KR20200109371A - Extrusion apparatus and method for manufacturing carbon fiber reinforced plastic semi-finished products - Google Patents

Extrusion apparatus and method for manufacturing carbon fiber reinforced plastic semi-finished products Download PDF

Info

Publication number
KR20200109371A
KR20200109371A KR1020207024192A KR20207024192A KR20200109371A KR 20200109371 A KR20200109371 A KR 20200109371A KR 1020207024192 A KR1020207024192 A KR 1020207024192A KR 20207024192 A KR20207024192 A KR 20207024192A KR 20200109371 A KR20200109371 A KR 20200109371A
Authority
KR
South Korea
Prior art keywords
housing
extrusion
carbon fiber
extrusion apparatus
finished product
Prior art date
Application number
KR1020207024192A
Other languages
Korean (ko)
Other versions
KR102336471B1 (en
Inventor
홀거 자이드리츠
펠릭스 쿠케
마르틴 즈쉬크
Original Assignee
브란덴부르기쉐 테크니쉐 우니페르지테트 코트부스-젠프텐베르크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브란덴부르기쉐 테크니쉐 우니페르지테트 코트부스-젠프텐베르크 filed Critical 브란덴부르기쉐 테크니쉐 우니페르지테트 코트부스-젠프텐베르크
Publication of KR20200109371A publication Critical patent/KR20200109371A/en
Application granted granted Critical
Publication of KR102336471B1 publication Critical patent/KR102336471B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/142Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration using force fields, e.g. gravity or electrical fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/146Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration in the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • B29K2105/124Nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0051Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명은 입구 영역(2) 및 출구 영역(3)을 갖는 하우징(1)으로 이루어지는, 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 압출 장치(100)에 관한 것으로서, 하우징(1)에는 전기장을 생성하기 위한 장치(4)가 배치되는 것을 특징으로 한다. 본 발명은 또한 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법에 관한 것으로서, 다음 단계들이 연속적으로 수행된다: a) 본 발명에 따른 압출 장치(100) 및 복합 화합물(10)을 제공하는 단계; b) 하우징(1)의 입구 영역(2)을 통해 복합 화합물(10)을 압출 장치(100) 내로 도입하는 단계; c) 전기장을 생성하는 단계; 및 d) 생성된 플라스틱 반제품을, 추가의 가공을 위해, 하우징(1)의 출구 영역(3)을 통해 배출하는 단계.The present invention relates to an extrusion apparatus 100 for manufacturing a carbon fiber reinforced plastic semi-finished product, comprising a housing 1 having an inlet region 2 and an outlet region 3, wherein the housing 1 generates an electric field. It is characterized in that a device 4 is arranged for it. The invention also relates to a method for producing a carbon fiber reinforced plastic semi-finished product, wherein the following steps are carried out continuously: a) providing an extrusion apparatus 100 and a composite compound 10 according to the invention; b) introducing the composite compound 10 into the extrusion apparatus 100 through the inlet region 2 of the housing 1; c) generating an electric field; And d) discharging the resulting plastic semi-finished product, for further processing, through the exit area (3) of the housing (1).

Description

탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 압출 장치 및 방법Extrusion apparatus and method for manufacturing carbon fiber reinforced plastic semi-finished products

본 발명은 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 압출 장치 및 방법에 관한 것이다.The present invention relates to an extrusion apparatus and method for producing a carbon fiber reinforced plastic semi-finished product.

압출 기술을 사용하여 제조된 플라스틱 반제품의 기계적 특성을 개선시키기 위해, 사용되는 화합물은 종종 탄소 섬유로 보강된다. 그러나, 도입된 섬유의 배향은 현재 압출 동안 발생하는 유동 현상에 의해서만 영향을 받으며, 이를 통해 섬유의 결정되지 않는 분포가 설정된다. 이를 통해, 압출된 부품의 기계적 특성에 불규칙성이 초래된다. 또한, 전기 전도성 및 큰 열 전도율과 같은 탄소 섬유의 다른 포텐셜은 활용될 수 없다.In order to improve the mechanical properties of plastic semi-finished products made using extrusion techniques, the compounds used are often reinforced with carbon fibers. However, the orientation of the introduced fibers is currently only affected by the flow phenomenon occurring during extrusion, through which an undecided distribution of fibers is established. This leads to irregularities in the mechanical properties of the extruded part. Also, other potentials of carbon fiber such as electrical conductivity and high thermal conductivity cannot be utilized.

현재 사용되는 압출 시스템은 섬유 배향에 의도한 대로 영향을 주는 추가적으로 도입된 유동 채널을 통해 가소화된(plasticized) 섬유 강화 복합 화합물의 유동 현상을 결정한다. 그러나, 섬유는 여기서 단지 프로파일 평면에 평행하게만 또는 튜브 압출의 경우에는 튜브 축에 평행한 나선형 배치로만 배향될 수 있다. 또한 여기서 가소화된 복합 화합물의 유동 영역의 가장자리 영역 및 중심에서의 상이한 유동 속도로 인해 섬유의 정의되지 않은 배향이 생성되고, 이를 통해 일정한 부품 품질이 보장될 수 없다.Extrusion systems currently in use determine the flow of plasticized fiber-reinforced composite compounds through additionally introduced flow channels that affect fiber orientation as intended. However, the fibers can here only be oriented in a helical arrangement parallel to the profile plane or parallel to the tube axis in the case of tube extrusion. In addition, an undefined orientation of the fibers is created due to the different flow velocities in the center and edge regions of the flow region of the plasticized composite compound here, whereby a constant part quality cannot be guaranteed.

공보 "흑연 충전제를 함유하는 열 교환기를 위한 플라스틱 튜브를 제조하기 위한 방법"(DOI: http://dx.doi.org/10.4421/PAPDEOTT002961)는 압출에 의한 열 전도율이 높은 플라스틱 튜브의 제조를 개시하고 있고, 여기서 흐름 방향에 수직인 탄소 섬유의 배향은 특수 충전제를 사용함으로써 그리고 압출 도구에서의 흐름 채널의 기하학적 구조를 통해 구현된다.The publication "Method for Manufacturing Plastic Tubes for Heat Exchangers Containing Graphite Fillers" (DOI: http://dx.doi.org/10.4421/PAPDEOTT002961) discloses the production of plastic tubes with high thermal conductivity by extrusion. Where the orientation of the carbon fibers perpendicular to the flow direction is achieved by the use of special fillers and through the geometry of the flow channels in the extrusion tool.

따라서, 본 발명의 목적은 종래 기술의 단점들을 극복하고, 플라스틱 반제품에서 탄소 섬유의 배향에 의도한 대로 영향을 미칠 수 있는 장치를 제공하는 것이다.Accordingly, it is an object of the present invention to overcome the drawbacks of the prior art and to provide a device capable of influencing the orientation of carbon fibers in a plastic semi-finished product as intended.

본 발명의 목적은 본원의 독립 청구항의 특징에 따라 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 압출 장치를 제공함으로써 달성된다. 본 발명에 따른 장치의 유리한 개선예들은 종속 청구항들에 나타난다.The object of the present invention is achieved by providing an extrusion apparatus for producing a carbon fiber reinforced plastic semi-finished product according to the features of the independent claims of the present application. Advantageous refinements of the device according to the invention appear in the dependent claims.

본 발명의 주제는 입구 영역(2) 및 출구 영역(3)을 포함하는 하우징(1)으로 이루어지는, 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 압출 장치(100)에 관한 것으로서, 여기서 하우징(1)에는 전기장을 생성하기 위한 장치(4)가 배치되어 있다.The subject of the invention relates to an extrusion apparatus 100 for manufacturing a carbon fiber reinforced plastic semi-finished product, consisting of a housing 1 comprising an inlet region 2 and an outlet region 3, wherein the housing 1 A device 4 for generating an electric field is arranged.

특히 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 탄소 섬유 강화 플라스틱 반제품은 튜브 형상이거나 또는 평평하다.Particularly preferably, in the extrusion apparatus 100 according to the invention, the carbon fiber reinforced plastic semi-finished product is tubular or flat.

바람직하게는, 본 발명에 따른 압출 장치(100)에서, 전기장을 생성하기 위한 장치(4)는 2 개의 전극(40, 41)을 포함한다.Preferably, in the extrusion device 100 according to the invention, the device 4 for generating an electric field comprises two electrodes 40, 41.

또한, 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 전극들(40, 41)은 환형으로 또는 평평하게 형성된다.Further, preferably, in the extrusion apparatus 100 according to the invention, the electrodes 40, 41 are formed annularly or flat.

특히 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 전극들(40, 41)은 서로 동심으로 또는 평행하게 배치되고, 전극들(40, 41) 사이에 환형의 또는 평평한 갭(gap)(42)을 형성한다.Particularly preferably, in the extrusion apparatus 100 according to the invention, the electrodes 40, 41 are arranged concentrically or parallel to each other, and an annular or flat gap between the electrodes 40, 41 Form 42.

또한, 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 하나의 전극은 양극이고, 다른 전극은 음극이다.Further, preferably, in the extrusion apparatus 100 according to the present invention, one electrode is an anode and the other electrode is a cathode.

또한, 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 전기장을 생성하기 위한 장치(4)는 하우징(1)의 출구 영역(3)에 배치된다.In addition, preferably, in the extrusion device 100 according to the invention, the device 4 for generating an electric field is arranged in the outlet area 3 of the housing 1.

바람직하게는, 본 발명에 따른 압출 장치(100)에서, 하우징(1)에는 추가로 푸시 맨드릴(push mandrel)(5)이 배치되어 있다.Preferably, in the extrusion apparatus 100 according to the invention, a push mandrel 5 is additionally arranged in the housing 1.

특히 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 푸시 맨드릴(5)은 회전 대칭으로 형성되며, 하우징(1)에 대해 이격 배치되어, 하우징의 내부와 푸시 맨드릴(5) 사이에 환형 갭(6)이 형성된다.Particularly preferably, in the extrusion apparatus 100 according to the present invention, the push mandrel 5 is formed to be rotationally symmetric, and is arranged spaced apart from the housing 1, so that the inside of the housing and the push mandrel 5 are annularly formed. A gap 6 is formed.

특히 바람직하게는, 압출 장치(100)에서, 푸시 맨드릴(5)은 입구 영역(2)으로부터 출구 영역(3)까지 연장된다.Particularly preferably, in the extrusion apparatus 100, the push mandrel 5 extends from the inlet region 2 to the outlet region 3.

또한, 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 하우징(1)은 푸시 맨드릴(5) 내부에 부분적으로 배치되는 맨드릴 유지 도구(8)를 더 포함한다.Further, preferably, in the extrusion apparatus 100 according to the invention, the housing 1 further comprises a mandrel holding tool 8 which is partially arranged inside the push mandrel 5.

또한, 바람직하게는, 본 발명에 따른 압출 장치에서, 맨드릴 유지 도구(8)는, 푸시 맨드릴(5) 내부에 배치되고 하우징(1)의 출구 영역(3)까지 연장되는 배출구(9)를 포함한다.Further, preferably, in the extrusion apparatus according to the invention, the mandrel holding tool 8 comprises an outlet 9 arranged inside the push mandrel 5 and extending to the outlet area 3 of the housing 1 do.

또한, 바람직하게는, 본 발명에 따른 압출 장치(100)에서, 하우징(1)은 적어도 하나의 온도 센서(7)를 더 포함한다.In addition, preferably, in the extrusion apparatus 100 according to the invention, the housing 1 further comprises at least one temperature sensor 7.

또한, 본 발명의 다른 주제는 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법에 관한 것으로서,In addition, another subject of the present invention relates to a method for manufacturing a carbon fiber reinforced plastic semi-finished product,

a) 본 발명에 따른 압출 장치(100) 및 복합 화합물(10)을 제공하는 단계;a) providing an extrusion apparatus 100 and a composite compound 10 according to the present invention;

b) 하우징(1)의 입구 영역(2)을 통해 복합 화합물(10)을 압출 장치(100) 내로 도입하는 단계;b) introducing the composite compound 10 into the extrusion apparatus 100 through the inlet region 2 of the housing 1;

c) 전기장을 생성하는 단계;c) generating an electric field;

d) 생성된 플라스틱 반제품을, 추가의 가공을 위해, 하우징(1)의 출구 영역(3)을 통해 배출하는 단계d) discharging the resulting plastic semi-finished product, for further processing, through the exit area 3 of the housing 1

가 연속적으로 수행된다.Is performed continuously.

바람직하게는, 본 발명에 따른 방법에서, 복합 화합물(10)은 단계 b) 후에 푸시 맨드릴(5)에 의해 환형 갭 유동으로 형성된다.Preferably, in the method according to the invention, the composite compound 10 is formed in an annular gap flow by a push mandrel 5 after step b).

특히, 바람직하게는, 본 발명에 따른 방법에서, 복합 화합물(10)의 용융물은 적어도 하나의 온도 센서(7)에 의해 균일하게 온도 제어된다.In particular, preferably, in the method according to the invention, the melt of the composite compound 10 is uniformly temperature controlled by means of at least one temperature sensor 7.

또한, 바람직하게는, 본 발명에 따른 방법에서, 단계 d) 전에 지원 공기(support air)(11)가 압출 장치(100) 내로 안내된다.Also, preferably, in the method according to the invention, before step d), support air 11 is guided into the extrusion device 100.

바람직하게는, 본 발명의 의미에서, 튜브 형상의 플라스틱 반제품은 CFK 튜브이다.Preferably, in the sense of the present invention, the tubular plastic semi-finished product is a CFK tube.

본 발명의 의미에서, 적어도 부분적으로 밀폐된 용기가 하우징으로 지칭되며, 이를 통해 압출 장치에서의 유동이 영향을 받는다.In the sense of the present invention, a container that is at least partially closed is referred to as a housing, through which the flow in the extrusion device is affected.

또한, 본 발명의 의미에서, 전기장을 생성하기 위한 장치의 전극에는, 적어도 50 V의 전압이 인가된다. 당업자는 생성된 전기장의 전계 강도가 인가된 전류 강도에 의존한다는 것을 알고 있다. 유리하게는, 전계 강도에 의해, 본 발명에 따른 압출 장치 내부에서 탄소 섬유의 배향이 제어될 수 있다. 당업자는, 탄소 섬유의 원하는 배향을 발생시키기 위해, 몇 가지 간단한 실험에 의해 적절한 전압 및 전계 강도를 결정할 수 있다.Further, in the sense of the present invention, a voltage of at least 50 V is applied to the electrode of the device for generating an electric field. Those skilled in the art know that the electric field strength of the generated electric field depends on the applied current strength. Advantageously, by means of the electric field strength, the orientation of the carbon fibers inside the extrusion apparatus according to the invention can be controlled. One skilled in the art can determine the appropriate voltage and electric field strength by a few simple experiments to produce the desired orientation of the carbon fibers.

또한, 본 발명의 의미에서, 탄소 섬유 강화 플라스틱 반제품은 복합 화합물로 이루어진다. 복합 화합물은 열가소성 수지 기반 플라스틱 매트릭스에 의해 고정되어 과립화된 화합물에 존재하는 고 모듈(high modulus) 탄소 섬유로 이루어진다. 특히, 폴리테트라 플루오로에틸렌(PTFE)에 기초한 플라스틱이 열적 및 화학적 특성으로 인해 매트릭스 기재로서 사용된다.Further, in the meaning of the present invention, the carbon fiber reinforced plastic semi-finished product consists of a composite compound. The composite compound consists of high modulus carbon fibers present in the granulated compound by being fixed by a thermoplastic resin-based plastic matrix. In particular, plastics based on polytetrafluoroethylene (PTFE) are used as matrix substrates due to their thermal and chemical properties.

고 모듈 탄소 섬유를 사용하는 이점은 높은 열 전도율 및 높은 비 강도 및 강성 특성(specific strength and rigidity property) 외에 섬유 방향으로의 우수한 전기 전도성과 또한 음의 열 팽창성을 갖는다는 것이다. 1200 W/m*K의 최고 열 전도 특성은 소위 "초고 모듈(Ultra-High-Modulus)"(UHM) 특수 탄소 섬유이다.The advantage of using high modular carbon fiber is that it has good electrical conductivity in the fiber direction and also negative thermal expansion, in addition to high thermal conductivity and high specific strength and rigidity properties. The highest heat conduction property of 1200 W/m*K is the so-called "Ultra-High-Modulus" (UHM) special carbon fiber.

열 전도가 등방성인 금속 재료와 달리, 탄소 섬유의 열 전도율은 일반적으로 강하게 이방성으로 형성되며, 섬유 방향에서 가장 높다. UHM-섬유는 높은 탄소 수율로 인해 폴리아크릴로니트릴(50 %) 또는 피치(pitch)(> 80 %)를 기준으로 제조된다. 높은 열 전도 계수는 여기서 최대 3000 ℃의 온도에서 제조 공정 중에 특수 흑연화(graphitization)로 인해 발생한다. 이를 통해, 섬유 축 방향으로 흑연 평면의 사전 배향이 증가되어, 공유 결정 결합에 의해 강한 이방성 재료 거동이 생성된다. 결과적으로, 섬유 방향에 대해 횡 방향으로의 이방성 정도에 따른 열 전도율은 최대 17 W/m*K 이다. 복합물에서 섬유 함량에 따라 열 전도율이 감소된다. 따라서, 예를 들어 섬유 부피량이 60 %이고 플라스틱 매트릭스가 40 %인 단방향 라미네이트 구조의 경우, 섬유 방향으로 750 W/m*K 초과의 열 전도율이 구현될 수 있다.Unlike metallic materials whose thermal conduction is isotropic, the thermal conductivity of carbon fibers is generally strongly anisotropic, and is highest in the fiber direction. UHM-fibers are made on a polyacrylonitrile (50%) or pitch (>80%) basis due to their high carbon yield. The high coefficient of thermal conduction arises here due to special graphitization during the manufacturing process at temperatures up to 3000 °C. This increases the pre-orientation of the graphite plane in the fiber axis direction, resulting in a strong anisotropic material behavior by covalent crystal bonding. As a result, the thermal conductivity according to the degree of anisotropy in the transverse direction with respect to the fiber direction is at most 17 W/m*K. The thermal conductivity decreases with the fiber content in the composite. Thus, for example, in the case of a unidirectional laminate structure having a fiber volume of 60% and a plastic matrix of 40%, a thermal conductivity of more than 750 W/m*K may be implemented in the fiber direction.

본 발명에 따른 압출 장치 및 본 발명에 따른 방법에 의해 수행되는 본 발명에 따른 방법에서의 이점은 압출 장치에서 전기 전압 유닛을 인가함으로써, 전기장이 유도되며, 탄소 섬유는 최소 저항 경로를 통해 이 전기장의 역선에 규정된 방식으로 정렬될 수 있다. 이를 통해, 프로파일 평면 또는 튜브 축에 대해 높은 법선 비율을 갖는 정의된 배향을 통해 탄소 섬유의 매우 큰 열 전도율 및 인쇄 회로 기판에서 높은 전기 전도성뿐만 아니라 최고의 힘 도입 지점에서 의도한 대로 비 강도 및 강성 특성이 활용될 수 있다.An advantage in the extrusion apparatus according to the invention and the method according to the invention carried out by the method according to the invention is that by applying an electric voltage unit in the extrusion apparatus, an electric field is induced, and the carbon fiber is It can be arranged in the manner prescribed by the line of power. This allows for very high thermal conductivity of carbon fiber and high electrical conductivity in printed circuit boards through defined orientation with a high normal ratio to the profile plane or tube axis, as well as specific strength and stiffness properties as intended at the point of highest force introduction. Can be utilized.

본 발명에 따른 압출 장치에 의해 종래 기술에 공지된 압출 시스템이 간단한 방식으로 개선될 수 있다는 것이 또한 유리하다.It is also advantageous that the extrusion system known in the prior art can be improved in a simple manner by means of the extrusion apparatus according to the invention.

또한 유리하게는, 본 발명에 따른 압출 장치에 의해 그리고 본 발명에 따른 방법에 의해 제조된 탄소 섬유 강화 튜브 형상의 플라스틱 반제품은 광범위한 적용 분야에 사용될 수 있다. 가능한 적용 분야는 제조업 및 중공업이며, 예를 들어 기계 공학, 발전소 기술, 열 공학, 자동차 공학, 전기 공학, 화학 제품 등이다. 특히 열 공학 분야에서, 높은 열 전도성 탄소 섬유의 의도한 배향은, 2020년대 및 2030년대에 대해 "기후 변화 및 지속 가능한 에너지 관리"라는 제 3 EU 핵심 목표로 인해 높은 수요를 보이고 있는 효율적인 열 회수 및 냉각 시스템에서 사용될 수 있다.Also advantageously, the carbon fiber reinforced tubular plastic semi-finished products produced by the extrusion apparatus according to the invention and by the method according to the invention can be used for a wide range of applications. Possible fields of application are manufacturing and heavy industry, for example mechanical engineering, power plant technology, thermal engineering, automotive engineering, electrical engineering, chemical products, etc. Particularly in the field of thermal engineering, the intended orientation of highly thermally conductive carbon fibers is an efficient heat recovery and high demand for the 2020s and 2030s due to the 3rd EU core goal of "Climate Change and Sustainable Energy Management". Can be used in cooling systems.

본 발명은 첨부 도면에 의해 보다 상세하게 설명된다.
도 1은 본 발명에 따른 압출 장치의 일 실시예의 종단면도를 도시한다.
도 2는 도 1의 실시예를 통한 부분 섹션의 사시도를 도시한다.
도 3은 압출 장치의 종단면도를 도시한다.
도 4는 CFK 튜브의 부분 섹션의 사시도를 도시한다.
도 5는 도 4의 실시예를 통한 사시도를 도시한다.
도 6은 탄소 섬유, 플라스틱, 세라믹 및 금속의 열 전도율을 비교하여 도시한다.
The invention is explained in more detail by the accompanying drawings.
1 shows a longitudinal cross-sectional view of an embodiment of an extrusion apparatus according to the invention.
2 shows a perspective view of a partial section through the embodiment of FIG. 1.
3 shows a longitudinal sectional view of the extrusion device.
4 shows a perspective view of a partial section of a CFK tube.
5 shows a perspective view through the embodiment of FIG. 4.
6 shows a comparison of the thermal conductivity of carbon fiber, plastic, ceramic and metal.

이하에서, 본 발명은 이제 첨부 도면을 참조하여 상세하게 설명하도록 한다.Hereinafter, the present invention will now be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 압출 장치(100)의 일 실시예의 종단면도를 도시한다. 압출 장치(100)는 입구 영역(2) 및 출구 영역(3)을 포함하는 하우징(1)으로 이루어진다. 따라서, 압출 장치(100)의 하우징(1)의 내부 공간은 주변으로부터 적어도 부분적으로 절연된다.1 shows a longitudinal sectional view of an embodiment of an extrusion apparatus 100 according to the present invention. The extrusion device 100 consists of a housing 1 comprising an inlet area 2 and an outlet area 3. Thus, the inner space of the housing 1 of the extrusion device 100 is at least partially insulated from the periphery.

하우징(1)의 내부에는 푸시 맨드릴(5)이 배치된다. 푸시 맨드릴(5)은 입구 영역(2)으로부터 하우징(1)의 출구 영역(3)까지 연장된다. 푸시 맨드릴(5)은 하우징의 내부와 함께 환형 갭(6)을 형성한다. 하우징(1)의 입구 영역(2)을 통해 압출 장치(100) 내로 복합 화합물(10)이 입력된다. 복합 화합물(10)은 열가소성 수지 기반 플라스틱 매트릭스에 의해 고정되어 과립화된 화합물에 존재하는 고 모듈 탄소 섬유, 바람직하게는 UHM 탄소 섬유로 이루어진다. 특히, 폴리테트라 플루오로에틸렌(PTFE)에 기초한 플라스틱이 그들의 열적 및 화학적 특성으로 인해 매트릭스 기재로서 사용된다.A push mandrel 5 is disposed inside the housing 1. The push mandrel 5 extends from the inlet area 2 to the outlet area 3 of the housing 1. The push mandrel 5 forms an annular gap 6 with the inside of the housing. The composite compound 10 is input into the extrusion device 100 through the inlet region 2 of the housing 1. The composite compound 10 is made of high modular carbon fibers, preferably UHM carbon fibers, present in the granulated compound by being fixed by a thermoplastic resin-based plastic matrix. In particular, plastics based on polytetrafluoroethylene (PTFE) are used as matrix substrates due to their thermal and chemical properties.

입력된 복합 화합물(10)은 푸시 맨드릴(5)에 의해 환형 갭(6) 내로 도입된다. 따라서, 복합 화합물(10)은 환형 갭 유동으로 형성되고, 환형 갭(6)을 통해, 전기장을 생성하기 위한 장치(4)의 2 개의 전극(40, 41) 사이에 형성된 갭(42) 내로 의도한 대로 전달된다.The input composite compound 10 is introduced into the annular gap 6 by the push mandrel 5. Thus, the composite compound 10 is formed with an annular gap flow, and through the annular gap 6, is intended into the gap 42 formed between the two electrodes 40 and 41 of the device 4 for generating an electric field. It is delivered as one.

전기장을 생성하기 위한 장치(4)는 하우징(1)의 출구 영역(3)에 배치되는 것이 바람직하다. 전기장을 생성하기 위한 장치(4)는 2 개의 전극(40, 41)을 포함하며, 여기서 하나의 전극은 양극이고, 다른 전극은 음극이다. 전기 전압의 인가를 통해 전기장이 유도되며, 복합 화합물(10)에 함유된 탄소 섬유는 최소 저항 경로를 통해 압출 장치(100)의 축에 대해 높은 법선 비율을 가지고 이 전기장의 역선에 정렬된다. 탄소 섬유는 바람직하게는 양극으로부터 음극으로 향한다.The device 4 for generating the electric field is preferably arranged in the outlet area 3 of the housing 1. The device 4 for generating an electric field comprises two electrodes 40, 41, where one electrode is an anode and the other is a cathode. The electric field is induced through the application of an electric voltage, and the carbon fibers contained in the composite compound 10 are aligned with the inverse line of this electric field with a high normal ratio with respect to the axis of the extrusion device 100 through the minimum resistance path. The carbon fibers are preferably directed from the anode to the cathode.

또한, 하우징(1)은 푸시 맨드릴(5) 내부에 적어도 부분적으로 배치되는 맨드릴 유지 도구(8)를 포함한다. 맨드릴 유지 도구(8)는 배출구(9)를 포함하며, 이 배출구는 푸시 맨드릴(5) 내에 배치된다. 배출구(9)는 하우징(1)의 출구 영역(3)까지 연장된다. 맨드릴 유지 도구(8)를 통해 지원 공기(11)가 압출 장치(100) 내로 도입되고, 배출구(9)를 통해 하우징(1)의 출구 영역(3)으로 안내된다. 지원 공기는 압출 장치(100)에서 제조된 탄소 섬유 강화 플라스틱 반제품의 내부 윤곽의 안정화를 보장한다.In addition, the housing 1 comprises a mandrel holding tool 8 disposed at least partially inside the push mandrel 5. The mandrel holding tool 8 comprises an outlet 9, which outlet is disposed within the push mandrel 5. The outlet 9 extends to the outlet area 3 of the housing 1. The support air 11 is introduced into the extrusion apparatus 100 via the mandrel holding tool 8 and is guided through the outlet 9 to the outlet region 3 of the housing 1. The support air ensures the stabilization of the inner contour of the carbon fiber reinforced plastic semi-finished product produced in the extrusion apparatus 100.

또한, 압출 장치(100)의 하우징(1)에는 적어도 하나의 온도 센서(7)가 배치된다. 도 1에 도시된 실시예에는 2 개의 온도 센서(7)가 도시되어 있고, 여기서 하나의 온도 센서(7)는 입구 영역(2)에 배치되고, 다른 온도 센서(7)는 압출 장치(100)의 출구 영역에 배치된다. 여기서 온도 센서(7)는 복합 화합물(10)의 용융물의 균일한 온도 제어를 결정한다.In addition, at least one temperature sensor 7 is arranged in the housing 1 of the extrusion device 100. In the embodiment shown in FIG. 1 two temperature sensors 7 are shown, where one temperature sensor 7 is arranged in the inlet area 2 and the other temperature sensor 7 is the extrusion device 100 Is placed in the exit area. Here, the temperature sensor 7 determines the uniform temperature control of the melt of the composite compound 10.

도 2는 도 1의 실시예를 통한 부분 섹션의 사시도를 도시한다. 이 도면에는 압출 장치(100)의 하우징(1)이 바람직하게는 튜브로서 설계되는 것이 도시되어 있다. 또한, 본 실시예에서, 푸시 맨드릴(5)은 회전 대칭으로 설계된다. 또한, 전기장을 생성하기 위한 장치의 2 개의 전극(40, 41)은 튜브 형상으로 설계되는 것이 도시되어 있다. 전극들(40, 41)은 서로 동심으로 배치되고, 그 결과 전극들(40, 41)은 환형 갭(42)을 형성한다. 갭(42)은 푸시 맨드릴(5)과 하우징의 내부 사이에 형성된 압출 장치의 환형 갭(도시되지 않음)에 연결된다. 이 도면에는, 내부에 위치하는 전극(41)이 푸시 맨드릴(5)의 외측면 상에 배치되고, 외부에 위치하는 전극(40)이 하우징(1)의 내측면 상에 배치되는 것이 도시되어 있다. 바람직하게는, 내부에 위치하는 전극(41)은 양극이고, 외부에 배치되는 전극(40)은 음극이다. 이러한 경우, 전기 전압이 인가되는 즉시, 탄소 섬유는 역선을 따라 양극으로부터 음극으로 정렬된다.2 shows a perspective view of a partial section through the embodiment of FIG. 1. In this figure it is shown that the housing 1 of the extrusion device 100 is preferably designed as a tube. Further, in this embodiment, the push mandrel 5 is designed to be rotationally symmetric. It is also shown that the two electrodes 40, 41 of the device for generating the electric field are designed in the shape of a tube. The electrodes 40 and 41 are arranged concentrically with each other, so that the electrodes 40 and 41 form an annular gap 42. The gap 42 is connected to an annular gap (not shown) of the extrusion device formed between the push mandrel 5 and the interior of the housing. In this drawing, it is shown that the electrode 41 located inside is disposed on the outer surface of the push mandrel 5, and the electrode 40 located outside is disposed on the inner surface of the housing 1 . Preferably, the electrode 41 disposed inside is an anode, and the electrode 40 disposed outside is a cathode. In this case, as soon as an electric voltage is applied, the carbon fibers are aligned from anode to cathode along an inverse line.

도 3은 압출 공정 내에 통합되는 압출 장치의 종단면도를 도시한다. 본 발명에 따른 압출 장치(100)의 상류에는, 이축 스크류(1001)를 갖는 압출기(101)가 배치되어 있다. 압출기(101)는 복수의 가열 요소(1003) 및 깔때기(1002)를 포함하며, 이 깔대기를 통해 탄소 섬유(1004)가 압출기(101) 내로 안내된다. 이축 스크류(1001)에서, 탄소 섬유(1004)는 기존의 매트릭스 재료와 조합되어 복합 화합물(10)을 형성한다. 이어서, 압출기에서 제조된 복합 화합물(10)은 탄소 섬유를 전기장에 정렬시키기 위해, 위에서 설명한 바와 같이, 본 발명에 따른 압출 장치(100) 내로 안내된다. 이어서, 점성의 플라스틱 반제품은 압출 장치(101)의 하우징의 출구 영역을 통해 교정 유닛(102) 내로 배출된다. 교정 유닛(102)에서, 플라스틱 반제품의 외부 직경이 결정된다. 따라서, 전기 전류장, 동적 유동 현상(계산 유체 역학) 및 열-전기 거동에 대한 결합된 분석을 통해, 압출 공정 동안 가소화된 복합 화합물(10)의 특성이 결정되고, 압출 장치가 치수화된다. 특히 고품질의 플라스틱 반제품을 제조할 수 있기 위해, 본 발명에 따른 압출 장치(100)는 공정 모니터링(캐비티 압력(cavity pressure), 온도, 전압), 균일한 열 분포(가열 요소의 배치) 및 안전한 공정 제어를 위한 상응하는 조절, 및 온도 제어 및 전압의 제어를 포함한다.3 shows a longitudinal cross-sectional view of an extrusion apparatus incorporated in the extrusion process. Upstream of the extrusion device 100 according to the present invention, an extruder 101 having a twin screw 1001 is disposed. The extruder 101 includes a plurality of heating elements 1003 and a funnel 1002 through which carbon fibers 1004 are guided into the extruder 101. In the twin screw 1001, carbon fibers 1004 are combined with an existing matrix material to form a composite compound 10. The composite compound 10 produced in the extruder is then guided into the extrusion apparatus 100 according to the present invention, as described above, to align the carbon fibers with the electric field. Subsequently, the viscous plastic semi-finished product is discharged into the straightening unit 102 through the outlet region of the housing of the extrusion device 101. In the calibration unit 102, the outer diameter of the plastic semi-finished product is determined. Thus, through a combined analysis of the electric current field, dynamic flow phenomena (calculated fluid dynamics) and thermo-electric behavior, the properties of the plasticized composite compound 10 during the extrusion process are determined, and the extrusion apparatus is dimensioned. . Particularly in order to be able to manufacture high-quality plastic semi-finished products, the extrusion apparatus 100 according to the present invention provides process monitoring (cavity pressure, temperature, voltage), uniform heat distribution (arrangement of heating elements) and safe processing. Corresponding regulation for control, and control of temperature and voltage.

도 4는 본 발명에 따른 압출 장치 및 본 발명에 따른 방법에 의해 제조될 수 있는 CFK 튜브의 부분 섹션의 개략도를 도시한다. 본 발명에 따른 압출 장치에 의해, 튜브 축을 따라 의도한 대로 복합 화합물(도시되지 않음) 내에서 높은 법선 비율을 갖는 고 열 전도성 탄소 섬유의 배향이 정렬될 수 있다. 따라서, 높은 효율의 튜브 열 전달 시스템에 사용될 수 있는 얇은 벽의(t = 1.5 mm) CFK 튜브가 제조될 수 있다.4 shows a schematic view of a partial section of a CFK tube which can be produced by the extrusion apparatus according to the invention and the method according to the invention. By means of the extrusion apparatus according to the present invention, the orientation of high thermally conductive carbon fibers with high normal ratio within the composite compound (not shown) can be aligned as intended along the tube axis. Thus, thin walled (t = 1.5 mm) CFK tubes can be produced that can be used in high efficiency tube heat transfer systems.

도 5에는 도 4의 CFK 튜브의 사시도가 도시되어 있다. 이 도시로부터, 본 발명에 따른 압출 장치에 의해 튜브 축을 따라 높은 법선 비율을 갖는 탄소 섬유(얇은 검은 막대)의 배향이 어떻게 정렬되어 있는지가 다시 한 번 명백해진다.5 shows a perspective view of the CFK tube of FIG. 4. From this illustration, it becomes once again clear how the orientation of the carbon fibers (thin black bars) with a high normal ratio along the tube axis is aligned by the extrusion apparatus according to the present invention.

도 6은 탄소 섬유, 플라스틱, 세라믹 및 금속의 열 전도율(W/m*K)을 비교한 것을 도시하고 있다. 이러한 비교로부터, PVDF 또는 PP와 같은 플라스틱은 열을 거의 전도할 수 없는 반면, 알루미늄 및 구리와 같은 금속은 열을 전도할 수 있다는 것이 명백해진다. 알루미늄은 열 전도율이 235 W/m*K 이며, 구리는 열 전도율이 알루미늄의 열 전도율보다 거의 두 배 더 높다. 그러나, UHM-특수-탄소 섬유는 1200 W/m*K의 최고 열 전도 특성을 가지며, 이러한 UHM-특수-탄소 섬유의 열 전도율은 순수 구리의 열 전도율보다 3 배 더 높고, PP 및 PTFE에 비해 2700 배 더 높다.6 shows a comparison of the thermal conductivity (W/m*K) of carbon fiber, plastic, ceramic and metal. From this comparison, it becomes clear that plastics such as PVDF or PP can conduct little heat, whereas metals such as aluminum and copper can conduct heat. Aluminum has a thermal conductivity of 235 W/m*K, and copper has a thermal conductivity of almost twice that of aluminum. However, UHM-special-carbon fiber has the highest heat conduction property of 1200 W/m*K, and the thermal conductivity of this UHM-special-carbon fiber is three times higher than that of pure copper, compared to PP and PTFE. 2700 times higher.

따라서, 본 발명에 따른 압출 장치 또는 본 발명에 따른 방법에 의해, UHM-탄소 섬유의 높은 이방성 열 전도율(p = 2.2 g/㎤; λ = 1200 W/m*K)을 의도한 대로 사용함으로써, 얇은 벽의(t =< 1.5 mm), 높은 열 전도율을 갖는 CFK 튜브로 이루어진 매우 효율적이고 화학적으로 안정적인 튜브 열 전달 시스템이 구현될 수 있다. 튜브 축에 대해 높은 법선 비율을 갖는 섬유의 특수한 배향을 통해, 섬유 방향으로 탄소 섬유 강화 플라스틱의 매우 큰 열 전도율(ρ = 2.0 g/㎤, λ = 750 W/m*K)이 활용될 수 있고, 튜브의 높은 강도 및 강성이 달성될 수 있다. 이에 의해, 열 전달 면적이 감소될 수 있다. 결과적으로 제조 시간 및 제조 비용이 크게 감소된다. 또한, UHM-섬유를 사용하면 음의 열 팽창 계수(< -0.1*10-6/K)로 인해 열적 튜브 팽창을 최소화할 수 있고, 이를 통해 복잡한 팽창 흡수 시스템이 대체될 수 있고, 튜브 좌굴 및 누출의 위험이 크게 감소될 수 있다. 또한, 열가소성 매트릭스를 사용함에 의해, 시스템 중량의 매우 큰 감소가 발생하고, 화학적 및 매체 부하에 대한 상당한 저항성이 발생한다. 이를 위해, 열적 및 화학적 특성 면에서 이미 수년 동안 튜브 열 교환기의 제조에 사용되고 있는 폴리테트라 플루오로에틸렌(PTFE)에 기초한 플라스틱이 매트릭스 기재로서 고려된다.Thus, by using the high anisotropic thermal conductivity of UHM-carbon fibers (p = 2.2 g/cm 3; λ = 1200 W/m*K) as intended by the extrusion apparatus according to the invention or the method according to the invention, A highly efficient and chemically stable tube heat transfer system consisting of a thin-walled (t = <1.5 mm), high thermal conductivity CFK tube can be implemented. Through the special orientation of the fibers with a high normal ratio to the tube axis, a very large thermal conductivity (ρ = 2.0 g/cm 3, λ = 750 W/m*K) of carbon fiber reinforced plastics in the fiber direction can be utilized and , High strength and rigidity of the tube can be achieved. Thereby, the heat transfer area can be reduced. As a result, manufacturing time and manufacturing cost are greatly reduced. In addition, the use of UHM-fibers can minimize thermal tube expansion due to negative coefficient of thermal expansion (< -0.1*10 -6 /K), which can replace complex expansion absorption systems, and tube buckling and The risk of leakage can be greatly reduced. In addition, by using a thermoplastic matrix, a very large reduction in system weight occurs, and a significant resistance to chemical and media loads occurs. To this end, plastics based on polytetrafluoroethylene (PTFE), which have already been used in the manufacture of tube heat exchangers for many years in terms of thermal and chemical properties, are considered as matrix substrates.

1 하우징
2 입구 영역
3 출구 영역
4 전기장을 생성하기 위한 장치
40 전극
41 전극
42 갭
5 푸시 맨드릴
6 환형 갭
7 온도 센서
8 맨드릴 유지 도구
9 배출구
10 복합 화합물
11 지원 공기
100 압출 장치
101 압출기
1001 이축 스크류
1002 깔때기
1003 가열 요소
1004 탄소 섬유
102 교정 유닛
1 housing
2 entrance area
3 exit area
4 Devices for generating electric fields
40 electrodes
41 electrodes
42 gap
5 push mandrel
6 annular gap
7 temperature sensor
8 Mandrel retention tool
9 outlet
10 complex compounds
11 support air
100 extrusion unit
101 extruder
1001 twin screw
1002 funnel
1003 heating element
1004 carbon fiber
102 calibration unit

Claims (17)

입구 영역(2) 및 출구 영역(3)을 포함하는 하우징(1)으로 이루어지는, 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 압출 장치(100)에 있어서,
상기 하우징(1)에는 전기장을 생성하기 위한 장치(4)가 배치되는 것을 특징으로 하는 압출 장치.
In the extrusion apparatus (100) for manufacturing a carbon fiber reinforced plastic semi-finished product comprising a housing (1) comprising an inlet region (2) and an outlet region (3),
Extrusion device, characterized in that in said housing (1) a device (4) for generating an electric field is arranged.
제 1 항에 있어서,
상기 탄소 섬유 강화 플라스틱 반제품은 튜브 형상이거나 또는 평평한 것을 특징으로 하는 압출 장치.
The method of claim 1,
Extrusion apparatus, characterized in that the carbon fiber reinforced plastic semi-finished product is tubular or flat.
제 1 항 또는 제 2 항에 있어서,
전기장을 생성하기 위한 상기 장치(4)는 2 개의 전극(40, 41)을 포함하는 것을 특징으로 하는 압출 장치.
The method according to claim 1 or 2,
Extrusion device, characterized in that the device (4) for generating an electric field comprises two electrodes (40, 41).
제 3 항에 있어서,
상기 전극들(40, 41)은 환형으로 또는 평평하게 형성되는 것을 특징으로 하는 압출 장치.
The method of claim 3,
Extrusion apparatus, characterized in that the electrodes (40, 41) are formed in an annular shape or flat.
제 4 항에 있어서,
상기 전극들(40, 41)은 서로 동심으로 또는 평행하게 배치되고, 상기 전극들(40, 41) 사이에 환형의 또는 평평한 갭(gap)(42)을 형성하는 것을 특징으로 하는 압출 장치.
The method of claim 4,
Extrusion apparatus, characterized in that the electrodes (40, 41) are arranged concentrically or parallel to each other and form an annular or flat gap (42) between the electrodes (40, 41).
제 3 항 내지 제 5 항 중 어느 한 항에 있어서,
하나의 전극은 양극이고, 다른 전극은 음극인 것을 특징으로 하는 압출 장치.
The method according to any one of claims 3 to 5,
Extrusion apparatus, characterized in that one electrode is an anode and the other electrode is a cathode.
제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
전기장을 생성하기 위한 상기 장치(4)는 상기 하우징(1)의 상기 출구 영역(3)에 배치되는 것을 특징으로 하는 압출 장치.
The method according to any one of claims 1 to 6,
Extrusion device, characterized in that the device (4) for generating an electric field is arranged in the outlet area (3) of the housing (1).
제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
상기 하우징(1)에는 추가로 푸시 맨드릴(push mandrel)(5)이 배치되는 것을 특징으로 하는 압출 장치.
The method according to any one of claims 1 to 7,
Extrusion apparatus, characterized in that a push mandrel (5) is additionally arranged in the housing (1).
제 8 항에 있어서,
상기 푸시 맨드릴(5)은 회전 대칭으로 형성되며, 상기 하우징(1)에 대해 이격 배치되어, 상기 하우징의 내부와 상기 푸시 맨드릴(5) 사이에 환형 갭(6)이 형성되는 것을 특징으로 하는 압출 장치.
The method of claim 8,
Extrusion, characterized in that the push mandrel (5) is formed in a rotationally symmetrical manner and is spaced apart from the housing (1) to form an annular gap (6) between the inside of the housing and the push mandrel (5) Device.
제 8 항 또는 제 9 항에 있어서,
상기 푸시 맨드릴(5)은 상기 입구 영역(2)으로부터 상기 출구 영역(3)까지 연장되는 것을 특징으로 하는 압출 장치.
The method of claim 8 or 9,
Extrusion apparatus, characterized in that the push mandrel (5) extends from the inlet region (2) to the outlet region (3).
제 8 항 내지 제 10 항 중 어느 한 항에 있어서,
상기 하우징(1)은 상기 푸시 맨드릴(5) 내부에 부분적으로 배치되는 맨드릴 유지 도구(8)를 더 포함하는 것을 특징으로 하는 압출 장치.
The method according to any one of claims 8 to 10,
Extrusion device, characterized in that the housing (1) further comprises a mandrel holding tool (8) which is arranged partially inside the push mandrel (5).
제 11 항에 있어서,
상기 맨드릴 유지 도구(8)는, 상기 푸시 맨드릴(5) 내부에 배치되고 상기 하우징(1)의 상기 출구 영역(3)까지 연장되는 배출구(9)를 포함하는 것을 특징으로 하는 압출 장치.
The method of claim 11,
The mandrel holding tool (8) comprises an outlet (9) arranged inside the push mandrel (5) and extending to the outlet region (3) of the housing (1).
제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
상기 하우징(1)은 적어도 하나의 온도 센서(7)를 더 포함하는 것을 특징으로 하는 압출 장치.
The method according to any one of claims 1 to 12,
Extrusion device, characterized in that the housing (1) further comprises at least one temperature sensor (7).
탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법으로서,
a) 제 1 항 내지 제 13 항 중 어느 한 항에 따른 압출 장치(100) 및 복합 화합물(10)을 제공하는 단계;
b) 상기 하우징(1)의 상기 입구 영역(2)을 통해 상기 복합 화합물(10)을 상기 압출 장치(100) 내로 도입하는 단계;
c) 전기장을 생성하는 단계;
d) 생성된 플라스틱 반제품을, 추가의 가공을 위해, 상기 하우징(1)의 상기 출구 영역(3)을 통해 배출하는 단계
가 연속적으로 수행되는, 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법.
As a method for manufacturing a carbon fiber reinforced plastic semi-finished product,
a) providing an extrusion device (100) and a composite compound (10) according to any one of claims 1 to 13;
b) introducing the composite compound (10) into the extrusion device (100) through the inlet region (2) of the housing (1);
c) generating an electric field;
d) discharging the resulting plastic semi-finished product, for further processing, through the exit area (3) of the housing (1)
A method for producing a carbon fiber reinforced plastic semi-finished product in which is carried out continuously.
제 14 항에 있어서,
상기 복합 화합물(10)은 단계 b) 후에 푸시 맨드릴(5)에 의해 환형 갭 유동으로 형성되는 것을 특징으로 하는 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법.
The method of claim 14,
The method for manufacturing a carbon fiber reinforced plastic semi-finished product, characterized in that the composite compound (10) is formed in an annular gap flow by a push mandrel (5) after step b).
제 14 항 또는 제 15 항에 있어서,
상기 복합 화합물(10)의 용융물은 적어도 하나의 온도 센서(7)에 의해 균일하게 온도 제어되는 것을 특징으로 하는 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법.
The method of claim 14 or 15,
The method for manufacturing a carbon fiber reinforced plastic semi-finished product, characterized in that the melt of the composite compound (10) is uniformly temperature controlled by at least one temperature sensor (7).
제 14 항 내지 제 16 항 중 어느 한 항에 있어서,
단계 d) 전에 지원 공기(support air)(11)가 상기 압출 장치(100) 내로 안내되는 것을 특징으로 하는 탄소 섬유 강화 플라스틱 반제품을 제조하기 위한 방법.
The method according to any one of claims 14 to 16,
A method for manufacturing a carbon fiber reinforced plastic semi-finished product, characterized in that before step d) support air (11) is guided into the extrusion device (100).
KR1020207024192A 2018-01-30 2019-01-29 Extrusion apparatus and method for manufacturing carbon fiber reinforced plastic semi-finished products KR102336471B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018102061.9 2018-01-30
DE102018102061.9A DE102018102061B3 (en) 2018-01-30 2018-01-30 Extrusion apparatus and method for producing carbon fiber reinforced plastic semi-finished products
PCT/EP2019/052143 WO2019149703A1 (en) 2018-01-30 2019-01-29 Extrusion device and method for producing carbon-fibre-reinforced plastic semi-finished products

Publications (2)

Publication Number Publication Date
KR20200109371A true KR20200109371A (en) 2020-09-22
KR102336471B1 KR102336471B1 (en) 2021-12-07

Family

ID=65409046

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207024192A KR102336471B1 (en) 2018-01-30 2019-01-29 Extrusion apparatus and method for manufacturing carbon fiber reinforced plastic semi-finished products

Country Status (6)

Country Link
EP (1) EP3746280A1 (en)
KR (1) KR102336471B1 (en)
CN (1) CN111936291A (en)
DE (1) DE102018102061B3 (en)
RU (1) RU2764179C1 (en)
WO (1) WO2019149703A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019127707A1 (en) * 2019-10-15 2021-04-15 Battenfeld-Cincinnati Germany Gmbh Component for an extrusion line
DE102021109621A1 (en) 2021-04-16 2022-10-20 BRANDENBURGISCHE TECHNISCHE UNIVERSITÄT COTTBUS-SENFTENBERG, Körperschaft des öffentlichen Rechts structural component and vehicle
CN114164557B (en) * 2021-12-30 2023-07-25 湖南东映特碳沥青材料有限公司 Carbon fiber hard felt and preparation method thereof
CN115195072B (en) * 2022-05-25 2024-10-01 山东陆宇塑胶有限公司 Forming structure for producing polypropylene seamless pipe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180714U (en) * 1985-04-30 1986-11-11
JPS63297018A (en) * 1987-05-29 1988-12-05 Pura Giken:Kk Metal mold of extruder
JPH04226733A (en) * 1990-07-28 1992-08-17 Krauss Maffei Ag Device to make thermally plastic product plastic
JPH06270233A (en) * 1993-03-18 1994-09-27 Sekisui Chem Co Ltd Production of extrusion molded product
JP2003520142A (en) * 2000-01-24 2003-07-02 インターナショナル ブレイン システム ソシェテ アノニム Method and apparatus for transferring crystalline or semi-crystalline polymers
JP2006142990A (en) * 2004-11-19 2006-06-08 Bridgestone Corp Pneumatic tire and its manufacturing method
KR20100055567A (en) * 2008-11-18 2010-05-27 세메스 주식회사 An apparatus for compositing conducting composites and method thereof
KR20130020430A (en) * 2011-08-19 2013-02-27 숭실대학교산학협력단 Conductive polymer complex and forming method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677795B2 (en) * 1994-11-02 2005-08-03 株式会社カネカ Hollow magnet roll manufacturing apparatus and hollow magnet roll manufacturing method using the same
JP3390952B2 (en) * 1995-06-26 2003-03-31 ネクストロム・ホールデイング・ソシエテ・アノニム Extruders and methods, tubular products, and tubes
CN2361456Y (en) * 1998-08-29 2000-02-02 中国石化齐鲁石油化工公司 Temperature self-limiting heating pipe extruder head
CN1314529C (en) * 2004-01-08 2007-05-09 东华大学 Electric field type polymer extruder head
GB0617460D0 (en) * 2006-09-05 2006-10-18 Airbus Uk Ltd Method of manufacturing composite material
CN201296030Y (en) * 2008-08-12 2009-08-26 四川大学 Device for preparing high-performance polymer pipes
DE102009056653A1 (en) * 2009-12-02 2011-06-09 Brüssel, Richard Method and device for producing a fiber-reinforced mass
EP3109037A1 (en) * 2016-01-22 2016-12-28 Technoform Tailored Solutions Holding GmbH Plastic tubes for heat exchangers and method for manufacturing plastic tubes for heat exchangers and use of plastic tubes for heat exchangers
CN205685694U (en) * 2016-06-16 2016-11-16 东莞市菱将模具有限公司 A kind of duplex sheath co-extruding machine head
CN106584884B (en) * 2016-11-22 2018-09-07 昌河飞机工业(集团)有限责任公司 A method of carrying out carbon one-way tape forming parts using auxiliary lining mould
CN206605752U (en) * 2017-03-09 2017-11-03 成都工业学院 A kind of pipe extruder head aided in gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180714U (en) * 1985-04-30 1986-11-11
JPS63297018A (en) * 1987-05-29 1988-12-05 Pura Giken:Kk Metal mold of extruder
JPH04226733A (en) * 1990-07-28 1992-08-17 Krauss Maffei Ag Device to make thermally plastic product plastic
JPH06270233A (en) * 1993-03-18 1994-09-27 Sekisui Chem Co Ltd Production of extrusion molded product
JP2003520142A (en) * 2000-01-24 2003-07-02 インターナショナル ブレイン システム ソシェテ アノニム Method and apparatus for transferring crystalline or semi-crystalline polymers
JP2006142990A (en) * 2004-11-19 2006-06-08 Bridgestone Corp Pneumatic tire and its manufacturing method
KR20100055567A (en) * 2008-11-18 2010-05-27 세메스 주식회사 An apparatus for compositing conducting composites and method thereof
KR20130020430A (en) * 2011-08-19 2013-02-27 숭실대학교산학협력단 Conductive polymer complex and forming method thereof

Also Published As

Publication number Publication date
EP3746280A1 (en) 2020-12-09
WO2019149703A1 (en) 2019-08-08
DE102018102061B3 (en) 2019-03-14
RU2764179C1 (en) 2022-01-14
CN111936291A (en) 2020-11-13
KR102336471B1 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
KR102336471B1 (en) Extrusion apparatus and method for manufacturing carbon fiber reinforced plastic semi-finished products
EP3086011A1 (en) Double-walled pipe with integrated heating capability for an aircraft or spacecraft
US20150147427A1 (en) Extrusion heads
US11097450B2 (en) Core system, use of the core system in the production of a fiber composite component and method for producing a fiber composite component
US20200103179A1 (en) Assemblies having enhanced heat transfer through vascular channels and methods of manufacturing assemblies having vascular channels
CN112344547B (en) Heating film type liquid heater and temperature-equalizing heating method thereof
CN217869210U (en) Pipeline type strong meshing extruder for PPS spinning
CN111791449A (en) Polytetrafluoroethylene extrusion pipe forming equipment
GB2076726A (en) Process and apparatus for moulding thermally curable material
Housz et al. The melting performance of single screw extruders
Jaivignesh et al. Study of one dimensional conduction heat transfer for constant thermal conductivity through composite plane slab and in cylinder at steady state condition
Tahseen et al. An experimental study of heat transfer and friction factor characteristics of finned flat tube banks with in-line tubes configurations
CN100411858C (en) Method for preparing polyunsymfluorethylene piezoelectric tubes
Grakovich et al. Polymer flat loop thermosyphons
KR20220066883A (en) electric heater
WO2008155650A2 (en) Method and means for moulding by injection or extrusion
Li et al. A novel gripper for multiaxial mechanical testing of microtubes at elevated temperatures
CN210257189U (en) Extrusion die for high-molecular composite material heat exchange tube
CN104647727A (en) Plastic extruder
US11931958B2 (en) Extrusion nozzle for additive manufacturing
KR102121056B1 (en) Radical generating module and apparatus
Lee et al. Preliminary study of corona-assisted additive manufacturing process of piezoelectric thermopolymer
Bar-Cohen et al. Analysis and design of a least material orthotropic pin fin heat sinks
CN211165250U (en) Single-screw double-layer heating and melting mechanism
CN108807130B (en) Migration tube for ion mobility spectrometer and ion mobility spectrometer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant