KR20200123360A - Robot system for inspecting inside pipe - Google Patents

Robot system for inspecting inside pipe Download PDF

Info

Publication number
KR20200123360A
KR20200123360A KR1020190046305A KR20190046305A KR20200123360A KR 20200123360 A KR20200123360 A KR 20200123360A KR 1020190046305 A KR1020190046305 A KR 1020190046305A KR 20190046305 A KR20190046305 A KR 20190046305A KR 20200123360 A KR20200123360 A KR 20200123360A
Authority
KR
South Korea
Prior art keywords
driving
tube
unit
sensor
traveling
Prior art date
Application number
KR1020190046305A
Other languages
Korean (ko)
Other versions
KR102287494B1 (en
Inventor
김종권
전종도
Original Assignee
주식회사 준성이엔알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 준성이엔알 filed Critical 주식회사 준성이엔알
Priority to KR1020190046305A priority Critical patent/KR102287494B1/en
Publication of KR20200123360A publication Critical patent/KR20200123360A/en
Application granted granted Critical
Publication of KR102287494B1 publication Critical patent/KR102287494B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/40Constructional aspects of the body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing

Abstract

An in-pipe inspection robot system according to the present invention comprises: a sensor unit sensing whether a defect exists within a pipe or a state within the pipe; a sensor driving unit connected to the sensor unit and rotating the sensor unit along the inner surface within the pipe; and a driving unit connected to the sensor driving unit to move the sensor unit and the sensor driving unit within the pipe, wherein the driving unit is arranged to be extended or reduced in the diameter direction within the pipe and thus, can move within the pipe in a state of being in contact with the inner surface within the pipe. Accordingly, it is possible to increase reliability of the results of inspection using the in-pipe inspection robot.

Description

관내 검사 로봇 시스템{ROBOT SYSTEM FOR INSPECTING INSIDE PIPE}In-house inspection robot system {ROBOT SYSTEM FOR INSPECTING INSIDE PIPE}

본 발명은 관내 검사 로봇 시스템에 관한 것으로서, 더욱 상세하게는 군용 포신, 파이프 또는 산업용 금속관 등 관상 부재의 관내 표면에 레이저를 조사하여 관상 부재의 관내의 결함 또는 상태를 검사하고 측정하는 관내 검사 로봇 시스템에 관한 것이다. The present invention relates to an intra-pipe inspection robot system, and more particularly, an intra-pipe inspection robot system for inspecting and measuring defects or conditions in the pipe of the tubular member by irradiating a laser on the inner surface of a tubular member such as a military barrel, pipe, or industrial metal pipe. It is about.

관(pipe)은 도시가스관, 상하수관, 석유화학 플랜트관, 열병합 발전소에 사용되는 증기관 등은 우리 생활에 밀접한 관련을 가지고 보편적으로 많이 사용되고 있다. 이러한 다양한 종류의 관들은 시간의 경과되거나 또는 외부로부터 인가된 진동 또는 충격 등에 의해 균열 또는 부식이 발생하게 된다. As for pipes, city gas pipes, water and sewage pipes, petrochemical plant pipes, and steam pipes used in cogeneration power plants are closely related to our daily lives and are widely used in general. These various types of pipes are cracked or corroded by the passage of time or by vibration or impact applied from the outside.

이와 같이, 관에 균열 또는 부식에 의한 파손이 발생하는 경우에는 수많은 인명 및 재산의 손실과 자연환경의 파괴를 야기할 수 있다.In this way, when a pipe is damaged by cracking or corrosion, it may cause a number of loss of life and property and destruction of the natural environment.

또한, 군용 무기에 사용되는 포신이 손상된다면 포탄으로 인해 대형 폭발사고가 발생될 수 있기 때문에 적절한 주기에 따라 포신의 내면 상태를 검사 또는 진단하여 포신의 안전성을 확보하는 것이 필요하다. In addition, if the barrel used for military weapons is damaged, a large explosion accident may occur due to the shell, so it is necessary to inspect or diagnose the inner state of the barrel according to an appropriate period to ensure the safety of the barrel.

한편, 관상 부재 또는 포신의 관내의 직경이 클 경우에는 작업자가 직접 관내로 들어가서 결함 유무 또는 현재 상태를 확인할 수 있지만, 관내의 직경이 작을 경우에는 작업자가 드나드는 것이 불가능하기 때문에 관상부재 또는 포신의 유지보수가 어려운 문제가 있다. On the other hand, if the diameter of the tubular member or barrel is large, the operator can directly enter the pipe to check the presence or absence of defects or the current state, but if the diameter of the tubular member or barrel is small, the operator cannot enter and exit There is a problem that is difficult to maintain.

상기와 같은 문제를 해결하기 위하여, 최근에는 관상부재 또는 포신의 내면을 따라 이동하며 관내를 검사하고 측정할 수 있는 관내 검사 로봇이 많이 개발되어 사용되고 있다. In order to solve the above problems, in recent years, many intra-pipe inspection robots that move along the inner surface of a tubular member or barrel and inspect and measure the inside of the pipe have been developed and used.

이러한 관내 검사 로봇은 이동방법에 따라, 보행형, 바퀴형, 무한궤도형과 신축형 등으로 분류될 수 있다. The inspection robot in the tube can be classified into a walking type, a wheel type, a caterpillar type and a telescopic type, depending on the movement method.

그러나, 보행형 관내 검사 로봇은 실용성이 매우 떨어지는 문제점이 있고, 바퀴형 관내 검사 로봇은 직관에서는 매우 효율적인 이동이 가능하나 수직관이나 곡관 등에 있어서는 이동의 어려움이 있다. However, the walking-type in-pipe inspection robot has a problem of very poor practicality, and the wheel-type in-pipe inspection robot is capable of very efficient movement in a straight pipe, but it is difficult to move in a vertical pipe or a curved pipe.

또한, 무한궤도형 관내 검사 로봇은 주행 시 많은 에너지를 필요로 하며 궤도 상에 이물질이 끼이는 문제점이 있고, 신축형 관내 검사 로봇은 관내의 직경 변화에 적용하여 수직관 및 곡관에서의 이동이 가능하지만 관 내면에 압착하기 위해서는 복잡한 메커니즘이 구현되어야 하는 문제점이 있다. In addition, the caterpillar type in-pipe inspection robot requires a lot of energy when traveling and has a problem of getting foreign substances on the track, and the telescopic type in-pipe inspection robot can be moved in vertical and curved pipes by applying to the diameter change in the pipe. However, there is a problem in that a complex mechanism must be implemented in order to compress the inner surface of the tube.

뿐만 아니라, 종래 관내 검사 로봇은 검사 또는 측정이 가능한 관내의 직경이 한정되어 있기 때문에, 관내의 직경이 달라질 경우에는 달라진 직경에 대응되는 새로운 구조 또는 크기의 관내 검사 로봇을 사용해야 하는 번거로움이 있다. In addition, since the conventional intra-tube inspection robot has a limited diameter inside the tube that can be inspected or measured, when the inner diameter of the tube is changed, there is an inconvenience of using a new structure or size of the tube inspection robot corresponding to the changed diameter.

또한, 종래의 관내 검사 로봇은 관의 내면과 완전히 밀착되지 않기 때문에 관내 검사 로봇이 관내를 주행하는 것이 매우 불안정하고, 뿐만 아니라 오랜 시간 사용한 관의 경우에는 관의 내면이 고르지 못하기 때문에 관내를 주행하는 관내 검사 로봇의 자체가 흔들릴 수 있어서 관내 검사 로봇을 이용하여 측정된 관내의 검사 결과의 신뢰도가 저하되는 문제점이 있다.In addition, since conventional in-pipe inspection robots are not in close contact with the inner surface of the pipe, it is very unstable for the in-pipe inspection robot to travel inside the pipe, and in the case of a pipe that has been used for a long time, the inner surface of the pipe is uneven. There is a problem in that the reliability of the test result in the tube measured using the tube inspection robot is deteriorated because the in-pipe inspection robot itself may be shaken.

따라서, 본 출원인은, 상기와 같은 문제점을 해결하기 위해서 본 발명을 제안하게 되었으며, 이와 관련된 선행기술문헌으로는, 대한민국 등록특허공보 10-1945508호 (발명의 명칭: 레이저를 이용한 배관 내부 검사장치, 등록일: 2019.01.29.)가 있다.Accordingly, the present applicant has proposed the present invention in order to solve the above problems, and as a related prior art document, Korean Patent Publication No. 10-1945508 (name of the invention: pipe internal inspection apparatus using a laser, Registration date: 2019.01.29.)

본 발명의 목적은 다양한 직경을 가지는 관내를 검사할 수 있는 관내 검사 로봇 시스템을 제공하는 것이다. An object of the present invention is to provide an in-pipe inspection robot system capable of inspecting the inside of a pipe having various diameters.

또한, 본 발명의 목적은 관내의 결함 유무 또는 상태에 관계없이 관내 검사 로봇이 관내를 안정적으로 주행하면서 관내를 검사할 수 있는 관내 검사 로봇 시스템을 제공하는 것이다. In addition, it is an object of the present invention to provide an in-pipe inspection robot system capable of inspecting the inside of a tube while a tube inspection robot stably travels inside the tube regardless of the presence or absence of defects in the tube.

또한, 본 발명의 목적은 포신 등 관상부재의 내면에 최대한 근접한 상태에서 레이저를 이용하여 내면을 스캔함으로써 결함의 크기, 결함 발생 위치 또는 깊이 등 보다 정확하게 결함 여부를 분석할 수 있는 관내 검사 로봇 시스템을 제공하는 것이다.In addition, an object of the present invention is to provide an in-pipe inspection robot system capable of analyzing the defect size, defect location or depth more accurately by scanning the inside surface using a laser in a state as close as possible to the inner surface of a tubular member such as a barrel. To provide.

본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. The problem to be solved by the present invention is not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기의 목적은, 본 발명에 따라, 관내의 결함 유무 또는 상태를 감지하는 센서 유닛; 상기 센서 유닛이 연결되며, 상기 관내의 내면을 따라 상기 센서 유닛을 회전시키는 센서구동 유닛; 및 상기 센서구동 유닛과 연결되어 상기 관내에서 상기 센서 유닛 및 상기 센서구동 유닛을 이동시키는 주행 유닛; 을 포함하고, 상기 주행 유닛은 상기 관내의 직경 방향으로의 확장 또는 축소 가능하게 마련되어 상기 관내의 내면과 접촉한 상태로 상기 관내를 이동하는 관내 검사 로봇 시스템에 의해 달성될 수 있다. The above object is, according to the present invention, a sensor unit for detecting the presence or absence of a defect in the tube; A sensor driving unit connected to the sensor unit and rotating the sensor unit along an inner surface of the tube; And a traveling unit connected to the sensor driving unit to move the sensor unit and the sensor driving unit in the tube. Including, the traveling unit may be provided to be expandable or contracted in the radial direction of the pipe, and can be achieved by an in-pipe inspection robot system that moves the pipe in a state in contact with the inner surface of the pipe.

상기 센서구동 유닛은, 상기 센서 유닛이 결합되는 구동몸체; 상기 구동몸체의 길이 방향을 따라 상기 구동몸체에 착탈 가능하게 마련되어 상기 관내의 내면과 접촉하는 가이드휠; 및 상기 구동몸체와 상기 가이드휠 사이에 마련되어 상기 가이드휠을 상기 관내의 내면에 대해 탄성적으로 지지하는 텐션부재; 를 포함할 수 있다. The sensor driving unit may include a driving body to which the sensor unit is coupled; A guide wheel detachably provided on the drive body along the longitudinal direction of the drive body and contacting the inner surface of the tube; And a tension member provided between the driving body and the guide wheel and elastically supporting the guide wheel against the inner surface of the tube. It may include.

상기 가이드휠은 상기 관내의 직경 크기에 따라 교체 가능하게 마련될 수 있다. The guide wheel may be provided to be replaceable according to the diameter of the tube.

상기 주행 유닛은, 상기 센서구동 유닛이 연결되는 주행몸체; 상기 주행몸체에 연결되어 상기 관내의 내면을 따라 상기 센서 유닛 및 상기 센서구동 유닛을 이동시키는 주행부; 및 상기 관내 직경의 크기에 따라 상기 주행부를 확장 또는 축소시킬 수 있도록 상기 주행몸체와 상기 주행부를 연결하는 가변연결부; 를 포함하며, 상기 주행부는 상기 주행 유닛 또는 상기 주행몸체의 길이방향 중심에 대해서 동일 간격 또는 각도로 이격되도록 2개 이상이 방사상으로 마련될 수 있다. The traveling unit may include a traveling body to which the sensor drive unit is connected; A traveling unit connected to the traveling body to move the sensor unit and the sensor driving unit along an inner surface of the tube; And a variable connection part connecting the driving body and the driving part to expand or contract the driving part according to the size of the inner diameter of the pipe. Including, the driving unit may be provided in two or more radially spaced apart at the same distance or angle with respect to the longitudinal center of the driving unit or the driving body.

상기 가변연결부는, 상기 주행몸체의 폭방향 양단에서 상기 주행몸체와 상기 주행부를 연결하는 제1 링크부재; 상기 주행몸체의 폭방향 양단에서 상기 주행몸체와 상기 주행부를 연결하되, 상기 주행부와 상기 제1 링크부재의 회전중심과 동일한 회전중심을 가지도록 상기 주행부에 연결되는 제2 링크부재; 및 상기 주행몸체의 폭방향 양단에서 상기 주행몸체와 상기 주행부를 연결하되, 상기 주행몸체의 길이방향을 따라 상기 제2 링크부재와 이격되어 마련되는 제3 링크부재; 를 포함할 수 있다. The variable connection unit includes: a first link member connecting the traveling body and the traveling unit at both ends of the traveling body in the width direction; A second link member connected to the driving unit so as to connect the driving body and the driving unit at both ends of the driving body in the width direction, and have the same rotation center as the rotation center of the driving unit and the first link member; And a third link member connected to the traveling body and the traveling part at both ends of the traveling body in the width direction, and spaced apart from the second link member along the length direction of the traveling body. It may include.

상기 제1 링크부재, 상기 제2 링크부재 및 상기 제3 링크부재는 동일한 길이를 가지도록 형성되고, 상기 제2 링크부재와 상기 제3 링크부재는 서로 평행하게 마련되며, 상기 주행몸체와 연결되는 상기 제1 링크부재의 일단은 상기 주행몸체의 길이 방향을 따라 위치 가변이 가능하도록 상기 주행몸체에 회전 가능하게 연결될 수 있다. The first link member, the second link member, and the third link member are formed to have the same length, and the second link member and the third link member are provided parallel to each other, and connected to the traveling body. One end of the first link member may be rotatably connected to the traveling body so that the position can be changed along the length direction of the traveling body.

상기 가변연결부는, 상기 주행몸체의 내부에 마련되되, 상기 센서구동 유닛에 인접하도록 상기 주행몸체의 길이방향 일단에 마련되는 지지블록; 상기 지지블록의 폭방향 양측에 연결되되, 상기 주행몸체의 길이 방향과 나란하게 마련되는 한 쌍의 가이드 로드; 및 상기 한 쌍의 가이드 로드를 따라 슬라이딩 운동하도록 상기 한 쌍의 가이드 로드를 관통하며, 양단부가 상기 주행몸체의 내측에 위치하는 제1 링크부재의 일단과 회전 가능하게 연결되는 가이드 블록; 을 포함할 수 있다. The variable connection portion is provided inside the traveling body, the support block provided at one end in the longitudinal direction of the traveling body so as to be adjacent to the sensor driving unit; A pair of guide rods connected to both sides of the support block in the width direction and provided in parallel with the length direction of the traveling body; And a guide block passing through the pair of guide rods so as to slide along the pair of guide rods, and having both ends rotatably connected to one end of a first link member located inside the traveling body. It may include.

상기 가이드 블록이 상기 가이드 로드를 따라 일방향으로 전진하면 상기 주행부는 상기 주행몸체에 대해 멀어지는 방향으로 확장되고, 상기 가이드 블록이 상기 가이드 로드를 따라 일방향으로 후퇴하면 상기 주행부는 상기 주행몸체에 대해 가까워지는 방향으로 축소될 수 있다. When the guide block advances in one direction along the guide rod, the driving unit extends in a direction away from the driving body, and when the guide block retreats in one direction along the guide rod, the driving unit becomes closer to the driving body. Can be reduced in any direction.

상기 주행몸체의 폭방향 내면에는 상기 가이드 블록의 양단부가 삽입되는 위치고정블록이 마련되고, 상기 위치고정블록에는 상기 가이드 블록의 양단부가 삽입되는 적어도 하나의 단계조절부가 형성될 수 있다. A position fixing block into which both ends of the guide block are inserted may be provided on an inner surface of the traveling body in the width direction, and at least one step adjustment part into which both ends of the guide block are inserted may be formed in the position fixing block.

상기 위치고정블록은, 상기 지지블록과 인접하도록 마련되는 제1 위치고정블록; 및 상기 주행몸체의 길이방향을 따라 상기 제1 위치고정블록과 이격되어 마련되는 제2 위치고정블록; 을 포함하며, 상기 제1 위치고정블록에는 상기 단계조절부가 복수개 형성되고, 상기 제2 위치고정블록에는 상기 단계조절부가 적어도 하나 이상으로 형성될 수 있다. The position fixing block may include a first position fixing block provided to be adjacent to the support block; And a second position fixing block provided to be spaced apart from the first position fixing block along the longitudinal direction of the traveling body. Including, the first position fixing block may be formed with a plurality of the step adjustment portion, the second position fixing block may be formed with at least one step adjustment portion.

상기 가이드 블록의 양단부가 상기 제1 위치고정블록 또는 상기 제2 위치고정블록에 형성된 상기 단계조절부 중 어느 하나에 삽입됨으로써 상기 주행몸체에 대해서 상기 주행부가 확장되거나 축소될 수 있다. Both ends of the guide block may be inserted into one of the step adjustment units formed in the first position fixing block or the second position fixing block, so that the driving unit may be expanded or contracted with respect to the driving body.

상기 주행부는, 상기 주행몸체의 길이방향을 따라 길게 마련되는 한 쌍의 주행프레임; 상기 주행프레임의 길이방향 양단에 위치하도록 상기 한 쌍의 주행프레임 사이에 마련되는 구동풀리 및 피동풀리; 상기 한 쌍의 주행프레임 사이에 마련되어 상기 구동풀리에 구동력을 제공하는 주행모터; 및 상기 구동풀리 또는 상기 피동풀리의 회전량 또는 회전속도를 측정하는 엔코더 모듈; 을 포함할 수 있다. The driving unit may include a pair of driving frames that are elongated along the length direction of the driving body; A driving pulley and a driven pulley provided between the pair of driving frames to be located at both ends of the driving frame in the longitudinal direction; A traveling motor provided between the pair of traveling frames and providing a driving force to the drive pulley; And an encoder module measuring the rotation amount or rotation speed of the driving pulley or the driven pulley. It may include.

상기 센서 유닛은, 상기 구동몸체의 일측에 마련되고 상기 센서구동 유닛의 회전모터에 의해 회전되는 장착플랜지에 결합되는 케이싱; 및 상기 케이싱의 내부에 마련되는 레이저 센서모듈; 을 포함하며, 상기 센서 유닛은 상기 레이저 센서모듈이 상기 관내의 내면에 근접하도록 상기 장착플랜지에 결합될 수 있다. The sensor unit includes a casing provided on one side of the driving body and coupled to a mounting flange rotated by a rotation motor of the sensor driving unit; And a laser sensor module provided inside the casing. Including, the sensor unit may be coupled to the mounting flange so that the laser sensor module is close to the inner surface of the tube.

상기 센서 유닛은, 상기 센서구동 유닛의 회전모터에 의해 회전되는 장착플랜지에 결합되는 케이싱; 상기 케이싱의 내부에 마련되어 상기 관내의 상태를 감지하는 레이저 센서모듈; 및 상기 레이저 센서모듈의 회전 시에 발생하는 진동을 억제하거나 상기 관내의 내면에 대해 상기 레이저 센서모듈을 지지하는 센서 지지부; 를 포함할 수 있다. The sensor unit may include a casing coupled to a mounting flange rotated by a rotation motor of the sensor driving unit; A laser sensor module provided inside the casing to sense a state in the tube; And a sensor support part for suppressing vibration generated when the laser sensor module rotates or supporting the laser sensor module with respect to the inner surface of the tube. It may include.

상기 센서 지지부는, 상기 케이싱과 결합되는 베이스; 상기 베이스에 대해 수직한 방향으로 배치되는 지지부재; 및 상기 지지부재의 단부에 마련되되 상기 관내의 내면과 접촉되어 상기 레이저 센서모듈을 상기 관내의 내면에 대해 탄성적으로 지지하는 텐션 휠; 을 포함할 수 있다. The sensor support includes a base coupled to the casing; A support member disposed in a direction perpendicular to the base; And a tension wheel provided at an end of the support member and being in contact with the inner surface of the tube to elastically support the laser sensor module with respect to the inner surface of the tube. It may include.

상기 센서 유닛은 상기 장착플랜지에 장착된 위치의 변경 또는 조절이 가능하도록 마련될 수 있다. The sensor unit may be provided to enable change or adjustment of a position mounted on the mounting flange.

상기 센서 유닛은, 고속 회전시 발생하는 진동을 억제하기 위해 상기 장착플랜지에 장착된 카운터 밸런서를 포함할 수 있다.The sensor unit may include a counter balancer mounted on the mounting flange to suppress vibration generated during high-speed rotation.

상기 주행유닛은, 관내로 진입할 때에는 거친모드로 상대적으로 빠르게 주행하면서 관내를 검사하여 결함의 유무를 데이터베이스화하고, 관내에서부터 진출할 때에는 상기 데이터베이스화된 정보를 기반으로 결함이 있는 관내의 부분에서는 미세모드로 상대적으로 천천히 주행하면서 정밀 검사할 수 있다.When entering the tube, the driving unit inspects the inside of the tube while inspecting the inside of the tube while traveling relatively quickly in a rough mode, and when exiting from the inside of the tube, based on the databased information, the portion inside the tube with defects is In fine mode, you can perform detailed inspection while driving relatively slowly.

본 발명의 관내 검사 로봇 시스템은, 관내 검사 로봇 시스템의 주행 유닛이 관내의 직경에 따라 관내의 직경 방향으로 확장 또는 축소 가능하게 마련되기 때문에 한 대의 관내 검사 로봇으로도 다양한 크기의 관내의 직경에 대응할 수 있어서 관내의 결함 유무 또는 상태를 측정할 수 있다. In the in-pipe inspection robot system of the present invention, since the traveling unit of the in-pipe inspection robot system is provided to be able to expand or contract in the radial direction of the pipe according to the diameter of the pipe, even one in-pipe inspection robot can respond to the diameter of various sizes of the pipe. It can measure the presence or condition of defects in the pipe.

또한, 본 발명의 관내 검사 로봇 시스템이 군용 포신에 적용되는 경우에는 90mm, 105mm, 120mm, 155mm 등 다양한 내경을 가지는 포신 내부를 자동으로 검사하여 포신의 상태를 디지털 DB화하여 관리할 수 있다.In addition, when the in-pipe inspection robot system of the present invention is applied to a military barrel, the inside of the barrel having various inner diameters such as 90mm, 105mm, 120mm, 155mm, etc.can be automatically inspected and the state of the barrel can be converted into a digital DB and managed.

또한, 본 발명의 관내 검사 로봇 시스템은, 관내의 내면과 접촉한 상태로 관내를 이동함으로써 관내 검사 로봇을 이용한 검사 결과의 신뢰도를 향상시킬 수 있다. In addition, the in-pipe inspection robot system of the present invention can improve the reliability of inspection results using the in-pipe inspection robot by moving the inside of the tube in contact with the inner surface of the tube.

또한, 본 발명의 관내 검사 로봇 시스템은, 관상부재 또는 포신의 내면에 최대한 근접한 상태에서 레이저를 스캔하여 내면의 결함 여부를 검사하기 때문에 결함의 크기, 위치 또는 깊이 등을 보다 정확하고 정밀하게 분석하거나 검사할 수 있다.In addition, the intra-tubular inspection robot system of the present invention scans the laser in a state as close as possible to the inner surface of the tubular member or the barrel to inspect the inner surface of the defect, so that the size, location, or depth of the defect can be analyzed more accurately and precisely. Can be checked.

또한, 본 발명의 관내 검사 로봇 시스템은, 관내 진입시에는 빠르게 주행하면서 결함 유무를 데이터베이스화하고 관내에서부터 진출시에는 데이터베이스화된 정보를 기반으로 결함이 있는 부분에서 천천히 주행하면서 상세히 검사하기 때문에 대부분의 결함이 없는 부분을 빠르게 검사하면서도 검사시간을 줄일 수 있고 결함이 있는 부분에서는 상세한 검사를 수행할 수 있다.In addition, the in-pipe inspection robot system of the present invention makes a database of the presence or absence of defects while driving quickly when entering the tube, and when entering from the inside of the tube, based on the database-generated information, it slowly travels and inspects in detail at the defective part. It is possible to shorten the inspection time while quickly inspecting the missing part, and to perform detailed inspection on the defective part.

도 1은 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템의 사시도이다.
도 2는 도 1에 도시한 관내 검사 로봇 시스템의 분해 사시도이다.
도 3은 도 2에 도시한 센서 유닛의 세부 구성을 나타낸 도면이다.
도 4 내지 도 8은 도 2에 도시한 주행 유닛의 동작에 따른 관내 검사 로봇을 설명하기 위한 도면이다.
도 9는 도 4 내지 도 8에 도시한 위치고정블록을 설명하기 위하여 나타낸 부분 사시도이다.
도 10은 도 4 내지 도 8에 도시한 주행부를 설명하기 위하여 나타낸 부분 사시도이다.
도 11은 본 발명의 다른 실시예에 따른 관내 검사 로봇 시스템의 사시도이다.
1 is a perspective view of an intraluminal inspection robot system according to an embodiment of the present invention.
2 is an exploded perspective view of the in-pipe inspection robot system shown in FIG. 1.
3 is a diagram showing a detailed configuration of the sensor unit shown in FIG. 2.
4 to 8 are views for explaining an in-pipe inspection robot according to the operation of the traveling unit shown in FIG. 2.
9 is a partial perspective view showing to explain the position fixing block shown in FIGS. 4 to 8.
10 is a partial perspective view illustrating the driving unit shown in FIGS. 4 to 8.
11 is a perspective view of an intraluminal inspection robot system according to another embodiment of the present invention.

이하, 첨부된 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention. The present invention may be implemented in various different forms and is not limited to the embodiments described herein.

도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다. Note that the drawings are schematic and have not been drawn to scale. Relative dimensions and ratios of parts in the drawings are exaggerated or reduced in size for clarity and convenience in the drawings, and any dimensions are illustrative only and not limiting. In addition, the same reference numerals are used to indicate similar features to the same structure, element or part appearing in two or more drawings.

본 발명의 실시예는 본 발명의 이상적인 실시예들을 구체적으로 나타낸다. 그 결과, 도면의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.Examples of the present invention specifically represent ideal embodiments of the present invention. As a result, various modifications of the drawings are expected. Accordingly, the embodiment is not limited to a specific shape in the illustrated area, and includes, for example, a modification of the shape by manufacturing.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 따른 관내 검사 로봇 시스템(1000, 2000)을 설명한다. Hereinafter, the intraluminal inspection robot systems 1000 and 2000 according to embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명에 따른 관내 검사 로봇 시스템(1000, 2000)은 도시가스관, 상하수관, 석유화학 플랜트관, 열병합 발전소에 사용되는 증기관 등의 산업용 금속관, 군용 포신 또는 파이프 등 관상부재(설명의 편의를 위해 이하에서는 "관"이라 함)의 내부로 삽입되어 관의 내면을 따라 이동하면서 관내(10)의 결함 유무 또는 상태를 감지할 수 있다. In-pipe inspection robot systems 1000 and 2000 according to the present invention include industrial metal pipes such as city gas pipes, water and sewage pipes, petrochemical plant pipes, steam pipes used in cogeneration power plants, military barrels or pipes, etc. In the case, it is inserted into the interior of the tube and moves along the inner surface of the tube to detect the presence or absence of a defect in the tube 10.

또한, 관내 검사 로봇 시스템(1000, 2000)은 종단면이 원통형인 관에 한정되지 않고 타원형 또는 다각형 형상 등 다양한 형태의 관내에 삽입되어 관내(10)의 결함 유무, 불량 유무 또는 마모 상태 등의 현재 관내(10)의 상태를 감지하고 확인할 수 있다. In addition, the intra-pipe inspection robot system (1000, 2000) is not limited to a tube having a cylindrical longitudinal section, but is inserted into various types of tubes such as oval or polygonal shapes, so that the current in-pipe such as the presence of defects, defects, or wear conditions in the tube 10 You can detect and check the status of (10).

먼저, 도 1 내지 도 14를 참조하여, 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템(1000)을 설명한다. First, with reference to FIGS. 1 to 14, an in-pipe inspection robot system 1000 according to an embodiment of the present invention will be described.

도 1은 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템(1000)의 사시도, 도 2는 도 1에 도시한 관내 검사 로봇 시스템(1000)의 분해 사시도, 도 3은 도 2에 도시한 센서 유닛(100)의 세부 구성을 나타낸 도면, 도 4 내지 도 8은 도 2에 도시한 주행 유닛(300)의 동작에 따른 관내 검사 로봇 시스템(1000)을 설명하기 위한 도면, 도 9는 도 4 내지 도 8에 도시한 위치고정블록(336,337)을 설명하기 위하여 나타낸 부분 사시도 및 도 10은 도 4 내지 도 8에 도시한 주행부(320)를 설명하기 위하여 나타낸 부분 사시도이다. 1 is a perspective view of an intra-pipe inspection robot system 1000 according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the intra-pipe inspection robot system 1000 shown in FIG. 1, and FIG. 3 is a sensor unit shown in FIG. A diagram showing a detailed configuration of 100, FIGS. 4 to 8 are views for explaining the in-pipe inspection robot system 1000 according to the operation of the traveling unit 300 shown in FIG. 2, and FIGS. 4 to 8 A partial perspective view showing to describe the positioning blocks 336 and 337 shown in FIG. 8 and FIG. 10 are partial perspective views showing to explain the driving unit 320 shown in FIGS. 4 to 8.

도 1 및 도 2에 도시한 바와 같이, 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템(1000)은, 레이저를 조사하여 관내(10)의 결함 유무 또는 상태를 감지하는 센서 유닛(100), 관내(10)의 내면을 따라 센서 유닛(100)을 회전시키는 센서구동 유닛(200), 센서구동 유닛(200)과 연결되어 관내(10)에서 센서 유닛(100) 및 센서구동 유닛(200)을 이동시키는 주행 유닛(300)을 포함할 수 있다. As shown in FIGS. 1 and 2, the in-pipe inspection robot system 1000 according to an embodiment of the present invention includes a sensor unit 100 for detecting the presence or absence of a defect in the tube 10 by irradiating a laser, It is connected to the sensor driving unit 200 and the sensor driving unit 200 that rotates the sensor unit 100 along the inner surface of the tube 10, so that the sensor unit 100 and the sensor driving unit 200 are connected in the tube 10. It may include a traveling unit 300 to move.

도 1 내지 3를 참조하면, 센서 유닛(100)은 관내(10)의 결함 유무 또는 상태를 감지하기 위해서 관내(10)를 향해서 레이저를 조사하고 반사된 레이저는 받아 들이는 부분이다. 여기서, 본 발명의 일 실시예에 따른 센서 유닛(100)은 하나의 모듈(module)로 마련되어 센서구동 유닛(200)에 결합될 수 있다. 1 to 3, the sensor unit 100 is a part that irradiates a laser toward the inside of the tube 10 and receives the reflected laser in order to detect the presence or absence of a defect in the tube 10. Here, the sensor unit 100 according to an embodiment of the present invention may be provided as a single module and coupled to the sensor driving unit 200.

또한, 센서 유닛(100)의 크기가 관내(10)의 직경보다 크지 않도록, 예컨대 60 X 60(W X H) 미만으로 마련될 수 있다. 이는, 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템(100)이 90mm 내지 155mm 의 직경을 가지는 관내(10)에 삽입되어 검사하는 것이기 때문에, 센서 유닛(100)의 크기가 커지게 되면 관내(10)에 삽입되기 어렵거나 관내(10)에서 회전할 수 없기 때문에 관내(10)의 결함 유무 또는 상태를 측정하는 것이 어렵게 될 수 있기 때문이다. In addition, the sensor unit 100 may be provided to be less than 60 X 60 (W X H) so that the size of the sensor unit 100 is not larger than the diameter of the tube 10. This is because the in-pipe inspection robot system 100 according to an embodiment of the present invention is inserted into the pipe 10 having a diameter of 90 mm to 155 mm for inspection, when the size of the sensor unit 100 increases, the pipe ( This is because it may be difficult to insert into 10) or to measure the presence or state of defects in the tube 10 because it cannot be rotated in the tube 10.

상기와 같은 센서 유닛(100)은 센서몸체(110), 레이저부(120) 및 전원연결부(130)를 포함할 수 있다. The sensor unit 100 as described above may include a sensor body 110, a laser unit 120 and a power connection unit 130.

센서 유닛(100)의 센서몸체(110)는 센서 유닛(100)의 케이스(case)로써 내부에 관내(10)의 내면을 향해 레이저를 조사하는 발광부(122) 및 관내(10)에서 반사되는 레이저를 받아들이는 수광부(124)가 마련될 수 있다. 도 1 내지 도 3에는 센서몸체(110)가 다각형 형태의 케이스로 형성되는 것으로 도시하였지만, 이에 한정되는 것은 아니며 그 형태는 변경될 수 있다. The sensor body 110 of the sensor unit 100 is a case of the sensor unit 100 and is reflected from the light emitting unit 122 and the tube 10 to irradiate a laser toward the inner surface of the tube 10 inside. A light receiving unit 124 for receiving a laser may be provided. 1 to 3 illustrate that the sensor body 110 is formed in a polygonal case, it is not limited thereto, and the shape may be changed.

레이저부(120)는 센서몸체(110)의 내부에 위치하여, 관내(10)의 내면을 향해 레이저를 조사하고, 관내(10)의 내면으로부터 반사된 레이저를 수신할 수 있다. The laser unit 120 may be positioned inside the sensor body 110 to irradiate a laser toward the inner surface of the tube 10 and receive a laser reflected from the inner surface of the tube 10.

도 3를 참조하면, 레이저부(120)는 발광부(122) 및 수광부(124)로 구성될 수 있다. 발광부(122)는 관내(10)의 현재 상태를 감지하지 위하여 관내(10)를 향해 레이저를 발생시키는 부분이고, 수광부(124)는 발광부(122)에서 관내(10)를 향해 조사되어 반사된 레이저를 받아 들이는 부분이다. 이러한 발광부(122)는 레이저를 발생시키는 레이저 발생부(semiconductor laser, 122a), 레이저 발생부(122a)에서 발생된 빛을 관내(10)의 내면 쪽으로 조사되는 것을 용이하게 하는 발광 렌즈(transmitter lens, 122b)를 포함할 수 있다.Referring to FIG. 3, the laser unit 120 may include a light emitting unit 122 and a light receiving unit 124. The light-emitting unit 122 is a part that generates a laser toward the tube 10 in order to detect the current state of the tube 10, and the light receiving unit 124 is irradiated from the light-emitting unit 122 toward the tube 10 and reflected It is the part that receives the laser. The light emitting unit 122 is a laser generating unit (semiconductor laser) 122a that generates a laser, and a light emitting lens (transmitter lens) that facilitates irradiating the light generated from the laser generation unit 122a toward the inner surface of the tube 10 , 122b).

또한, 수광부(124)는 레이저 발생부(122a)에서 관내(10)의 내면을 향해 조사된 레이저가 반사되어 입사되는 수광 렌즈(124a), 수광 렌즈(124a)를 통과한 빛을 감지하는 수광소자인 PSD 센서(position sensing device, 124b)를 포함할 수 있다. In addition, the light-receiving unit 124 is a light-receiving element that detects light passing through the light-receiving lens 124a and the light-receiving lens 124a through which the laser irradiated toward the inner surface of the tube 10 is reflected from the laser generating unit 122a. A PSD sensor (position sensing device) 124b may be included.

이때, 센서 유닛(100)의 수광소자가 PSD 센서(124b)로 마련됨에 따라 관내(10)의 내면에 있는 결함 또는 균열 등의 검사 시간을 단축할 수 있다. PSD 센서(124b)는 일반적인 광센서와는 다르게 점광원의 위치를 1차원 또는 2차원으로 측정할 수 있는 위치 검출용 센서로서, 구조가 간단하며 높은 위치 분해능을 가지고, 빠른 응답속도 및 간단한 신호 해석이 가능한 장점이 있다. At this time, as the light receiving element of the sensor unit 100 is provided as the PSD sensor 124b, it is possible to shorten the inspection time for defects or cracks in the inner surface of the tube 10. The PSD sensor 124b is a position detection sensor capable of measuring the position of a point light source in one or two dimensions, unlike a general optical sensor, and has a simple structure and high position resolution, fast response speed and simple signal analysis. There are advantages to this possible.

여기서, 센서 유닛(100)의 센서몸체(110)는, 레이저가 조사되는 광학계 즉, 발광부(122)의 광축과 레이저가 상을 맺는 광학계 즉, 수광부(124)의 광축 사이의 각도가 60도가 되도록 형성되는 것이 바람직하다.Here, in the sensor body 110 of the sensor unit 100, the angle between the optical system to which the laser is irradiated, that is, the optical axis of the light-emitting unit 122 and the optical system in which the laser forms an image, that is, the optical axis of the light receiving unit 124 is 60 degrees. It is preferable to be formed to be.

상기와 같은 센서 유닛(100)은 관내(10)의 내면의 원주방향을 따라서 회전하면서 레이저를 이용하여 내면을 스캔할 수 있다. 센서 유닛(100)은 센서구동 유닛(200)과 연결됨으로써 관내(10)의 원주방향을 따라 회전될 수 있다. The sensor unit 100 as described above may scan the inner surface using a laser while rotating along the circumferential direction of the inner surface of the tube 10. The sensor unit 100 may be rotated along the circumferential direction of the tube 10 by being connected to the sensor driving unit 200.

센서 유닛(100)에 의해 센서 유닛(100)이 관내(10)의 내면을 따라 회전될 때 레이저부(120)가 관내(10)의 내면에 최대한 근접하도록 센서 유닛(100)이 센서구동 유닛(200)에 연결되는 것이 바람직하다. When the sensor unit 100 is rotated along the inner surface of the tube 10 by the sensor unit 100, the sensor unit 100 moves the sensor driving unit 100 so that the laser unit 120 is as close as possible to the inner surface of the tube 10 200).

한편, 센서구동 유닛(200)은 구동몸체(210), 가이드휠(242) 및 텐션부재를 포함할 수 있다. Meanwhile, the sensor driving unit 200 may include a driving body 210, a guide wheel 242, and a tension member.

구동몸체(210)는 원통 형상으로 제작되어 내부에는 센서 유닛(100)을 회전시키는 구동력을 발생시키는 구동모터(미도시)와 같은 다양한 부품들이 탑재될 수 있다. 이때, 구동몸체(210)의 일측에는 장착플랜지(212)가 마련되고, 장착플랜지(212)에 센서 유닛(100)이 장착될 수 있다. 참고로, 장착플랜지(212)는 센서 유닛(100)이 장착되는 것이 용이하도록 일면이 평평한 원판형 플레이트(plate) 형태로 형성되는 것이 바람직하다. The driving body 210 is manufactured in a cylindrical shape, and various parts such as a driving motor (not shown) that generate a driving force to rotate the sensor unit 100 may be mounted therein. In this case, a mounting flange 212 is provided on one side of the driving body 210, and the sensor unit 100 may be mounted on the mounting flange 212. For reference, the mounting flange 212 is preferably formed in the form of a flat plate-shaped plate (plate) on one side to facilitate the mounting of the sensor unit 100.

여기서, 센서 유닛(100)이 장착플랜지(212)에 장착될 때, 센서 유닛(100)은 장착플랜지(212)의 중심에 대해 일측 또는 타측으로 편심되어 결합될 수 있다. 상기한 바와 같이 센서 유닛(100)이 관내(10)의 내면에 최대한 가깝게 위치하기 위해서는 장착플랜지(212)의 중심에 센서 유닛(100)이 장착되기 보다는 장착플랜지(212)의 중심에 대해서 일측 또는 타측으로 편심된 위치에 센서 유닛(100)이 장착되는 것이 바람직하다.Here, when the sensor unit 100 is mounted on the mounting flange 212, the sensor unit 100 may be eccentrically coupled to one side or the other side with respect to the center of the mounting flange 212. As described above, in order for the sensor unit 100 to be located as close as possible to the inner surface of the tube 10, rather than the sensor unit 100 being mounted at the center of the mounting flange 212, one side or the center of the mounting flange 212 It is preferable that the sensor unit 100 is mounted at a location eccentric to the other side.

또한, 상술한 바와 같이, 센서 유닛(100)은 그 무게가 비교적 가벼워서 센서구동 유닛(200)의 장착플랜지(212)의 중심에 대해 일측 또는 타측으로 편심되도록 결합되더라도 관내 검사 로봇 시스템(1000)이 관내(10)를 주행하면서 관내(10)의 결함 유무 또는 상태를 감지하는데 영향을 미치지 않을 뿐만 아니라, 센서 유닛(100)이 회전할 때 센서 유닛(100)에 큰 진동이 발생하지 않기 때문에 측정된 관내(10)의 내면에 대한 검사 결과 신뢰도에도 영향이 별로 없다. In addition, as described above, the sensor unit 100 is relatively light in weight, so even if it is coupled to be eccentric to one side or the other side with respect to the center of the mounting flange 212 of the sensor driving unit 200, the inspection robot system 1000 in the tube It does not affect the detection of the presence or state of defects in the tube 10 while traveling inside the tube 10, and it is measured because a large vibration does not occur in the sensor unit 100 when the sensor unit 100 rotates. As a result of the inspection on the inner surface of the tube 10, there is little effect on the reliability.

다만, 장착플랜지(212)의 중심에 대해 일측 또는 타측으로 편심된 위치에서 장착된 센서 유닛(100)이 회전할 때 진동이 발생하는 경우에는 장착플랜지(212)의 중심에 대해서 대칭된 위치에 센서 유닛(100)을 하나 더 장착함으로써 회전시 진동이 발생하는 것을 방지하거나, 센서 유닛(100)의 무게와 동일한 무게를 가지는 카운터 밸런서(Counter Balancer, 미도시)를 장착플랜지(212)에 장착함으로써 고속회전시 발생하는 진동을 억제할 수도 있다.However, if vibration occurs when the mounted sensor unit 100 rotates at a position eccentric to one side or the other side with respect to the center of the mounting flange 212, the sensor is placed in a symmetrical position with respect to the center of the mounting flange 212. By installing one more unit 100 to prevent vibration during rotation, or by installing a counter balancer (not shown) having the same weight as the weight of the sensor unit 100 on the mounting flange 212, high speed It is also possible to suppress the vibration generated during rotation.

뿐만 아니라, 장착플랜지(212)에 센서 유닛(100)을 장착하되 장착플랜지(212)의 원호방향을 따라 180도, 120도 또는 90도 간격으로 각각 2개, 3개 또는 4개의 센서 유닛(100)을 장착함으로써 고속회전시 발생하는 진동을 억제할 수도 있다. 이와 같이, 장착플랜지(212)에 장착되는 센서 유닛(100)은 1개 내지 4개가 장착될 수 있으며 1개 장착할 경우에는 동일한 무게를 가지는 카운터 밸런서를 장착플랜지(212)에 추가로 장착하고, 2개 내지 4개의 센서 유닛(100)을 장착할 경우에는 동일한 간격 내지 각도로 방사상 형태로 장착함으로써 고속회전시 발생하는 진동을 억제할 수 있다.In addition, the sensor unit 100 is mounted on the mounting flange 212, but 2, 3, or 4 sensor units 100 are mounted at intervals of 180 degrees, 120 degrees, or 90 degrees along the arc direction of the mounting flange 212. ) Can be installed to suppress the vibration generated during high-speed rotation. In this way, one to four sensor units 100 mounted on the mounting flange 212 may be mounted, and when one is mounted, a counter balancer having the same weight is additionally mounted on the mounting flange 212, When two to four sensor units 100 are mounted, vibrations generated during high-speed rotation can be suppressed by mounting them in a radial shape at the same intervals or angles.

한편, 관내(10)의 직경에 따라 센서 유닛(100)의 레이저부(120)에서 조사되는 레이저의 작동 거리를 관내(10)의 직경에 맞추기 위해, 장착플랜지(212)에 장착된 상태에서 센서 유닛(100)의 위치를 변경하거나 조절할 수도 있다. 이를 위해, 센서 유닛(100)의 장착 위치를 변경 내지 조절하거나 장착 위치를 고정할 수 있는 수단이 장착플랜지(212)에 마련될 수 있다. On the other hand, in order to match the working distance of the laser irradiated from the laser unit 120 of the sensor unit 100 to the diameter of the tube 10 according to the diameter of the tube 10, the sensor is mounted on the mounting flange 212 The position of the unit 100 may be changed or adjusted. To this end, a means for changing or adjusting the mounting position of the sensor unit 100 or fixing the mounting position may be provided on the mounting flange 212.

센서 유닛(100)의 레이저부(120)에서 조사되는 레이저는 정밀 레이저이기 때문에 관내(10)의 직경에 따라 레이저의 작동 거리에 맞도록 센서 유닛(100)의 위치를 조절할 수 없다면, 관내(10)의 직경에 따라 작동 거리가 다른 레이저가 조사되는 센서 유닛(100)을 별도로 사용할 수밖에 없다. 본 발명에 따른 센서 유닛(100)은 장착플랜지(212)에 장착된 상태에서 장착 위치를 변경하거나 조절할 수 있기 때문에 하나의 센서 유닛(100)을 사용해서 다양한 직경의 관내(10)를 검사할 수 있어서 경제성 및 실용성이 우수하다는 장점도 있다.Since the laser irradiated by the laser unit 120 of the sensor unit 100 is a precision laser, if the position of the sensor unit 100 cannot be adjusted to match the operating distance of the laser according to the diameter of the tube 10, the inside of the tube 10 ) It is inevitable to separately use the sensor unit 100 to which the laser is irradiated with a different working distance depending on the diameter. Since the sensor unit 100 according to the present invention can change or adjust the mounting position while being mounted on the mounting flange 212, it is possible to inspect the inside of the tube 10 of various diameters using one sensor unit 100. There is also an advantage in that it is economical and practical.

구동몸체(210)의 외면에 마련되는 가이드휠(242)은 센서구동 유닛(200)이 관내(10)를 따라 이동되도록 하기 위한 일종의 바퀴(wheel) 일 수 있다. 이때, 가이드휠(242)은 관내(10)의 내면과 접촉한 상태를 유지할 수 있다. The guide wheel 242 provided on the outer surface of the driving body 210 may be a type of wheel for moving the sensor driving unit 200 along the inner tube 10. At this time, the guide wheel 242 may maintain a state in contact with the inner surface of the tube (10).

이러한 가이드휠(242)은 구동몸체(210)의 길이 방향을 따라 적어도 하나 이상, 즉 복수개로 마련될 수 있다. 또한, 가이드휠(242)은 구동몸체(210)에 대해 착탈 가능하게 마련될 수 있다. 이에 따라, 작업자는 가이드휠(242)을 관내(10)의 직경을 고려하여 그 크기에 맞게 교체할 수 있다. At least one or more, that is, a plurality of guide wheels 242 may be provided along the length direction of the driving body 210. In addition, the guide wheel 242 may be provided to be detachable from the driving body 210. Accordingly, the operator can replace the guide wheel 242 according to its size in consideration of the diameter of the tube 10.

여기서, 가이드휠(242)은 구동몸체(210)에 장착될 때, 별도의 가이드 프레임(240)를 매개로 결합될 수 있다. 구동몸체(210)에 대해 구동몸체(210)의 외주면 둘레를 따라 적어도 하나 이상의 가이드 프레임(240)이 마련되고, 가이드 프레임(240)의 길이 방향을 따라 복수개의 가이드휠(242)이 장착될 수 있다. Here, when the guide wheel 242 is mounted on the driving body 210, it may be coupled through a separate guide frame 240 as a medium. At least one guide frame 240 is provided along the periphery of the outer circumferential surface of the driving body 210 with respect to the driving body 210, and a plurality of guide wheels 242 may be mounted along the length direction of the guide frame 240. have.

상술한 바와 같이, 가이드휠(242)은 관내(10)의 내면과 접촉한 상태를 유지하기 때문에 어느 정도의 탄성력을 가질 수 있다. 이때, 구동몸체(210)와 가이드휠(242), 즉 가이드휠(242)이 장착된 가이드 프레임(240)과 구동몸체(210)의 사이에는 텐션부재가 마련될 수 있다. 텐션부재에 의해 가이드휠(242)이 관내(10)의 내면에 대해 탄성적으로 지지될 수 있다. As described above, since the guide wheel 242 maintains a state in contact with the inner surface of the tube 10, it may have some degree of elasticity. In this case, a tension member may be provided between the driving body 210 and the guide wheel 242, that is, the guide frame 240 on which the guide wheel 242 is mounted and the driving body 210. The guide wheel 242 may be elastically supported on the inner surface of the tube 10 by the tension member.

텐션부재는 구동몸체(210)의 표면에서 삽입되는 하우징(230) 및 하우징(230)의 내부에 삽입되어 구동몸체(210)에 대해 가이드휠(242)이 장착된 가이드 프레임(240)을 탄성적으로 지지하는 탄성체(232)를 포함할 수 있다. The tension member is inserted into the housing 230 inserted from the surface of the driving body 210 and the inside of the housing 230 to resiliently support the guide frame 240 on which the guide wheel 242 is mounted with respect to the driving body 210. It may include an elastic body 232 supported by.

하우징(230)은 원통형으로 형성되며, 일단부는 폐쇄되고 타단부는 개방된 상태로 형성될 수 있다. 하우징(230)은 적어도 하나 이상으로 마련되어 구동몸체(210)의 일측 및 타측에 형성된 하우징 장착부(211)에 각각 삽입 위치될 수 있다. The housing 230 may be formed in a cylindrical shape, and one end may be closed and the other end may be open. At least one housing 230 may be provided to be inserted into the housing mounting portion 211 formed on one side and the other side of the driving body 210, respectively.

탄성체(232)는 하우징(230)의 내부에 삽입되어 탄성력을 발생시키는 형태로 마련될 수 있다. 탄성체(232)는 스프링, 스프링핀, 볼(구) 형태로 마련될 수 있으나, 반드시 이에 한정되는 것은 아니며 탄성력을 가진 상태에서 하우징(230)의 내부에서 이동될 수 있는 크기 및 형태라면 어떠한 형태라도 무방하다. The elastic body 232 may be inserted into the housing 230 to generate an elastic force. The elastic body 232 may be provided in the form of a spring, a spring pin, or a ball (ball), but is not limited thereto, and any size and shape that can be moved inside the housing 230 while having an elastic force It's okay.

예를 들어, 센서구동 유닛(200)이 관내(10)에 위치될 때 가이드휠(242)이 관내(10)의 내면에 대해 접촉된 상태를 유지한다. 그럴 경우, 가이드휠(242)은 구동몸체(210) 쪽으로 눌린 상태로 관내(10)를 이동하게 되면 하우징(230) 및 탄성체(232)를 포함하는 텐션부재가 눌린 상태로 가이드휠(242)이 장착된 가이드 프레임(240)을 지지하기 때문에 가이드휠(242)이 관내(10)와 접촉하는 상태를 유지할 수 있는 것이다. For example, when the sensor driving unit 200 is positioned in the tube 10, the guide wheel 242 maintains a state in contact with the inner surface of the tube 10. In this case, when the guide wheel 242 moves the inner tube 10 while being pressed toward the driving body 210, the guide wheel 242 is pressed in a state where the tension member including the housing 230 and the elastic body 232 is pressed. Since the mounted guide frame 240 is supported, the guide wheel 242 can maintain a state in contact with the tube 10.

한편, 가이드 프레임(240)은 양측이 결합부재(220)를 통해 구동몸체(210)에 체결될 수 있다. 결합부재(220)와 가이드 프레임(240) 사이에는 간격이 존재하기 때문에, 구동몸체(210)와 가이드휠(242)이 장착된 가이드 프레임(240) 사이는 텐션부재에 의한 탄성력을 유지할 수 있다. Meanwhile, both sides of the guide frame 240 may be fastened to the driving body 210 through the coupling member 220. Since there is a gap between the coupling member 220 and the guide frame 240, the elastic force due to the tension member can be maintained between the driving body 210 and the guide frame 240 on which the guide wheel 242 is mounted.

구동몸체(210)의 길이방향 일단 즉, 장착플랜지(212) 쪽에서 바라보면, 가이드휠(224) 및 가이드 프레임(240)은 120도 간격으로 구동몸체(210)에 마련되는 것이 바람직하다.One end of the drive body 210 in the longitudinal direction, that is, when viewed from the mounting flange 212 side, the guide wheel 224 and the guide frame 240 are preferably provided on the drive body 210 at intervals of 120 degrees.

센서 유닛(100) 및 센서구동 유닛(200)은 주행 유닛(300)에 의해 관내(10)에서 이동될 수 있다. 다시 말해서, 주행 유닛(300)은 센서구동 유닛(200)과 연결되어 관내(10)에서 센서구동 유닛(200)은 물론이고 센서구동 유닛(200)에 연결된 센서 유닛(100)을 이동시킬 수 있다. 즉, 주행 유닛(300)은 관내 검사 로봇 시스템(1000)이 관내(10)를 따라 이동할 수 있게 하는 구동부이다.The sensor unit 100 and the sensor driving unit 200 may be moved in the tube 10 by the traveling unit 300. In other words, the driving unit 300 is connected to the sensor driving unit 200 so as to move the sensor unit 100 connected to the sensor driving unit 200 as well as the sensor driving unit 200 in the tube 10. . That is, the traveling unit 300 is a driving unit that enables the intra-pipe inspection robot system 1000 to move along the inner tube 10.

한편, 주행 유닛(300)은 주행몸체(310), 주행부(320) 및 가변연결부(330)를 포함할 수 있다. Meanwhile, the traveling unit 300 may include a traveling body 310, a traveling part 320, and a variable connecting part 330.

주행몸체(310)는 센서구동 유닛(200)이 연결되는 부분으로, 주행 유닛(300)의 골격을 형성하는 프레임(frame) 부재 일 수 있다. The driving body 310 is a part to which the sensor driving unit 200 is connected, and may be a frame member forming a skeleton of the driving unit 300.

주행몸체(310)는 대략 직육면체 형상을 가지며 내부에 공간이 형성되어 있으며 내부의 공간에 주행부(320) 및 가변연결부(330)가 마련될 수 있다.The traveling body 310 has a substantially rectangular parallelepiped shape, and a space is formed therein, and a traveling part 320 and a variable connection part 330 may be provided in the internal space.

주행부(320)는 주행몸체(310)에 마련되어 관내(10)의 내면을 따라 센서 유닛(100) 및 센서구동 유닛(200)을 이동시키는 구동력을 발생시키는 부분일 수 있다. 이때, 주행부(320)는 주행몸체(310)의 상부 및 하부에 한 쌍으로 마련되는 것이 바람직하지만, 반드시 이에 한정되는 것은 아니다. 예를 들면, 주행 유닛(300)의 길이방향 중심에 대해서 120도 간격으로 3개의 주행부(320)가 마련되거나, 90도 간격으로 4개의 주행부(320)가 마련될 수도 있다. 이와 같이, 주행부(320)는 주행 유닛(300) 또는 주행몸체(310)의 길이방향 중심에 대해서 동일 간격 또는 각도로 이격되도록 2개 이상이 방사상으로 마련될 수 있다.The driving unit 320 may be a portion provided on the driving body 310 and generating a driving force for moving the sensor unit 100 and the sensor driving unit 200 along the inner surface of the tube 10. In this case, the driving unit 320 is preferably provided in a pair on the upper and lower portions of the driving body 310, but is not limited thereto. For example, three driving units 320 may be provided at intervals of 120 degrees with respect to the center of the length direction of the driving unit 300, or four driving units 320 may be provided at intervals of 90 degrees. In this way, two or more driving units 320 may be radially provided so as to be spaced apart at the same distance or angle with respect to the longitudinal center of the driving unit 300 or the driving body 310.

이하에서는 설명의 편의를 위해, 주행몸체(310)의 상부 및 하부에 한 쌍의 주행부(320)가 마련된 경우에 대해서 예시적으로 설명한다.Hereinafter, for convenience of description, a case in which a pair of driving units 320 are provided above and below the driving body 310 will be exemplarily described.

주행부(320)는 주행 유닛(300)의 바퀴 역할을 하는 부분으로써, 관내(10)의 위쪽 내면과 아래쪽 내면에 각각 접촉할 수 있도록 주행몸체(310)의 상부 및 하부에 한 쌍으로 마련될 수 있다. 여기서, 주행부(320)는 바퀴(휠) 형태로 마련되기 보다는 무한궤도(미도시) 형태로 마련되는 것이 바람직하다.The driving unit 320 is a part that serves as a wheel of the driving unit 300, and is provided as a pair on the upper and lower portions of the driving body 310 so as to contact the upper and lower inner surfaces of the tube 10, respectively. I can. Here, it is preferable that the driving unit 320 is provided in the form of a caterpillar (not shown) rather than the form of a wheel (wheel).

가변연결부(330)는 관내(10)의 직경 크기에 따라 주행몸체(310)의 상부 및 하부에 한 쌍으로 마련된 주행부(320)를 확장 또는 축소시킬 수 있도록 주행몸체(310)와 주행부(320)를 연결할 수 있다. The variable connection part 330 is the driving body 310 and the driving part () to expand or contract the driving part 320 provided in a pair on the upper and lower part of the driving body 310 according to the diameter size of the tube 10 320) can be connected.

이러한 가변연결부(330)는 제1 링크부재(331), 제2 링크부재(335), 제3 링크부재(339)를 이용하여 주행부(320)와 주행몸체(310)를 연결할 수 있다. The variable connection part 330 may connect the driving part 320 and the driving body 310 using the first link member 331, the second link member 335, and the third link member 339.

가변연결부(330)의 제1 링크부재(331)는 주행몸체(310)의 폭방향 양단에서 주행몸체(310)와 주행부(320)를 연결할 수 있다. 제1 링크부재(331)의 일단부는 주행몸체(310)에 연결되고 제1 링크부재(331)의 타단부는 주행부(320)에 연결될 수 있다. 즉, 주행몸체(310)와 연결되는 제1 링크부재(331)의 일단부는 주행몸체(310)의 길이 방향을 따라 위치 가변이 가능하도록 주행몸체(310)에 대해 회전 가능하게 연결될 수 있다. The first link member 331 of the variable connection part 330 may connect the traveling body 310 and the traveling part 320 at both ends of the traveling body 310 in the width direction. One end of the first link member 331 may be connected to the driving body 310 and the other end of the first link member 331 may be connected to the driving part 320. That is, one end of the first link member 331 connected to the traveling body 310 may be rotatably connected to the traveling body 310 so that the position can be changed along the length direction of the traveling body 310.

제2 링크부재(335)는 주행몸체(310)의 폭방향 양단에서 주행몸체(310)와 주행부(320)를 연결할 수 있다. 제2 링크부재(335)의 일단부는 주행몸체(310)에 연결되되, 주행몸체(310)에 연결된 제1 링크부재(331)와 이격된 위치에서 연결되고, 제2 링크부재(335)의 타단부는 주행부(320)에 연결되되 주행부(320)에 연결된 제1 링크부재(331)와 동일한 위치에 연결될 수 있다. 이에 따라, 제2 링크부재(335)는 주행부(320)에 대해 제1 링크부재(331)의 회전중심과 동일한 회전중심을 가질 수 있다. The second link member 335 may connect the traveling body 310 and the traveling part 320 at both ends of the traveling body 310 in the width direction. One end of the second link member 335 is connected to the driving body 310, connected at a position spaced apart from the first link member 331 connected to the driving body 310, and the other end of the second link member 335 The end may be connected to the driving part 320 and connected to the same position as the first link member 331 connected to the driving part 320. Accordingly, the second link member 335 may have the same rotation center as the rotation center of the first link member 331 with respect to the driving unit 320.

주행몸체(310)에 회전 가능하게 연결되는 제1 링크부재(331)의 일단은 주행몸체(310)의 길이방향을 따라 위치 변경이 가능한 반면에, 주행몸체(310)에 회전 가능하게 연결되는 제2 링크부재(335)의 일단은 주행몸체(310)에 대해 고정된 위치에서 회전 가능하게 연결된다.One end of the first link member 331 rotatably connected to the running body 310 can be changed in position along the longitudinal direction of the running body 310, while the first link rotatably connected to the running body 310 2 One end of the link member 335 is rotatably connected in a fixed position with respect to the traveling body 310.

또한, 제3 링크부재(339)는 주행몸체(310)의 폭방향 양단에서 주행몸체(310)와 주행부(320)를 연결할 수 있다. 제3 링크부재(339)는 주행몸체(310)의 길이 방향을 따라 주행몸체(310)에 연결된 제2 링크부재(335)의 일단부와 이격되어 마련될 수 있다. 여기서, 제3 링크부재(339)의 일단부는 주행몸체(310)에 연결되되 주행몸체(310)에 연결된 제2 링크부재(335)의 일단부와 이격된 위치에서 주행몸체(310)에 회전 가능하게 연결되고, 제3 링크부재(339)의 타단부는 주행부(320)에 연결되되 주행부(320)에 연결된 제2 링크부재(335)의 타단부 및 제1 링크부재(331)의 타단부와 이격된 위치에서 주행부(320)에 회전 가능하게 연결될 수 있다. 제2 링크부재(335)와 마찬가지로 제3 링크부재(339)의 양단은 고정된 위치에서 주행몸체(310) 및 주행부(320)에 회전 가능하게 연결된다.In addition, the third link member 339 may connect the traveling body 310 and the traveling part 320 at both ends of the traveling body 310 in the width direction. The third link member 339 may be provided to be spaced apart from one end of the second link member 335 connected to the driving body 310 along the length direction of the driving body 310. Here, one end of the third link member 339 is connected to the traveling body 310, and can be rotated on the traveling body 310 at a position spaced apart from the one end of the second link member 335 connected to the traveling body 310 And the other end of the third link member 339 is connected to the driving unit 320 and the other end of the second link member 335 connected to the driving unit 320 and the other end of the first link member 331 It may be rotatably connected to the driving unit 320 at a position spaced apart from the end. Like the second link member 335, both ends of the third link member 339 are rotatably connected to the traveling body 310 and the traveling part 320 at a fixed position.

한편, 제1 링크부재(331), 제2 링크부재(335) 및 제3 링크부재(339)는 동일한 길이를 가지는 링크(link)로 마련될 수 있는데, 제2 링크부재(335)와 제3 링크부재(339)는 서로 평행하게 마련될 수 있다. 이때, 제2 링크부재(335) 및 제3 링크부재(339)는 제1 링크부재(331)와는 다른 방향으로 전진하거나 후퇴하는 방향으로 움직일 수 있다. On the other hand, the first link member 331, the second link member 335, and the third link member 339 may be provided as links having the same length, the second link member 335 and the third The link members 339 may be provided parallel to each other. At this time, the second link member 335 and the third link member 339 may move in a direction different from that of the first link member 331 to advance or retreat.

즉, 제2 링크부재(335)의 일단부 및 제3 링크부재(339)의 일단부는 주행몸체(310)에 고정된 위치에서 회전 가능하게 연결되지만, 제1 링크부재(331)의 일단부는 주행몸체(310)에 고정된 상태가 아니라 주행몸체(310)의 길이 방향을 따라 전방 또는 후방으로 연결 위치를 바꿀 수 있도록 마련된다. 이에 따라, 제1 링크부재(331)의 일단부가 주행몸체(310)의 길이 방향을 따라 전방 또는 후방으로 연결 위치가 바뀌면, 주행몸체(310)에 회전 가능하게 연결된 제2 링크부재(335)의 일단부 및 제3 링크부재(339)의 일단부가 제1 링크부재(331)의 일단부와 가까워지거나 멀어지면서 주행부(320)를 주행몸체(310)에 대해 멀어지는 방향으로 확장시키거나 가까워지는 방향으로 축소시킬 수 있다. That is, one end of the second link member 335 and one end of the third link member 339 are rotatably connected at a position fixed to the traveling body 310, but one end of the first link member 331 is driven It is not fixed to the body 310 but is provided to change the connection position forward or backward along the length direction of the traveling body 310. Accordingly, when the connection position of one end of the first link member 331 changes forward or backward along the length direction of the traveling body 310, the second link member 335 rotatably connected to the traveling body 310 A direction in which one end of the first link member 339 and one end of the third link member 339 is closer or farther away from the first link member 331 to expand or approach the driving unit 320 in a direction away from the driving body 310 Can be reduced to

한편, 가변연결부(330)는 지지블록(332), 가이드 로드(333) 및 가이드 블록(334)을 포함할 수 있다. 지지블록(332), 가이드 로드(333) 및 가이드 블록(334)은 제1 링크부재(331), 제2 링크부재(335) 및 제3 링크부재(339)를 이용하여 주행부(320)를 주행몸체(310)에 대해 멀어지는 방향으로 확장시키거나 가까워지는 방향으로 축소시킬 때, 주행몸체(310)에 멀어지거나 가까워진 상태의 주행부(320)의 위치를 고정시키기 위한 것이다. Meanwhile, the variable connection part 330 may include a support block 332, a guide rod 333, and a guide block 334. The support block 332, the guide rod 333, and the guide block 334 use the first link member 331, the second link member 335, and the third link member 339 to move the driving unit 320. When expanding in a direction away from the driving body 310 or reducing in a direction closer to the driving body 310, the position of the driving unit 320 in a state that is moving away or close to the driving body 310 is fixed.

지지블록(332)은 블록(block)의 형태로 주행몸체(310)의 내부, 즉 센서구동 유닛(200)에 인접하도록 주행몸체(310)의 길이 방향 일단에 마련될 수 있다. 지지블록(332)에는 가이드 로드(333)의 일단부에 연결될 수 있다. The support block 332 may be provided at one end in the length direction of the traveling body 310 so as to be adjacent to the inside of the traveling body 310, that is, the sensor driving unit 200 in the form of a block. The support block 332 may be connected to one end of the guide rod 333.

가이드 로드(333)는 일정 길이를 가지는 원통형의 막대 형상인 로드(rod)의 형태로 형성되며, 지지블록(332)의 폭 방향에 대해 일단부가 지지블록(332)에 연결될 수 있다. 또한, 가이드 로드(333)는 한 쌍으로 마련되어 지지블록(332)의 폭 방향의 양측에 연결될 수 있다. 이때, 가이드 로드(333)는 주행몸체(310)의 길이 방향과 나란하게 마련될 수 있다. 이러한 가이드 로드(333)의 외면을 따라 슬라이딩 할 수 있도록 가이드 블록(334)이 마련될 수 있다. The guide rod 333 is formed in the form of a rod having a cylindrical rod shape having a predetermined length, and one end may be connected to the support block 332 in the width direction of the support block 332. In addition, the guide rods 333 may be provided in a pair and connected to both sides of the support block 332 in the width direction. In this case, the guide rod 333 may be provided in parallel with the length direction of the traveling body 310. A guide block 334 may be provided to slide along the outer surface of the guide rod 333.

가이드 블록(334)은 상술한 지지블록(332)과 같은 블록(block)의 형태로서 주행몸체(310)의 폭 방향으로 긴 다각형 또는 원기둥의 형태로 마련될 수 있다. 참고로, 도면에는 가이드 블록(334)이 주행몸체(310)의 폭 방향으로 긴 길이를 가지는 사각형의 형태로 형성되는 것으로 도시하였으나, 반드시 이에 한정되는 것은 아니다. The guide block 334 may be provided in the form of a block, such as the support block 332 described above, in the form of a long polygon or cylinder in the width direction of the traveling body 310. For reference, in the drawings, the guide block 334 is shown to be formed in a rectangular shape having a long length in the width direction of the traveling body 310, but is not limited thereto.

상술한 바와 같이, 가이드 블록(334)에 가이드 로드(333)가 삽입 관통되어 가이드 로드(333)를 따라 가이드 블록(344)이 슬라이딩 운동할 수 있다. 다시 말해서, 한 쌍의 가이드 로드(333)가 가이드 블록(334)을 관통하도록 마련되어 한 쌍의 가이드 로드(333)를 따라 주행몸체(310)의 길이 방향과 동일한 방향으로 가이드 블록(334)이 슬라이딩 운동할 수 있다. As described above, the guide rod 333 is inserted through the guide block 334 so that the guide block 344 may slide along the guide rod 333. In other words, a pair of guide rods 333 are provided to pass through the guide block 334 so that the guide block 334 slides along the pair of guide rods 333 in the same direction as the longitudinal direction of the traveling body 310 You can exercise.

특히, 가이드 블록(334)의 양단부는 주행몸체(310)의 내측에 위치되어 연결되는 제1 링크부재(331)의 일단부에 회전 가능하게 연결될 수 있다. 즉, 가이드 블록(334)의 양단부에는 주행부(320)의 폭 방향 양측에 위치하는 제1 링크부재(331)의 일단부가 회전 가능하게 연결되는데, 가이드 블록(334)이 한 쌍의 가이드 로드(333)를 따라 슬라이딩되면 제1 링크부재(331)의 일단부도 가이드 블록(334)과 함께 가이드 로드(333)를 따라 슬라이딩 될 수 있다. In particular, both ends of the guide block 334 may be rotatably connected to one end of the first link member 331 that is located and connected to the inside of the traveling body 310. That is, one end of the first link member 331 located on both sides in the width direction of the traveling part 320 is rotatably connected to both ends of the guide block 334, and the guide block 334 is a pair of guide rods. When sliding along 333, one end of the first link member 331 may also slide along the guide rod 333 together with the guide block 334.

가이드 블록(334)의 양단부는 제1 링크부재(331)의 일단부에 연결된 상태에서 제1 링크부재(331)의 외측으로 돌출 연장되고, 돌출 연장된 양단부가 주행몸체(310)의 내측면에 연결될 수 있다. 따라서, 제1 링크부재(331)의 일단부는 주행몸체(310)의 내측면에 직접 연결되는 것이 아니라 가이드 블록(334)의 양단부를 매개로 하여 주행몸체(310)의 내측면에 간접적으로 연결되는 형태이다.Both ends of the guide block 334 protrude to the outside of the first link member 331 in a state connected to one end of the first link member 331, and both ends of the guide block 334 protrude to the inner side of the traveling body 310. Can be connected. Therefore, one end of the first link member 331 is not directly connected to the inner surface of the driving body 310, but is indirectly connected to the inner surface of the driving body 310 through both ends of the guide block 334 Form.

여기서, 가이드 블록(334)이 한 쌍의 가이드 로드(333)를 따라 일방향, 즉 주행몸체(310)의 길이 방향을 따라 지지블록(332)에 대해 멀어지는 방향으로 전진하면 제1 링크부재(331)의 일단부의 위치는 제2 링크부재(335)의 일단부 즉, 주행몸체(310)와 연결되는 일단부와 가까워지는 위치로 변경되기 때문에 주행부(320)는 주행몸체(310)에 대해 멀어지는 방향으로 확장될 수 있다. 반대로, 가이드 블록(334)이 한 쌍의 가이드 로드(333)를 따라 타방향, 즉 주행몸체(310)의 일방향에 대해 반대되는 방향으로 후퇴하면 제1 링크부재(331)의 일단부의 위치는 제2 링크부재(335)의 일단부 즉, 주행몸체(310)와 연결되는 일단부와 멀어지는 위치로 변경되기 때문에 주행부(320)는 주행몸체(310)에 대해 가까워지는 방향으로 축소될 수 있다. Here, when the guide block 334 advances in one direction along the pair of guide rods 333, that is, in a direction away from the support block 332 along the longitudinal direction of the traveling body 310, the first link member 331 Since the position of one end of the second link member 335 is changed to a position closer to one end of the second link member 335, that is, the one end connected to the driving body 310, the driving part 320 is moved away from the driving body 310 Can be extended to Conversely, when the guide block 334 retreats along a pair of guide rods 333 in the other direction, that is, in a direction opposite to one direction of the traveling body 310, the position of one end of the first link member 331 is zero. 2 Since one end of the link member 335, that is, a position away from the one end connected to the driving body 310, is changed, the driving part 320 can be reduced in a direction closer to the driving body 310.

이때, 가이드 블록(334)이 한 쌍의 가이드 로드(333)를 따라 슬라이딩되어 주행부(320)가 주행몸체(310)에 대해 멀어지는 방향으로 이동되면 주행몸체(310)를 기준으로 상하에 위치하는 주행부(320)가 주행몸체(310)에서 멀어지면서 확장되기 때문에 큰 직경을 가지는 관내(10)에 적용할 수 있다. 반대로 가이드 블록(334)이 한 쌍의 가이드 로드(333)를 따라 슬라이딩 되어 주행부(320)가 주행몸체(310)에 대해 가까워지는 방향으로 이동되면 주행몸체(310)를 기준으로 상하에 위치하는 주행부(320)가 주행몸체(310) 쪽으로 가까워지면서 축소되기 때문에 상대적으로 작은 크기의 직경을 가지는 관내(10)에 적용할 수 있다. At this time, when the guide block 334 is slid along the pair of guide rods 333 and the driving unit 320 is moved in a direction away from the driving body 310, it is located up and down with respect to the driving body 310. Since the traveling part 320 is extended away from the traveling body 310, it can be applied to the inner tube 10 having a large diameter. On the contrary, when the guide block 334 slides along the pair of guide rods 333 and moves in a direction closer to the driving body 310, the driving unit 320 is positioned up and down with respect to the driving body 310. Since the driving part 320 is reduced as it approaches the driving body 310, it can be applied to the inner tube 10 having a relatively small diameter.

한편, 상술한 바와 같이, 주행부(320)는 주행몸체(310)에 가까워지는 방향으로 전진하거나 주행몸체(310)에서 멀어지는 방향으로 후퇴하면, 주행몸체(310)에 대해 다양한 높이로 위치될 수 있다. 이때, 주행부(320)는 관내(10)의 내면에 접촉되어 관내(10)를 이동하기 때문에, 주행몸체(310)에 대한 주행부(320)의 위치를 고정시키는 것이 필요하다. Meanwhile, as described above, when the driving unit 320 advances in a direction closer to the driving body 310 or retreats in a direction away from the driving body 310, the driving unit 320 may be positioned at various heights with respect to the driving body 310. have. At this time, since the driving unit 320 is in contact with the inner surface of the tube 10 to move the tube 10, it is necessary to fix the position of the driving unit 320 with respect to the running body 310.

이를 위해, 도 9에 도시된 바와 같이, 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템(1000)은 위치고정블록(336,337)을 더 포함할 수 있다. To this end, as shown in FIG. 9, the intra-pipe inspection robot system 1000 according to an embodiment of the present invention may further include position fixing blocks 336 and 337.

위치고정블록(336,337)은 주행몸체(310)에 마련되어, 주행몸체(310)에 대한 주행부(320)의 위치가 고정되도록 할 수 있다. 다시 말해서, 위치고정블록(336,337)은 주행몸체(310)의 폭방향 내면에 마련되며 가이드 블록(334)의 양단부가 삽입될 수 있다. 이때, 위치고정블록(336,337)은 주행몸체(310)의 폭방향 양측에 한 쌍으로 각각 마련되어 가이드 블록(334)의 양단부가 삽입될 수도 있고, 한 쌍의 주행몸체(310) 중에서 어느 하나에 마련되어 가이드 블록(334)의 양단부 중 일측 부분만이 삽입될 수도 있다. The position fixing blocks 336 and 337 may be provided on the driving body 310 so that the position of the driving part 320 with respect to the driving body 310 is fixed. In other words, the positioning blocks 336 and 337 are provided on the inner surface of the traveling body 310 in the width direction, and both ends of the guide block 334 may be inserted. At this time, the positioning blocks (336, 337) are provided in a pair on both sides in the width direction of the traveling body (310), and both ends of the guide block (334) may be inserted, or provided in any one of the pair of traveling bodies (310). Only one portion of both ends of the guide block 334 may be inserted.

이러한 위치고정블록(336,337)은 제1 위치고정블록(336) 및 제2 위치고정블록(337)을 포함할 수 있다. These location fixing blocks 336 and 337 may include a first location fixing block 336 and a second location fixing block 337.

제1 위치고정블록(336)은 지지블록(332)과 인접한 위치에 마련되고, 제2 위치고정블록(337)은 주행몸체(310)의 길이 방향을 따라 제1 위치고정블록(336)과 이격된 위치에 마련될 수 있다. The first position fixing block 336 is provided at a position adjacent to the support block 332, and the second position fixing block 337 is spaced apart from the first position fixing block 336 along the length direction of the traveling body 310 It can be provided in a location.

이때, 제1 위치고정블록(336) 및 제2 위치고정블록(337) 각각에는 적어도 하나의 단계조절부가 형성될 수 있다. 단계조절부는 제1 및 제2 위치고정블록(336,337)에 소정 간격을 두고 적어도 하나 이상으로 마련될 수 있다. 예를 들어, 제1 위치고정블록(336)에는 단계조절부(336a,336b,336c)가 복수개로 형성되고, 제2 위치고정블록(337)에는 적어도 하나의 단계조절부(337a)가 형성될 수 있다. At this time, at least one step adjustment unit may be formed in each of the first position fixing block 336 and the second position fixing block 337. At least one step adjustment unit may be provided in the first and second position fixing blocks 336 and 337 at a predetermined interval. For example, a plurality of step adjustment units 336a, 336b, and 336c are formed in the first position fixing block 336, and at least one step adjustment unit 337a is formed in the second position fixing block 337. I can.

단계조절부(336a,336b,336c,337a)는 제1 및 제2 위치고정블록(336,337)에 음각의 홈 형태로 형성되거나 구멍 형태로 형성될 수 있다. 상기한 바와 같이, 단계조절부(336a,336b,336c,337a)에는 가이드 블록(334)의 길이방향 양단부가 삽입될 수 있다.The step adjustment units 336a, 336b, 336c, and 337a may be formed in the first and second position fixing blocks 336 and 337 in the form of an intaglio groove or a hole form. As described above, both ends of the guide block 334 in the longitudinal direction may be inserted into the step adjustment units 336a, 336b, 336c, and 337a.

가이드 블록(334)의 양단부가 제1 위치고정블록(336) 또는 제2 위치고정블록(337)에 형성된 복수개의 단계조절부(336a,336b,336c,337a) 중에서 어느 하나에 삽입됨으로써 주행부(320)가 주행몸체(310)로부터 멀어져서 확장된 상태의 위치에 고정되거나, 주행부(320)가 주행몸체(310) 쪽으로 가까워져서 축소된 상태의 위치에 고정될 수 있다. Both ends of the guide block 334 are inserted into any one of a plurality of step adjustment units 336a, 336b, 336c, and 337a formed in the first position fixing block 336 or the second position fixing block 337, so that the driving unit ( 320 may be fixed at a position in an expanded state away from the driving body 310, or may be fixed at a position in a reduced state by approaching the driving unit 320 toward the driving body 310.

도 4 내지 도 8을 참조하여, 본 발명의 일 실시예에 따른 주행몸체(310)에 대해 상하 방향으로 확장되거나 축소되는 주행부(320)의 동작을 간단히 설명한다. With reference to FIGS. 4 to 8, the operation of the driving unit 320 that expands or contracts in the vertical direction with respect to the driving body 310 according to an embodiment of the present invention will be briefly described.

도 4, 도 5 및 도 9를 참조하면, 가이드 블록(334)이 지지블록(332)과 가까운 위치에 위치된 상태에서 가이드 블록(334)의 양단부가 제1 위치고정블록(336)의 제1 단계조절부(336a)에 삽입되면, 주행부(320)는 주행몸체(310)에 대해 멀어지지 않고 가깝게 위치된 상태로 고정된다. 4, 5 and 9, in a state in which the guide block 334 is positioned close to the support block 332, both ends of the guide block 334 are the first of the first position fixing block 336. When inserted into the step adjustment unit 336a, the driving unit 320 is fixed in a state positioned close to the driving body 310 without moving away.

도 4 및 도 5에 도시한 바와 같이, 주행부(320)가 주행몸체(310)에 대해 가깝게 위치되면, 예컨대 약 90mm 직경을 갖는 포신의 내면 또는 관내(10)에 대응할 수 있다. 주행몸체(310)에 연결된 주행부(320) 사이의 최대 거리 즉, 관내(10)의 내면과 접촉하는 주행부(320)의 최외면 사이의 거리가 약 90mm 정도가 되기 때문에 90mm의 직경을 가지는 관내(10)의 내면과 접촉된 상태를 유지하면서 관내 검사 로봇 시스템(1000)이 관내(10)를 주행하게 된다. 이때, 센서구동 유닛(200)의 가이드 프레임(240) 및 가이드휠(242)은 주행몸체(310)에 대한 주행부(320)의 높이에 맞추어서 90mm 직경의 관내(10)의 내면에 가이드휠(242)이 닿을 수 있는 것이 사용될 수 있다. 이에 따라, 주행부(320)가 관내(10)의 내면에 대해 접촉한 상태를 유지하면서 관내(10)를 이동할 때, 가이드휠(242)도 주행부(320)와 마찬가지로 관내(10)의 내면에 대해 접촉되게 된다. As shown in FIGS. 4 and 5, when the driving part 320 is located close to the driving body 310, it may correspond to, for example, the inner surface of the barrel or the inner tube 10 having a diameter of about 90 mm. Since the maximum distance between the driving parts 320 connected to the driving body 310, that is, the distance between the outermost surface of the driving part 320 in contact with the inner surface of the tube 10 is about 90 mm, it has a diameter of 90 mm. While maintaining the state in contact with the inner surface of the inner tube 10, the inner tube inspection robot system 1000 travels the inner tube 10. At this time, the guide frame 240 and the guide wheel 242 of the sensor driving unit 200 are fitted to the inner surface of the tube 10 having a diameter of 90 mm according to the height of the driving part 320 with respect to the driving body 310. 242) can be reached. Accordingly, when the driving unit 320 moves the tube 10 while maintaining contact with the inner surface of the tube 10, the guide wheel 242 is also the inner surface of the tube 10 like the driving unit 320 Will be in contact with.

도 6 및 도 9를 참조하면, 가이드 블록(334)이 지지블록(332)과 약간 멀어진 방향으로 이동된 상태에서 가이드 블록(334)의 양단부가 제1 위치고정블록(336)의 제2 단계조절부(336b)에 삽입되면, 주행부(320)는 도 4에 비하여 주행몸체(310)에 대해 약간 멀어진 위치로 이동되어 확장된 상태로 고정된다. 가이드 블록(334)의 양단부가 제1 위치고정블록(336)의 제2 단계조절부(336b)에 삽입되면 제1 단계조절부(336a)에 삽입되는 경우 보다 제1 링크부재(331)의 일단부와 제2 링크부재(335)의 일단부 사이가 가까워지기 때문에 주행부(320)가 주행몸체(310)에 대해서 도 4의 경우 보다 확장된 상태가 된다.6 and 9, in a state in which the guide block 334 is moved in a direction slightly away from the support block 332, both ends of the guide block 334 are adjusted in the second step of the first position fixing block 336 When inserted into the part 336b, the driving part 320 is moved to a position slightly distant from the driving body 310 compared to FIG. 4 and is fixed in an extended state. When both ends of the guide block 334 are inserted into the second step adjustment unit 336b of the first position fixing block 336, one end of the first link member 331 is more than when inserted into the first step adjustment unit 336a. Since the part and the one end of the second link member 335 are closer together, the driving part 320 is in an extended state with respect to the driving body 310 than in the case of FIG. 4.

도 6에 도시한 바와 같이, 주행부(320)가 주행몸체(310)에 대해 도 4에 비하여 더 멀어지는 방향으로 위치되어 확장되면, 예컨대 약 105mm의 직경을 갖는 포신의 내면 또는 관내(10)에 대응할 수 있다. 주행몸체(310)에 연결된 주행부(320) 사이의 최대 거리 즉, 관내(10)의 내면과 접촉하는 주행부(320)의 최외면 사이의 거리가 약 105mm 정도가 되기 때문에 105mm의 직경을 가지는 관내(10)의 내면과 접촉된 상태를 유지하면서 관내 검사 로봇 시스템(1000)이 관내(10)를 주행하게 된다. 이때, 센서구동 유닛(200)의 가이드 프레임(240-1) 및 가이드휠(242-1)은 주행몸체(310)에 대한 주행부(320)의 높이 맞추어서 105mm 직경의 관내(10)의 내면에 가이드휠(242-1)이 닿을 수 있도록 전술한 도 4의 가이드 프레임(240) 및 가이드휠(242)의 보다는 큰 것으로 교체되어 장착될 수 있다. 이에 따라, 주행부(320)가 관내(10)의 내면에 대해 접촉한 상태를 유지하면서 관내(10)를 주행할 때, 센서구동 유닛(200)의 가이드휠(242-1)도 주행부(320)와 마찬가지로 관내(10)의 내면에 대해 접촉되게 된다. As shown in FIG. 6, when the driving part 320 is located in a direction further away from the driving body 310 than in FIG. 4 and expanded, for example, on the inner surface of the barrel having a diameter of about 105 mm or inside the tube 10 Can respond. Since the maximum distance between the driving parts 320 connected to the driving body 310, that is, the distance between the outermost surface of the driving part 320 in contact with the inner surface of the tube 10 is about 105 mm, it has a diameter of 105 mm. While maintaining the state in contact with the inner surface of the inner tube 10, the inner tube inspection robot system 1000 travels the inner tube 10. At this time, the guide frame 240-1 and the guide wheel 242-1 of the sensor driving unit 200 are aligned with the height of the driving part 320 with respect to the driving body 310 to the inner surface of the tube 10 having a diameter of 105 mm. The guide frame 240 and the guide wheel 242 of FIG. 4 described above may be replaced and mounted so that the guide wheel 242-1 can be reached. Accordingly, when traveling in the tube 10 while maintaining the driving unit 320 in contact with the inner surface of the tube 10, the guide wheel 242-1 of the sensor driving unit 200 is also the driving unit ( Like 320), it is brought into contact with the inner surface of the tube 10.

도 7 및 도 9를 참조하면, 가이드 블록(334)이 지지블록(332)과 더 멀어지는 방향으로 이동된 상태에서 가이드 블록(334)의 양단부가 제1 위치고정블록(336)의 제3 단계조절부(336c)에 삽입되면, 주행부(320)는 도 6에 비하여 주행몸체(310)에 대해 약간 멀어진 위치로 이동되어 확장된 상태로 고정된다. 가이드 블록(334)의 양단부가 제1 위치고정블록(336)의 제3 단계조절부(336c)에 삽입되면 제2 단계조절부(336b)에 삽입되는 경우 보다 제1 링크부재(331)의 일단부와 제2 링크부재(335)의 일단부 사이가 가까워지기 때문에 주행부(320)가 주행몸체(310)에 대해서 도 6의 경우 보다 확장된 상태가 된다.7 and 9, in a state where the guide block 334 is moved in a direction further away from the support block 332, both ends of the guide block 334 are adjusted in the third stage of the first position fixing block 336 When inserted into the part 336c, the driving part 320 is moved to a position slightly away from the driving body 310 compared to FIG. 6 and fixed in an extended state. When both ends of the guide block 334 are inserted into the third step adjustment unit 336c of the first position fixing block 336, one end of the first link member 331 is more than when inserted into the second step adjustment unit 336b. Since the part and the one end of the second link member 335 are closer together, the driving part 320 is in an extended state with respect to the driving body 310 than in the case of FIG. 6.

도 7에 도시한 바와 같이, 주행부(320)가 주행몸체(310)에 대해 도 6에 비하여 더 멀어지는 방향으로 위치되어 확장되면, 예컨대 약 120mm의 직경을 갖는 포신의 내면 또는 관내(10)에 대응할 수 있다. 주행몸체(310)에 연결된 주행부(320) 사이의 최대 거리 즉, 관내(10)의 내면과 접촉하는 주행부(320)의 최외면 사이의 거리가 약 120mm 정도가 되기 때문에 120mm의 직경을 가지는 관내(10)의 내면과 접촉된 상태를 유지하면서 관내 검사 로봇 시스템(1000)이 관내(10)를 주행하게 된다. 이때, 센서구동 유닛(200)의 가이드 프레임(240-2) 및 가이드휠(242-2)은 주행몸체(310)에 대한 주행부(320)의 높이에 맞추어서 120mm 직경의 관내(10)의 내면에 가이드휠(242-2)이 닿을 수 있도록 전술한 도 6에 도시한 가이드 프레임(240-1) 및 가이드휠(242-1) 보다는 큰 것으로 교체되어 장착될 수 있다. 이에 따라, 센서구동 유닛(220)의 가이드휠(242-2)도 주행부(320)가 관내(10)의 내면에 대해 접촉한 상태를 유지하면서 관내(10)를 주행할 때, 센서구동 유닛(200)의 가이드휠(242-2)도 주행부(320)와 마찬가지로 관내(10)의 내면에 대해 접촉되게 된다. As shown in FIG. 7, when the traveling part 320 is located in a direction further away from the traveling body 310 than in FIG. 6 and expanded, for example, on the inner surface of the barrel or the inner tube 10 having a diameter of about 120 mm. Can respond. Since the maximum distance between the traveling parts 320 connected to the traveling body 310, that is, the distance between the outermost surface of the traveling part 320 in contact with the inner surface of the tube 10 is about 120 mm, it has a diameter of 120 mm. While maintaining the state in contact with the inner surface of the inner tube 10, the inner tube inspection robot system 1000 travels the inner tube 10. At this time, the guide frame 240-2 and the guide wheel 242-2 of the sensor driving unit 200 are aligned with the height of the driving part 320 with respect to the driving body 310, and the inner surface of the tube 10 having a diameter of 120 mm The guide wheel (242-2) may be replaced with a larger one than the guide frame (240-1) and guide wheel (242-1) shown in FIG. 6 described above so that it can reach. Accordingly, when the guide wheel 242-2 of the sensor driving unit 220 is also in contact with the inner surface of the tube 10 while the driving unit 320 is in contact with the inner surface of the tube 10, the sensor driving unit The guide wheel (242-2) of 200 is also brought into contact with the inner surface of the tube (10) like the driving unit (320).

도 8 및 도 9를 참조하면, 가이드 블록(334)이 지지블록(332)과 더욱더 멀어지는 방향으로 이동된 상태에서 가이드 블록(334)의 양단부가 제2 위치고정블록(337)의 제4 단계조절부(337a)에 삽입되면, 주행부(320)는 도 7에 비하여 주행몸체(310)에 대해 더욱 더 멀어진 위치로 이동되어 확장된 상태로 고정된다. 가이드 블록(334)의 양단부가 제2 위치고정블록(337)의 제4 단계조절부(337a)에 삽입되면 제3 단계조절부(336c)에 삽입되는 경우 보다 제1 링크부재(331)의 일단부와 제2 링크부재(335)의 일단부 사이가 가까워지기 때문에 주행부(320)가 주행몸체(310)에 대해서 도 7의 경우 보다 확장된 상태가 된다.8 and 9, in a state in which the guide block 334 is moved further away from the support block 332, both ends of the guide block 334 are adjusted in the fourth step of the second position fixing block 337. When inserted into the part 337a, the driving part 320 is moved to a position further away from the driving body 310 compared to FIG. 7 and fixed in an extended state. When both ends of the guide block 334 are inserted into the fourth step adjustment unit 337a of the second position fixing block 337, one end of the first link member 331 is more than when inserted into the third step adjustment unit 336c. Since the portion and the one end portion of the second link member 335 are closer together, the driving unit 320 is in an extended state with respect to the driving body 310 than in the case of FIG. 7.

도 8에 도시한 바와 같이, 주행부(320)가 주행몸체(310)에 대해 도 7에 비하여 더 멀어지는 방향으로 위치되어 확장되면, 예컨대 약 155mm의 직경을 갖는 포신의 내면 또는 관내(10)에 대응할 수 있다. 주행몸체(310)에 연결된 주행부(320) 사이의 최대 거리 즉, 관내(10)의 내면과 접촉하는 주행부(320)의 최외면 사이의 거리가 약 155mm 정도가 되기 때문에 155mm의 직경을 가지는 관내(10)의 내면과 접촉된 상태를 유지하면서 관내 검사 로봇 시스템(1000)이 관내(10)를 주행하게 된다. 이때, 센서구동 유닛(200)의 가이드 프레임(242-3) 및 가이드휠(242-3)은 주행몸체(310)에 대한 주행부(320)의 높이에 맞추어서 155mm 직경의 관내(10)의 내면에 가이드휠(242-3)이 닿을 수 있도록 전술한 도 7에 도시한 가이드 프레임(240-2) 및 가이드휠(242-2)보다는 큰 것으로 교체되어 장착될 수 있다. 이에 따라, 센서구동 유닛(220)의 가이드휠(242-3)도 주행부(320)가 관내(10)의 내면에 대해 접촉한 상태를 유지하면서 관내(10)를 주행할 때, 센서구동 유닛(200)의 가이드휠(242-3)도 주행부(302)와 마찬가지로 관내(10)의 내면에 대해 접촉된 상태가 된다. As shown in FIG. 8, when the driving part 320 is located in a direction further away from the driving body 310 than in FIG. 7 and expanded, for example, on the inner surface of the barrel having a diameter of about 155 mm or in the tube 10 Can respond. Since the maximum distance between the traveling parts 320 connected to the traveling body 310, that is, the outermost surface of the traveling part 320 in contact with the inner surface of the tube 10 is about 155mm, it has a diameter of 155mm. While maintaining the state in contact with the inner surface of the inner tube 10, the inner tube inspection robot system 1000 travels the inner tube 10. At this time, the guide frame 242-3 and the guide wheel 242-3 of the sensor driving unit 200 are aligned with the height of the driving part 320 relative to the driving body 310, and the inner surface of the 155mm diameter tube 10 The guide wheel (242-3) may be replaced with a larger one than the guide frame (240-2) and guide wheel (242-2) shown in FIG. 7 described above so that it can reach. Accordingly, the guide wheel 242-3 of the sensor driving unit 220 also maintains a state in which the driving unit 320 is in contact with the inner surface of the pipe 10 while traveling inside the pipe 10, the sensor driving unit The guide wheel (242-3) of 200 is also in contact with the inner surface of the tube (10) like the traveling unit (302).

참고로, 도 5를 참고하면, 주행몸체(310)에 대해 상하 방향으로 주행부(320)가 멀어지는 방향으로 확장되거나 가까워지는 방향으로 축소됨에 따라 그에 맞게 센서구동 유닛(200)의 가이드 프레임(240) 및 가이드휠(242)도 주행몸체(310)에 대한 주행부(320)의 높이에 맞는 것으로 교체될 수 있다. 여기서, 가이드 프레임(240) 또는 가이드휠(242) 중에서 어느 하나의 부품 만이 주행몸체(310)에 대한 주행부(320)의 높이에 맞게 교체될 수도 있으나, 센서 유닛(100)의 안정적인 회전을 위해서는 주행몸체(310)에 대한 주행부(320)의 높이의 변화에 따라 가이드 프레임(240) 및 가이드휠(242)이 모두 교체되는 것이 바람직하다. For reference, referring to FIG. 5, the guide frame 240 of the sensor driving unit 200 accordingly expands or contracts in a direction in which the driving unit 320 is extended in a direction away from or closer to the driving body 310 in the vertical direction. ) And the guide wheel 242 may also be replaced with one that fits the height of the driving part 320 with respect to the driving body 310. Here, only one of the guide frame 240 or the guide wheel 242 may be replaced according to the height of the driving unit 320 relative to the driving body 310, but for stable rotation of the sensor unit 100 It is preferable that both the guide frame 240 and the guide wheel 242 are replaced according to a change in the height of the driving part 320 with respect to the driving body 310.

도 2를 참조하면, 센서구동 유닛(200)의 연결부(250)와 주행 유닛(300)의 연결부(350)는 십자축 형태의 연결부재(360) 및 체결수단(262)을 통해 연결될 수 있다. 이때, 센서구동 유닛(200)의 연결부(250), 연결부재(360) 및 주행 유닛(300)의 연결부(350)는 일종의 유니버설 조인트(universal joint) 의 형태로 마련될 수 있다. Referring to FIG. 2, the connection part 250 of the sensor driving unit 200 and the connection part 350 of the driving unit 300 may be connected through a cross-shaft-shaped connection member 360 and a fastening means 262. At this time, the connection part 250 of the sensor driving unit 200, the connection member 360, and the connection part 350 of the traveling unit 300 may be provided in the form of a type of universal joint.

이에 따라, 연결부재(360)는 센서구동 유닛(200)과 주행 유닛(300)의 각각의 연결부(250, 350)를 연결하여 상하 또는 좌우방향으로 서로 자유롭게 회전하도록 할 수 있으며, 그에 따라 센서구동 유닛(200)과 주행 유닛(300)은 곧게 형성된 직관 뿐만 아니라 휘어지거나 곡선 형태로 형성된 곡관 내부에서도 원활하게 이동할 수 있다. Accordingly, the connection member 360 can freely rotate each other in the vertical or horizontal direction by connecting the respective connection portions 250 and 350 of the sensor driving unit 200 and the driving unit 300, thereby driving the sensor. The unit 200 and the driving unit 300 can move smoothly not only in a straight pipe formed straight, but also inside a curved pipe formed in a curved or curved shape.

한편, 도 1 및 9를주행몸체(310)주행몸체(310)몸체커버(312)몸체커버(312)제1 위치고정블록(336)제2 위치고정블록(337)몸체커버(312) 제1 위치고정블록(336) 및 제2 위치고정블록(337)이 장착되는 블록장착부(316,317)가 형성될 수 있다. 블록장착부(316,317)는 제1 위치고정블록(336) 및 제2 위치고정블록(337)이 각각 장착되는 제1 블록장착부(316) 및 제2 블록장착부(317)를 포함할 수 있다.On the other hand, see Figures 1 and 9 as a running body 310 running body 310 body cover 312 body cover 312 first position fixing block 336 second position fixing block 337 body cover 312 first Block mounting portions 316 and 317 on which the position fixing block 336 and the second position fixing block 337 are mounted may be formed. The block mounting parts 316 and 317 may include a first block mounting part 316 and a second block mounting part 317 to which the first positioning block 336 and the second positioning block 337 are mounted, respectively.

제1 블록장착부(316) 및 제2 블록장착부(317)는 제1 위치고정블록(336) 및 제2 위치고정블록(337)과 유사한 모양으로 형성되되 제1 위치고정블록(336) 및 제2 위치고정블록(337) 보다는 크게 형성되는 것이 바람직하다. 제1 블록장착부(316) 및 제2 블록장착부(317)는 몸체커버(312)의 내면에 음각으로 함몰 형성될 수 있다. 제1 블록장착부(316) 및 제2 블록장착부(317)는 제1 위치고정블록(336) 및 제2 위치고정블록(337)의 위치에 대응하여 서로 이격된 위치에 마련될 수 있다.The first block mounting portion 316 and the second block mounting portion 317 are formed in a shape similar to that of the first positioning block 336 and the second positioning block 337, but the first positioning block 336 and the second It is preferable that it is formed larger than the position fixing block 337. The first block mounting portion 316 and the second block mounting portion 317 may be recessed in an intaglio on the inner surface of the body cover 312. The first block mounting part 316 and the second block mounting part 317 may be provided at positions spaced apart from each other corresponding to the positions of the first position fixing block 336 and the second position fixing block 337.

여기서, 제1 블록장착부(316) 및 제2 블록장착부(317)의 두께 방향 내면 즉, 몸체커버(312)의 두께 방향 내면에는 음각으로 인입된 적어도 하나의 블록장착홈(316a,317a)이 마련될 수 있다. 블록장착홈(316a,317a)은 제1 블록장착부(316)에 형성된 제1 블록장착홈(316a) 및 제1 블록장착부(316)에서부터 이격된 위치에 마련된 제2 블록장착부(317)에 형성된 제2 블록장착홈(317a)을 포함할 수 있다. Here, at least one block mounting groove (316a, 317a) inserted in an intaglio is provided on the inner surface of the first block mounting part 316 and the second block mounting part 317 in the thickness direction, that is, the inner surface of the body cover 312 in the thickness direction. Can be. The block mounting grooves 316a and 317a are formed in the first block mounting groove 316a formed in the first block mounting part 316 and the second block mounting part 317 provided at a position spaced apart from the first block mounting part 316. It may include 2 block mounting grooves (317a).

제1 블록장착홈(316a)에는 제1 위치고정블록(336)이 삽입되어 몸체커버(312)에 장착되고, 제2 블록장착홈(317a)에는 제2 위치고정블록(337)이 삽입되어 몸체커버(312)에 장착될 수 있다. A first position fixing block 336 is inserted into the first block mounting groove 316a and mounted on the body cover 312, and a second position fixing block 337 is inserted into the second block mounting groove 317a. It may be mounted on the cover 312.

이때, 제1 블록장착부(316) 및 제2 블록장착부(317)의 폭 방향 크기는 몸체커버(312)의 길이방향에 있어서 일측 및 타측이 서로 다른 크기로 마련될 수 있다. In this case, the size of the first block mounting portion 316 and the second block mounting portion 317 in the width direction may be provided with different sizes on one side and the other side in the length direction of the body cover 312.

구체적으로, 제1 블록장착부(316) 및 제2 블록장착부(317)의 지지블록(332) 쪽 폭이 반대쪽 폭보다 크게 형성될 수 있다. 즉, 제1 블록장착부(316) 및 제2 블록장착부(317)의 지지블록(332) 쪽 폭은 제1 위치고정블록(336) 및 제2 위치고정블록(337)의 폭보다 크게 형성되고, 제1 블록장착부(316) 및 제2 블록장착부(317)의 반대쪽 폭은 제1 위치고정블록(336) 및 제2 위치고정블록(337)의 폭보다 작은 크기로 형성될 수 있다. 이에 따라, 제1 블록장착부(316)의 제1 블록장착홈(316a) 및 제2 블록장착부(317)의 제2 블록장착홈(317a)에 제1 위치고정블록(336) 및 제2 위치고정블록(337)이 각각 삽입되더라도 제1 블록장착홈(316a) 및 제2 블록장착홈(317a)으로부터 제1 위치고정블록(336) 및 제2 위치고정블록(337)이 이탈되지 않도록 할 수 있다. Specifically, a width of the first block mounting part 316 and the second block mounting part 317 on the side of the support block 332 may be larger than the width of the opposite side. That is, the width of the support block 332 side of the first block mounting portion 316 and the second block mounting portion 317 is formed larger than the width of the first positioning block 336 and the second positioning block 337, The widths opposite the first block mounting portion 316 and the second block mounting portion 317 may be formed to be smaller than the widths of the first positioning block 336 and the second positioning block 337. Accordingly, the first position fixing block 336 and the second position fixing in the first block mounting groove 316a of the first block mounting portion 316 and the second block mounting groove 317a of the second block mounting portion 317 Even if the blocks 337 are respectively inserted, it is possible to prevent the first positioning block 336 and the second positioning block 337 from being separated from the first block mounting groove 316a and the second block mounting groove 317a. .

참고로, 주행몸체(310)에 대해 주행부(320)를 멀어지도록 하거나 가까워지도록 할 때에는 몸체커버(312)에 형성된 손잡이(314)를 이용하여 주행몸체(310)에서 몸체커버(312)를 제거하고 작업자가 관내 검사 로봇 시스템(1000)이 삽입되는 관내(10)의 직경에 맞게 주행몸체(310)에 대해서 주행부(320)를 펼치거나 오므려서 주행 유닛(300)의 크기를 조절할 수 있다. 주행부(320)를 펼치거나 오므려서 관내(10)의 직경에 맞도록 주행 유닛(300)의 크기를 조절한 후 주행몸체(310)에 몸체커버(312)를 장착하여 주행부(320)의 크기를 고정할 수 있다. 몸체커버(312)를 주행몸체(310)에 장착하게 되면 가이드 블록(334)의 양단부가 제1 및 제2 위치고정블록(336,337)의 단계조절부(336a,336b,336c,337a) 중 어느 하나에 삽입되면서 주행부(320)의 크기가 고정될 수 있다.For reference, when the driving part 320 is moved away from or close to the driving body 310, the body cover 312 is removed from the driving body 310 using the handle 314 formed on the body cover 312. And, the operator can adjust the size of the driving unit 300 by expanding or closing the driving unit 320 with respect to the driving body 310 according to the diameter of the pipe 10 into which the pipe inspection robot system 1000 is inserted. After adjusting the size of the driving unit 300 to fit the diameter of the tube 10 by unfolding or constricting the driving unit 320, the body cover 312 is mounted on the driving body 310, The size can be fixed. When the body cover 312 is mounted on the traveling body 310, both ends of the guide block 334 are one of the step adjustment units 336a, 336b, 336c, 337a of the first and second position fixing blocks 336 and 337. While being inserted into, the size of the driving unit 320 may be fixed.

또한, 주행몸체(310)에는 이동차단부재(313)가 마련될 수 있다. 이동차단부재(313)는 주행몸체(310)의 길이방향 일단에 마련되되 가이드 로드(333)가 끝나는 위치에 마련될 수 있다. 즉, 이동차단부재(313)는 가이드 블록(334)이 한 쌍의 가이드 로드(333)를 따라 슬라이딩될 때, 가이드 블록(334)이 제4 단계조절부(337a)보다 더 전진하더라도 한 쌍의 가이드 로드(333)를 이탈하는 것을 방지할 수 있다. In addition, a movement blocking member 313 may be provided on the traveling body 310. The movement blocking member 313 may be provided at one end of the traveling body 310 in the longitudinal direction, and may be provided at a position where the guide rod 333 ends. In other words, when the guide block 334 slides along the pair of guide rods 333, the movement blocking member 313 is formed even if the guide block 334 advances further than the fourth step adjustment unit 337a. It is possible to prevent separation of the guide rod 333.

상술한 바와 같이, 주행부(320)는 주행몸체(310)에 대해서 확장되거나 축소될 때, 관내(10)의 내면에 대해 밀착된 상태를 유지하면서 본 일 실시예에 따른 관내 검사 로봇 시스템(1000)을 주행할 수 있도록 한다. As described above, when the driving unit 320 is expanded or contracted with respect to the driving body 310, the intra-pipe inspection robot system 1000 according to the present embodiment maintains a close contact with the inner surface of the pipe 10. ) To drive.

도 10을 참조하면, 주행부(320)는 주행몸체(310)의 길이 방향을 따라 길게 마련되는 한 쌍의 주행프레임(321), 주행프레임(321)의 길이 방향 양단에 위치하도록 한 쌍의 주행프레임(321) 사이에 마련되어 관내(10)의 내면과 접촉되는 무한궤도 또는 고무벨트(미도시)를 구동하는 구동풀리(322) 및 피동풀리(352), 한 쌍의 주행프레임(321) 사이에 마련되어 구동풀리(322)에 구동력을 제공하는 주행모터(327) 및 피동풀리(352)의 회전량 또는 회전속도를 측정하는 엔코더 모듈(Encoder Module, 328)을 포함할 수 있다. Referring to FIG. 10, the driving unit 320 is a pair of driving frames 321 that are provided long along the length direction of the driving body 310, and a pair of driving so as to be located at both ends of the driving frame 321 in the length direction. The driving pulley 322 and the driven pulley 352, which are provided between the frames 321 and drive a caterpillar or rubber belt (not shown) in contact with the inner surface of the pipe 10, and a pair of traveling frames 321 It may include a driving motor 327 that provides a driving force to the driving pulley 322 and an encoder module 328 that measures the rotation amount or rotation speed of the driven pulley 352.

주행프레임(321)은 플레이트(plate)의 형태로 마련될 수 있다. 주행프레임(321)은 한 쌍으로 마련되며, 소정의 간격을 두고 평행하게 마련될 수 있다. The traveling frame 321 may be provided in the form of a plate. The running frames 321 are provided as a pair, and may be provided in parallel with a predetermined interval.

주행프레임(321)의 사이, 즉 한 쌍의 주행프레임(321)의 양단 사이에는 구동풀리(322) 및 피동풀리(352)가 위치될 수 있다. 도면에는 도시하지 않았지만, 구동풀리(322) 및 피동풀리(352)는 무한궤도 또는 고무벨트(미도시)를 통해 연결됨으로써, 구동풀리(322)가 전달받은 주행모터(327)의 구동력이 무한궤도 또는 고무벨트를 통해 피동풀리(352)에 전달될 수 있다. A drive pulley 322 and a driven pulley 352 may be positioned between the traveling frames 321, that is, between both ends of the pair of traveling frames 321. Although not shown in the drawing, the driving pulley 322 and the driven pulley 352 are connected through a caterpillar track or a rubber belt (not shown), so that the driving force of the driving motor 327 received from the driving pulley 322 is in a caterpillar track. Alternatively, it may be transmitted to the driven pulley 352 through a rubber belt.

한편, 구동풀리(322) 및 피동풀리(352)의 회전축(미도시)은 한 쌍의 주행프레임(321)에 지지되어 회전될 수 있다. 구동풀리(322)는 주행모터(327)의 구동력을 전달받도록 주행모터(327)와 기어에 의해서 연결될 수 있다. Meanwhile, a rotation shaft (not shown) of the driving pulley 322 and the driven pulley 352 may be supported by a pair of traveling frames 321 and rotated. The driving pulley 322 may be connected to the driving motor 327 by a gear so as to receive the driving force of the driving motor 327.

도 10을 참조하면, 한 쌍의 주행프레임(321)의 길이방향 좌측에 위치된 구동풀리(322)의 주행프레임(321)측 일면에는 구동풀리기어(322a)가 형성되고, 구동풀리기어(322a)는 연결기어(338a)와 맞물리게 된다. 이때, 연결기어(338a)는 주행프레임(321)에 구동축(338b)을 통해 회전 가능하게 축 결합될 수 있다. Referring to FIG. 10, a driving pulley gear 322a is formed on one surface of a driving frame 321 side of a driving pulley 322 located on the left side in the longitudinal direction of a pair of driving frames 321, and a driving pulley gear 322a ) Is engaged with the connecting gear 338a. At this time, the connection gear 338a may be rotatably coupled to the driving frame 321 through a drive shaft 338b.

여기서, 연결기어(338a)는 주행모터(327)의 회전축에 결합된 구동기어(338)로부터 구동력을 전달받도록 연결될 수 있다. 이에 따라, 주행모터(327)의 구동력은 구동기어(338)를 통해 연결기어(338a) 및 구동풀리기어(322a)로 전달되어 결국 구동풀리(322)를 회전시키게 된다. Here, the connection gear 338a may be connected to receive a driving force from the driving gear 338 coupled to the rotation shaft of the traveling motor 327. Accordingly, the driving force of the driving motor 327 is transmitted to the connecting gear 338a and the driving pulley gear 322a through the driving gear 338, thereby rotating the driving pulley 322.

참고로, 구동기어(338)는 서로 교차하는 주행모터(327)의 축(미도시)과 구동축(338b) 사이에서 구동력을 전달할 수 있도록 원추형의 기어인 베벨 기어(bevel gear)로 마련되는 것이 바람직하다. 왜냐하면, 구동기어(338)는 주행모터(327)의 회전력을 전달 받아 주행모터(327)의 축과 수직하게 위치된 연결기어(338a)로 회전력을 전달해야 하기 때문이다. 여기서, 연결모터(338a)의 일측에는 연결베벨기어(미도시)가 마련될 수 있으며, 연결베벨기어는 구동축(338b)에 형성될 수 있다. 연결기어(338a)의 일측에 형성된 연결베벨기어는 구동기어(338)와 맞물려서 주행모터(327)의 회전력을 연결기어(338a)에 전달할 수 있다.For reference, the driving gear 338 is preferably provided with a bevel gear, which is a conical gear, so as to transmit driving force between the shaft (not shown) of the traveling motor 327 and the drive shaft 338b crossing each other. Do. This is because the driving gear 338 must receive the rotational force of the travel motor 327 and transmit the rotational force to the connection gear 338a positioned perpendicular to the axis of the travel motor 327. Here, a connection bevel gear (not shown) may be provided on one side of the connection motor 338a, and the connection bevel gear may be formed on the drive shaft 338b. The connection bevel gear formed on one side of the connection gear 338a may be engaged with the driving gear 338 to transmit the rotational force of the traveling motor 327 to the connection gear 338a.

한편, 구동풀리기어(322a)로 전달된 주행모터(327)의 회전력은 구동풀리(322)로 전달되고 구동풀리(322)에 전달된 주행모터(327)의 회전력은 도 14에 도시되지 않은 무한궤도 또는 고무벨트를 통해 피동풀리(352)로 전달될 수 있다. Meanwhile, the rotational force of the driving motor 327 transmitted to the driving pulley gear 322a is transmitted to the driving pulley 322, and the rotational force of the driving motor 327 transmitted to the driving pulley 322 is infinite, not shown in FIG. It may be transmitted to the driven pulley 352 through a track or a rubber belt.

여기서, 피동풀리(352)의 일측에는 엔코더 모듈(328)이 마련될 수 있다. 엔코더 모듈(328)은 피동풀리(352)의 회전량 또는 회전속도를 측정함으로써 구동풀리(322)의 회전량 또는 회전속도를 간접적으로 측정할 수 있다. Here, an encoder module 328 may be provided on one side of the driven pulley 352. The encoder module 328 may indirectly measure the rotation amount or rotation speed of the driving pulley 322 by measuring the rotation amount or rotation speed of the driven pulley 352.

주행프레임(321)의 좌측에 위치된 구동풀리(322)로부터 회전력을 전달 받은 주행프레임(321)의 우측에 위치된 피동풀리(352)가 회전될 때, 엔코더 모듈(328)은 피동풀리(352)의 회전량 또는 회전속도를 감지할 수 있다. 엔코더 모듈(328)의 회전은 엔코더 모듈(328)과 인접하게 위치된 속도감지부재(329)에 의해 감지될 수 있다. When the driven pulley 352 located on the right side of the driving frame 321 that has received the rotational force transmitted from the driving pulley 322 located on the left side of the driving frame 321 is rotated, the encoder module 328 is the driven pulley 352 ) Of rotation amount or rotation speed can be detected. Rotation of the encoder module 328 may be sensed by a speed sensing member 329 positioned adjacent to the encoder module 328.

엔코더 모듈(328)은 피동풀리(352)의 회전량 또는 회전속도를 측정하는 대신 구동풀리(322)이 회전량 또는 회전속도를 직접 측정할 수도 있다. 도 10의 경우에는 주행모터(327)가 구동풀리(322)에 연결되는 관계로 구동풀리(322)의 일측에 엔코더 모듈(328)을 설치할 공간적 여유가 없어서 피동풀리(352)의 일측에 엔코더 모듈(328)이 설치된다.Instead of measuring the rotation amount or rotation speed of the driven pulley 352, the encoder module 328 may directly measure the rotation amount or rotation speed of the driving pulley 322. In the case of FIG. 10, there is no space to install the encoder module 328 on one side of the driving pulley 322 because the driving motor 327 is connected to the driving pulley 322, so the encoder module on one side of the driven pulley 352 328 is installed.

엔코더 모듈(328)은 피동풀리(352)의 회전량 또는 회전속도를 직접 측정하는 것도 가능하지만, 본 발명의 경우에는 피동풀리(352)로부터 회전력을 전달받도록 마련된 엔코더 기어(328a)의 회전량 또는 회전속도를 측정한다.The encoder module 328 may directly measure the rotation amount or rotation speed of the driven pulley 352, but in the case of the present invention, the rotation amount of the encoder gear 328a provided to receive rotational force from the driven pulley 352 or Measure the rotation speed.

피동풀리(352)의 일측에는 피동풀리기어(352a)가 형성되고, 피동풀리기어(352a)와 맞물리도록 엔코더 기어(328a)가 마련될 수 있다. 여기서, 피동풀리기어(352a)는 구동풀리기어(322a)와 대칭되는 위치에 마련되고 엔코더 기어(328a)는 연결기어(338a)와 대칭되는 위치에 마련되는 것이 바람직하다.A driven pulley gear 352a is formed on one side of the driven pulley 352, and an encoder gear 328a may be provided so as to mesh with the driven pulley gear 352a. Here, it is preferable that the driven pulley gear 352a is provided at a position symmetrical with the driving pulley gear 322a, and the encoder gear 328a is provided at a position symmetrical with the connecting gear 338a.

엔코더 기어(328a)는 엔코더 축(328b)에 연결되고 엔코더 축(328b)의 양단은 주행프레임(321)에 회전 가능하게 연결될 수 있다. 엔코더 축(328b)에는 엔코더 기어(328a)와 이격된 위치에 엔코더 로터(328c)가 마련될 수 있다.The encoder gear 328a may be connected to the encoder shaft 328b, and both ends of the encoder shaft 328b may be rotatably connected to the traveling frame 321. An encoder rotor 328c may be provided on the encoder shaft 328b at a position spaced apart from the encoder gear 328a.

엔코더 축(328b)에 마련되는 엔코더 로터(328c)에는 여러 개의 분해능 구멍이 형성될 수 있다. 엔코더 로터(328c)는 속도감지부재(328d)의 광송신부(미도시) 및 광수신부(미도시) 사이에 위치하도록 마련될 수 있다.A number of resolution holes may be formed in the encoder rotor 328c provided on the encoder shaft 328b. The encoder rotor 328c may be provided to be positioned between the optical transmission unit (not shown) and the light receiving unit (not shown) of the speed sensing member 328d.

엔코더 로터(328c)는 하기의 [수학식 1]에 의하여 정밀한 분해능을 확보함으로써, 엔코더 로터(328c)에 의한 피동풀리(352)의 위치 검출의 정밀도를 향상시킬 수 있다. The encoder rotor 328c can improve the accuracy of position detection of the driven pulley 352 by the encoder rotor 328c by securing a precise resolution according to the following [Equation 1].

[수학식 1][Equation 1]

분해능 = 2 * π * r/24 Resolution = 2 * π * r/24

[수학식 1]에서 r은 엔코더 로터(328c)의 반지름이다.In [Equation 1], r is the radius of the encoder rotor 328c.

따라서, 구동풀리(322) 또는 피동풀리(352)의 회전량 또는 회전속도를 더욱 정밀하게 측정할 수 있고, 구동풀리(322)를 동일한 회전속도로 주행하도록 할 수 있다. 이와 같이, 엔코더 모듈(328)에 의해 구동풀리(322)의 회전량 또는 회전속도를 측정함으로써 주행 유닛(300) 내지 관내 검사 로봇 시스템(1000)의 관내(10)에서의 위치 또는 주행속도 등을 측정할 수 있다.Accordingly, the rotation amount or rotation speed of the driving pulley 322 or the driven pulley 352 can be more accurately measured, and the driving pulley 322 can be driven at the same rotation speed. In this way, by measuring the rotation amount or rotation speed of the drive pulley 322 by the encoder module 328, the position or running speed in the tube 10 of the traveling unit 300 to the in-pipe inspection robot system 1000 can be determined. Can be measured.

한편, 주행몸체(310)에는 통신/전원연결부(340)가 마련될 수 있다. 통신/전원연결부(340)에는 통신/전원연결단자(342)가 마련될 수 있다. 센서 유닛(100)에 의해 감지된 관내(10)의 결함 유무 또는 현재 상태에 관한 정보를 송수신하여 관내(10)의 결함 유무 또는 현재 상태에 관한 정보를 수집하거나 전송하는 제어 유닛(370)이 통신/전원연결단자(342)에 연결될 수 있다. Meanwhile, a communication/power connection unit 340 may be provided on the traveling body 310. A communication/power connection terminal 342 may be provided in the communication/power connection unit 340. The control unit 370, which collects or transmits information on the presence or absence of defects or the current state of the tube 10 by transmitting and receiving information on the presence or absence of defects or the current state of the tube 10 detected by the sensor unit 100 communicates / Can be connected to the power connection terminal 342.

이때, 제어 유닛(370)은 주행부(320)의 주행모터(327)의 회전력 또는 회전속도를 조절하거나 엔코더 모듈(328) 및 속도감지부재(329)에 의해 측정된 구동풀리(322)의 회전속도 또는 회전량을 측정하거나 제어할 수 도 있다. At this time, the control unit 370 adjusts the rotational force or rotational speed of the driving motor 327 of the driving unit 320, or the rotation of the driving pulley 322 measured by the encoder module 328 and the speed sensing member 329 You can also measure or control the speed or amount of rotation.

한편, 도 1 내지 도 10을 이용하여 본 발명의 일 실시예에 따른 관내 검사 로봇 시스템(1000)을 이용한 관내(10)의 결함 유무 또는 상태를 검사하는 방법에 관하여 간단히 설명한다. Meanwhile, a method of inspecting the presence or state of defects in the pipe 10 using the pipe inspection robot system 1000 according to an embodiment of the present invention will be briefly described with reference to FIGS. 1 to 10.

우선, 관내 검사 로봇 시스템(1000)은 거친모드(coarse mode)와 미세모드(fine mode)의 두 가지 모드로 관내(10)를 주행하면서 관내(10)를 검사할 수 있다. First, the intraluminal inspection robot system 1000 may inspect the inner tube 10 while driving the inner tube 10 in two modes of a coarse mode and a fine mode.

여기서, 거친모드에서의 관내 검사 로봇 시스템(1000)의 이동속도는 미세모드에서의 이동속도 보다 빠른 것이 바람직하다. Here, it is preferable that the moving speed of the intraluminal inspection robot system 1000 in the coarse mode is faster than the moving speed in the fine mode.

즉, 관내 검사 로봇 시스템(1000)은 관내(10)의 진입(전진)시에는 거친모드로 상대적으로 빠른 속도로 관내(10)에 진입한다. 이때, 거친모드로 주행하면서 관내(10)의 결함 여부 등 관내(10)의 거리값에 따른 관내 상태 데이터를 수집하여 데이터베이스화 하여 1차적으로 관내 상태를 파악한 후, 관내(10)에서 진출(후진)시에는 결함 또는 균열 등이 없는 부분은 거친모드로 빨리 주행하고 결함 또는 균열 등의 상태가 확인된 부분, 즉 상세확인이 필요한 부분에서만 미세모드, 즉 자동 미세 모드(auto fine mode)로 전환하여 상대적으로 천천히 이동하면서 관내(10)를 정밀하게 검사할 수 있다. 이와 같이, 본 발명에 따른 관내 검사 로봇 시스템(1000)은 거친모드 및 미세모드와 같이 이중모드로 관내(10)를 검사하기 때문에, 대부분의 결함이 없는 부분에서는 거친모드로 검사하여 검사시간을 획기적으로 줄이면서도, 결함이 있는 부분에서는 미세모드로 검사하여 정밀한 검사를 수행할 수 있다.That is, the intra-pipe inspection robot system 1000 enters the pipe 10 at a relatively high speed in a rough mode when the pipe 10 enters (advances). At this time, while driving in the coarse mode, collecting data on the condition of the pipe according to the distance value of the pipe 10, such as whether there is a defect in the pipe 10, is converted into a database, and after first grasping the condition of the pipe, advances from the pipe 10 (backward ), the part without defects or cracks, etc., drives quickly in the rough mode, and only the part where the condition such as defects or cracks is confirmed, that is, the part that requires detailed confirmation, is switched to the fine mode, that is, the auto fine mode. While moving relatively slowly, the inside of the tube 10 can be accurately inspected. As described above, since the intra-pipe inspection robot system 1000 according to the present invention inspects the inner tube 10 in a dual mode such as a coarse mode and a fine mode, most defect-free areas are inspected in a coarse mode to significantly reduce inspection time. In spite of being reduced to, it is possible to perform precise inspection by inspecting in a fine mode in the defective area.

한편, 도 11을 참조하여, 본 발명의 다른 실시예에 따른 관내 검사 로봇 시스템(2000)을 전술한 실시예와 상이한 점을 중심으로 설명한다. On the other hand, with reference to FIG. 11, an in-pipe inspection robot system 2000 according to another embodiment of the present invention will be described focusing on differences from the above-described embodiment.

도 11은 본 발명의 다른 실시예에 따른 관내 검사 로봇 시스템(2000)의 사시도이다. 11 is a perspective view of an intraluminal inspection robot system 2000 according to another embodiment of the present invention.

도 11을 참조하면, 본 발명의 다른 실시예에 따른 관내 검사 로봇 시스템(2000)은, 관내(10)의 결함 유무 또는 상태를 감지하는 센서 유닛(400), 센서 유닛(400)이 연결되며, 관내(10)의 내면을 따라 센서 유닛(400)을 회전시키는 센서구동 유닛(200) 및 센서구동 유닛(200)과 연결되어 관내(10)에서 센서 유닛(400) 및 센서구동 유닛(200)을 이동시키는 주행 유닛(300)을 포함할 수 있다. Referring to FIG. 11, in a tube inspection robot system 2000 according to another embodiment of the present invention, a sensor unit 400 and a sensor unit 400 for detecting the presence or absence of a defect in the tube 10 and a sensor unit 400 are connected, It is connected to the sensor driving unit 200 and the sensor driving unit 200 that rotates the sensor unit 400 along the inner surface of the tube 10, so that the sensor unit 400 and the sensor driving unit 200 are connected in the tube 10. It may include a traveling unit 300 to move.

본 발명의 다른 실시예에 따른 관내 검사 로봇 시스템(2000)은 센서 유닛(400)을 제외하고, 전술한 실시예와 실질적으로 동일하므로, 그 동일한 구성에 대해서는 동일한 명칭 및 도면부호를 부여하였으며, 그에 대한 설명은 전술한 실시예를 준용하기로 한다. Since the in-pipe inspection robot system 2000 according to another embodiment of the present invention is substantially the same as the above-described embodiment, except for the sensor unit 400, the same names and reference numerals are given to the same configurations, and For the description, the above-described embodiment will be applied mutatis mutandis.

도 11에 도시한 바와 같이, 센서 유닛(400)은 케이싱(410) 및 레이저 센서모듈(412)을 포함할 수 있다. As shown in FIG. 11, the sensor unit 400 may include a casing 410 and a laser sensor module 412.

케이싱(410)은 내부에 레이저 센서모듈(412)이 위치되는 일종의 케이스(case)로써, 특히 센서구동 유닛(200)의 회전모터(미도시)에 의해 회전되는 장착플랜지(212)에 결합되는 부분일 수 있다. Casing 410 is a type of case in which the laser sensor module 412 is located, and in particular, a portion coupled to the mounting flange 212 rotated by a rotation motor (not shown) of the sensor driving unit 200 Can be

케이싱(410)은 원통 형태로 형성되어, 내부에 레이저 센서모듈(412)이 위치되고, 레이저 센서모듈(412)의 전기 배선은 케이싱(410)을 통해 센서구동 유닛(200)과 연결될 수 있다. The casing 410 is formed in a cylindrical shape, the laser sensor module 412 is positioned therein, and the electrical wiring of the laser sensor module 412 may be connected to the sensor driving unit 200 through the casing 410.

케이싱(410)의 내부에 마련되는 레이저 센서모듈(412)은 관내(10)의 상태를 감지할 수 있다. 여기서, 레이저 센서모듈(412)은 일반적으로 사용되는 레이저 센서모듈(412) 일 수 있으나, 반드시 이에 한정되는 것은 아니다. The laser sensor module 412 provided inside the casing 410 may detect the state of the tube 10. Here, the laser sensor module 412 may be a generally used laser sensor module 412, but is not limited thereto.

한편, 케이싱(410)의 내부에 레이저 센서모듈(412)이 위치되기 때문에 센서구동 유닛(200)에 의해 레이저 센서모듈(412) 및 케이싱(410)이 회전되면 진동이 발생할 수 있고 이러한 진동이 레이저 센서모듈(412)에 전달될 경우에는 레이저 센서모듈(412)의 측정 정밀도가 저하될 수 있다. 더욱이, 내부에 레이저 센서모듈(412)이 위치된 케이싱(410)의 무게가 있기 때문에 레이저 센서모듈(412)이 흔들릴 수 밖에 없고, 그에 따라 레이저 센서모듈(412)에 의해 측정된 관내(10)의 상태에 대한 검사 결과의 신뢰도가 떨어질 수 있다. On the other hand, since the laser sensor module 412 is located inside the casing 410, when the laser sensor module 412 and the casing 410 are rotated by the sensor driving unit 200, vibration may occur. When transmitted to the sensor module 412, the measurement accuracy of the laser sensor module 412 may be deteriorated. Moreover, because the weight of the casing 410 in which the laser sensor module 412 is located is inevitable, the laser sensor module 412 is inevitably shaken, and accordingly, the inside of the tube 10 measured by the laser sensor module 412 The reliability of the test results for the condition of may decrease.

레이저 센서모듈(412)의 회전시 발생하는 진동을 방지하기 위해서, 본 발명의 다른 실시예에 따른 센서 유닛(400)은 센서 지지부(420)를 더 포함할 수 있다. In order to prevent vibration generated when the laser sensor module 412 rotates, the sensor unit 400 according to another embodiment of the present invention may further include a sensor support part 420.

센서 지지부(420)는 레이저 센서모듈(412)이 내부에 위치된 케이싱(410)의 일면에 연결될 수 있다. 센서 지지부(420)는 레이저 센서모듈(412)의 회전 시에 발생하는 진동을 억제하거나 관내(10)의 내면에 대해 레이저 센서모듈(412)을 탄성적으로 지지할 수 있다. The sensor support 420 may be connected to one surface of the casing 410 in which the laser sensor module 412 is located. The sensor support 420 may suppress vibration generated when the laser sensor module 412 rotates or may elastically support the laser sensor module 412 with respect to the inner surface of the tube 10.

이러한 센서 지지부(420)는 베이스(422), 지지부재(426) 및 텐션 휠(427)을 포함할 수 있다. The sensor support 420 may include a base 422, a support member 426 and a tension wheel 427.

베이스(422)는 케이싱(410)과 결합되는 부분이다. 베이스(422)는 평평한 원판 형태로 마련됨으로써 케이싱(410)과의 결합을 용이하게 할 수 있다. The base 422 is a part that is coupled to the casing 410. The base 422 may be provided in the form of a flat disk to facilitate coupling with the casing 410.

베이스(422)에는 지지부재(426)가 배치될 수 있다. 지지부재(426)는 베이스(422)에 대해 수직한 방향으로 배치될 수 있다. 이때, 지지부재(426)는 적어도 하나 이상으로 형성되며, 바람직하게는 원주방향을 따라 소정 간격 이격되어 3개 정도로 마련될 수 있다. A support member 426 may be disposed on the base 422. The support member 426 may be disposed in a direction perpendicular to the base 422. At this time, the support member 426 is formed of at least one or more, and preferably, about three may be provided at predetermined intervals along the circumferential direction.

여기서, 베이스(422)와 지지부재(426) 사이에는 탄성부재(423)가 마련될 수 있다. 탄성부재(423)는 베이스(422)에 대해 지지부재(426)가 움직이는 것을 용이하게 하게 위한 것이다. 탄성부재(423)는 탄성이 있는 부재로서, 베이스(422) 사이에서 센서 지지부(420)의 움직임을 용이하게 하면서 케이싱(410)의 내부에 위치된 레이저 센서모듈(412)로 외부 진동이나 충격이 전해지지 않도록 할 수 있다. Here, an elastic member 423 may be provided between the base 422 and the support member 426. The elastic member 423 is for facilitating movement of the support member 426 relative to the base 422. The elastic member 423 is a member having elasticity, and while facilitating the movement of the sensor support 420 between the bases 422, external vibration or impact is prevented by the laser sensor module 412 located inside the casing 410 It can be prevented from being transmitted.

또한, 탄성부재(423)와 지지부재(426) 사이에는 지지편(424)이 마련될 수 있다. 지지편(424)은 지지부재(426)가 탄성부재(423)에 대해 더욱 완벽하게 결합되도록 하기 위한 것이다. In addition, a support piece 424 may be provided between the elastic member 423 and the support member 426. The support piece 424 is to allow the support member 426 to be more completely coupled to the elastic member 423.

한편, 지지부재(426)에는 텐션 휠(427)이 마련될 수 있다. 텐션 휠(427)은 적어도 하나 이상의 지지부재(426) 각각의 단부에 마련될 수 있다. 이때, 텐션 휠(427)은 관내(10)의 내면과 접촉되어 레이저 센서모듈(412)을 관내(10)의 내면에 대해 탄성적으로 지지할 수 있다. Meanwhile, a tension wheel 427 may be provided on the support member 426. The tension wheel 427 may be provided at an end of each of the at least one support member 426. At this time, the tension wheel 427 may be in contact with the inner surface of the tube 10 to elastically support the laser sensor module 412 with respect to the inner surface of the tube 10.

여기서, 지지편(424)과 지지부재(426)가 결합될 때, 탄성력이 있는 탄성부재(미도시)를 매개로 결합되므로 지지부재(426)는 탄성력을 가질 수 있다. 참고로, 탄성부재는 압축 스프링으로 마련될 수 있으며, 반드시 이에 한정되는 것은 아니다. Here, when the support piece 424 and the support member 426 are coupled, the support member 426 may have an elastic force because it is coupled through an elastic member (not shown) having an elastic force. For reference, the elastic member may be provided with a compression spring, but is not limited thereto.

이에 따라, 지지부재(426)에 결합된 텐션 휠(427)은 관내(10)의 내면에 밀착된 상태에서 관내(10)의 직경에 따라 확장되거나 축소될 수 있다. Accordingly, the tension wheel 427 coupled to the support member 426 may expand or contract according to the diameter of the tube 10 in a state in close contact with the inner surface of the tube 10.

즉, 본 발명의 다른 실시예에 따른 관내 검사 로봇 시스템(2000)이 관내(10)에 삽입되어 관내(10)의 내면을 따라 이동될 때, 센서 지지부(420)의 텐션 휠(427)은 관내(10)의 내면에 대해 밀착된 상태가 될 수 있다. 이와 같이, 센서 지지부(420)의 텐션 휠(427)이 관내(10)의 내면에 대해 밀착된 상태를 유지 함에 따라 케이싱(410)의 내부에 위치된 레이저 센서모듈(412)이 회전할 때 흔들리는 것을 방지할 수 있어서 레이저 센서모듈(412)에 의해 관내(10)의 결함 유무 또는 상태에 대한 검사 결과에 대한 신뢰도를 가질 수 있다. That is, when the intraluminal inspection robot system 2000 according to another embodiment of the present invention is inserted into the tube 10 and moved along the inner surface of the tube 10, the tension wheel 427 of the sensor support 420 is It can be in close contact with the inner surface of (10). In this way, as the tension wheel 427 of the sensor support part 420 is kept in close contact with the inner surface of the tube 10, the laser sensor module 412 located inside the casing 410 is shaken when rotating. In this way, the laser sensor module 412 can have reliability with respect to the inspection result for the presence or absence of defects in the tube 10 or the state.

이상과 같이 본 발명의 일 실시예에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. As described above, in one embodiment of the present invention, specific matters such as specific components, etc., and limited embodiments and drawings have been described, but this is provided only to aid in a more general understanding of the present invention. It is not limited, and various modifications and variations are possible from these descriptions by those of ordinary skill in the field to which the present invention belongs. Accordingly, the spirit of the present invention is limited to the described embodiments and should not be defined, and all things equivalent or equivalent to the claims as well as the claims to be described later belong to the scope of the inventive concept.

1000, 2000: 관내 검사 로봇 시스템
100, 400: 센서 유닛 200: 센서구동 유닛
300: 주행 유닛 310: 주행몸체
320: 주행부 321: 주행프레임
322: 구동풀리 327: 주행모터
338: 엔코더 모듈 330: 가변연결부
331: 제1 링크부재 332: 지지블록
333: 가이드 로드 334: 가이드 블록
335: 제2 링크부재 336: 제1 위치고정블록
336a, 336b, 336c: 제1, 제2, 제3 단계 조절부
337: 제2 위치고정블록 337a: 제4 단계 조절부
339: 제3 링크부재 340: 통신/전원 연결부
370: 제어 유닛 410: 케이싱
412: 레이저 센서모듈 420: 센서 지지부
422: 베이스 426: 지지부재
427: 텐션 휠
1000, 2000: In-house inspection robot system
100, 400: sensor unit 200: sensor drive unit
300: traveling unit 310: traveling body
320: driving unit 321: driving frame
322: drive pulley 327: traveling motor
338: encoder module 330: variable connection
331: first link member 332: support block
333: guide rod 334: guide block
335: second link member 336: first position fixing block
336a, 336b, 336c: first, second, third stage adjustment unit
337: second position fixing block 337a: fourth stage adjustment unit
339: third link member 340: communication/power connection
370: control unit 410: casing
412: laser sensor module 420: sensor support
422: base 426: support member
427: tension wheel

Claims (18)

관내의 결함 유무 또는 상태를 감지하는 센서 유닛;
상기 센서 유닛이 연결되며, 상기 관내의 내면을 따라 상기 센서 유닛을 회전시키는 센서구동 유닛; 및
상기 센서구동 유닛과 연결되어 상기 관내에서 상기 센서 유닛 및 상기 센서구동 유닛을 이동시키는 주행 유닛;
을 포함하고,
상기 주행 유닛은 상기 관내의 직경 방향으로의 확장 또는 축소 가능하게 마련되어 상기 관내의 내면과 접촉한 상태로 상기 관내를 이동하는 것을 특징으로 하는 관내 검사 로봇 시스템.
A sensor unit that detects the presence or absence of a defect in the tube;
A sensor driving unit connected to the sensor unit and rotating the sensor unit along an inner surface of the tube; And
A traveling unit connected to the sensor driving unit to move the sensor unit and the sensor driving unit in the tube;
Including,
The traveling unit is provided to be expandable or contracted in a radial direction in the pipe, and moves inside the pipe while in contact with the inner surface of the pipe.
제1항에 있어서,
상기 센서구동 유닛은,
상기 센서 유닛이 결합되는 구동몸체;
상기 구동몸체의 길이 방향을 따라 상기 구동몸체에 착탈 가능하게 마련되어 상기 관내의 내면과 접촉하는 가이드휠; 및
상기 구동몸체와 상기 가이드휠 사이에 마련되어 상기 가이드휠을 상기 관내의 내면에 대해 탄성적으로 지지하는 텐션부재; 를 포함하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 1,
The sensor driving unit,
A driving body to which the sensor unit is coupled;
A guide wheel detachably provided on the drive body along the longitudinal direction of the drive body and contacting the inner surface of the tube; And
A tension member provided between the driving body and the guide wheel to elastically support the guide wheel against the inner surface of the tube; Intestinal inspection robot system comprising a.
제2항에 있어서,
상기 가이드휠은 상기 관내의 직경 크기에 따라 교체 가능하게 마련되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 2,
The guide wheel is a tube inspection robot system, characterized in that provided to be replaced according to the size of the diameter of the tube.
제3항에 있어서,
상기 주행 유닛은,
상기 센서구동 유닛이 연결되는 주행몸체;
상기 주행몸체에 연결되어 상기 관내의 내면을 따라 상기 센서 유닛 및 상기 센서구동 유닛을 이동시키는 주행부; 및
상기 관내 직경의 크기에 따라 상기 주행부를 확장 또는 축소시킬 수 있도록 상기 주행몸체와 상기 주행부를 연결하는 가변연결부; 를 포함하며,
상기 주행부는 상기 주행 유닛 또는 상기 주행몸체의 길이방향 중심에 대해서 동일 간격 또는 각도로 이격되도록 2개 이상이 방사상으로 마련되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 3,
The traveling unit,
A traveling body to which the sensor driving unit is connected;
A traveling unit connected to the traveling body to move the sensor unit and the sensor driving unit along an inner surface of the tube; And
A variable connection part connecting the driving body and the driving part to expand or contract the driving part according to the size of the inner diameter of the pipe; Including,
The in-pipe inspection robot system, characterized in that two or more of the driving units are radially provided so as to be spaced apart at the same distance or angle with respect to the longitudinal center of the traveling unit or the traveling body.
제4항에 있어서,
상기 가변연결부는,
상기 주행몸체의 폭방향 양단에서 상기 주행몸체와 상기 주행부를 연결하는 제1 링크부재;
상기 주행몸체의 폭방향 양단에서 상기 주행몸체와 상기 주행부를 연결하되, 상기 주행부와 상기 제1 링크부재의 회전중심과 동일한 회전중심을 가지도록 상기 주행부에 연결되는 제2 링크부재; 및
상기 주행몸체의 폭방향 양단에서 상기 주행몸체와 상기 주행부를 연결하되, 상기 주행몸체의 길이방향을 따라 상기 제2 링크부재와 이격되어 마련되는 제3 링크부재; 를 포함하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 4,
The variable connection part,
A first link member connecting the traveling body and the traveling part at both ends of the traveling body in the width direction;
A second link member connected to the driving unit so as to connect the driving body and the driving unit at both ends of the driving body in the width direction, and have the same rotation center as the rotation center of the driving unit and the first link member; And
A third link member connected to the traveling body and the traveling part at both ends of the traveling body in the width direction, and spaced apart from the second link member along the length direction of the traveling body; Intestinal inspection robot system comprising a.
제5항에 있어서,
상기 제1 링크부재, 상기 제2 링크부재 및 상기 제3 링크부재는 동일한 길이를 가지도록 형성되고,
상기 제2 링크부재와 상기 제3 링크부재는 서로 평행하게 마련되며,
상기 주행몸체와 연결되는 상기 제1 링크부재의 일단은 상기 주행몸체의 길이 방향을 따라 위치 가변이 가능하도록 상기 주행몸체에 회전 가능하게 연결되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 5,
The first link member, the second link member and the third link member are formed to have the same length,
The second link member and the third link member are provided parallel to each other,
One end of the first link member connected to the traveling body is rotatably connected to the traveling body so that the position can be changed along the length direction of the traveling body.
제6항에 있어서,
상기 가변연결부는,
상기 주행몸체의 내부에 마련되되, 상기 센서구동 유닛에 인접하도록 상기 주행몸체의 길이방향 일단에 마련되는 지지블록;
상기 지지블록의 폭방향 양측에 연결되되, 상기 주행몸체의 길이 방향과 나란하게 마련되는 한 쌍의 가이드 로드; 및
상기 한 쌍의 가이드 로드를 따라 슬라이딩 운동하도록 상기 한 쌍의 가이드 로드를 관통하며, 양단부가 상기 주행몸체의 내측에 위치하는 제1 링크부재의 일단과 회전 가능하게 연결되는 가이드 블록; 을 포함하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 6,
The variable connection part,
A support block provided inside the traveling body and disposed at one end of the traveling body in the longitudinal direction so as to be adjacent to the sensor driving unit;
A pair of guide rods connected to both sides of the support block in the width direction and provided in parallel with the length direction of the traveling body; And
A guide block passing through the pair of guide rods so as to slide along the pair of guide rods, and having both ends rotatably connected to one end of a first link member located inside the traveling body; Intestinal inspection robot system comprising a.
제7항에 있어서,
상기 가이드 블록이 상기 가이드 로드를 따라 일방향으로 전진하면 상기 주행부는 상기 주행몸체에 대해 멀어지는 방향으로 확장되고,
상기 가이드 블록이 상기 가이드 로드를 따라 일방향으로 후퇴하면 상기 주행부는 상기 주행몸체에 대해 가까워지는 방향으로 축소되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 7,
When the guide block advances in one direction along the guide rod, the driving part is extended in a direction away from the driving body,
When the guide block is retracted in one direction along the guide rod, the driving unit is reduced in a direction closer to the driving body.
제8항에 있어서,
상기 주행몸체의 폭방향 내면에는 상기 가이드 블록의 양단부가 삽입되는 위치고정블록이 마련되고,
상기 위치고정블록에는 상기 가이드 블록의 양단부가 삽입되는 적어도 하나의 단계조절부가 형성되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 8,
Position fixing blocks into which both ends of the guide block are inserted are provided on the inner surface of the traveling body in the width direction,
In the tube inspection robot system, characterized in that the position fixing block is formed with at least one step adjustment portion is inserted at both ends of the guide block.
제9항에 있어서,
상기 위치고정블록은,
상기 지지블록과 인접하도록 마련되는 제1 위치고정블록; 및
상기 주행몸체의 길이방향을 따라 상기 제1 위치고정블록과 이격되어 마련되는 제2 위치고정블록; 을 포함하며,
상기 제1 위치고정블록에는 상기 단계조절부가 복수개 형성되고, 상기 제2 위치고정블록에는 상기 단계조절부가 적어도 하나 이상으로 형성되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 9,
The location fixing block,
A first position fixing block provided to be adjacent to the support block; And
A second position fixing block provided to be spaced apart from the first position fixing block along the longitudinal direction of the traveling body; Including,
In the tube inspection robot system, characterized in that a plurality of step adjustment units are formed in the first position fixing block, and at least one step adjustment unit is formed in the second position fixing block.
제10에 있어서,
상기 가이드 블록의 양단부가 상기 제1 위치고정블록 또는 상기 제2 위치고정블록에 형성된 상기 단계조절부 중 어느 하나에 삽입됨으로써 상기 주행몸체에 대해서 상기 주행부가 확장되거나 축소되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 10,
Intra-tube inspection robot, characterized in that the traveling part is expanded or contracted with respect to the traveling body by inserting both ends of the guide block into one of the step adjustment parts formed in the first position fixing block or the second position fixing block. system.
제7항 내지 제11항 중 어느 한 항에 있어서,
상기 주행부는,
상기 주행몸체의 길이방향을 따라 길게 마련되는 한 쌍의 주행프레임;
상기 주행프레임의 길이방향 양단에 위치하도록 상기 한 쌍의 주행프레임 사이에 마련되는 구동풀리 및 피동풀리;
상기 한 쌍의 주행프레임 사이에 마련되어 상기 구동풀리에 구동력을 제공하는 주행모터; 및
상기 구동풀리 또는 상기 피동풀리의 회전량 또는 회전속도를 측정하는 엔코더 모듈; 을 포함하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method according to any one of claims 7 to 11,
The driving unit,
A pair of traveling frames that are elongated along the longitudinal direction of the traveling body;
A driving pulley and a driven pulley provided between the pair of driving frames to be located at both ends of the driving frame in the longitudinal direction;
A traveling motor provided between the pair of traveling frames and providing a driving force to the drive pulley; And
An encoder module measuring the rotation amount or rotation speed of the driving pulley or the driven pulley; Intestinal inspection robot system comprising a.
제12항에 있어서,
상기 센서 유닛은,
상기 구동몸체의 일측에 마련되고 상기 센서구동 유닛의 회전모터에 의해 회전되는 장착플랜지에 결합되는 케이싱; 및
상기 케이싱의 내부에 마련되는 레이저 센서모듈; 을 포함하며,
상기 센서 유닛은 상기 레이저 센서모듈이 상기 관내의 내면에 근접하도록 상기 장착플랜지에 결합되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 12,
The sensor unit,
A casing provided on one side of the driving body and coupled to a mounting flange rotated by a rotation motor of the sensor driving unit; And
A laser sensor module provided inside the casing; Including,
Wherein the sensor unit is coupled to the mounting flange so that the laser sensor module is close to the inner surface of the tube.
제12항에 있어서,
상기 센서 유닛은,
상기 센서구동 유닛의 회전모터에 의해 회전되는 장착플랜지에 결합되는 케이싱;
상기 케이싱의 내부에 마련되어 상기 관내의 상태를 감지하는 레이저 센서모듈; 및
상기 레이저 센서모듈의 회전 시에 발생하는 진동을 억제하거나 상기 관내의 내면에 대해 상기 레이저 센서모듈을 지지하는 센서 지지부; 를 포함하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 12,
The sensor unit,
A casing coupled to the mounting flange rotated by the rotation motor of the sensor driving unit;
A laser sensor module provided inside the casing to sense a state in the tube; And
A sensor support part that suppresses vibration generated when the laser sensor module rotates or supports the laser sensor module with respect to an inner surface of the tube; Intestinal inspection robot system comprising a.
제14항에 있어서,
상기 센서 지지부는,
상기 케이싱과 결합되는 베이스;
상기 베이스에 대해 수직한 방향으로 배치되는 지지부재; 및
상기 지지부재의 단부에 마련되되 상기 관내의 내면과 접촉되어 상기 레이저 센서모듈을 상기 관내의 내면에 대해 탄성적으로 지지하는 텐션 휠; 을 포함하는 관내 검사 로봇 시스템.
The method of claim 14,
The sensor support,
A base coupled to the casing;
A support member disposed in a direction perpendicular to the base; And
A tension wheel provided at an end of the support member and in contact with the inner surface of the tube to elastically support the laser sensor module with respect to the inner surface of the tube; In-house inspection robot system comprising a.
제13항에 있어서,
상기 센서 유닛은 상기 장착플랜지에 장착된 위치의 변경 또는 조절이 가능하도록 마련되는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 13,
The sensor unit is a tube inspection robot system, characterized in that it is provided to change or adjust the position mounted on the mounting flange.
제13항에 있어서,
상기 센서 유닛은, 고속 회전시 발생하는 진동을 억제하기 위해 상기 장착플랜지에 장착된 카운터 밸런서를 포함하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 13,
The sensor unit, the in-pipe inspection robot system, characterized in that it comprises a counter balancer mounted on the mounting flange to suppress the vibration generated during high-speed rotation.
제12항에 있어서,
상기 주행유닛은,
관내로 진입할 때에는 거친모드로 상대적으로 빠르게 주행하면서 관내를 검사하여 결함의 유무를 데이터베이스화하고, 관내에서부터 진출할 때에는 상기 데이터베이스화된 정보를 기반으로 결함이 있는 관내의 부분에서는 미세모드로 상대적으로 천천히 주행하면서 정밀 검사하는 것을 특징으로 하는 관내 검사 로봇 시스템.
The method of claim 12,
The driving unit,
When entering the tube, it is relatively fast driving in a coarse mode and the inside of the tube is inspected to determine the presence or absence of a defect. In-house inspection robot system, characterized in that the detailed inspection while driving slowly.
KR1020190046305A 2019-04-19 2019-04-19 Robot system for inspecting inside pipe KR102287494B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190046305A KR102287494B1 (en) 2019-04-19 2019-04-19 Robot system for inspecting inside pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190046305A KR102287494B1 (en) 2019-04-19 2019-04-19 Robot system for inspecting inside pipe

Publications (2)

Publication Number Publication Date
KR20200123360A true KR20200123360A (en) 2020-10-29
KR102287494B1 KR102287494B1 (en) 2021-08-10

Family

ID=73129447

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190046305A KR102287494B1 (en) 2019-04-19 2019-04-19 Robot system for inspecting inside pipe

Country Status (1)

Country Link
KR (1) KR102287494B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102299127B1 (en) * 2020-12-28 2021-09-06 영남대학교 산학협력단 Apparatus for measuring position in a pipe
CN115524336A (en) * 2022-09-26 2022-12-27 湖南科天健光电技术有限公司 Pipeline inner wall detection robot
KR102539038B1 (en) * 2022-07-22 2023-06-01 주식회사 행복한건축검진연구소 Pipeline management apparatus and pipeline management method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102558911B1 (en) * 2021-08-27 2023-07-21 한국로봇융합연구원 Grinding robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347407A (en) * 1993-06-04 1994-12-22 Osaka Gas Co Ltd Tube inside inspection device
KR20000073460A (en) * 1999-05-11 2000-12-05 최혁렬 Robot and robot steering apparatus for inspection pipelines
KR100729773B1 (en) * 2005-10-14 2007-06-20 주식회사 두배시스템 Robot for internal inspection of pipe
KR101335634B1 (en) * 2012-07-13 2013-12-03 삼성중공업 주식회사 Instrumentation apparatus of a pipe and instrumentation method of a pipe
KR20160023960A (en) * 2014-08-21 2016-03-04 주식회사 포스코 Apparatus for cleaning of pipe
KR20170026065A (en) * 2015-08-31 2017-03-08 주식회사 준성이엔알 Robot for detecting inside pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347407A (en) * 1993-06-04 1994-12-22 Osaka Gas Co Ltd Tube inside inspection device
KR20000073460A (en) * 1999-05-11 2000-12-05 최혁렬 Robot and robot steering apparatus for inspection pipelines
KR100729773B1 (en) * 2005-10-14 2007-06-20 주식회사 두배시스템 Robot for internal inspection of pipe
KR101335634B1 (en) * 2012-07-13 2013-12-03 삼성중공업 주식회사 Instrumentation apparatus of a pipe and instrumentation method of a pipe
KR20160023960A (en) * 2014-08-21 2016-03-04 주식회사 포스코 Apparatus for cleaning of pipe
KR20170026065A (en) * 2015-08-31 2017-03-08 주식회사 준성이엔알 Robot for detecting inside pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102299127B1 (en) * 2020-12-28 2021-09-06 영남대학교 산학협력단 Apparatus for measuring position in a pipe
WO2022145523A1 (en) * 2020-12-28 2022-07-07 영남대학교 산학협력단 Apparatus for measuring position in pipe
JP2023512128A (en) * 2020-12-28 2023-03-24 リサーチ コーポレーション ファウンデーション オブ ヨンナム ユニバーシティ In-pipe position measuring device
US11761796B2 (en) 2020-12-28 2023-09-19 Research Cooperation Foundation Of Yeungnam University Apparatus for measuring position in a pipe
KR102539038B1 (en) * 2022-07-22 2023-06-01 주식회사 행복한건축검진연구소 Pipeline management apparatus and pipeline management method using the same
CN115524336A (en) * 2022-09-26 2022-12-27 湖南科天健光电技术有限公司 Pipeline inner wall detection robot
CN115524336B (en) * 2022-09-26 2023-08-08 湖南科天健光电技术有限公司 Pipeline inner wall detection robot

Also Published As

Publication number Publication date
KR102287494B1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
KR20200123360A (en) Robot system for inspecting inside pipe
KR100943219B1 (en) Inspecting Scanner Using Ultrasonic Wave
CN1997871A (en) Device and method for inspecting the internal surfaces of holes
CN105181298B (en) Multiple reflections formula confocal laser Long focal length measurement method and apparatus
NZ230584A (en) Ultrasonic tyre inspection
CN102667451B (en) Variable path length probe
US11794291B1 (en) Assembling device for rotating joint of rotary drying equipment
CA2170009C (en) Alignment laser with over-flooded aperture system and dual-mode self-centering target
BR112013004650B1 (en) apparatus, and method to form a vibrating densitometer
JPH11281582A (en) Surface inspection apparatus
CN100378450C (en) In-position gas analyzing system with in-position calibrating function
CN115854887B (en) Distance measuring mechanism and method
CN101153853A (en) Internal thread inspection probe
CN100501220C (en) Appearance measuring and detecting method for inner surface of space curve type long-distance microtubule
CN1719191A (en) Measuring instrument for space curve type long distance fine pipe internal surface shape and its detecting method
CN210154540U (en) Deep hole detection system
CN113984374A (en) Floating oil seal testing device
JP2592690B2 (en) Pipe eddy current flaw detector
KR100479412B1 (en) Straightness measurement device
CN205679379U (en) Automobile lamp detector based on photo resistance array
CN115524336B (en) Pipeline inner wall detection robot
CN115356349B (en) Self-stabilizing pipeline inner wall detection robot
CN215749281U (en) Spline lead screw precision testing device
CN217442519U (en) Center deviation detection device of infrared optical lens
JPH03115912A (en) Optically measuring instrument for internal diameter of tube

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant