KR20200126469A - Method for fabricating a thin film and a thin film fabricated by the same - Google Patents

Method for fabricating a thin film and a thin film fabricated by the same Download PDF

Info

Publication number
KR20200126469A
KR20200126469A KR1020190049938A KR20190049938A KR20200126469A KR 20200126469 A KR20200126469 A KR 20200126469A KR 1020190049938 A KR1020190049938 A KR 1020190049938A KR 20190049938 A KR20190049938 A KR 20190049938A KR 20200126469 A KR20200126469 A KR 20200126469A
Authority
KR
South Korea
Prior art keywords
precursor
thin film
exposing
substrate
present
Prior art date
Application number
KR1020190049938A
Other languages
Korean (ko)
Other versions
KR102341035B1 (en
Inventor
이한보람
치 탕 응우옌
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020190049938A priority Critical patent/KR102341035B1/en
Publication of KR20200126469A publication Critical patent/KR20200126469A/en
Application granted granted Critical
Publication of KR102341035B1 publication Critical patent/KR102341035B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

According to one embodiment of the present invention, a method for forming a thin film includes the following steps of: exposing a precursor of a first substance onto a substrate; exposing a precursor of a second substance onto the substrate; and supplying reaction gas to the substrate to which the precursor of the first substance and the precursor of the second substance are exposed. Therefore, the method for forming a thin film can deposit a uniform doped thin film.

Description

박막의 형성 방법 및 이를 통해 형성된 박막{Method for fabricating a thin film and a thin film fabricated by the same}Method for fabricating a thin film and a thin film fabricated by the same}

본 발명은 박막의 형성 방법 및 이를 통해 형성된 박막에 관한 것이며, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition)을 이용한 박막의 형성 방법 및 이를 통해 형성된 박막에 관한 것이다.The present invention relates to a method of forming a thin film and a thin film formed through the method, and more particularly, to a method of forming a thin film using an atomic layer deposition method and a thin film formed through the method.

다양한 분야에서 박막을 균일하게 증착하기 위해 스퍼터링(Sputtering)법, 화학기상증착법(Chemical VaporDeposition; CVD), 원자층 증착법(Atomic Layer Deposition; ALD)등이 이용되고 있다.In order to uniformly deposit a thin film in various fields, a sputtering method, a chemical vapor deposition method (CVD), an atomic layer deposition method (ALD), and the like are used.

원자층 증착법은 원자 단위로 박막의 두께를 조절할 수 있고, 원자층 증착법으로 형성된 박막은 우수한 단차피복성(conformality)을 가진다는 점에서 다양한 분야에서 활용되고 있다. The atomic layer deposition method can control the thickness of a thin film in atomic units, and a thin film formed by the atomic layer deposition method is used in various fields in that it has excellent conformality.

그러나, 복합 조성을 가지는 박막을 증착하기 위해서는 첫번째 전구체를 노출하고, purging하고, 반응가스를 공급하고, purging하는 cycle을 여러 번 진행하고, 두번째 전구체를 노출하고, purging하고, 반응가스를 공급하고, purging하는 cycle을 여러 번 진행하는 super cycle을 진행해야 하므로 공정이 매우 복잡하다. 또한 이러한 방법으로 증착된 복합 조성의 박막은 불균일한 도핑을 가진다는 문제가 있다.However, in order to deposit a thin film having a complex composition, the cycle of exposing the first precursor, purging, supplying the reaction gas, and purging is performed several times, exposing the second precursor, purging, supplying the reaction gas, and purging. The process is very complicated because it has to proceed with a super cycle that proceeds several times. In addition, there is a problem that the thin film of the composite composition deposited by this method has non-uniform doping.

본 발명은 균일한 박막을 증착하고, 도핑 농도를 원하는 대로 조절할 수 있는 박막의 형성 방법 및 이를 통해 형성된 박막을 제공할 수 있다.The present invention can provide a thin film forming method capable of depositing a uniform thin film and controlling a doping concentration as desired, and a thin film formed through the same.

본 발명의 일 실시예에 따른 박막의 형성 방법은, 기판 상에 제1 물질의 전구체를 노출하는 단계; 상기 기판 상에 제2 물질의 전구체를 노출하는 단계; 및 상기 제1 물질의 전구체 및 상기 제2 물질의 전구체가 노출된 기판에 반응가스를 공급하는 단계를 포함할 수 있다. A method of forming a thin film according to an embodiment of the present invention includes exposing a precursor of a first material on a substrate; Exposing a precursor of a second material on the substrate; And supplying a reaction gas to the substrate on which the precursor of the first material and the precursor of the second material are exposed.

본 발명의 일 실시예에 따른 박막의 형성 방법에서, 상기 제1 물질의 전구체는 제1 리간드를 포함하고, 상기 제2 물질의 전구체는 제2 리간드를 포함하며, 상기 제1 리간드 및 상기 제2 리간드의 크기는 서로 상이할 수 있다.In the method of forming a thin film according to an embodiment of the present invention, the precursor of the first material includes a first ligand, the precursor of the second material includes a second ligand, and the first ligand and the second The size of the ligands can be different from each other.

본 발명의 일 실시예에 따른 박막의 형성 방법에서, 상기 제1 물질의 전구체를 노출하는 단계 및 상기 제2 물질의 전구체를 노출하는 단계의 순서를 조절하여 상기 박막의 조성을 조절할 수 있다.In the method of forming a thin film according to an exemplary embodiment of the present invention, the composition of the thin film may be controlled by controlling a sequence of exposing the precursor of the first material and exposing the precursor of the second material.

본 발명의 일 실시예에 따른 박막의 형성 방법에서, 상기 제1 물질의 전구체를 노출하는 단계 및 상기 제2 물질의 전구체를 노출하는 단계에서 노출 시간 및 전구체 농도 중 적어도 어느 하나를 조절하여 상기 박막의 조성을 조절할 수 있다.In the method of forming a thin film according to an embodiment of the present invention, in the step of exposing the precursor of the first material and the step of exposing the precursor of the second material, the thin film is formed by controlling at least one of an exposure time and a precursor concentration. The composition of can be adjusted.

본 발명의 일 실시예에 따른 박막은 상기 방법에 의해 형성될 수 있다.The thin film according to an embodiment of the present invention may be formed by the above method.

본 발명에서는 한 가지 반응 가스에 의해 두 전구체가 동시에 반응하여 균일한 도핑 박막을 증착할 수 있다. In the present invention, a uniform doped thin film can be deposited by simultaneously reacting two precursors with one reactive gas.

본 발명에서는 박막의 도핑 농도를 자유롭게 조절할 수 있어 다양한 분야에 적용할 수 있다.In the present invention, since the doping concentration of the thin film can be freely controlled, it can be applied to various fields.

도 1은 본 발명의 일 실시예에 따른 박막의 형성 방법을 설명하기 위한 모식도이다.
도 2는 실시예 1의 FE-SEM 이미지 및 EDS 측정 결과이다.
도 3은 실시예 2의 FE-SEM 이미지 및 EDS 측정 결과이다.
도 4는 실시예 1 및 실시예 2에 대한 XPS 분석결과이다.
1 is a schematic diagram for explaining a method of forming a thin film according to an embodiment of the present invention.
2 is an FE-SEM image and EDS measurement results of Example 1.
3 is an FE-SEM image and EDS measurement results of Example 2.
4 is an XPS analysis result for Example 1 and Example 2.

본 발명의 일 실시예에 따른 박막의 형성 방법은, 기판 상에 제1 물질의 전구체를 노출하는 단계; 상기 기판 상에 제2 물질의 전구체를 노출하는 단계; 및 상기 제1 물질의 전구체 및 상기 제2 물질의 전구체가 노출된 기판에 반응가스를 공급하는 단계를 포함할 수 있다. A method of forming a thin film according to an embodiment of the present invention includes exposing a precursor of a first material on a substrate; Exposing a precursor of a second material on the substrate; And supplying a reaction gas to the substrate on which the precursor of the first material and the precursor of the second material are exposed.

제1 물질의 전구체를 노출하는 단계에서는, 제1 물질의 전구체가 기판의 표면에 흡착될 수 있다. 이후, 제1 물질의 전구체의 흡착이 포화되고 여분을 제거(purge)할 수 있다.In the step of exposing the precursor of the first material, the precursor of the first material may be adsorbed on the surface of the substrate. Thereafter, the adsorption of the precursor of the first material is saturated and the excess may be purged.

제2 물질의 전구체를 노출하는 단계에서는, 상기 제1 물질의 전구체가 흡착된 기판 상에 제2 물질의 전구체를 노출하여 제2 물질의 전구체가 기판의 표면에 흡착될 수 있다. 이때, 제2 물질의 전구체는 제1 물질의 전구체 사이 사이에 흡착될 수 있다. 이는, 제1 물질의 전구체 및 제2 물질의 전구체에 포함되는 리간드 크기가 서로 상이하여, 제2 물질의 전구체(후속 전구체)의 흡착을 조절할 수 있다. 이러한 리간드 크기 차이를 이용하여 제1 물질의 전구체 및 제2 물질의 전구체가 기판 상에 균일하게 흡착될 수 있다. 즉, 제1 물질의 전구체는 제1 리간드를 포함하고, 제2 물질의 전구체는 제2 리간드를 포함하며, 제1 리간드 및 제2 리간드의 크기 차이로 인해 제2 물질의 전구체는 제1 물질의 전구체 사이 사이에 흡착될 수 있다. In the step of exposing the precursor of the second material, the precursor of the second material may be adsorbed on the surface of the substrate by exposing the precursor of the second material on the substrate on which the precursor of the first material is adsorbed. In this case, the precursor of the second material may be adsorbed between the precursors of the first material. This may control the adsorption of the precursor of the second material (following precursor) because the size of the ligand included in the precursor of the first material and the precursor of the second material are different from each other. Using this ligand size difference, the precursor of the first material and the precursor of the second material may be uniformly adsorbed on the substrate. That is, the precursor of the first material includes the first ligand, the precursor of the second material includes the second ligand, and the precursor of the second material is due to the difference in size between the first ligand and the second ligand. It can be adsorbed between precursors.

또한, 제1 리간드 및/또는 제2 리간드의 크기를 조절하여 제1 물질 및/또는 제2 물질의 도핑 농도를 다르게 조절할 수 있다. 예를 들면, 동일한 제1 물질에 대해 리간드 크기가 서로 다른 전구체를 통해 제2 물질의 전구체가 흡착될 수 있는 공간의 크기가 달라질 수 있고, 이를 통해 박막의 조성을 조절할 수 있다. In addition, the doping concentration of the first material and/or the second material may be differently adjusted by adjusting the size of the first ligand and/or the second ligand. For example, the size of a space in which a precursor of a second material can be adsorbed through a precursor having a different ligand size for the same first material may be changed, and the composition of the thin film may be controlled through this.

제2 물질의 전구체를 노출하는 단계 이후에 제2 물질의 전구체의 흡착이 포화되고 여분을 제거(purge)할 수 있다.After the step of exposing the precursor of the second material, adsorption of the precursor of the second material is saturated and excess may be purged.

한편, 제1 물질의 전구체를 노출하는 단계 및 제2 물질의 전구체를 노출하는 단계의 순서를 조절하여 박막의 조성을 조절할 수 있다. 즉, 제1 물질의 전구체를 노출하는 단계 및 제2 물질의 전구체를 노출하는 단계의 순서를 조절하여 기판에 흡착되는 제1 물질의 전구체 및 제2 물질의 전구체의 양을 조절할 수 있다. 이를 통해 기판 상에 형성되는 박막의 조성을 조절할 수 있다. Meanwhile, the composition of the thin film may be controlled by controlling the sequence of exposing the precursor of the first material and exposing the precursor of the second material. That is, the amount of the precursor of the first material and the precursor of the second material adsorbed on the substrate may be adjusted by controlling the sequence of exposing the precursor of the first material and exposing the precursor of the second material. Through this, the composition of the thin film formed on the substrate can be adjusted.

또한, 제1 물질의 전구체를 노출하는 단계 및 제2 물질의 전구체를 노출하는 단계에서 노출 시간 및/또는 전구체 농도를 각각 조절하여 박막의 조성을 조절할 수도 있다. In addition, in the step of exposing the precursor of the first material and the step of exposing the precursor of the second material, the composition of the thin film may be adjusted by respectively adjusting the exposure time and/or the precursor concentration.

제2 물질의 전구체를 노출하는 단계 이후, 제1 물질의 전구체 및 제2 물질의 전구체가 흡착된 기판에 반응가스를 공급하는 단계를 진행할 수 있다. 이때 반응가스는 H2O일 수 있다. 본 발명에서는 한 가지 반응 가스에 의해 두 전구체가 동시에 반응하여 균일한 도핑 박막을 증착할 수 있다. 본 발명에서는 반응가스를 공급하는 단계를 한 번만 진행하면서도 두 전구체가 동시에 반응할 수 있고, 제1 물질 및 제2 물질을 포함하는 박막을 형성할 수 있다. After the step of exposing the precursor of the second material, a step of supplying a reaction gas to the substrate on which the precursor of the first material and the precursor of the second material are adsorbed may be performed. At this time, the reaction gas may be H 2 O. In the present invention, a uniform doped thin film can be deposited by simultaneously reacting two precursors with one reactive gas. In the present invention, while the step of supplying the reaction gas is performed only once, the two precursors can react at the same time, and a thin film including the first material and the second material can be formed.

이하, 본원의 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 본원의 이해를 돕기 위하여 예시하는 것 일뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다. 특히, 실시예 1 및 2는 Al2O3의 원자층 증착 공정에 적용된 예이나, TiO2, HfO2, ZnO, SiO2 등 다양한 원자층 증착 공정과의 조합이 가능하다.Hereinafter, the present invention will be described in more detail through examples of the present application, but the following examples are merely illustrative to aid understanding of the present application, and the contents of the present application are not limited to the following examples. In particular, Examples 1 and 2 are examples applied to the atomic layer deposition process of Al 2 O 3 , but can be combined with various atomic layer deposition processes such as TiO 2 , HfO 2 , ZnO, SiO 2 .

실시예 1: Ru-AlOx 박막의 증착Example 1: Deposition of a Ru-AlOx thin film

Ru의 전구체로써 Carish(Methylhexanediketonato (dicarbonyl)ruthenium,)를 준비하고, Al의 전구체로써 TMA(Trimethyl Aluminium, (CH3)3Al) 를 준비하였다. 기판으로는 Si 기판을 준비하였다. Carish (Methylhexanediketonato (dicarbonyl) ruthenium,) was prepared as a precursor of Ru, and TMA (Trimethyl Aluminum, (CH 3 ) 3 Al) was prepared as a precursor of Al. As a substrate, a Si substrate was prepared.

기판 상에 먼저 Ru의 전구체를 노출시키고 purging한 후, Al의 전구체를 노출시키고 purging하였다. 이후 반응가스인 H2O를 흘려주어 반응시킨 후 purging하였다. 상술한 과정을 200 cycles 거쳐 Ru-AlOx 박막을 증착하였다. 이때 박막의 두께는 30.9 nm 이었다.The precursor of Ru was first exposed and purged on the substrate, and then the precursor of Al was exposed and purged. After that, the reaction gas H 2 O was flowed to react and purging. After 200 cycles of the above-described process, a Ru-AlOx thin film was deposited. At this time, the thickness of the thin film was 30.9 nm.

증착된 박막에 대해 FE-SEM 및 EDS를 측정한 결과, 도 2를 참고하면, Ru이 1.18 at%로 측정되었고, Al은 0.10 at%로 측정되었다. 즉, 박막의 조성은 Ru:Al=92:8이었다. As a result of measuring FE-SEM and EDS for the deposited thin film, referring to FIG. 2, Ru was measured as 1.18 at%, and Al was measured as 0.10 at%. That is, the composition of the thin film was Ru:Al=92:8.

실시예 2: Ru-AlOx 박막의 증착Example 2: Deposition of a Ru-AlOx thin film

Ru의 전구체로써 Carish(Methylhexanediketonato (dicarbonyl)ruthenium,)를 준비하고, Al의 전구체로써 TMA(Trimethyl Aluminium, (CH3)3Al) 를 준비하였다. 기판으로는 Si 기판을 준비하였다. Carish (Methylhexanediketonato (dicarbonyl) ruthenium,) was prepared as a precursor of Ru, and TMA (Trimethyl Aluminum, (CH 3 ) 3 Al) was prepared as a precursor of Al. As a substrate, a Si substrate was prepared.

기판 상에 먼저 Al의 전구체를 노출시키고 purging한 후, Ru의 전구체를 노출시키고 purging하였다. 이후 반응가스인 H2O를 흘려주어 반응시킨 후 purging하였다. 상술한 과정을 200 cycles 거쳐 Ru-AlOx 박막을 증착하였다. 이때 박막의 두께는 25.3 nm 이었다.The Al precursor was first exposed and purged on the substrate, and then the Ru precursor was exposed and purged. After that, the reaction gas H 2 O was flowed to react and purging. After 200 cycles of the above-described process, a Ru-AlOx thin film was deposited. At this time, the thickness of the thin film was 25.3 nm.

증착된 박막에 대해 FE-SEM 및 EDS를 측정한 결과, 도 3을 참고하면, Ru이 0.08 at%로 측정되었고, Al은 0.60 at%로 측정되었다. 즉, 박막의 조성은 Ru:Al=12:88이었다.As a result of measuring FE-SEM and EDS for the deposited thin film, referring to FIG. 3, Ru was measured as 0.08 at%, and Al was measured as 0.60 at%. That is, the composition of the thin film was Ru:Al=12:88.

한편, 도 4는 실시예 1 및 실시예 2에 대한 XPS 분석결과이다. 도 4를 참고하면, 실시예 1(Al precursor second) 및 실시예 2(Al precursor first)에서 전구체의 노출 순서에 따라 박막의 조성이 달라짐을 한 번 더 확인할 수 있다.On the other hand, Figure 4 shows the XPS analysis results for Example 1 and Example 2. Referring to FIG. 4, it can be confirmed once more that the composition of the thin film is changed according to the exposure order of the precursors in Example 1 (Al precursor second) and Example 2 (Al precursor first).

본 발명은 Cu 배선을 위한 확산 방지막 형성 시 적용될 수 있다. 즉, 본 발명을 이용할 경우 균일한 확산 방지막을 증착할 수 있고, Cu를 형성하기 위한 별도의 seed layer가 불필요 하여 전도도가 향상된 Cu 배선을 수득할 수 있다.The present invention can be applied when forming a diffusion barrier for Cu wiring. That is, when the present invention is used, a uniform diffusion barrier can be deposited, and since a separate seed layer for forming Cu is not required, Cu wiring with improved conductivity can be obtained.

또한, 본 발명에 따라 증착된 박막은 물분산촉매(water splitting catalyst)로도 사용될 수 있다. 본 발명에서는 도핑 농도를 자유롭게 조절할 수 있어 다양한 분야에 적용할 수 있다. In addition, the thin film deposited according to the present invention can also be used as a water splitting catalyst. In the present invention, since the doping concentration can be freely adjusted, it can be applied to various fields.

상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. Features, structures, effects, and the like described in the above-described embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, and the like illustrated in each embodiment may be combined or modified for other embodiments by a person having ordinary knowledge in the field to which the embodiments belong. Accordingly, contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.

또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, although the embodiments have been described above, these are only examples and do not limit the present invention, and those of ordinary skill in the field to which the present invention pertains are illustrated above within the scope not departing from the essential characteristics of the present embodiment. It will be seen that various modifications and applications that are not available are possible. For example, each component specifically shown in the embodiments can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.

Claims (5)

기판 상에 제1 물질의 전구체를 노출하는 단계;
상기 기판 상에 제2 물질의 전구체를 노출하는 단계; 및
상기 제1 물질의 전구체 및 상기 제2 물질의 전구체가 흡착된 기판에 반응가스를 공급하는 단계를 포함하는 박막의 형성 방법.
Exposing a precursor of a first material on the substrate;
Exposing a precursor of a second material on the substrate; And
And supplying a reaction gas to a substrate on which the precursor of the first material and the precursor of the second material are adsorbed.
제1항에 있어서,
상기 제1 물질의 전구체는 제1 리간드를 포함하고,
상기 제2 물질의 전구체는 제2 리간드를 포함하며,
상기 제1 리간드 및 상기 제2 리간드의 크기는 서로 상이한 박막의 형성 방법.
The method of claim 1,
The precursor of the first material comprises a first ligand,
The precursor of the second material comprises a second ligand,
A method of forming a thin film having different sizes of the first ligand and the second ligand.
제1항에 있어서,
상기 제1 물질의 전구체를 노출하는 단계 및 상기 제2 물질의 전구체를 노출하는 단계의 순서를 조절하여 상기 박막의 조성을 조절하는 박막의 형성 방법.
The method of claim 1,
A method of forming a thin film in which a composition of the thin film is controlled by controlling a sequence of exposing the precursor of the first material and exposing the precursor of the second material.
제1항에 있어서,
상기 제1 물질의 전구체를 노출하는 단계 및 상기 제2 물질의 전구체를 노출하는 단계에서 노출 시간 및 전구체 농도 중 적어도 어느 하나를 조절하여 상기 박막의 조성을 조절하는 박막의 형성 방법.
The method of claim 1,
In the step of exposing the precursor of the first material and the step of exposing the precursor of the second material, a method of forming a thin film in which a composition of the thin film is controlled by adjusting at least one of an exposure time and a precursor concentration.
제1항 내지 제4항 중 어느 한 항에 따른 방법으로 제조된 박막. A thin film prepared by the method according to any one of claims 1 to 4.
KR1020190049938A 2019-04-29 2019-04-29 Method for fabricating a thin film and a thin film fabricated by the same KR102341035B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190049938A KR102341035B1 (en) 2019-04-29 2019-04-29 Method for fabricating a thin film and a thin film fabricated by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190049938A KR102341035B1 (en) 2019-04-29 2019-04-29 Method for fabricating a thin film and a thin film fabricated by the same

Publications (2)

Publication Number Publication Date
KR20200126469A true KR20200126469A (en) 2020-11-09
KR102341035B1 KR102341035B1 (en) 2021-12-20

Family

ID=73429777

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190049938A KR102341035B1 (en) 2019-04-29 2019-04-29 Method for fabricating a thin film and a thin film fabricated by the same

Country Status (1)

Country Link
KR (1) KR102341035B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070028810A (en) * 2005-09-08 2007-03-13 주식회사 아이피에스 Method of manufacturing tialn thin film using atomic layer deposition
KR100734744B1 (en) * 2006-01-11 2007-07-03 주식회사 아이피에스 Method of forming thin film of high-dielectric composed of multi-component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070028810A (en) * 2005-09-08 2007-03-13 주식회사 아이피에스 Method of manufacturing tialn thin film using atomic layer deposition
KR100734744B1 (en) * 2006-01-11 2007-07-03 주식회사 아이피에스 Method of forming thin film of high-dielectric composed of multi-component

Also Published As

Publication number Publication date
KR102341035B1 (en) 2021-12-20

Similar Documents

Publication Publication Date Title
US10943780B2 (en) Methods for ALD of metal oxides on metal surfaces
US7250367B2 (en) Deposition methods using heteroleptic precursors
Tiznado et al. Surface chemistry in the atomic layer deposition of TiN films from TiCl4 and ammonia
Salami et al. Anomalously high alumina atomic layer deposition growth per cycle during trimethylaluminum under-dosing conditions
Mane et al. Atomic layer deposition of W: Al2O3 nanocomposite films with tunable resistivity
Tiznado et al. Mechanistic details of atomic layer deposition (ALD) processes for metal nitride film growth
JP2013504866A (en) Multilayer coating, method for producing multilayer coating and use of multilayer coating
Henn-Lecordier et al. Impact of parasitic reactions on wafer-scale uniformity in water-based and ozone-based atomic layer deposition
Maydannik et al. Continuous atomic layer deposition: Explanation for anomalous growth rate effects
JP4348445B2 (en) Atomic layer deposition method for forming silicon dioxide containing layers
TWI692032B (en) Deposition of germanium
JP2013243382A (en) Organometallic precursor complexes
Ahn et al. Low-temperature-atomic-layer-deposition of SiO2 using various organic precursors
Xu et al. Mechanism for growth initiation on aminosilane-functionalized SiO2 during area-selective atomic layer deposition of ZrO2
JP2023116517A (en) Selective deposition of silicon nitride
Nguyen et al. Gradient area-selective deposition for seamless gap-filling in 3D nanostructures through surface chemical reactivity control
Jones et al. Atomic layer deposition of h-BN (0001) multilayers on Ni (111) and chemical vapor deposition of graphene on h-BN (0001)/Ni (111)
TWI481615B (en) Precursors and methods for the atomic layer deposition of manganese
KR102341035B1 (en) Method for fabricating a thin film and a thin film fabricated by the same
Kaipio et al. Atomic layer deposition of TiO2 and ZrO2 thin films using heteroleptic guanidinate precursors
Suh et al. Investigation on spatially separated atomic layer deposition by gas flow simulation and depositing Al2O3 films
JP7090174B2 (en) Methods for low temperature ALD of metal oxides
JP2023502179A (en) Substrate surface modifier for atomic layer deposition and chemical vapor deposition and method for modifying substrate surface using the same
KR102260968B1 (en) Method for Depositing Thin Film Using Two Type of Reducing Agents and Thin Film Deposition Structure Thereof
TWI837142B (en) Methods of forming chromium-containing films and methods of filling gaps with chromium-containing films or chromium oxide-containing films

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant