KR20200119528A - Oil flow control method for transmission of vehicle - Google Patents

Oil flow control method for transmission of vehicle Download PDF

Info

Publication number
KR20200119528A
KR20200119528A KR1020190041806A KR20190041806A KR20200119528A KR 20200119528 A KR20200119528 A KR 20200119528A KR 1020190041806 A KR1020190041806 A KR 1020190041806A KR 20190041806 A KR20190041806 A KR 20190041806A KR 20200119528 A KR20200119528 A KR 20200119528A
Authority
KR
South Korea
Prior art keywords
transmission
flow rate
drag
map
heat loss
Prior art date
Application number
KR1020190041806A
Other languages
Korean (ko)
Inventor
구태형
장호선
최월선
이영준
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190041806A priority Critical patent/KR20200119528A/en
Publication of KR20200119528A publication Critical patent/KR20200119528A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/141Inputs being a function of torque or torque demand of rate of change of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H59/78Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Control Of Transmission Device (AREA)
  • General Details Of Gearings (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The present invention includes the steps of: setting a reference lubricating oil amount, and determining whether an oil temperature is less than a reference temperature by a controller; determining whether a transmission is in a normal driving situation or a reverse driving situation by the controller when the oil temperature is less than the reference temperature; calculating a heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving situation of the transmission by the controller; calculating a first lubricating flow rate from the reference lubricating flow rate and the heat loss absorption flow rate coefficient by the controller; calculating a second lubricating oil amount in consideration of the influence of the oil temperature on the first lubricating oil amount by the controller; and determining whether the transmission is shifting to use the second lubricating oil amount as the lubricating oil flow rate when not shifting, and to use the reference lubricating oil amount as the lubricating oil flow rate when shifting by the controller.

Description

차량 변속기의 오일유량 제어방법{OIL FLOW CONTROL METHOD FOR TRANSMISSION OF VEHICLE}Oil flow control method of vehicle transmission {OIL FLOW CONTROL METHOD FOR TRANSMISSION OF VEHICLE}

본 발명은 차량에 탑재된 변속기 내부를 유동하는 오일의 유량을 제어하는 기술에 관한 것이다.The present invention relates to a technology for controlling the flow rate of oil flowing inside a transmission mounted on a vehicle.

변속기에서 오일은 변속기 내부의 각종 클러치와 브레이크의 결합 및 해제를 위한 작동유로서 사용됨과 아울러, 변속기 내부 각 부품들의 작동부 윤활 및 냉각을 위한 윤활유로서 사용된다. In a transmission, oil is used as hydraulic oil for engaging and releasing various clutches and brakes inside the transmission, and is used as a lubricant for lubricating and cooling the operating parts of the various parts inside the transmission.

변속기에서는 동력전달을 위한 클러치와 브레이크의 작동이 오일의 주된 역할이므로, 상기 윤활유로서의 오일 유량은 각 작동부의 소착 등의 문제를 방지하기 위한 목적으로 최저유량 보장의 개념에서 단순 계산에 의한 추정값 정도로 관리되고 있으며, 최적화가 이루어져 있지 않다.In a transmission, the operation of the clutch and brake for power transmission is the main role of oil, so the oil flow as the lubricant is managed as an estimated value by simple calculation in the concept of guaranteeing the minimum flow rate for the purpose of preventing problems such as seizure of each operating part. And no optimization has been made.

한편, 최근 하이브리차량이나 전기차 등과 같은 소위 환경차에 사용되는 변속기는 동력을 엔진과 모터 등과 같은 동력원으로부터 구동륜을 향해 전달하는 일반적인 정구동 상황과 함께, 구동륜으로부터 역으로 모터로 동력이 전달되어 회생제동을 수행하는 역구동 상황이 존재하는데, 이때 변속기의 전달효율은 상기와 같은 동력흐름의 방향에 따라 상이하다.On the other hand, transmissions used in so-called environmental vehicles such as hybrid vehicles and electric vehicles in recent years have a general static driving situation in which power is transferred from a power source such as an engine and a motor to the driving wheel, and the power is transmitted from the driving wheel to the motor in reverse, thereby regenerative braking. There is a reverse driving situation in which the transmission is performed, and the transmission efficiency of the transmission is different according to the direction of the power flow as described above.

또한, 변속기 오일은 온도가 높을수록 점도가 낮아지고 저항력이 감소하여 변속기 전달효율을 증가시키는 경향이 있고, 이는 궁극적으로 차량의 연비(전비)를 개선시키게 된다.In addition, as the temperature of the transmission oil increases, the viscosity decreases and the resistance decreases, thereby increasing transmission transmission efficiency, which ultimately improves the fuel economy (electricity) of the vehicle.

상기 발명의 배경이 되는 기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background technology of the present invention are only for enhancing an understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the prior art already known to those of ordinary skill in the art. Will be

KR 1020150008328 AKR 1020150008328 A

본 발명은 변속기 오일의 온도와 변속기의 정구동 및 역구동 등과 같은 변속기의 구동상황에 따라 윤활유로서의 유량이 실시간으로 조절되도록 함으로써, 변속기에서 마찰로 인해 버려지는 열손실 에너지를 오일로 최대한 흡수하여 오일에 의한 저항력 감소로 변속기 전달효율을 높여 연비를 향상시킬 수 있도록 한 차량 변속기의 오일유량 제어방법을 제공함에 그 목적이 있다. The present invention allows the flow rate as lubricating oil to be adjusted in real time according to the temperature of the transmission oil and the driving conditions of the transmission such as forward and reverse driving of the transmission, so that the heat loss energy discarded due to friction in the transmission is absorbed into the oil as much as possible. It is an object of the present invention to provide a method for controlling the oil flow rate of a vehicle transmission so that fuel efficiency can be improved by increasing transmission efficiency by reducing resistance.

상기한 바와 같은 목적을 달성하기 위한 본 발명 차량 변속기의 오일유량 제어방법은, The oil flow rate control method of a vehicle transmission according to the present invention for achieving the above object,

컨트롤러가, 기준윤활유량을 설정하고, 오일 온도가 기준온도 미만인지를 판단하는 단계와;The controller setting a reference lubricating oil amount and determining whether the oil temperature is less than the reference temperature;

상기 컨트롤러가 오일 온도가 기준온도 미만인 경우, 변속기가 정구동 상황인지 역구동 상황인지 판단하는 단계와;Determining, by the controller, whether the transmission is in a normal driving situation or a reverse driving situation when the oil temperature is less than the reference temperature;

상기 컨트롤러가 변속기의 구동상황에 따른 변속기의 전달효율을 이용하여 열손실흡수유량계수를 산출하는 단계와;Calculating, by the controller, a heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving condition of the transmission;

상기 컨트롤러가 상기 기준윤활유량과 열손실흡수유량계수로 제1윤활유량을 산출하는 단계와;Calculating, by the controller, a first lubricating flow rate using the reference lubricating flow rate and a heat loss absorption flow rate coefficient;

상기 컨트롤러가 상기 제1윤활유량에 오일 온도에 따른 영향을 고려하여 제2윤활유량을 산출하는 단계와;Calculating, by the controller, a second lubricating oil amount in consideration of an influence of the oil temperature on the first lubricating oil amount;

상기 컨트롤러가 변속기가 변속 중인지를 판단하여, 변속 중이 아닌 경우에는 상기 제2윤활유량을 윤활유 유량으로 사용하고, 변속 중인 경우에는 상기 기준윤활유량을 윤활유 유량으로 사용하도록 하는 단계;Determining, by the controller, whether the transmission is shifting, and when not shifting, uses the second lubricating oil amount as the lubricating oil flow rate, and when shifting, using the reference lubricating oil amount as the lubricating oil flow rate;

를 포함하여 구성된 것을 특징으로 한다.It characterized in that it is configured to include.

상기 변속기의 구동상황에 따른 전달효율은, Transmission efficiency according to the driving condition of the transmission,

변속기의 입력 속도와 입력 토크에 따른 전달효율의 맵을 변속기의 정구동 및 역구동 상황에 대하여 개별적으로 구비해 두고, 현재의 변속기의 구동상황에 해당되는 전달효율의 맵에서 현재의 변속기 입력 속도 및 입력 토크에 해당하는 값으로 산출할 수 있다.A map of the transmission efficiency according to the input speed of the transmission and the input torque is separately prepared for the forward and reverse driving conditions of the transmission, and the current transmission input speed and input in the transmission efficiency map corresponding to the current transmission driving situation It can be calculated as a value corresponding to the torque.

상기 전달효율을 이용하여 열손실흡수유량계수를 산출하는 것은,Calculating the heat loss absorption flow rate coefficient using the transfer efficiency,

변속기의 입력 속도와 입력 토크에 따른 열손실흡수유량계수의 맵에서 상기 전달효율을 선택한 변속기의 입력 속도와 입력 토크에 대응하는 위치의 열손실흡수유량계수를 선택하는 것일 수 있다.In the map of the heat loss absorption flow rate coefficient according to the input speed and input torque of the transmission, the heat loss absorption flow rate coefficient at a position corresponding to the input speed and input torque of the transmission for which the transmission efficiency is selected may be selected.

상기 열손실흡수유량계수의 맵은 상기 전달효율의 맵을 이용하여 만들어지는 드래그의 맵으로부터 형성되며;The map of the heat loss absorption flow rate coefficient is formed from a map of the drag created using the map of the transfer efficiency;

상기 드래그의 맵은, The drag map,

상기 전달효율을 다음 수식The transfer efficiency is expressed by the following formula

Drag = (100 - η * T} / 100Drag = (100-η * T} / 100

여기서,here,

Drag: 드래그(저항) [N/m]Drag: Drag (resistance) [N/m]

T: 변속기 입력 토크T: transmission input torque

η: 전달효율η: transmission efficiency

에 의해 드래그로 전환하고,Switch by dragging, and

변속기의 입력 속도와 입력 토크에 따라 상기 계산된 드래그를 대입하여 형성될 수 있다.It may be formed by substituting the calculated drag according to the input speed and input torque of the transmission.

상기 열손실흡수유량계수의 맵은 상기 드래그의 맵에서, 최소의 드래그를 기준드래그로 정하고, 상기 기준드래그에 대한 각 드래그들의 비율을 그 드래그에 대한 열손실흡수유량계수로 각각 정할 수 있다.In the map of the heat loss absorption flow rate coefficient, in the drag map, a minimum drag is determined as a reference drag, and a ratio of each drag to the reference drag may be determined as a heat loss absorption flow rate coefficient for the drag.

상기 변속기의 구동상황에 따른 변속기의 전달효율을 이용하여 열손실흡수유량계수를 산출하는 단계는,The step of calculating the heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving situation of the transmission,

변속기의 입력 속도와 입력 토크에 따른 열손실흡수유량계수의 맵을 변속기의 정구동 및 역구동 상황에 대하여 개별적으로 구비해 두고, 현재의 변속기의 구동상황에 해당되는 열손실흡수유량계수의 맵에서 현재의 변속기 입력 속도 및 입력 토크에 해당하는 값으로 산출할 수 있다.A map of the heat loss absorption flow rate coefficient according to the input speed of the transmission and the input torque is separately prepared for the normal driving and reverse driving conditions of the transmission, and the map of the heat loss absorption flow rate coefficient corresponding to the current driving situation of the transmission It can be calculated as a value corresponding to the transmission input speed and input torque.

상기 제1윤활유량을 산출하는 단계는,The step of calculating the first lubricating oil amount,

기준윤활유량에 상기 열손실흡수유량계수를 곱하여 상기 제1윤활유량을 산출할 수 있다.The first lubricating oil amount may be calculated by multiplying the reference lubricating oil amount by the heat loss absorption flow rate coefficient.

상기 제2윤활유량을 산출하는 단계는,The step of calculating the second lubricating oil amount,

상기 기준온도 미만의 오일 온도 조건에서, 윤활유 유량으로 과다한 오일이 소비되지 않도록 하기 위해, 오일 온도와 비례하게 설정된 오일온도계수를 상기 제1윤활유량에 곱하여 산출할 수 있다.In the oil temperature condition less than the reference temperature, in order not to consume excessive oil at the lubricating oil flow rate, it may be calculated by multiplying the first lubricating oil amount by an oil temperature coefficient set in proportion to the oil temperature.

상기 기준윤활유량은 해당 변속기의 내구기준 시험을 통과하는 최저 유량으로 설정될 수 있다.The reference lubricating flow rate may be set as the lowest flow rate that passes the endurance standard test of the transmission.

본 발명은 변속기 오일의 온도와 변속기의 정구동 및 역구동 등과 같은 변속기의 구동상황에 따라 윤활유로서의 유량이 실시간으로 조절되도록 함으로써, 변속기에서 마찰로 인해 버려지는 열손실 에너지를 오일로 최대한 흡수하여 오일에 의한 저항력 감소로 변속기 전달효율을 높여 연비를 향상시킬 수 있도록 한 차량 변속기의 오일유량 제어방법을 제공함에 그 목적이 있다. The present invention allows the flow rate as lubricating oil to be adjusted in real time according to the temperature of the transmission oil and the driving conditions of the transmission such as forward and reverse driving of the transmission, so that the heat loss energy discarded due to friction in the transmission is absorbed into the oil as much as possible. It is an object of the present invention to provide a method for controlling the oil flow rate of a vehicle transmission so that fuel efficiency can be improved by increasing transmission efficiency by reducing resistance.

도 1은 본 발명을 적용할 수 있는 차량 변속기의 오일공급장치를 예시한 도면,
도 2는 본 발명에 따른 차량 변속기의 오일유량 제어방법의 실시예를 도시한 순서도,
도 3은 본 발명에 따른 전달효율의 맵과, 드래그의 맵 및 열손실흡수유량계수의 맵의 관계를 예시적으로 설명한 도면이다.
1 is a diagram illustrating an oil supply device of a vehicle transmission to which the present invention can be applied,
2 is a flow chart showing an embodiment of a method for controlling an oil flow rate of a vehicle transmission according to the present invention;
3 is a diagram illustrating a relationship between a map of a transfer efficiency, a map of a drag, and a map of a heat loss absorption flow rate coefficient according to the present invention.

도 1은 본 발명을 적용할 수 있는 TMED방식 하이브리드 차량의 오일공급장치를 예시한 것으로서, 엔진(E)의 동력은 엔진클러치(EC)를 통해 변속기(TM)로 입력되며, 변속기의 입력축에는 모터(M)가 구비되어 있다.1 is an illustration of an oil supply device of a TMED hybrid vehicle to which the present invention can be applied, and the power of the engine E is input to the transmission TM through the engine clutch EC, and a motor on the input shaft of the transmission (M) is provided.

상기 엔진(E)과 모터(M)는 동력원으로 기능하여, 차량 주행 상황에 따라 동시에 또는 단독으로 상기 변속기(TM)의 입력축으로 동력을 공급하게 되며, 변속기(TM)에서 변속된 동력은 디퍼렌셜(DF)을 통해 양쪽 구동륜(W)으로 공급되게 된다.The engine E and the motor M function as power sources, supplying power to the input shaft of the transmission TM at the same time or independently depending on the driving situation of the vehicle, and the power shifted by the transmission TM is differential ( It is supplied to both drive wheels (W) through DF).

상기 변속기(TM)에는 전동식오일펌프(EOP)가 구비되어 있어서 필요에 따라 구동됨에 의해 요구되는 오일의 총유량을 공급하도록 되어 있으며, 오일온도센서(TS)가 구비되어 있어서 상기 컨트롤러(CLR)가 필요로 하는 오일 온도 정보를 제공하도록 구성되어 있다.The transmission (TM) is equipped with an electric oil pump (EOP) to supply the total amount of oil required by being driven as needed, and an oil temperature sensor (TS) is provided so that the controller (CLR) It is configured to provide the required oil temperature information.

상기 컨트롤러(CLR)는 상기 오일온도센서(TS)의 신호와 변속기의 구동상태 등의 정보를 받아 상기 전동식오일펌프(EOP)를 조절하도록 한다.The controller CLR receives a signal from the oil temperature sensor TS and information such as a driving state of a transmission to adjust the electric oil pump EOP.

상기 컨트롤러(CLR)는 단독으로 상기 전동식오일펌프를 구동하는 용도로 구비될 수도 있고, 상기 변속기(TM)를 제어하는 TCU(TRANSMISSION CONTROL UNIT)에 함께 병합되어 구성될 수도 있을 것이다.The controller CLR may be provided solely for driving the electric oil pump, or may be incorporated into a TCU (TRANSMISSION CONTROL UNIT) controlling the transmission TM.

도 1은 하이브리드 차량의 변속기를 예시한 것이지만, 본 발명은 순수한 전기차량에도 물론 적용될 수 있다.1 illustrates a transmission of a hybrid vehicle, but the present invention can of course be applied to a pure electric vehicle.

도 2는 본 발명에 따른 차량 변속기의 오일유량 제어방법의 실시예를 도시한 것으로서, 컨트롤러(CLR)가, 기준윤활유량을 설정하고, 오일 온도가 기준온도 미만인지를 판단하는 단계(S10)와; 상기 컨트롤러가 오일 온도가 기준온도 미만인 경우, 변속기가 정구동 상황인지 역구동 상황인지 판단하는 단계(S20)와; 상기 컨트롤러가 변속기의 구동상황에 따른 변속기의 전달효율을 이용하여 열손실흡수유량계수를 산출하는 단계(S30)와; 상기 컨트롤러가 상기 기준윤활유량과 열손실흡수유량계수(α)로 제1윤활유량을 산출하는 단계(S40)와; 상기 컨트롤러가 상기 제1윤활유량에 오일 온도에 따른 영향을 고려하여 제2윤활유량을 산출하는 단계(S50)와; 상기 컨트롤러가 변속기가 변속 중인지를 판단하여, 변속 중이 아닌 경우에는 상기 제2윤활유량을 윤활유 유량으로 사용하고, 변속 중인 경우에는 상기 기준윤활유량을 윤활유 유량으로 사용하도록 하는 단계(S60)를 포함하여 구성된다.2 is a diagram showing an embodiment of a method for controlling an oil flow rate of a vehicle transmission according to the present invention, wherein the controller (CLR) sets a reference lubricating oil amount, and determines whether the oil temperature is less than the reference temperature (S10) and ; Determining, by the controller, whether the transmission is in a normal driving situation or a reverse driving situation when the oil temperature is less than the reference temperature (S20); Calculating, by the controller, a heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving condition of the transmission (S30); Calculating, by the controller, a first lubricating flow rate using the reference lubricating flow rate and the heat loss absorption flow rate coefficient α (S40); Calculating, by the controller, a second lubricating oil amount in consideration of an influence of the oil temperature on the first lubricating oil amount (S50); Including the step (S60) of determining whether the transmission is shifting by the controller, and using the second lubricating oil amount as the lubricating oil flow rate when the transmission is not shifting, and using the reference lubricating oil amount as the lubricating oil flow rate when shifting. Is composed.

즉, 본 발명은 오일 온도가 기준온도 미만의 낮은 온도여서, 비교적 점도가 높아 높은 구동저항을 일으키는 상황에서, 변속기의 정구동 또는 역구동 상황 및 그 때의 변속기 전달효율에 따라 열손실흡수유량계수를 정하여, 이에 기반하여 윤활유 유량을 결정하도록 함으로써, 변속기에서 마찰열로 손실될 열을 그에 상응하는 유량의 오일이 신속하게 흡수하게 하여, 오일 온도의 빠른 상승을 도모함에 의해, 결과적으로 보다 신속한 변속기 전달효율의 상승으로 차량의 연비 향상에 기여할 수 있도록 하는 것이다.That is, in the present invention, in a situation where the oil temperature is lower than the reference temperature and thus causes high driving resistance due to relatively high viscosity, the heat loss absorption flow rate coefficient is determined according to the transmission efficiency of the transmission and the forward or reverse driving situation of the transmission. By determining the lubricating oil flow rate based on this, the heat to be lost as frictional heat in the transmission is quickly absorbed by the oil of the corresponding flow rate, thereby promoting a rapid increase in the oil temperature, and as a result, more rapid transmission efficiency. It is to be able to contribute to the improvement of the fuel economy of the vehicle with the increase of

참고로, 상기 열손실흡수유량계수(α)는 열손실로 사라질 에너지를 흡수하기 위해 추가로 송출할 유량을 결정하기 위한 계수의 의미로 해석할 수 있다.For reference, the heat loss absorption flow rate coefficient α can be interpreted as the meaning of a coefficient for determining a flow rate to be additionally transmitted in order to absorb energy that will disappear due to heat loss.

또한, 종래 변속기의 운전상황을 정확하게 고려하지 못하고 거의 최저유량 보장의 개념으로 설정되었던 윤활유 유량은, 실제 필요한 유량보다는 어느 정도 여유를 두고 설정되어야 하므로, 불필요한 유량 소모의 원인이 될 수 있었지만, 본 발명에 의하면, 상기 기준윤활유량을 해당 변속기의 내구기준 시험을 통과하는 최저 유량으로 설정해 두고, 기본적으로는 상기 기준윤활유량을 윤활유 유량으로 사용하고, 오일 온도와 차량의 운전상황에 따라 상기 제2윤활유량을 윤활유 유량으로 사용할 수 있도록 함으로써, 실질적으로 실제 요구되는 윤활유 유량만을 공급하여, 전동식오일펌프의 소모 에너지를 저감하고 내구성을 향상시키는 효과도 얻을 수 있다.In addition, since the lubricating oil flow rate, which was set as the concept of almost guaranteeing the minimum flow rate without accurately considering the operation situation of the conventional transmission, should be set with a certain margin rather than the actual required flow rate, it could be a cause of unnecessary flow consumption. According to, the reference lubricating oil amount is set as the minimum flow rate that passes the endurance standard test of the transmission, and basically, the reference lubricating oil amount is used as the lubricating oil flow rate, and the second lubricating oil according to the oil temperature and the driving condition of the vehicle By allowing the amount to be used as the lubricating oil flow rate, only the lubricating oil flow rate substantially actually required is supplied, thereby reducing energy consumption of the electric oil pump and improving durability.

상기 기준온도는 상술한 바와 같이 오일 온도가 낮아서 점도가 높아 회전부 및 마찰부의 드래그에 의한 저항이 상대적으로 크게 발생하는 상황을 판단하기 위한 것이므로, 이와 같은 취지에 따라 다수의 실험과 해석에 의해 결정될 수 있을 것이며, 예컨대 60℃ 등과 같이 설정될 수 있을 것이다.As described above, the reference temperature is for determining a situation in which resistance due to drag of the rotating part and the friction part is relatively large due to the low oil temperature and high viscosity, and thus can be determined through a number of experiments and analysis according to this purpose. There will be, for example, it may be set such as 60 ℃.

상기 변속기의 구동상황에 따른 전달효율은, 변속기의 입력 속도와 입력 토크에 따른 전달효율의 맵을 변속기의 정구동 및 역구동 상황에 대하여 개별적으로 구비해 두고, 현재의 변속기의 구동상황에 해당되는 전달효율의 맵에서 현재의 변속기 입력 속도 및 입력 토크에 해당하는 값으로 산출할 수 있다.For the transmission efficiency according to the driving situation of the transmission, a map of transmission efficiency according to the input speed of the transmission and the input torque is separately provided for the normal driving and reverse driving conditions of the transmission, and the transmission corresponding to the current driving situation of the transmission In the efficiency map, it can be calculated as values corresponding to the current transmission input speed and input torque.

예컨대, 현재 변속기가 모터쪽에서 구동륜 쪽으로 동력을 전달하는 정구동 상황이고, 변속기로 입력되는 동력의 속도가 40km/h이고, 입력 토크가 20Nm이면, 정구동 상황에 대하여 구비된 상기 전달효율의 맵에서 그에 해당되는 위치의 전달효율 값을 선택하여 산출하는 것이다.For example, if the current transmission is in a constant drive situation in which power is transmitted from the motor side to the driving wheel, and the speed of the power input to the transmission is 40km/h and the input torque is 20Nm, it corresponds to the transmission efficiency map provided for the static drive situation. It is calculated by selecting the transfer efficiency value of the location to be used.

물론, 상기한 바와 같은 입력 속도와 입력 토크 및 정구동 또는 역구동에 대한 각 전달효율을 사전에 다수의 실험과 해석에 의해 미리 결정되어 맵으로 구비해 두는 것이다.Of course, the above-described input speed, input torque, and transmission efficiencies for forward or reverse drive are determined in advance by a number of experiments and analysis, and are provided as a map.

상기 전달효율을 이용하여 열손실흡수유량계수를 산출하는 것은, 변속기의 입력 속도와 입력 토크에 따른 열손실흡수유량계수의 맵에서 상기 전달효율을 선택한 변속기의 입력 속도와 입력 토크에 대응하는 위치의 열손실흡수유량계수를 선택하는 것으로 구현할 수 있다.Calculating the heat loss absorption flow rate coefficient using the transmission efficiency is a position corresponding to the input speed and input torque of the transmission selected from the map of the heat loss absorption flow rate coefficient according to the input speed and input torque of the transmission. It can be implemented by selecting the heat loss absorption flow rate coefficient.

즉, 열손실흡수유량계수의 맵도 변속기의 입력 속도와 입력 토크에 따라 설정되어 있으므로, 상기 전달효율의 맵과 대응하는 위치의 값이 선택되게 되는 것이다.That is, since the map of the heat loss absorption flow rate coefficient is also set according to the input speed and the input torque of the transmission, the value of the position corresponding to the map of the transmission efficiency is selected.

따라서, 상기 변속기의 구동상황에 따른 변속기의 전달효율을 이용하여 열손실흡수유량계수를 산출하는 단계는, 상기 전달효율의 맵으로 전달효율을 산출하는 과정을 배제하고, 바로 변속기의 입력 속도와 입력 토크에 따른 열손실흡수유량계수의 맵을 변속기의 정구동 및 역구동 상황에 대하여 개별적으로 구비해 두고, 현재의 변속기의 구동상황에 해당되는 열손실흡수유량계수의 맵에서 현재의 변속기 입력 속도 및 입력 토크에 해당하는 값으로 산출하는 것도 가능한 것이며, 실제로는 이 방법이 더 신속하므로 유리하다.Therefore, the step of calculating the heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving situation of the transmission excludes the process of calculating the transmission efficiency with the transmission efficiency map, and directly input speed and input of the transmission A map of the heat loss absorption flow rate coefficient according to the torque is provided separately for the forward and reverse driving conditions of the transmission, and the current transmission input speed and input from the map of the heat loss absorption flow rate coefficient corresponding to the current transmission driving situation It is also possible to calculate a value corresponding to the torque, and in practice this method is advantageous because it is faster.

다만, 여기서는 상기 열손실흡수유량계수(α)의 맵을 생성하는 과정 및 방법을 설명하기 위한 것으로서, 전달효율의 맵과, 드래그의 맵 및 열손실흡수유량계수의 맵의 관계를 도 3에 설명하고 있다.However, here, as for explaining the process and method of generating the map of the heat loss absorption flow rate coefficient α, the relationship between the transfer efficiency map, the drag map and the heat loss absorption flow rate coefficient map is described in FIG. 3. Are doing.

상기 열손실흡수유량계수(α)의 맵은 상기 전달효율의 맵을 이용하여 만들어지는 드래그의 맵으로부터 형성되며;The map of the heat loss absorption flow rate coefficient (α) is formed from a map of drag created using the map of the transfer efficiency;

상기 드래그의 맵은, The drag map,

상기 전달효율을 다음 수식The transfer efficiency is expressed by the following formula

Drag = (100 - η * T} / 100Drag = (100-η * T} / 100

여기서,here,

Drag: 드래그(저항) [N/m]Drag: Drag (resistance) [N/m]

T: 변속기 입력 토크T: transmission input torque

η: 전달효율η: transmission efficiency

에 의해 드래그로 전환하고,Switch by dragging, and

변속기의 입력 속도와 입력 토크에 따라 상기 계산된 드래그를 대입하여 형성된다. It is formed by substituting the calculated drag according to the input speed and input torque of the transmission.

또한, 상기 열손실흡수유량계수의 맵은 상기 드래그의 맵에서, 최소의 드래그를 기준드래그로 정하고, 상기 기준드래그에 대한 각 드래그들의 비율을 그 드래그에 대한 열손실흡수유량계수(α)로 각각 정한 것이다.In addition, in the map of the heat loss absorption flow rate coefficient, in the map of the drag, the minimum drag is determined as a reference drag, and the ratio of each drag to the reference drag is determined as the heat loss absorption flow rate coefficient (α) for the drag, respectively. It was decided.

예컨대, 현재의 변속기 입력 토크와 입력 속도에 의해 도 3의 전달효율의 맵에서 1행 3열의 84%가 선택되었다고 하고, 이를 상기 드래그 공식에 대입하여 산출된 드래그가 9Nm라고 하면, 상기 드래그의 맵에서 1행 3열에는 9Nm가 설정되는 것이다.For example, suppose that 84% of the 1st row and 3rd columns are selected in the transmission efficiency map of FIG. 3 by the current transmission input torque and input speed, and the drag calculated by substituting this into the drag formula is 9Nm, the map of the drag In the 1st row and 3rd column, 9Nm is set.

이와 같은 방식으로 상기 전달효율의 맵의 각 전달효율에 상응하는 드래그를 상기 드래그 공식으로 산출하여 대응되는 위치에 설정하여 상기 드래그 맵을 형성한다.In this way, the drag map corresponding to each transfer efficiency of the transfer efficiency map is calculated by the drag formula and set at a corresponding position to form the drag map.

이후, 상기 드래그 맵의 값들 중 최소값을 찾아, 이 드래그를 상기 기준드래그로 한다. 도 3의 예에서는 3행 2열의 3Nm가 최소값으로 기준드래그가 된다.Thereafter, the minimum value among the values of the drag map is found, and this drag is used as the reference drag. In the example of FIG. 3, 3Nm in the 3rd row and 2nd column is the reference drag as the minimum value.

상기 기준드래그에 대한 열손실흡수유량계수(α)는 1.0으로 정하고, 다른 드래그들은 상기 기준드래그에 대한 비율로 설정되는 바, 예컨대 상기 드래그의 맵에서 1행 3열에 위치한 9Nm는 기준드래그의 3배이므로, 이에 해당하는 열손실흡수유량계수(α)는 3.0이 되는 것이다.The heat loss absorption flow rate coefficient (α) for the reference drag is set to 1.0, and other drags are set as a ratio to the reference drag.For example, 9Nm located in the first row and third column of the drag map is three times the reference drag. Therefore, the corresponding heat loss absorption flow rate coefficient α is 3.0.

물론, 나머지 위치의 드래그들 들도 상기한 바와 같이 기준드래그에 대한 비율로 상기 열손실흡수유량계수를 선정함으로써, 상기 열손실흡수유량계수(α)의 맵을 구현할 수 있다.Of course, the map of the heat loss absorption flow rate coefficient α can be implemented by selecting the heat loss absorption flow rate coefficient as a ratio to the reference drag for the drags at the remaining positions as described above.

상술한 바와 같이 상기 전달효율의 맵과 드래그의 맵은 상기 열손실흡수유량계수의 맵을 생성하기 위한 과정이므로, 실제 차량에 적용시에는 이와 같은 과정은 이미 완료되어 상기 열손실흡수유량계수의 맵만을 탑재해 두고, 이를 참조하여 해당 차속과 토크에서 해당 열손실흡수유량계수를 산출하도록 하는 것이 바람직하다.As described above, since the map of the transfer efficiency and the map of the drag is a process for generating the map of the heat loss absorption flow rate coefficient, when applied to an actual vehicle, such a process is already completed and the map of the heat loss absorption flow rate coefficient It is preferable to mount the bay and refer to it to calculate the heat loss absorption flow rate coefficient from the vehicle speed and torque.

상기 제1윤활유량을 산출하는 단계는, 기준윤활유량에 상기 열손실흡수유량계수(α)를 곱하여 상기 제1윤활유량을 산출한다.In the step of calculating the first lubricating oil amount, the first lubricating oil amount is calculated by multiplying the reference lubricating oil amount by the heat loss absorption flow rate coefficient α.

따라서, 위 예에서 상기 제1윤활유량은 상기 기준윤활유량의 3배가 된다.Therefore, in the above example, the first lubricating oil amount is three times the reference lubricating oil amount.

상기 제2윤활유량을 산출하는 단계는, 상기 기준온도 미만의 오일 온도 조건에서, 윤활유 유량으로 과다한 오일이 소비되지 않도록 하기 위해, 오일 온도와 비례하게 설정된 오일온도계수(β)를 상기 제1윤활유량에 곱하여 산출한다.The calculating of the second lubricating oil amount may include calculating an oil temperature coefficient (β) set in proportion to the oil temperature in order not to consume excessive oil as a lubricating oil flow rate under an oil temperature condition less than the reference temperature. It is calculated by multiplying the amount.

즉, 상기 기준온도 미만의 저온에서는 오일 점성이 높아 유동성이 저하된 상황이므로, 윤활 및 냉각을 위한 윤활유 유량으로 너무 과다한 오일이 소모되어 유압제어라인의 오일압력이 과도하게 저하되는 현상이 발생할 우려가 있으므로, 이러한 상황을 방지하기 위한 것이다.That is, at a low temperature below the reference temperature, the oil viscosity is high and the fluidity is deteriorated.Therefore, too much oil is consumed by the lubricating oil flow rate for lubrication and cooling, and there is a possibility that the oil pressure of the hydraulic control line is excessively decreased. Therefore, it is to prevent this situation.

따라서, 상기 오일온도계수(β)는 상기한 바와 같은 취지에 따라 다수의 실험 및 해석에 의해 설계적으로 결정되는 것이 바람직하다.Therefore, it is preferable that the oil temperature coefficient β is determined by design through a number of experiments and analysis according to the above-described purpose.

상기한 바와 같이 결정된 제2윤활유량은 변속기의 변속 중에는 사용되지 않는 것이 바람직하다.It is preferable that the second lubricating flow amount determined as described above is not used during shifting of the transmission.

즉, 변속 중에는 클러치와 브레이크 등의 작동유 유량이 많이 소요되는 상황이기 때문이다.That is, this is because a large amount of hydraulic oil flows such as clutch and brake are required during shifting.

따라서, 컨트롤러는 변속 중인 경우에는 윤활유 유량은 상기 기준윤활유량을 사용하고, 변속 중이 아닌 경우에만 상기 윤활유 유량을 상기 제2윤활유량으로 사용하도록 한다.Accordingly, the controller uses the reference lubricating oil amount as the lubricating oil flow rate when it is shifting, and uses the lubricating oil flow rate as the second lubricating oil amount only when it is not shifting.

컨트롤러는 작동유 유량과 상기 윤활유 유량을 더하여 총유량을 산출하고, 그에 따라 상기 전동식오일펌프를 구동하여 변속기에서 필요로 하는 오일의 유량을 적절한 상태로 공급하게 된다.The controller calculates the total flow rate by adding the hydraulic oil flow rate and the lubricating oil flow rate, and accordingly drives the electric oil pump to supply the flow rate of oil required by the transmission in an appropriate state.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Although the present invention has been illustrated and described with reference to specific embodiments, it is understood in the art that the present invention can be variously improved and changed within the scope of the technical spirit of the present invention provided by the following claims. It will be obvious to a person of ordinary knowledge.

E; 엔진
EC; 엔진클러치
TM; 변속기
M; 모터
DF; 디퍼렌셜
W; 구동륜
EOP; 전동식오일펌프
TS; 오일온도센서
CLR; 컨트롤러
E; engine
EC; Engine clutch
TM; Transmission
M; motor
DF; Differential
W; Drive wheel
EOP; Electric oil pump
TS; Oil temperature sensor
CLR; controller

Claims (9)

컨트롤러가, 기준윤활유량을 설정하고, 오일 온도가 기준온도 미만인지를 판단하는 단계와;
상기 컨트롤러가 오일 온도가 기준온도 미만인 경우, 변속기가 정구동 상황인지 역구동 상황인지 판단하는 단계와;
상기 컨트롤러가 변속기의 구동상황에 따른 변속기의 전달효율을 이용하여 열손실흡수유량계수를 산출하는 단계와;
상기 컨트롤러가 상기 기준윤활유량과 열손실흡수유량계수로 제1윤활유량을 산출하는 단계와;
상기 컨트롤러가 상기 제1윤활유량에 오일 온도에 따른 영향을 고려하여 제2윤활유량을 산출하는 단계와;
상기 컨트롤러가 변속기가 변속 중인지를 판단하여, 변속 중이 아닌 경우에는 상기 제2윤활유량을 윤활유 유량으로 사용하고, 변속 중인 경우에는 상기 기준윤활유량을 윤활유 유량으로 사용하도록 하는 단계;
를 포함하여 구성된 것을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The controller setting a reference lubricating oil amount and determining whether the oil temperature is less than the reference temperature;
Determining, by the controller, whether the transmission is in a normal driving situation or a reverse driving situation when the oil temperature is less than the reference temperature;
Calculating, by the controller, a heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving condition of the transmission;
Calculating, by the controller, a first lubricating flow rate using the reference lubricating flow rate and a heat loss absorption flow rate coefficient;
Calculating, by the controller, a second lubricating oil amount in consideration of an influence of the oil temperature on the first lubricating oil amount;
Determining, by the controller, whether the transmission is shifting, and when not shifting, uses the second lubricating oil amount as the lubricating oil flow rate, and when shifting, using the reference lubricating oil amount as the lubricating oil flow rate;
Oil flow rate control method of a vehicle transmission, characterized in that configured to include.
청구항 1에 있어서,
상기 변속기의 구동상황에 따른 전달효율은,
변속기의 입력 속도와 입력 토크에 따른 전달효율의 맵을 변속기의 정구동 및 역구동 상황에 대하여 개별적으로 구비해 두고, 현재의 변속기의 구동상황에 해당되는 전달효율의 맵에서 현재의 변속기 입력 속도 및 입력 토크에 해당하는 값으로 산출하는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method according to claim 1,
Transmission efficiency according to the driving condition of the transmission,
A map of the transmission efficiency according to the input speed of the transmission and the input torque is separately prepared for the forward and reverse driving conditions of the transmission, and the current transmission input speed and input in the transmission efficiency map corresponding to the current transmission driving situation Calculated by a value corresponding to the torque
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 2에 있어서,
상기 전달효율을 이용하여 열손실흡수유량계수를 산출하는 것은,
변속기의 입력 속도와 입력 토크에 따른 열손실흡수유량계수의 맵에서 상기 전달효율을 선택한 변속기의 입력 속도와 입력 토크에 대응하는 위치의 열손실흡수유량계수를 선택하는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method according to claim 2,
Calculating the heat loss absorption flow rate coefficient using the transfer efficiency,
Selecting the heat loss absorption flow rate coefficient at the position corresponding to the input speed and input torque of the transmission for which the transmission efficiency was selected from the map of the heat loss absorption flow rate coefficient according to the input speed and input torque of the transmission
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 3에 있어서,
상기 열손실흡수유량계수의 맵은 상기 전달효율의 맵을 이용하여 만들어지는 드래그의 맵으로부터 형성되며;
상기 드래그의 맵은,
상기 전달효율을 다음 수식
Drag = (100 - η * T} / 100
여기서,
Drag: 드래그(저항) [N/m]
T: 변속기 입력 토크
η: 전달효율
에 의해 드래그로 전환하고,
변속기의 입력 속도와 입력 토크에 따라 상기 계산된 드래그를 대입하여 형성되는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method of claim 3,
The map of the heat loss absorption flow rate coefficient is formed from a map of the drag created using the map of the transfer efficiency;
The drag map,
The transfer efficiency is expressed by the following formula
Drag = (100-η * T} / 100
here,
Drag: Drag (resistance) [N/m]
T: transmission input torque
η: transmission efficiency
Switch by dragging, and
Formed by substituting the calculated drag according to the input speed and input torque of the transmission
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 4에 있어서,
상기 열손실흡수유량계수의 맵은 상기 드래그의 맵에서, 최소의 드래그를 기준드래그로 정하고, 상기 기준드래그에 대한 각 드래그들의 비율을 그 드래그에 대한 열손실흡수유량계수로 각각 정한 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method of claim 4,
The map of the heat loss absorption flow rate coefficient is defined as the minimum drag as a reference drag in the drag map, and the ratio of each drag to the reference drag is determined by the heat loss absorption flow rate coefficient for the drag, respectively.
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 1에 있어서,
상기 변속기의 구동상황에 따른 변속기의 전달효율을 이용하여 열손실흡수유량계수를 산출하는 단계는,
변속기의 입력 속도와 입력 토크에 따른 열손실흡수유량계수의 맵을 변속기의 정구동 및 역구동 상황에 대하여 개별적으로 구비해 두고, 현재의 변속기의 구동상황에 해당되는 열손실흡수유량계수의 맵에서 현재의 변속기 입력 속도 및 입력 토크에 해당하는 값으로 산출하는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method according to claim 1,
The step of calculating the heat loss absorption flow rate coefficient using the transmission efficiency of the transmission according to the driving situation of the transmission,
A map of the heat loss absorption flow rate coefficient according to the input speed of the transmission and the input torque is separately prepared for the forward and reverse driving conditions of the transmission, and the map of the heat loss absorption flow rate coefficient corresponding to the current transmission driving situation Calculated by values corresponding to the input speed and input torque of the transmission
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 1에 있어서,
상기 제1윤활유량을 산출하는 단계는,
기준윤활유량에 상기 열손실흡수유량계수를 곱하여 상기 제1윤활유량을 산출하는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method according to claim 1,
The step of calculating the first lubricating oil amount,
Calculating the first lubricating flow rate by multiplying the reference lubricating flow rate by the heat loss absorption flow rate coefficient
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 1에 있어서,
상기 제2윤활유량을 산출하는 단계는,
상기 기준온도 미만의 오일 온도 조건에서, 윤활유 유량으로 과다한 오일이 소비되지 않도록 하기 위해, 오일 온도와 비례하게 설정된 오일온도계수를 상기 제1윤활유량에 곱하여 산출하는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method according to claim 1,
The step of calculating the second lubricating oil amount,
In order to prevent excessive oil from being consumed by the lubricating oil flow rate under the oil temperature condition below the reference temperature, an oil temperature coefficient set in proportion to the oil temperature is multiplied by the first lubricating oil amount to be calculated.
Oil flow rate control method of a vehicle transmission, characterized in that.
청구항 1에 있어서,
상기 기준윤활유량은 해당 변속기의 내구기준 시험을 통과하는 최저 유량으로 설정되는 것
을 특징으로 하는 차량 변속기의 오일유량 제어방법.
The method according to claim 1,
The reference lubrication flow rate is set to the lowest flow rate that passes the endurance standard test of the transmission.
Oil flow rate control method of a vehicle transmission, characterized in that.
KR1020190041806A 2019-04-10 2019-04-10 Oil flow control method for transmission of vehicle KR20200119528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190041806A KR20200119528A (en) 2019-04-10 2019-04-10 Oil flow control method for transmission of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190041806A KR20200119528A (en) 2019-04-10 2019-04-10 Oil flow control method for transmission of vehicle

Publications (1)

Publication Number Publication Date
KR20200119528A true KR20200119528A (en) 2020-10-20

Family

ID=73025279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190041806A KR20200119528A (en) 2019-04-10 2019-04-10 Oil flow control method for transmission of vehicle

Country Status (1)

Country Link
KR (1) KR20200119528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220120109A (en) 2021-02-23 2022-08-30 쌍용자동차 주식회사 Transmission temperature control device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008328A (en) 2013-07-11 2015-01-22 현대자동차주식회사 Oil pump system of hybrid vehicle and method for controlling the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008328A (en) 2013-07-11 2015-01-22 현대자동차주식회사 Oil pump system of hybrid vehicle and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220120109A (en) 2021-02-23 2022-08-30 쌍용자동차 주식회사 Transmission temperature control device and method

Similar Documents

Publication Publication Date Title
JP6469363B2 (en) Oil pump system for hybrid vehicle and control method thereof
KR101601448B1 (en) Drive control method and system for electric oil pump
WO2011052305A1 (en) Vehicle controller
CN103821919B (en) The cooling flow controlling method of dual-clutch transmission and system
CN104471218A (en) Control device for automatic transmission in vehicle
CN101636605A (en) Surplus temperature rise prevention device of torque converter in automatic transmission for vehicle with torque converter
JPWO2016121415A1 (en) Automatic transmission
CN110131397A (en) Wet-type dual-clutch lubrication flow control system
CN102080717B (en) Thermal protection control method for automatic transmission box or stepless transmission box
KR101518944B1 (en) Oil pump system of hybrid vehicle and method for controlling the same
JP2015001259A (en) Drive system
CN104019221A (en) Downshift controls using measured output torque
KR20200119528A (en) Oil flow control method for transmission of vehicle
US8321101B2 (en) Temperature dependent minimum transmission input speed
JP2011247285A (en) Control device of lock-up clutch for vehicle
US10393256B2 (en) Control device for vehicle drive apparatus
JP2012087908A (en) Automatic transmission control device
KR101704297B1 (en) Method for controlling trnasmission of hybrid vehicle
KR101490914B1 (en) Oil pump system for hybrid vehicle and control method thereof
KR102417329B1 (en) Hydraulic control system of automatic transmission for hybrid vehicle
CN109237014A (en) A kind of control method and system of wet-type double-clutch automatic speed-change device
JP6713522B2 (en) vehicle
JP2015161402A (en) Control device of vehicle drive unit
JP6751998B2 (en) Hydraulic control device for automatic transmission
JP5333409B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right