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020190064066A KR102264232B1 (en) 2018-05-31 2019-05-30 An explanation-added document classification method by an artificial neural network that learns the correlation between words, sentence feature values, and word weights
KR1020200144583A KR102264233B1 (en) 2018-05-31 2020-11-02 An explanation-added document classification method by an artificial neural network that learns the correlation between sentences, document feature values, and sentence weights

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020200144585A KR20200127948A (en) 2018-05-31 2020-11-02 Method of providing document classification information with description

Country Status (1)

Country Link
KR (4) KR102264232B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102456409B1 (en) * 2019-12-23 2022-10-19 주식회사 제로원에이아이 Method for determining a confidence level of inference data produced by artificial neural network
KR102418260B1 (en) * 2020-05-27 2022-07-06 삼성생명보험주식회사 Method for analyzing customer consultation record
KR102456646B1 (en) * 2020-09-28 2022-10-21 주식회사 마인즈랩 Method and computer program for classifying the intent of strings
KR102217213B1 (en) * 2020-10-27 2021-02-18 장경애 Service providing apparatus and method for managing contents based on deep learning
KR102342580B1 (en) * 2021-07-16 2021-12-24 주식회사 애자일소다 Apparatus and method for processing structured data using deep learning algorithms
KR102607387B1 (en) * 2021-09-15 2023-11-30 중소기업은행 Message verification method, apparatus and computer program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003256441A (en) * 2002-03-01 2003-09-12 Hewlett Packard Co <Hp> Document classification method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864401B1 (en) * 2017-11-29 2018-06-04 주식회사 피씨엔 Digital timeline output system for support of fusion of traditional culture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003256441A (en) * 2002-03-01 2003-09-12 Hewlett Packard Co <Hp> Document classification method and apparatus

Also Published As

Publication number Publication date
KR20190137008A (en) 2019-12-10
KR102264232B1 (en) 2021-06-14
KR102264234B1 (en) 2021-06-14
KR20200127948A (en) 2020-11-11
KR20200127946A (en) 2020-11-11
KR102264233B1 (en) 2021-06-14

Similar Documents

Publication Publication Date Title
KR102264234B1 (en) A document classification method with an explanation that provides words and sentences with high contribution in document classification
US20200342177A1 (en) Capturing rich response relationships with small-data neural networks
US10318405B2 (en) Applying consistent log levels to application log messages
US11182557B2 (en) Driving intent expansion via anomaly detection in a modular conversational system
GB2568363A (en) Rule determination for black-box machine-learning models
GB2573189A (en) Generating a topic-based summary of textual content
US10936950B1 (en) Processing sequential interaction data
EP3518142A1 (en) Cross-lingual text classification using character embedded data structures
US11720757B2 (en) Example based entity extraction, slot filling and value recommendation
KR20210023452A (en) Apparatus and method for review analysis per attribute
US11669687B1 (en) Systems and methods for natural language processing (NLP) model robustness determination
CN113011186A (en) Named entity recognition method, device, equipment and computer readable storage medium
KR20210138266A (en) A method for extracting keywords from texts based on deep learning
CN111831826A (en) Training method, classification method and device of cross-domain text classification model
CN115455171A (en) Method, device, equipment and medium for mutual retrieval and model training of text videos
US11531927B2 (en) Categorical data transformation and clustering for machine learning using natural language processing
KR102072708B1 (en) A method and computer program for inferring genre of a text contents
KR102408188B1 (en) Intent classifier creation interface provision method and computer program
KR102456646B1 (en) Method and computer program for classifying the intent of strings
CN110688486A (en) Relation classification method and model
US11853702B2 (en) Self-supervised semantic shift detection and alignment
KR102607387B1 (en) Message verification method, apparatus and computer program
US20240053964A1 (en) Automatic generation of user experience mockups using adaptive gaze tracking
CN114511023B (en) Classification model training method and classification method
CN114492669B (en) Keyword recommendation model training method, recommendation device, equipment and medium

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant