KR20200107365A - Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치 - Google Patents

Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR20200107365A
KR20200107365A KR1020190026380A KR20190026380A KR20200107365A KR 20200107365 A KR20200107365 A KR 20200107365A KR 1020190026380 A KR1020190026380 A KR 1020190026380A KR 20190026380 A KR20190026380 A KR 20190026380A KR 20200107365 A KR20200107365 A KR 20200107365A
Authority
KR
South Korea
Prior art keywords
fbg
shape sensor
based shape
optical fiber
curing agent
Prior art date
Application number
KR1020190026380A
Other languages
English (en)
Other versions
KR102175937B1 (ko
Inventor
김진석
장민수
김준식
강규민
금보라
Original Assignee
한국과학기술연구원
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 고려대학교 산학협력단 filed Critical 한국과학기술연구원
Priority to KR1020190026380A priority Critical patent/KR102175937B1/ko
Publication of KR20200107365A publication Critical patent/KR20200107365A/ko
Application granted granted Critical
Publication of KR102175937B1 publication Critical patent/KR102175937B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)

Abstract

실시예들은 복수의 FBG 광섬유 다발 내부에 나선형 구조를 형성하기 위한 별도의 구조물(예컨대, 원기둥 등)을 이용하지 않고, 형상 센서 자체의 비틀림 및 대상의 형상을 감지할 수 있는 FBG 기반 형상 센서를 제작하는 방법 및 이를 위한 장치에 관련된다.

Description

FBG 기반 형상 센서 제작 방법 및 이를 위한 장치 {METHOD FOR MANUFACTURING FIBER-BASED SHAPE SENSOR AND DEVICE THEREFOR}
본 명세서는 FBG 광섬유 센서의 제작 기술에 관한 것으로서, 보다 상세하게는 비틀림 및 형상을 감지 가능한 FBG 기반 형상 센서를 제작하는 방법 및 이를 위한 장치에 관한 것이다.
사람의 신체(특히, 내부의 장기)는 매우 연약하고 민감하게 구성되어 있어, 의료기구(예컨대, 수술기구, 진단기구, 의료로봇 등)를 사용하는 사용자는 환자의 해부학적 구조와 이러한 의료기구의 형상 구조를 고려하여 환자의 신체에 손상이 발생하지 않게 하는 것이 일반적이다.
그러나, 가요성 의료기구는 사용 과정에서 형상의 변화가 쉽게 발생할 수 있고, 그 형상 변화의 폭 또한 넓다. 따라서, 사용자가 예측한 범위 밖의 형상 변화가 발생할 수 있으며, 이 경우 환자의 신체에 손상이 발생할 우려가 있다.
예를 들어, 대장 질환을 진단하기 위한 진단기구로 널리 활용되는 대장 내시경은 환자의 신체 내부(즉, 대장)로 삽입하고, 신체 내부를 진행하는 방식으로 사용된다.
도 1은 대장 내시경의 진행 과정에서 발생 가능한 다양한 루프 형태를 설명하기 위한 도면이다.
대장은 내부가 복잡하고 굴곡이 많은 형태로 구성되어 있고, 유동성이 있다. 이로 인해, 대장 내시경은 가요성을 갖도록 구성되는데, 사용 과정에서 대장 내시경은, 도 1에 도시된 바와 같이, 다양한 꼬임 형태(즉, 루프 형태)를 형성할 수 있다.
대장 내시경이 루프 형태를 형성한 상황에서는 형태는 내시경 시술 사고의 가능성을 증가한다. 예를 들어, 대장 내시경의 사용을 강행하는 경우 환자의 신체 조직에 피해 또는 손상이 발생할 수 있다. 따라서, 대장 내시경의 사용자는 내시경이 루프 형태를 형성하면 조작에 매우 주의해야 한다.
이러한 대장 내시경의 형상 변화에 의한 문제점은 수술용 카테터, 최소 침습 수술로봇 등 사용 과정에서 형상이 변하는 다른 의료기구에서도 발생한다.
이를 해결하기 위해 x-ray, 또는 자기장을 이용하여 전술한 의료기구에 대한 형상을 얻는 기술 및 제품이 시장에서 실시되고 있다.
그러나, x-ray를 이용하는 기술 및 제품은 크기가 매우 크고, 대상자가 방사선에 노출되는 피폭 문제가 있다. 또한, 환자의 자세가 변경되는 경우 영상 시인성이 매우 떨어진다. 이러한 문제들로 인해, 현재는 거의 사용하지 않는다.
한편, 자기장을 이용하는 기술 및 제품(예컨대, 올림푸스 사의 Scope Guide)은 방사선 피폭의 문제는 없으나, 자기장을 검출하는 별도의 검출기(detector)가 필요하다.
그리고 검출기 내에서 의료기구(에컨대, 내시경)의 위치를 매번 교정(calibration)해야 하고, 주변 전자기장의 영향을 받을 수 있으며, 영상 화질이 낮고, 전송 속도의 간극으로 인해 간간히 영상이 끊기는 문제가 있다.
또한, 제작사가 시장을 독과점하고 있어 제품의 가격이 비싸고, 나아가 자기장에 반응하는, 일반 내시경이 아닌 별도의 내시경을 구매해야 한다. 따라서, 비용 문제로 인해 내시경 시술 사고의 위험이 증가하는 결과를 유발할 수도 있다.
이러한 x-ray, 또는 자기장 기반 형상 기술의 문제들을 극복하기 위한 기술로서, 광섬유를 이용하여 형상을 얻는 기술 및 제품(예컨대, 형상 센서)이 있다.
일반적으로 광섬유는 외부 환경, 예컨대 온도 변화나 변형(strain) 등과 같은 외부 물리량의 변화로 인해 광섬유에서 발생하는 산란 광의 특성이 민감하게 변화하므로 센서로 이용할 수 있다. 또한, 광섬유 자체는 가볍고 유연하며 소형화가 가능하고, 가늘고 길게 제작할 수 있으며, 외부 전자기파에 둔감하고 유해한 환경에 강하다. 이러한 장점과 함께 광섬유는 포설이 용이하고 구조물에 장착하기 쉬운 구조로 되어 있어 센서에 적용되기에 매우 적합하다. 대표적인 광섬유 센서로는 광섬유 내의 코어의 굴절율을 일정한 간격으로 변화시켜 특정한 파장의 빛을 반사하도록 제작한 FBG(Fiber Bragg Grating) 센서가 있다.
그러나, FBG 기반 형상 센서는 센서의 길이가 길어질수록 형상 센서가 축 방향에 대하여 쉽게 비틀릴 수 있다. FBG 기반 형상 센서 자체의 비틀림이 보정되지 않는다면 FBG 기반 형상 센서의 감지 부위에서 나타내는 방향 벡터는 오차를 갖게 되어, 대상의 실제 형상과 형상 센서를 통해 획득된 복원 형상이 일치하지 않는 한계가 있다.
최근 광섬유 센서를 이용하여 대상의 형상을 감지함과 동시에, 센서 자체의 비틀림을 감지할 수 있는 시도가 있다(비특허문헌 1). 상기 비특허문헌 1에 따르면 니티놀(nitinol)로 이루어진 원기둥의 외벽에 나선형의 홈을 식각한 뒤, 상기 나선형 홈에 광섬유를 고정하여 제작된 형상 센서는 센서 자체의 비틀림 정도와 방향을 감지할 수 있다. 이로 인해, 센서 자체의 비틀림 오차를 보정한 대상의 형상을 얻을 수 있다.
그러나, 상기 비특허문헌 1은 센서 제작 시 원기둥을 사용하기 때문에 센서의 직경이 커지게 되어 형상을 감지하는 범위에 한계가 있다. 또한, 상기 비특허문헌 1의 형상 센서를 최소 침습 수술기구, 내시경 등의 진단기구에 대해 활용하는데 있어서, 가늘고 긴 원기둥에 식각을 통해 홈을 형성해야 하는 어려움이 있다. 나아가, 원기둥이 차지하는 공간만큼 소형화가 제한되는 한계가 있다.
등록특허공보 제 10-1369869 B1호 (2014.03.06.)
"Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors"Ran Xu et al., IEE Robotics and Automation Letters, Vol 1., 2016, p1052-1060
본 발명에 따르면, 형상 센서 자체의 비틀림을 측정하여 상기 비틀림에 의한 오차를 보정한 형상을 얻을 수 있으며, 의료기구에 쉽게 적용 가능한 FBG 기반 형상 센서를 제작하는 방법 및 이를 위한 장치를 제공할 수 있다.
본 발명의 일 측면에 따른 FBG 기반 형상 센서 제작을 위한 장치는 복수의 FBG 광섬유가 통과하는 홀을 갖는 제1 및 제2 배열 스테이지; 상기 복수의 FBG 광섬유에서 나선형 구조를 형성하게 하는 캡; 상기 제1 및 제2 배열 스테이지 사이에 위치하며, 상기 나선형 구조를 형성한 광섬유 다발을 경화제로 코팅하는 코팅 스테이지; 및 상기 제1 및 제2 배열 스테이지 사이를 연결하는 지지대;를 포함할 수 있다.
일 실시예에서, 상기 코팅 스테이지는, 스테이지 몸체, 상기 광섬유 다발이 내부에 위치하는 형틀, 경화제 주입기, 상기 경화제를 상기 형틀 내부로 주입하기 위한 경화제 경로, 및 상기 코팅 스테이지의 일 면 상에 배치되어 주입된 경화제를 경화하기 위한 경화기기를 포함할 수 있다.
일 실시예에서, 상기 제1 배열 스테이지는, 상기 캡이 회전된 상태를 유지하기 위해 상기 캡을 고정 가능하도록 더 구성된다.
일 실시예에서, 상기 코팅 스테이지는, 스테이지 몸체, 및 경화제를 분사하도록 구성된 분사기를 포함할 수 있다.
일 실시예에서, 상기 코팅 스테이지는, 분사된 경화제를 경화하기 위한 경화기기를 더 포함할 수 있다.
일 실시예에서, FBG 기반 형상 센서 제작을 위한 장치는, 상기 나선형 구조를 형성한 광섬유 다발을 일 축을 중심으로 회전시키는 제1 및 제2 로테이션 스테이지를 더 포함할 수 있다.
일 실시예에서, FBG 기반 형상 센서 제작을 위한 장치는 상기 제1 및 제2 로테이션 스테이지의 회전을 동기화하기 위한 연결부를 더 포함할 수 있다.
일 실시예에서, 상기 제1 로테이션 스테이지는, 상기 캡을 고정 가능하도록 더 구성될 수 있다.
일 실시예에서, FBG 기반 형상 센서 제작을 위한 장치는 상기 캡의 반대 측면에 위치하고, 상기 복수의 FBG 광섬유에 장력을 제공하는 장력 제공부를 더 포함할 수 있다.
상기 실시예들에서, 상기 경화기기는, 열 또는 빛을 상기 나선형 구조를 형성한 광섬유 다발로 방출하도록 구성될 수 있다.
본 발명의 다른 일 측면에 따른 FBG 기반 형상 센서 제작 방법은, 복수의 FBG 광섬유에서 나선형 구조를 형성하는 단계; 상기 복수의 FBG 광섬유의 적어도 일부를 경화제로 코팅하는 단계; 및 상기 경화제를 경화하는 단계를 포함할 수 있다.
일 실시예에서, 상기 나선형 구조를 형성하는 단계는, 복수의 FBG 광섬유를 배열하는 단계; 상기 복수의 FBG 광섬유의 일 측에 장력을 가하는 단계; 및 상기 복수의 FBG 광섬유를 배열 축을 중심으로 꼬으는 단계를 포함할 수 있다.
일 실시예에서, FBG 기반 형상 센서 제작 방법은, 상기 복수의 FBG 광섬유를 꼬아 나선형 구조를 형성한 이후에, 상기 나선형 구조를 형성한 광섬유 다발에 장력을 유지하는 단계를 더 포함할 수 있다.
일 실시예에서, 상기 코팅하는 단계는, 상기 나선형 구조를 형성한 광섬유 다발이 내부에 위치한 형틀에 상기 경화제를 주입함으로써 수행될 수 있다.
일 실시예에서, 상기 코팅하는 단계는, 상기 경화제를 분사함으로써 수행될 수 있다.
일 실시예에서, 상기 코팅하는 단계는, 상기 나선형 구조를 형성한 광섬유 다발을 회전시키는 단계를 더 포함할 수 있다.
일 실시예에서, 상기 광섬유 부분을 회전은, 상기 광섬유 부분의 일 측과 다른 측의 회전 속도가 동일할 수 있다.
일 실시예에서, 상기 코팅하는 단계는, 상기 광섬유 다발의 외부 표면에서 골 부분을 보다 두껍게 코팅하는 단계를 더 포함할 수 있다.
일 실시예에서, 상기 골 부분에 분사되는 경화제의 양은, 각속도를 기준으로 마루 부분 보다 더 많을 수 있다.
일 실시예에서, 골 부분의 코팅을 보다 두껍게 하기 위해, 각속도를 기준으로 상기 골 부분과 마루 부분에 동일한 양의 경화제를 분사하고, 이어서, 상기 경화제를 경화시키기 이전에, 상기 경화제가 분사된 광섬유 다발을 회전시킬 수 있다.
일 실시예에서, FBG 기반 형상 센서 제작 방법은, 상기 나선형 구조를 형성한 광섬유 다발에 대한 코팅이 완료되지 않은 경우, 완료되지 않은 부분에 대해 상기 코팅하는 단계와 경화시키는 단계를 재-수행하는 단계를 더 포함할 수 있다.
본 발명의 일 측면에 따른 FBG 기반 형상 센서 제작 방법은 복수의 광섬유가 나선형으로 구성(helical structure)된 FBG 기반 형상 센서를 제작할 수 있다. 상기 FBG 기반 형상 센서는 형상 센서 자체의 비틀림 및 대상의 형상을 감지할 수 있다. 따라서, 상기 FBG 기반 형상 센서를 이용하여 감지된 형상에 센서 자체의 비틀림에 의한 오차를 감지된 대상의 형상에 보정하면, 사용자는 대상의 실시간 형상을 정확하게 얻을 수 있다.
또한, 상기 제작 방법은 나선형 구조를 형성할 때 별도의 구조물(예컨대, 원기둥 등)을 이용하지 않는다. 따라서, 센서의 직경이 감소하여 작은 곡률 반경을 갖는 형상을 감지하는데 용이하다. 나아가, 센서의 소형화가 가능하고 제작 과정이 용이하여 의료기구에 적용이 용이하고 높은 경제성을 가질 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명 또는 종래 기술의 실시예의 기술적 해결책을 보다 명확하게 설명하기 위해, 실시예에 대한 설명에서 필요한 도면이 아래에서 간단히 소개된다. 아래의 도면들은 본 명세서의 실시예를 설명하기 목적일 뿐 한정의 목적이 아니라는 것으로 이해되어야 한다. 또한, 설명의 명료성을 위해 아래의 도면들에서 과장, 생략 등 다양한 변형이 적용된 일부 요소들이 도시될 수 있다.
도 1은 대장 내시경의 진행 과정에서 발생 가능한 다양한 루프 형태를 설명하기 위한 도면이다.
도 2는, 본 발명의 일 실시예에 따른, FBG 기반 형상 센서를 제작하는 방법의 흐름도이다.
도 3a 및 3b는, 본 발명의 일 실시예에 따른, 제작된 FBG 기반 형상 센서를 도시한 도면이다.
도 4는, 본 발명의 일 실시예에 따른, 형상 센서 제작을 위한 장치의 개념도이다.
도 5는, 본 발명의 일 실시예에 따른, 캡을 도시한 도면이다.
도 6은, 본 발명의 일 실시예에 따른, 복수의 광섬유에서 나선형 구조를 형성하는 과정을 설명하기 위한 개념도이다.
도 7은, 본 발명의 일 실시예에 따른, 장력 생성부를 도시한 개념도이다.
도 8a 및 도 8b는, 본 발명의 일 실시예에 따른, 코팅 스테이지를 도시한 도면이다.
도 9는, 본 발명의 다른 실시예에 따른, 형상 센서 제작을 위한 장치의 개념도이다.
도 10a 및 도 10b는, 본 발명의 일 실시예에 따른, 코팅 스테이지를 도시한 도면이다.
도 11a 및 도 11b는, 본 발명의 일 실시예에 따른, 로테이션 스테이지를 설명하기 위한 도면이다.
도 12는, 본 발명의 일 실시예에 따른, 적층 구조를 형성하기 위한 코팅 작업을 설명하기 위한 도면이다.
도 13은, 본 발명의 또 다른 일 실시예에 따른, 형상 센서 제작을 위한 장치의 개념도이다.
실시예들은 여기에 첨부된 도면들을 참조하여 설명될 것이다 그러나, 여기에 개시된 원리들은 많은 상이한 형태로 구현될 수도 있으며 여기에서 기재된 실시예로 제한되어 생각되지 않아야 한다. 발명의 상세한 설명에서, 잘 알려진 특징 및 기술에 대한 상세한 설명이 실시예의 특징을 불필요하게 불명확하게 하는 것을 피하기 위해 생략될 수도 있다.
본 명세서에서 '굽히다', '굽혀지다'는 굽힘 이후에 측정 대상의 길이 중심축이 굽힘 이전의 길이 중심축으로부터 벗어나는 것을 의미한다. 본 명세서에서 측정 대상의 '굽힘 움직임', '굽힘 동작', '굽힘 운동' 은 측정 대상의 굽힘을 발생하게 하는 측정 대상 자체 및/또는 제3자의 움직임 및/또는 운동을 지칭한다.
본 명세서에서 '비틀리다', '비틀다'는 비틀림 이후의 길이 중심축이 비틀림 이전의 길이 중심축으로부터 벗어나지 않으며, 단지 단면들이 길이 중심축을 기준으로 회전하게 되는 것을 의미한다. 본 명세서에서 측정 대상의 '비틀림 움직임', '비틀림 동작', '비틀림 운동'은 측정 대상의 비틀림을 발생하게 하는 측정 대상 자체 및/또는 제3자의 움직임 및/또는 운동을 지칭한다.
이하, 본 발명을 실시하기 위한 구체적인 내용은 첨부된 도면을 참조하여 자세히 설명하기로 한다.
도 2는, 본 발명의 일 실시예에 따른, FBG 기반 형상 센서를 제작하는 방법의 흐름도이다.
도 2를 참조하면, FBG 기반 형상 센서 제작 방법(이하, “제작 방법”)은, 복수의 FBG 광섬유에서 나선형 구조를 형성하는 단계(S1); 상기 복수의 FBG 광섬유의 적어도 일부를 경화제로 코팅하는 단계(S3); 및 상기 경화제를 경화시키는 단계(S5)를 포함한다. 일부 실시예에서, 상기 제작 방법은 목표한 코팅 범위(예컨대, 나선형으로 꼬인 부분의 일부 또는 전부)의 코팅이 완료되지 않은 경우, 완료되지 않은 부분에 대해 상기 코팅하는 단계(S3)와 경화시키는 단계(S5)를 재-수행하는 단계(S7)를 더 포함할 수 있다. 상기 재-수행하는 단계(S7)는 나선형 구조 전체에 대해 코팅을 완료할 때까지 반복될 수 있다.
상기 FBG 기반 형상 센서 제작 방법은 3 이상의 복수의 FBG 광섬유를 이용하여 제작 가능한 것이 명백할 것이다. 그러나, 설명의 명료성을 위해 3개의 FBG 광섬유를 이용하는 실시예를 이용하여 본 발명을 상세하게 서술한다.
도 3a 및 3b는, 본 발명의 일 실시예에 따른, 제작된 FBG 기반 형상 센서를 도시한 도면이다.
도 2의 제작 방법의 수행 결과, 내부에는 복수의 FBG 광섬유(10) 및 이를 둘러싼 경화제(13)를 포함한 도 3의 형상 센서를 얻을 수 있다. 도 3a는 FBG 기반 형상 센서의 단면도이고, 도 3b는, FBG 기반 형상 센서의 사시도이다.
FBG 광섬유(10)의 코어의 일부 영역에는 복수의 격자가 한 집합을 이루어 형성된, 복수의 격자 노드가 형성되어 있다. 격자는 FBG 광섬유(10)의 제작 과정에서 자외선 빛을 통해 코어의 일부분의 물성을 변화시킨 부분으로, 클래딩(n1) 및 코어(n0)와는 다른 굴절률(예를 들어, n0+△을 가진다. FBG 광섬유(10)를 통해 진행하는 빛은 격자 노드들에 의해 간섭된다. 간섭광의 파장(λB)은, 아래의 수학식 1에 도시된 바와 같이, 격자 노드의 격자 간격(Λ에 의존한다.
[수학식 1]
λB = 2·neff·Λ
여기서, neff는 코어의 유효 굴절률을 나타내는 지표이다.
상기 수학식 1에 기초하면, 도 3a의 FBG 기반 형상 센서에 포함된 3개의 FBG 광섬유(10)에 대한 간섭광을 각각 얻을 수 있고, 각각의 간섭광에 기초하여 FBG 광섬유별 변형률(εA, εB, εC)을 산출할 수 있다. 그리고, 광섬유별 변형률에 기초하여 (예컨대, 프레네-세레 공식(Frenet-Serret formulas) 등을 통해) 상기 FBG 기반 형상 센서가 장착된 대상의 형상을 얻을 수 있다.
또한, 단계(S1)의 수행 결과, 도 3b에 도시된 바와 같이, FBG 기반 형상 센서는 나선형 구조로 형성된 광섬유 다발(11)을 가진다. FBG 기반 형상 센서의 나선형 구조를 이용하면 상기 나선형 구조에 의해 꼬인 방향 또는 역방향의 센서 자체의 비틀림에 대한 정보(예컨대, 방향 및 정도)를 얻을 수 있다. 예를 들어, 꼬인 방향과 동일한 방향의 비틀림이 발생한 경우, FBG 기반 형상 센서의 길이는 신장할 것이고, 꼬인 방향과 반대 방향의 비틀림이 발생한 경우, FBG 기반 형상 센서의 길이는 수축할 것이므로, 신장/수축 여부에 기초하여 비틀림 방향을 산출할 수 있고, 나아가 신장/수축 정도에 기초하여 비틀림 정도를 산출할 수 있다.
일 실시예에서, FBG 기반 형상 센서를 통해 획득된 간섭광에 기초하여 대상의 기초 형상을 감지하고, 비틀림 오차 정보를 획득하며, 기초 형상에 비틀림 오차 정보를 반영하여 대상의 실시간 형상을 정확하게 복원하는 동작은 FBG 기반 형상 센서와 연결된 데이터 처리 장치(미도시)에 의해 수행될 수 있다. 상기 데이터 처리 장치는 컴퓨터일 수 있으나, 이에 제한되진 않으며, 하나 이상의 프로세서를 포함하여 데이터 처리 동작이 가능한 다양한 하드웨어일 수 있다.
도 3의 FBG 기반 형상 센서를 이용하여 (예컨대, 대상의 형상 감지 및 센서 자체의 비틀림 감지, 비틀림 오차 보정 등을 포함한) 대상의 형상을 복원하는 과정은 특허문헌 1, 비특허문헌 1 등에 의해 공지되어 있는 바, 본 명세서에서는 자세한 설명은 생략한다.
상기 FBG 기반 형상 센서 제작 방법은, 도 3에 도시된 바와 같이, 복수의 FBG 광섬유(10)에서 나선형 구조를 형성할 때 별도의 구조물(예컨대, 원기둥 등)을 이용하지 않기 때문에, 사용자는 보다 작은 직경을 갖는 형상 센서를 얻을 수 있다. 그 결과, 자유로운 3차원 구조, 특히 고곡률 형상을 갖는 대상의 형상을 감지하는데 어려움이 없다. 나아가, (예컨대, 5mm와 같은) 작은 곡률 반경이 요구되는 카테터 시술기구에 용이하게 적용될 수 있다.
아울러, 센서의 소형화가 가능하므로, 대장 내시경의 도구관(instrument channel)에 삽입하여 대상(즉, 대장 내시경)의 형상을 감지할 수 있다. 즉, 대장 내시경의 적용이 매우 용이하다.
이와 같이, 도 2의 FBG 기반 형상 센서 제작 방법은 센서의 소형화가 가능하고 제작 과정이 용이하여 의료기구에 적용이 용이하고 높은 경제성을 가질 수 있다.
이러한 FBG 기반 형상 센서를 제작하기 위해 하나 이상의 코팅 공정이 적용될 수 있다.
일 실시예에서, 상기 단계(S2)에서의 코팅 작업은, 상기 나선형 구조를 갖는 광섬유가 내부에 위치한 형틀에 상기 경화제(13)를 주입함으로써 수행될 수 있다.
다른 일 실시예에서, 상기 단계(S3)에서의 코팅 작업은, 상기 경화제(13)를 분사함으로써 수행될 수 있다.
이하, 경화제(13)를 주입하여 코팅 작업을 수행하는 장치(100)를 제1 실시예로, 경화제(13)를 분사하여 코팅 작업을 수행하는 장치(200)를 제2 실시예로 지칭하여 본 발명을 보다 상세하게 서술한다.
제1 실시예
도 4는, 본 발명의 일 실시예에 따른, 형상 센서 제작을 위한 장치의 개념도이다.
도 4를 참조하면, FBG 기반 형상 센서 제작 장치(이하, “제1 제작 장치”)(100)는 복수의 FBG 광섬유(10)가 통과하는 제1 및 제2 배열 스테이지(111 및 112), 복수의 광섬유(10)에서 나선형 구조를 형성하게 하는 캡(120), 상기 제1 및 제2 배열 스테이지(111 및 112) 사이를 연결하는 지지대(115), 상기 제1 및 제2 배열 스테이지(111 및 112) 사이에 위치하며, 복수의 FBG 광섬유(10)의 외부를 경화제(13)로 코팅하기 위한 코팅 스테이지(130), 및 상기 코팅된 경화제(13)를 경화하기 위한 경화기기(150)를 포함한다. 일부 실시예에서, 상기 제1 제작 장치(100)는 제1 및 제2 스테이지(111 및 112), 그리고 지지대(115) 등과 같은 제1 제작 장치(100)의 몸체를 표면 상에서 지지하기 위한 지지 스테이지(113)를 더 포함할 수 있다.
상기 제1배열 스테이지(111)는 복수의 광섬유(10)가 통과하는 홀을 가진다. 상기 제1 배열 스테이지(111)는 단일 홀(single hole)을 가지며, 상기 단일 홀의 면적은 복수의 광섬유(10)가 서로 접촉하여 있을 때의 외접원(평면적)의 면적과 동일하거나, 더 클 수 있다. 상기 제1 배열 스테이지(111)에서의 복수의 광섬유(10) 간의 접촉은 나선형 구조를 형성하는 접촉, 및/또는 비나선형 구조를 형성하는 접촉(예컨대, 평행한 배열 상태에서 접촉)을 포함한다.
상기 제2 배열 스테이지(112)는 복수의 광섬유(10)가 통과하는 홀을 가진다. 상기 제2 배열 스테이지(112)는 센서 제조를 위해 사용되는 FBG 광섬유(10)의 개수와 동일하며, 각 FBG 광섬유(10)가 각각 통과하는 다수의 홀(multiple holes)을 가진다. 제2 배열 스테이지(112)의 각 홀의 면적은 FBG 광섬유(10)가 통과 및 고정되도록 각각의 FBG 광섬유(10)의 면적에 매칭한다. 일 실시예에서, 상기 제2 배열 스테이지(112)의 홀은 아래의 캡(120)이 갖고 있는 홀의 위치 및 개수에 매칭될 수 있다. 이에 대해서는 아래의 도 5 및 도 6을 참조하여 보다 상세하게 서술한다.
상기 제1 및 제2 배열 스테이지(111 및 112) 사이의 복수의 광섬유(10)는 꼬임에 의해 나선형 구조를 형성한다. 일 실시예에서, 상기 제1 제작 장치(100)는 상기 나선형 구조를 형성하기 위한 캡(120)을 더 포함한다.
도 5는, 본 발명의 일 실시예에 따른, 캡을 도시한 도면이고, 도 6은, 본 발명의 일 실시예에 따른, 복수의 광섬유에서 나선형 구조를 형성하는 과정을 설명하기 위한 개념도이다.
도 5 및 도 6을 참조하면, 상기 나선형 구조는 복수의 FBG 광섬유(10)가 통과한 상태에서의 캡(120)의 회전에 의해 형성된다. 이를 위해, 캡(120)은 복수의 FBG 광섬유(10)가 각각 통과하는 홀을 가진다. 상기 캡(120)의 홀의 개수는 FBG 광섬유(10)의 개수와 동일하며, 각 홀의 면적은 FBG 광섬유(10)가 통과 및 고정되도록 각각의 FBG 광섬유(10)의 면적에 매칭한다. 캡(120)에 형성된 홀의 분포는 제1 및 제2 배열 스테이지(111 및 112) 사이의 공간에서 (예컨대, 꼬임 각도, 꼬임 정도가 동일한 것과 같은) 균일한 나선형 구조를 형성 가능하도록 구성된다.
복수의 FBG 광섬유(10)는 우선 캡(120)을 통과하고, 상기 제1 및 제2 배열 스테이지(111 및 112)를 통과한 복수의 FBG 광섬유(10)는 초기에는 평행하게 배열된다. FBG 광섬유(10)의 배열 이후, 도 6에 도시된 바와 같이, 캡(120)이 제1 배열 스테이지(111)에서 분리된 상태에서 회전된다. 그러면 상기 캡(120)의 회전에 의해, 상기 캡(120)과 제2 배열 스테이지(112) 사이의 FBG 광섬유(10)는 서로 꼬이게 됨으로써, 상기 제1 제작 장치는 나선형 구조를 갖는 광섬유 다발(11)을 형성할 수 있다.
사용자는 상기 캡(120)의 회전 수에 기초하여 나선형 구조를 규격화할 수 있다. 나선형 구조를 갖는 형상 센서에서 꼬임의 정도에 따라 형상 센서 자체의 비틀림을 감지할 수 있는 해상도(resolution)이 가변적이므로, 사용자는 캡(120)을 이용하여 원하는 사양의 형상 센서를 용이하게 제작할 수 있다.
상기 캡(120)의 회전에 의해 나선형 구조가 형성된 이후, 상기 나선형 구조가 유지되도록 상기 캡(120)는 회전한 상태에서 제1 배열 스테이지(111)에 결합되어 고정된다. 이를 위해, 제1 배열 스테이지(111)는 상기 캡(120)를 고정 가능하도록 구성된다.
일 실시예에서, 제1 배열 스테이지(111)는 상기 캡(120)의 평면에 매칭하는 홈을 포함하며, 상기 홈은 결합된 캡(120)의 회전을 방지할 수 있다. 제1 배열 스테이지(111)와 결합되지 않은 상태의 캡(120)을 회전시켜 복수의 FBG 광섬유(10)가 나선형 구조를 형성하게 한 뒤, 그 상태에서 캡(120)을 제1 배열 스테이지(111)에 결합하면 상기 회전방향과 동일 또는 반대 방향의 회전이 방지된다. 그 결과, 이후 제작 과정에서 제1 및 제2 배열 스테이지(111 및 112) 사이의 나선형 구조가 안정적으로 유지될 수 있다.
일 실시예에서, 제1 제작 장치(100)는 제1 및 제2 배열 스테이지(111 및 112)를 통과한 복수의 FBG 광섬유(10)의 배열을 유지하기 위한 장력 제공부(125)를 더 포함할 수 있다.
도 7은, 본 발명의 일 실시예에 따른, 장력 제공부를 도시한 개념도이다.
상기 제1 및 제2 배열 스테이지(111 및 112)를 통해 복수의 FBG 광섬유(10)의 일 단이 제1 및 제2 배열 스테이지(111 및 112)를 통과하면, 장력 제공부에 의해, 장력이 가해지게 된다.
도 7을 참조하면, 상기 장력 제공부(125)는, 예를 들어 추일 수 있으나, 이에 제한되지 않으며, 다른 하드웨어(미도시)에 상기 일 단이 연결되어 전술한 하드웨어에 의해 가해질 수 있다.
제2 배열 스테이지(112)를 통과한 복수의 FBG 광섬유(10)의 일 단에 추(125)를 연결하면 중력에 의해 각각의 FBG 광섬유(10)에 일정한 장력이 지속적으로 가해진다. 상기 장력에 의해 FBG 광섬유(10)는 긴 길이(예컨대, 수미터)에도 불구하고 일직선 배열을 유지할 수 있다.
이와 같이, 상기 장력 제공부(125)에 의해, 나선형 구조를 형성하기 이전에 복수의 FBG 광섬유(10)는 비일직선 형태(예컨대, 아치 등)를 갖지 않아, 나선형 구조를 형성하는 과정에서 발생 가능한 구조적 오차(예컨대, 비틀림, 불균일 나선형 구조 등)이 발생하지 않고, 결국, 비틀림 정보를 정확하게 산출할 수 있다.
상기 나선형 구조를 형성한 광섬유 다발(11)을 코팅하는 작업은 코팅 스테이지(130)를 이용하여 수행된다.
도 8a 및 도 8b는, 본 발명의 일 실시예에 따른, 코팅 스테이지를 도시한 도면이다. 여기서, 도 8a는 코팅 스테이지(130)의 단면도이고, 도 8b는 코팅 스테이지(130)의 평면도이다.
도 8을 참조하면, 상기 코팅 스테이지(130)는, 스테이지 몸체(131), 형틀(132), 경화제 주입기(133), 및 경화제 경로(134),를 포함할 수 있다. 또한, 형틀(132) 내부에 주입된 경화제(13)를 경화하기 위한 경화기기(150)를 더 포함할 수 있다.
상기 코팅 스테이지(130)는 나선형 구조가 형성된 광섬유 다발(11)이 통과 가능하고, FBG 광섬유(10)의 일 축 방향으로 이동 가능한, 무빙 스테이지로 구성될 수 있다. 예를 들어, 상기 코팅 스테이지(130)는 도 4의 제1 배열 스테이지(111) 방향 또는 제2 배열 스테이지(112) 방향을 향해 지지대(115)를 따라 이동 가능하도록 구성된다. 이를 위해, 스테이지 몸체(131)는 복수의 홀을 포함할 수 있다. 스테이지 몸체(131)는 또한 형틀(132)을 설치하기 위한 홈을 더 포함할 수 있다.
상기 형틀(132)은 나선형 구조를 형성한 광섬유 다발(11)이 위치할 내부 공간 및 상기 내부 공간을 감싸는 틀을 가지며, 예를 들어 튜브형으로 구성될 수 있다. 여기서, 형틀(132)은 코팅을 위해 나선형 구조로 형성된 광섬유 다발(11)의 평면적 보다 큰 내부 면적을 가진다.
상기 형틀(132)은 경화기기(150)에 의한 경화 작업을 효과적으로 수행할 수 있는 물질(예컨대, 실리콘과 같은 투명 물질, 또는 열전도 물질)로 이루어질 수 있다.
코팅을 위한 경화제(13)는 경화제 주입기(133)에 의해 경화제 경로(134)를 통해 형틀(132) 내부로 주입된다. 상기 경화제(13)는 형틀(132) 내부의 일부 또는 전부를 채우게 된다. 형틀(132) 내부를 채운 경화제(13)는 열 또는 빛을 형틀(132)로 방출하는 경화기기(150)에 의해 경화된다.
상기 경화제(13)는 예를 들어 에폭시일 수 있으나, 이에 제한되지 않으며, 형상을 감지하기에 적합한 가요성 특성을 가지며, FBG 광섬유(10)를 외부 환경으로부터 보호하기에 적합한 다른 물질을 선택하여 경화제(13)로 이용할 수 있다.
상기 경화기기(150)는 경화제(13)를 경화시키기에 적합한 특성을 갖는 열 또는 빛을 방출하도록 구성된다. 예를 들어, 경화제(13)가 에폭시인 경우, 상기 경화기기(150)는 300 내지 400nm 파장대의 빛을 방출하도록 구성될 수 있다.
한편, 전술한 바와 같이, 코팅 스테이지(130)는 무빙 스테이지로 구성되므로, 상기 형틀(132)의 높이로 인해 일 회의 코팅 작업으로 사용자가 의도한 부분(예컨대, 나선형 구조를 형성한 광섬유 다발(11)의 일부 또는 전부)에 대한 코팅 작업이 완료되지 않은 경우, 경화되어 코팅이 완료된 부분에 이어서 경화제(13)를 주입할 수 있는 위치로 이동하여 코팅 작업이 더 수행될 수 있다.
제2 실시예
도 9는, 본 발명의 다른 실시예에 따른, 형상 센서 제작을 위한 장치의 개념도이다.
본 발명의 제2 실시예에 따른 FBG 기반 형상 센서 제작 장치(이하, “제2 제작 장치”)(200)는 분사 방식의 코팅 작업을 수행하도록 구성된다. 제2 제작 장치(200)는, 제1 제작 장치100의 구성요소(111, 112, 113, 115, 120, 125, 150)에 대응하는 구성요소(211, 212, 213, 215, 220, 225, 250)를 포함하는 것과 같이, 도 4의 제1 제작 장치(100)와 상당부분 유사하므로, 차이점을 위주로 설명한다.
도 9를 참조하면, 제2 제작 장치(200)는 나선형 구조로 형성된 광섬유 다발(11)을 코팅하는 코팅 스테이지(230)를 포함한다.
도 10a 및 도 10b는, 본 발명의 일 실시예에 따른, 코팅 스테이지를 도시한 도면이다. 여기서, 도 10a는 코팅 스테이지(230)의 단면도이고, 도 10b는 코팅 스테이지(230)의 평면도이다.
상기 코팅 스테이지(230)는 스테이지 몸체(231), 분사구(233)를 포함한 분사기(미도시)를 포함한다.
일부 실시예에서, 코팅 스테이지(230)는 차단막(237)을 더 포함할 수 있다. 상기 차단막(237)은 경화기기(250) 등과 같은 다른 구성요소에 경화제(13)가 분사되는 방지한다. 상기 차단막(237)은 경화기기(250)에서 방출되는 에너지(예컨대, 열 또는 빛)의 진행은 차단하지 않는 물질로 이루어진다.
도 11a 및 도 11b는, 본 발명의 일 실시예에 따른, 로테이션 스테이지를 설명하기 위한 도면이다.
도 9 및 도 11을 참조하면, 일 실시예에서, 제2 제작 장치(200)는 상기 나선형 구조를 형성한 광섬유 다발(11)을 일 축을 중심으로 회전시키는 제1 및 제2 로테이션 스테이지(271 및 272)를 포함한다. 이 경우, 제1 로테이션 스테이지(271)가 캡(220)이 결합되는 홈을 갖도록 구성된다. 상기 제1 및 제2 배열 스테이지(211 및 212)는 상기 제1 및 제2 로테이션 스테이지(271 및 272)가 회전 가능하도록 구성된다.
제2 제작 장치(200)는 상기 제1 및 제2 로테이션 스테이지(271 및 272)의 회전을 동기화하기 위해 구성된다. 도 11에 도시된 바와 같이, 상기 동기화된 제1 및 제2 로테이션(271 및 272)의 회전으로 인해 경화제(13)가 나선형 구조를 형성한 광섬유 다발(11)의 표면의 전 방향에 대하여 균일하게 코팅된다.
일부 실시예에서, 제1 및 제2 로테이션 스테이지(271 및 272)의 동기화를 위해, 제2 제작 장치(200)는 제1 및 제2 로테이션 스테이지(271 및 272)를 연결하는 연결부(275)를 더 포함할 수 있다.
도 12는, 본 발명의 일 실시예에 따른, 적층 구조를 형성하기 위한 코팅 작업을 설명하기 위한 도면이다.
상기 코팅을 위한 분사 작업은 얇은 두께의 층을 여러 개 갖는 적층 구조를 형성할 수 있도록 수행될 수 있다. 예를 들어, 광섬유 다발(11)에 얇은 두께로 분사를 진행한뒤 경화를 시키고, 동일한 광섬유 다발(11)에 다시 얇은 두께로 분사를 진행한 뒤 경화를 시킴으로써, 순차적으로 코팅을 복수 회(예컨대, 도 12에 도시된 바와 같이 5회) 수행할 수 있다.
상기 적층 구조를 형성하기 위한 분사 작업은 하나 이상의 방식으로 수행될 수 있다. 일 실시예에서, 상기 적층 구조를 형성하기 위한 코팅 과정에서 적어도 일부의 코팅층은 특정 부분에 대한 분사가 더 수행될 수 있다. 예를 들어, 나선형 구조를 형성한 광섬유 다발(11) 표면 중 중심으로 들어간 골 부분에는, 광섬유 다발(11)의 다른 부분(예컨대, 마루 부분) 보다 많은 양의 경화제(13)를 분사할 수 있다. 예를 들어, 분사구(223)에서 출력되는 경화제(13)의 양이 일정한 상태에서 상기 특정 부분이 분사구(223)에 대향한 경우, 분사 작업은 다른 부분(예컨대, 마루 부분)에 비해 길게 수행되거나, 분사 시간이 모든 표면 부분에 대해서 동일하면서 상기 특정 부분이 분사구(223)에 대향한 경우, 출력되는 경화제(13)의 양이 다른 부분(예컨대, 마루 부분)에 비해 많게 수행되는 것과 같은, 각속도를 기준으로 골 부분에 보다 많은 경화제(13)가 분사될 수 있다.
다른 일 실시예에서, 적층 구조 내 동일한 층에 있어서 동일한 양의 경화제(13)가 분사될 수 있다. 예를 들어, 분사구(223)에서 출력되는 경화제(13)의 양이 일정하고, 동일한 층의 모든 표면 부분에 있어서 분사 시간은 균일하게 수행될 수 있다. 즉, 각속도를 기준으로 골 부분과 다른 부분(예컨대, 마루 부분)에 동일한 양의 경화제(13)가 분사된다.
이어서, 동일한 양의 경화제(13)의 분사 이후 분사된 경화제(13)가 경화되기 이전에, 제1 및 제2 로테이션 스테이지(271 및 272)의 회전에 의해 마루 부분에 있던 경화제(13)가 골 부분으로 옮겨져 골 부분의 경화제(13)의 양이 더 많아지게 할 수 있다. 즉, 적층 구조 내 층을 형성하기 위해, 분사 도중의 회전 및 분사 이후의 회전이 수행된다.
이와 같이, 제1 및 제2 로테이션 스테이지(271 및 272)는 광섬유 다발(11)의 전면에 경화제(13)를 고르게 분포할 수 있게 하는 것 이외에도 부분적으로 더 두껍게 코팅될 수 있게 하는 기능을 가진다. 그 결과, 최외곽 코팅층까지의 코팅이 완료된 경우, 광섬유 다발(11)을 감싸는 경화제(13)의 단면이 원형으로 형성될 수 있다.
상기 제2 제작 장치(200)는 상기 분사에 의한 코팅 작업이 광섬유 다발(11)의 길이에 있어 전체적으로 또는 부분적으로 수행되도록 구성될 수 있다. 예를 들어, 상기 코팅 스테이지(230)는 부분 코팅이 가능하기 위해, 이동 가능하도록 구성될 수 있다.
전술한 제2 제작 장치에서 상기 코팅 작업을 위한 분사 작업 및 경화 작업은 단일 구성요소(예컨대, 코팅 스테이지(230))에 의해 수행될 수 있다. 그러나, 본 발명은 이에 제한되지 않으며, 독립된 구성요소에 의해 분사 작업 및 경화 작업이 수행될 수 있다.
도 13은, 본 발명의 또 다른 일 실시예에 따른, 형상 센서 제작을 위한 장치의 개념도이다.
도 13에 도시된 바와 같이, 분사기에 의해 분사 작업이 우선 수행된 이후에, 별도의 경화기기(미도시)가 경화제(13)가 코팅된 광섬유 다발(11)에 접근하여 경화 작업이 수행될 수 있다.
이 경우, 경화기기(250)로의 분사를 방지하는 차단막(237)이 요구되지 않을 수도 있다.
이와 같이, 제1 및 제2 제작 장치(100 및 200)를 이용하면 복수의 FBG 광섬유(10) 내부에 나선형 구조를 형성하기 위한 별도의 구조물(예컨대, 원기둥 등)을 이용하지 않고, 형상 센서 자체의 비틀림 및 대상의 형상을 감지할 수 있는 FBG 기반 형상 센서를 제작할 수 있다.
이상에서 살펴본 본 발명은 도면에 도시된 실시예들을 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 그러나, 이와 같은 변형은 본 발명의 기술적 보호범위 내에 있다고 보아야 한다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해서 정해져야 할 것이다.
10: FBG 광섬유 130, 230: 코팅 스테이지
11: 광섬유 다발 131, 231: 스테이지 몸체
13: 경화제 132: 형틀
100, 200: 제작 장치 133: 경화제 주입기
111, 211: 제1 배열 스테이지 134: 경화제 경로
112, 212: 제2 배열 스테이지 150, 250: 경화기기
113, 213: 지지 스테이지 237: 차단막
115, 215: 지지대 271, 272: 제1 및 제2 로테이션 스테이지
120, 220: 캡 275: 연결부

Claims (21)

  1. 복수의 FBG 광섬유가 통과하는 홀을 갖는 제1 및 제2 배열 스테이지;
    상기 복수의 FBG 광섬유에서 나선형 구조를 형성하게 하는 캡;
    상기 제1 및 제2 배열 스테이지 사이에 위치하며, 상기 나선형 구조를 형성한 광섬유 다발을 경화제로 코팅하는 코팅 스테이지; 및
    상기 제1 및 제2 배열 스테이지 사이를 연결하는 지지대;를 포함하는 FBG 기반 형상 센서 제작을 위한 장치.
  2. 제1항에 있어서, 상기 코팅 스테이지는,
    스테이지 몸체, 상기 광섬유 다발이 내부에 위치하는 형틀, 경화제 주입기, 상기 경화제를 상기 형틀 내부로 주입하기 위한 경화제 경로, 및 상기 코팅 스테이지의 일 면 상에 배치되어 주입된 경화제를 경화하기 위한 경화기기를 포함하는 것을 특징으로 하는 FBG 기반 형상 센서 제작을 위한 장치.
  3. 제1항에 있어서, 상기 제1 배열 스테이지는,
    상기 캡을 고정 가능하도록 더 구성되는 것을 특징으로 하는 FBG 기반 형상 센서 제작을 위한 장치.
  4. 제1항에 있어서, 상기 코팅 스테이지는,
    스테이지 몸체, 및 경화제를 분사하도록 구성된 분사기를 포함하는 것을 특징으로 하는 FBG 기반 형상 센서 제작을 위한 장치.
  5. 제4항에 있어서, 상기 코팅 스테이지는,
    분사된 경화제를 경화하기 위한 경화기기를 더 포함하는 것을 특징으로 하는 FBG 기반 형상 센서 제작을 위한 장치.
  6. 제4항에 있어서,
    상기 나선형 구조를 형성한 광섬유 다발을 일 축을 중심으로 회전시키는 제1 및 제2 로테이션 스테이지를 더 포함하는 FBG 기반 형상 센서 제작을 위한 장치.
  7. 제6항에 있어서,
    상기 제1 및 제2 로테이션 스테이지의 회전을 동기화하기 위한 연결부를 더 포함하는 FBG 기반 형상 센서 제작을 위한 장치.
  8. 제4항에 있어서, 상기 제1 로테이션 스테이지는,
    상기 캡이 회전된 상태를 유지하기 위해 상기 캡을 고정 가능하도록 더 구성되는 것을 특징으로 하는 FBG 기반 형상 센서 제작을 위한 장치.
  9. 제1항에 있어서,
    상기 캡의 반대 측면에 위치하고, 상기 복수의 FBG 광섬유에 장력을 제공하는 장력 제공부를 더 포함하는 FBG 기반 형상 센서 제작을 위한 장치.
  10. 제2항, 제4항 및 제6항 중 어느 하나의 항에 있어서, 상기 경화기기는,
    열 또는 빛을 상기 나선형 구조를 형성한 광섬유 다발로 방출하도록 구성되는 것을 특징으로 하는 FBG 기반 형상 센서 제작을 위한 장치.
  11. 복수의 FBG 광섬유에서 나선형 구조를 형성하는 단계;
    상기 복수의 FBG 광섬유의 적어도 일부를 경화제로 코팅하는 단계; 및
    상기 경화제를 경화하는 단계를 포함하는 FBG 기반 형상 센서 제작 방법.
  12. 제11항에 있어서, 상기 나선형 구조를 형성하는 단계는,
    복수의 FBG 광섬유를 배열하는 단계;
    상기 복수의 FBG 광섬유의 일 측에 장력을 가하는 단계; 및
    상기 복수의 FBG 광섬유를 꼬으는 단계를 포함하는 FBG 기반 형상 센서 제작 방법.
  13. 제12항에 있어서,
    상기 복수의 FBG 광섬유를 꼬아 나선형 구조를 형성한 이후에, 상기 나선형 구조를 형성한 광섬유 다발에 장력을 유지하는 단계를 더 포함하는 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  14. 제11항에 있어서, 상기 코팅하는 단계는,
    상기 나선형 구조를 형성한 광섬유 다발이 내부에 위치한 형틀에 상기 경화제를 주입함으로써 수행되는 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  15. 제11항에 있어서, 상기 코팅하는 단계는,
    상기 경화제를 분사함으로써 수행되는 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  16. 제15항에 있어서, 상기 코팅하는 단계는,
    상기 나선형 구조를 형성한 광섬유 다발을 회전시키는 단계를 더 포함하는 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  17. 제16항에 있어서, 상기 광섬유 부분의 회전은,
    상기 광섬유 부분의 일 측과 다른 측의 회전 속도가 동일한 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  18. 제15항에 있어서, 상기 코팅하는 단계는,
    상기 광섬유 다발의 외부 표면에서 골 부분을 보다 두껍게 코팅하는 단계를 더 포함하는 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  19. 제18항에 있어서, 상기 골 부분에 분사되는 경화제의 양은,
    각속도를 기준으로 마루 부분 보다 더 많은 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  20. 제18항에 있어서,
    각속도를 기준으로 상기 골 부분과 마루 부분에 동일한 양의 경화제를 분사하고, 이어서, 상기 경화제를 경화시키기 이전에, 상기 경화제가 분사된 광섬유 다발을 회전시키는 것을 특징으로 하는 FBG 기반 형상 센서 제작 방법.
  21. 제11항에 있어서,
    상기 나선형 구조를 형성한 광섬유 다발에 대한 코팅이 완료되지 않은 경우, 완료되지 않은 부분에 대해 상기 코팅하는 단계와 경화시키는 단계를 재-수행하는 단계를 더 포함하는 FBG 기반 형상 센서 제작 방법.
KR1020190026380A 2019-03-07 2019-03-07 Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치 KR102175937B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190026380A KR102175937B1 (ko) 2019-03-07 2019-03-07 Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190026380A KR102175937B1 (ko) 2019-03-07 2019-03-07 Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20200107365A true KR20200107365A (ko) 2020-09-16
KR102175937B1 KR102175937B1 (ko) 2020-11-09

Family

ID=72669603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190026380A KR102175937B1 (ko) 2019-03-07 2019-03-07 Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치

Country Status (1)

Country Link
KR (1) KR102175937B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000050475A (ko) * 1999-01-11 2000-08-05 윤종용 리본광섬유 제작장치
KR20000074371A (ko) * 1999-05-20 2000-12-15 강병호 리본형 광변형센서
JP2003185897A (ja) * 2001-12-20 2003-07-03 Hitachi Cable Ltd 光ファイバグレーティングを用いた歪センサ
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
KR101369869B1 (ko) 2013-01-25 2014-03-06 한국과학기술원 Pgb 스트레인 센서를 이용한 피탐지체의 3차원 위치추정방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000050475A (ko) * 1999-01-11 2000-08-05 윤종용 리본광섬유 제작장치
KR20000074371A (ko) * 1999-05-20 2000-12-15 강병호 리본형 광변형센서
JP2003185897A (ja) * 2001-12-20 2003-07-03 Hitachi Cable Ltd 光ファイバグレーティングを用いた歪センサ
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
KR101369869B1 (ko) 2013-01-25 2014-03-06 한국과학기술원 Pgb 스트레인 센서를 이용한 피탐지체의 3차원 위치추정방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors"Ran Xu et al., IEE Robotics and Automation Letters, Vol 1., 2016, p1052-1060

Also Published As

Publication number Publication date
KR102175937B1 (ko) 2020-11-09

Similar Documents

Publication Publication Date Title
KR102055636B1 (ko) 꼬임-비민감성 형상 센서를 사용하여 절대적 3-차원 측정을 위한 방법 및 시스템
JP6270483B2 (ja) 細長の装置の光学的追跡の3d形状再構成
US8488130B2 (en) Method and system to sense relative partial-pose information using a shape sensor
Moon et al. Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery
Paloschi et al. 3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application
CN112703364B (zh) 光学形状感测系统和方法
CN111684254A (zh) 分布式血管内光纤布拉格压力传感器
CN112703365B (zh) 用于形状感测的光纤传感器、光学形状感测设备、系统和方法
Moon et al. FBG-based polymer-molded shape sensor integrated with minimally invasive surgical robots
US8957367B2 (en) Shape sensor contained in a link of a kinematic chain with at least one pre-set perturbation and method to sense relative partial-pose information using the shape sensor
KR102175937B1 (ko) Fbg 기반 형상 센서 제작 방법 및 이를 위한 장치
Chen et al. Fabrication and shape detection of a catheter using fiber Bragg grating
JP7167297B2 (ja) Fbg基盤のねじれセンサ装置
He et al. Optical fiber shape sensing of flexible medical instruments with temperature compensation
Vincent et al. Curvature and shape sensing for continuum robotics using draw tower gratings in multi core fiber
Paloschi et al. Transformation matrices for 3D shape sensing with polyimide-coated multicore optical fiber
Fan et al. The fiber Bragg grating sensor for a trans-oral flexible laryngeal surgery robot
JP7467766B2 (ja) 光ファイバセンサの形状を表す方法及びシステム
Yi et al. Real-Time Shape Estimation of Hyper-Redundant Flexible Manipulator Using Coiled Fiber Sensors
Li et al. Twist compensated, high accuracy and dynamic fiber optic shape sensing based on phase demodulation in optical frequency domain reflectometry
CN116341368A (zh) 一种基于lstm神经网络的软体操作臂姿态重构的方法
Moon et al. Fabrication of tip position tracking sensor for high-bending minimally-invasive surgery robot

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant