KR20200106181A - Silicon oxide-coated iron powder, manufacturing method thereof, and molded article and inductor for inductor using same - Google Patents
Silicon oxide-coated iron powder, manufacturing method thereof, and molded article and inductor for inductor using same Download PDFInfo
- Publication number
- KR20200106181A KR20200106181A KR1020207022686A KR20207022686A KR20200106181A KR 20200106181 A KR20200106181 A KR 20200106181A KR 1020207022686 A KR1020207022686 A KR 1020207022686A KR 20207022686 A KR20207022686 A KR 20207022686A KR 20200106181 A KR20200106181 A KR 20200106181A
- Authority
- KR
- South Korea
- Prior art keywords
- iron powder
- silicon oxide
- coated
- less
- mass
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 354
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 153
- 229910052814 silicon oxide Inorganic materials 0.000 title claims abstract description 142
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 239000002245 particle Substances 0.000 claims abstract description 100
- 229910052742 iron Inorganic materials 0.000 claims abstract description 76
- 239000002002 slurry Substances 0.000 claims abstract description 53
- -1 silicon alkoxide Chemical class 0.000 claims abstract description 50
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 42
- 230000007062 hydrolysis Effects 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 22
- 239000010703 silicon Substances 0.000 claims abstract description 21
- 239000012046 mixed solvent Substances 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 61
- 239000000843 powder Substances 0.000 claims description 43
- 239000007788 liquid Substances 0.000 claims description 23
- 150000004703 alkoxides Chemical class 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 7
- 239000005416 organic matter Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 2
- MSVOWLCCSIJLAG-UHFFFAOYSA-N [Si]=O.[Si]=O Chemical compound [Si]=O.[Si]=O MSVOWLCCSIJLAG-UHFFFAOYSA-N 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 239000011368 organic material Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 36
- 238000011282 treatment Methods 0.000 description 36
- 238000000576 coating method Methods 0.000 description 35
- 150000002500 ions Chemical class 0.000 description 34
- 239000002244 precipitate Substances 0.000 description 33
- 239000011248 coating agent Substances 0.000 description 32
- 229910052698 phosphorus Inorganic materials 0.000 description 32
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 30
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 28
- 238000005259 measurement Methods 0.000 description 28
- 239000011574 phosphorus Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 24
- 229910000077 silane Inorganic materials 0.000 description 24
- 230000035699 permeability Effects 0.000 description 23
- 238000003756 stirring Methods 0.000 description 23
- 238000010298 pulverizing process Methods 0.000 description 22
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 239000003513 alkali Substances 0.000 description 16
- 239000011247 coating layer Substances 0.000 description 15
- 239000012298 atmosphere Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 150000004819 silanols Chemical class 0.000 description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000006386 neutralization reaction Methods 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 230000006641 stabilisation Effects 0.000 description 9
- 238000011105 stabilization Methods 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000003980 solgel method Methods 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000006247 magnetic powder Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000011268 mixed slurry Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000000967 suction filtration Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VHSSESVAKURAGI-UHFFFAOYSA-N OP(O)(=O)OP(O)(O)=O.OP(O)(=O)OP(O)(O)=O Chemical compound OP(O)(=O)OP(O)(O)=O.OP(O)(=O)OP(O)(O)=O VHSSESVAKURAGI-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- PPWHTZKZQNXVAE-UHFFFAOYSA-N Tetracaine hydrochloride Chemical compound Cl.CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 PPWHTZKZQNXVAE-UHFFFAOYSA-N 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical group [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- UCSBCWBHZLSFGC-UHFFFAOYSA-N tributoxysilane Chemical compound CCCCO[SiH](OCCCC)OCCCC UCSBCWBHZLSFGC-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- OZWKZRFXJPGDFM-UHFFFAOYSA-N tripropoxysilane Chemical compound CCCO[SiH](OCCC)OCCC OZWKZRFXJPGDFM-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- B22F1/02—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/08—Cores, Yokes, or armatures made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/08—Metallic powder characterised by particles having an amorphous microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/12—Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/25—Oxide
- B22F2302/256—Silicium oxide (SiO2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Compounds Of Iron (AREA)
Abstract
[과제] 입자 직경이 작고, 고주파 대역에서 높은 μ'를 달성할 수 있고 또한 높은 절연성을 갖는 실리콘 산화물 피복 철분 및 이의 제조 방법을 제공하는 것이다.
[해결 수단] 1질량% 이상 40질량% 이하의 물을 포함하는 물과 유기물의 혼합 용매 중에, 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자로 이루어진 철분을 분산시킨 슬러리에 실리콘 알콕사이드를 첨가한 후, 당해 실리콘 알콕사이드의 가수분해 촉매를 첨가하여 실리콘 산화물 피복을 행함으로써, 고주파 대역에서 높은 μ'를 갖고 또한 고 절연성인 실리콘 산화물 피복 철분이 얻어진다.[Problem] To provide a silicon oxide-coated iron powder having a small particle diameter, high µ'in a high frequency band, and high insulating property, and a method for producing the same.
[Solution means] Disperse iron powder composed of iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less in a mixed solvent of water and organic material containing 1% by mass or more and 40% by mass or less of water. After adding the silicon alkoxide to the slurry, a silicon oxide-coated iron powder having a high μ'in a high frequency band and highly insulating is obtained by adding a catalyst for hydrolysis of the silicon alkoxide to coat the silicon oxide.
Description
본 발명은, 인덕터용 압분 자심의 제조에 적합한, 실리콘 산화물 피복 철분(鐵粉) 및 이의 제조 방법, 및 이를 사용한 인덕터용 성형체 및 인덕터에 관한 것이다.The present invention relates to a silicon oxide-coated iron powder and a method for producing the same, and a molded article for an inductor and an inductor using the same, which are suitable for manufacturing a green powder core for an inductor.
자성체인 철계 금속의 분말은, 종래, 압분체로서 성형되어, 인덕터의 자심으로 사용되고 있다. 철계 금속의 예로서는, Si나 B를 다량으로 포함하는 Fe계 비정질 합금(특허문헌 1)이나 Fe-Si-Al계의 센더스트, 퍼멀로이(특허문헌 2) 등의 철계 합금의 분말이나 카보닐 철분(비특허문헌 1) 등이 알려져 있다. 또한, 이러한 철계 금속분은 유기 수지와 복합화하여 도료로 하여, 표면 실장형의 코일 부품의 제조에도 사용되고 있다(특허문헌 2).Powders of iron-based metals, which are magnetic, are conventionally molded as green compacts and used as magnetic cores of inductors. Examples of iron-based metals include powders of iron-based alloys such as Fe-based amorphous alloys containing a large amount of Si or B (Patent Document 1), Fe-Si-Al-based Sendust, and Permalloy (Patent Document 2), or carbonyl iron powder ( Non-patent literature 1) and the like are known. Further, such iron-based metal powder is compounded with an organic resin to form a paint, and is also used in the manufacture of a surface-mounted coil component (Patent Document 2).
인덕터 중의 하나인 전원계 인덕터는 최근 고주파화가 진행되고 있어, 100MHz 이상의 고주파에서 사용 가능한 인덕터가 요구되고 있다. 고주파 대역용의 인덕터의 제조 방법으로서, 예를 들면 특허문헌 3에는, 큰 입자 직경의 철계 금속분, 중간 입자 직경의 철계 금속분에 미소 입자 직경의 니켈계 금속분을 혼합한 자성체 조성물을 사용한 인덕터 및 이의 제조 방법이 개시되어 있다. 여기서 미소 입자 직경의 니켈계 금속분을 혼합하는 것은, 입자 직경이 상이한 가루를 혼합함으로써 자성체의 충전도를 향상시키고, 결과로써 인덕터의 투자율(透磁率)을 높이기 위한 것이다. 그러나, 특허문헌 3에 개시된 기술에서는, 상이한 입자 직경의 자성체를 혼합함으로써 압분체의 충전율은 증가하지만, 최종적으로 얻어지는 인덕터의 투자율의 증가는 적다는 문제가 있었다.Power-based inductors, which are one of the inductors, have recently been increased in high frequency, and thus an inductor usable at a high frequency of 100 MHz or higher is required. As a method of manufacturing an inductor for a high frequency band, for example, in Patent Document 3, an inductor using a magnetic composition obtained by mixing a large particle diameter iron-based metal powder, a medium particle diameter iron-based metal powder, and a fine particle diameter nickel-based metal powder, and manufacturing the same The method is disclosed. Mixing the nickel-based metal powder having a fine particle diameter here is to improve the degree of filling of the magnetic body by mixing powders with different particle diameters, and as a result, to increase the magnetic permeability of the inductor (透磁率). However, in the technique disclosed in Patent Literature 3, there is a problem that the filling rate of the green compact is increased by mixing magnetic bodies of different particle diameters, but the increase in the magnetic permeability of the finally obtained inductor is small.
인덕터용 연자성 분말은, 일반적으로, 절연물을 피복하여 사용한다. 절연물을 피복한 연자성 분말의 제조 방법에는, 예를 들면 특허문헌 4가 있지만, 특허문헌 4에서 얻어지는 절연물 피복 연자성 분말은, 피복층 층의 평균 막 두께가 크고, 자성 분말의 압분 밀도가 저하되므로 자기 특성이 악화된다는 문제가 있었다.In general, soft magnetic powder for inductors is used by covering an insulating material. As a method for producing a soft magnetic powder coated with an insulating material, there is, for example, Patent Document 4, but the insulating material coated soft magnetic powder obtained in Patent Document 4 has a large average film thickness of the coating layer and the powder density of the magnetic powder decreases. There was a problem that magnetic properties deteriorated.
특허문헌 3의 기술에 의해 얻어지는 인덕터의 투자율이 그다지 높아지지 않는 것은, 니켈계 금속분의 투자율이, 철계 금속분의 투자율과 비교하여 낮기 때문인 것으로 생각된다. 따라서, 니켈계 금속보다도 투자율이 높은 미소 입자 직경의 철분을 혼합함으로써, 투자율이 높은 인덕터가 얻어지는 것으로 기대된다. 그러나, 종래, 평균 입자 직경이 0.8㎛ 이하의 미소 입자 직경의 철분이 아닌, 인덕터의 투자율 향상에는 한계가 있었다.It is considered that the reason why the permeability of the inductor obtained by the technique of Patent Document 3 is not so high is that the permeability of the nickel-based metal powder is lower than that of the iron-based metal powder. Therefore, it is expected that an inductor having a high magnetic permeability can be obtained by mixing iron powder having a fine particle diameter having a higher magnetic permeability than that of a nickel-based metal. However, conventionally, there is a limitation in improving the permeability of an inductor other than iron powder having an average particle diameter of 0.8 µm or less.
본 출원인은 우선, 일본 특허 출원 2017-134617호에서, 입자 직경 0.25 내지 0.80㎛, 축 비(軸比) 1.5 이하로서, 100MHz에서의 투자율 μ'가 높은 철분 및 실리콘 산화물 피복 철분 및 이의 제조 방법을 개시하였다. 상기 출원에 개시된 제조 방법에서, 인 함유 이온을 공존시킨 습식법에 의해 철분을 제조하지만, 이때, 인을 소량 함유하는 실리콘 산화물로 피복된 철분이 얻어진다. 그러나, 상기의 인을 소량 함유하는 실리콘 산화물로 피복된 철분의 경우에는 절연성이 낮다는 문제점이 있었다.First, in Japanese Patent Application No. 2017-134617, the applicant of the present invention describes iron powder and silicon oxide-coated iron powder having a particle diameter of 0.25 to 0.80 µm and an axis ratio of 1.5 or less and having a high magnetic permeability μ'at 100 MHz, and a method for manufacturing the same. Started. In the manufacturing method disclosed in the above application, iron powder is prepared by a wet method in which phosphorus-containing ions are coexisted, but at this time, iron powder coated with silicon oxide containing a small amount of phosphorus is obtained. However, in the case of iron powder coated with silicon oxide containing a small amount of phosphorus, there is a problem in that the insulating property is low.
본 발명은, 상기의 문제점을 감안하여, 입자 직경이 작고, 고주파 대역에서 높은 μ'를 달성할 수 있고 또한 높은 절연성을 갖는 실리콘 산화물 피복 철분 및 이의 제조 방법을 제공하는 것을 목적으로 한다.In view of the above problems, an object of the present invention is to provide a silicon oxide-coated iron powder having a small particle diameter, a high µ'in a high frequency band, and a high insulating property, and a method for producing the same.
상기의 목적을 달성하기 위해, 본 발명에서는, 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자의 표면이 실리콘 산화물로 피복된 실리콘 산화물 피복 철분으로서, Si 함유량이 1.0질량% 이상 10질량% 이하이고, 상기의 실리콘 산화물 피복 철분을 64MPa에서 수직으로 가압 성형하여 얻어진 압분체에 10V의 인가 전압을 가한 상태에서 측정한 압분체의 체적 저항률이 1.0×105Ωㆍcm 이상인, 실리콘 산화물 피복 철분이 제공된다.In order to achieve the above object, in the present invention, the surface of iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less is a silicon oxide-coated iron powder coated with silicon oxide, and the Si content is 1.0 mass. % Or more and 10% by mass or less, and the volume resistivity of the green compact measured while applying an applied voltage of 10V to the green compact obtained by pressing the silicon oxide-coated iron powder vertically at 64 MPa is 1.0×10 5 Ω·cm or more. , Silicon oxide coated iron is provided.
상기의 실리콘 산화물 피복 철분은, 상기 철 입자의 P 함유량이, 상기 철 입자의 질량에 대해 0.1질량% 이상 1.0질량% 이하인 것이 바람직하고, 상기의 실리콘 산화물 피복 철분을 64MPa에서 가압 성형하여 얻어진 압분체의 압분 밀도가 4.0g/㎤ 이하인 것이 바람직하다.The silicon oxide-coated iron powder preferably has a P content of the iron particles of 0.1% by mass or more and 1.0% by mass or less with respect to the mass of the iron particles, and a green powder obtained by pressing the silicon oxide-coated iron powder at 64 MPa It is preferable that the green powder density of is 4.0 g/cm 3 or less.
본 발명은, 추가로, 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자의 표면이 실리콘 산화물로 피복된 실리콘 산화물 피복 철분의 Si 함유량이 1.0질량% 이상 10질량% 이하인, 실리콘 산화물 피복 철분의 제조 방법으로서, 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자로 이루어진 철분을 준비하는 철분 제조 공정과, 상기의 공정에서 얻어진 철분을, 1질량% 이상 40질량% 이하의 물을 포함하는 물과 유기물의 혼합 용매 중에 분산시켜서 얻어진 슬러리를 보지(保持)하는 슬러리 보지 공정과, 상기의 혼합 용매에 상기 철분을 분산시켜, 보지한 슬러리에 실리콘 알콕사이드를 첨가하는 알콕사이드 첨가 공정과, 상기의 실리콘 알콕사이드를 첨가한 슬러리에 실리콘 알콕사이드의 가수분해 촉매를 첨가하여, 실리콘 산화물을 피복한 철분이 분산된 슬러리를 얻는 가수분해 촉매 첨가 공정과, 상기의 실리콘 산화물을 피복한 철분을 포함하는 슬러리를 고액 분리하여, 실리콘 산화물을 피복한 철분을 얻는 회수 공정을 포함하는, 실리콘 산화물 피복 철분의 제조 방법이 제공된다.In the present invention, the surface of the iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less has a Si content of 1.0 mass% or more and 10 mass% or less of the silicon oxide-coated iron powder coated with silicon oxide. , As a method for producing silicon oxide-coated iron powder, comprising an iron powder production step of preparing iron powder composed of iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less, and the iron powder obtained in the above step by 1 mass A slurry holding step of retaining a slurry obtained by dispersing in a mixed solvent of water and organic matter containing% or more and 40% by mass or less of water, and a silicon alkoxide in the retained slurry by dispersing the iron powder in the mixed solvent. An alkoxide addition step of adding, and a hydrolysis catalyst addition step of adding a hydrolysis catalyst of silicon alkoxide to the slurry to which the silicon alkoxide is added to obtain a slurry in which iron powder coated with silicon oxide is dispersed; and the silicon oxide There is provided a method for producing silicon oxide-coated iron powder comprising a recovery step of solid-liquid separating a slurry containing iron powder coated with a silicon oxide to obtain iron powder coated with silicon oxide.
본 발명의 제조 방법을 사용함으로써, 입자 직경이 작고, 고주파 대역에서 높은 μ'를 달성할 수 있고, 또한 높은 절연성을 갖는 실리콘 산화물 피복 철분을 제조하는 것이 가능해졌다.By using the production method of the present invention, it has become possible to produce a silicon oxide-coated iron powder having a small particle diameter, a high µ'in a high frequency band, and having high insulating properties.
[도 1] 비교예 1에 의해 얻어진 철분의 SEM 사진이다.
[도 2] 실시예 1에 의해 얻어진 철분의 SEM 사진이다.1 is a SEM photograph of iron powder obtained in Comparative Example 1.
[Fig. 2] It is a SEM photograph of iron powder obtained in Example 1. [Fig.
[철 입자][Iron particle]
본 발명의 실리콘 산화물 피복 철분의 코어가 되는 철 입자는, 이의 제조 프로세스에서 불가피하게 혼입되는 P 및 기타 불순물을 제외한, 실질적으로 순수한 철의 입자이다. 철 입자에 대해서는, 그 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고, 또한 평균 축 비가 1.5 이하인 것이 바람직하다. 이 평균 입자 직경 및 평균 축 비의 범위로 함으로써, 비로소 큰 μ'와 충분히 작은 tanδ을 양립하는 것이 가능해진다. 평균 입자 직경이 0.25㎛ 미만이면, μ'가 작아지므로 바람직하지 않다. 또한, 평균 입자 직경이 0.80㎛를 초과하면, 와전류 손실의 증대에 따라 tanδ가 높아지므로 바람직하지 않다. 보다 바람직하게는, 평균 입자 직경이 0.30㎛ 이상 0.80㎛ 이하이고, 더욱 바람직하게는 0.31㎛ 이상 0.80㎛ 이하이며, 보다 더 바람직하게는 평균 입자 직경이 0.40㎛ 이상 0.80㎛ 이하이다. 평균 축 비에 대해서는, 1.5를 초과하면, 자기 이방성의 증대에 의해 μ'가 저하되므로 바람직하지 않다. 평균 축 비에 대해서는 특별히 하한은 존재하지 않지만, 통상적으로는 1.10 이상의 것이 얻어진다. 축 비의 변동 계수는 예를 들면 0.10 이상 0.25 이하이다. 또한, 본 명세서에서는, 개개의 철 입자를 대상으로 하는 경우는 철 입자라고 표현하지만, 철 입자의 집합체의 평균적인 특성을 대상으로 하는 경우에는, 철분이라고 표현하는 경우가 있다.The iron particles used as the core of the silicon oxide-coated iron powder of the present invention are substantially pure iron particles, excluding P and other impurities that are unavoidably incorporated in the manufacturing process thereof. It is preferable that the iron particles have an average particle diameter of 0.25 µm or more and 0.80 µm or less, and an average axial ratio of 1.5 or less. By setting it as the range of this average particle diameter and the average axial ratio, it becomes possible to achieve both a large μ'and a sufficiently small tan δ. If the average particle diameter is less than 0.25 µm, µ'becomes small, which is not preferable. In addition, when the average particle diameter exceeds 0.80 µm, tan δ increases as the eddy current loss increases, which is not preferable. More preferably, the average particle diameter is 0.30 µm or more and 0.80 µm or less, still more preferably 0.31 µm or more and 0.80 µm or less, and even more preferably, the average particle diameter is 0.40 µm or more and 0.80 µm or less. About the average axial ratio, when it exceeds 1.5, since [micro]' falls due to an increase in magnetic anisotropy, it is not preferable. There is no lower limit in particular about the average axial ratio, but usually 1.10 or more is obtained. The coefficient of variation of the axial ratio is, for example, 0.10 or more and 0.25 or less. In addition, in the present specification, when an individual iron particle is targeted, it is expressed as an iron particle, but when an average characteristic of an aggregate of iron particles is targeted, it is sometimes expressed as an iron powder.
[P 함유량][P content]
본 발명의 실리콘 산화물 피복 철분의 코어가 되는 철 입자는, 후술하는 바와 같이, 습식법에 의해, 인 함유 이온의 공존하에 제조되므로, 실질적으로 P를 함유한다. 본 발명에 사용되는 철 입자에 의해 구성되는 철분 중의 평균적인 P의 함유량으로서는, 철분의 질량에 대해 0.1질량% 이상 1.0질량% 이하로 하는 것이 바람직하다. P 함유량이 이 범위를 벗어나면, 상기의 평균 입자 직경 및 평균 축 비를 겸비한 철 입자를 제조하는 것이 곤란해지므로 바람직하지 않다. P 함유량으로서는, 0.1질량% 이상 0.7질량% 이하인 것이 보다 바람직하고, 0.15질량% 이상 0.4질량% 이하인 것이 보다 더 바람직하다. P의 함유는 자기 특성 향상에 기여하지 않지만, 상기 범위의 함유이면 허용된다.The iron particles used as the core of the silicon oxide-coated iron powder of the present invention are produced in the presence of phosphorus-containing ions by a wet method, as described later, and thus substantially contain P. The average P content in the iron powder composed of the iron particles used in the present invention is preferably 0.1% by mass or more and 1.0% by mass or less with respect to the mass of the iron powder. If the P content is out of this range, it becomes difficult to produce iron particles having both the average particle diameter and the average axis ratio, which is not preferable. As P content, it is more preferable that it is 0.1 mass% or more and 0.7 mass% or less, and it is still more preferable that it is 0.15 mass% or more and 0.4 mass% or less. The content of P does not contribute to the improvement of magnetic properties, but it is allowed if it is contained within the above range.
[실리콘 산화물 피복][Silicone oxide coating]
본 발명에서는, 실리콘 알콕사이드를 사용한 습식의 피복법에 의해, 상기의 철 입자의 표면에 절연성의 실리콘 산화물을 피복한다. 실리콘 알콕사이드를 사용한 피복법은 일반적으로 졸-겔법으로 불리는 수법이며, 건식법과 비교하여 대량 생산성이 뛰어난 것이다.In the present invention, insulating silicon oxide is coated on the surface of the above iron particles by a wet coating method using silicon alkoxide. The coating method using a silicone alkoxide is a method commonly referred to as a sol-gel method, and is superior in mass productivity compared to the dry method.
실리콘 알콕사이드를 가수분해하면, 알콕시기의 일부 또는 전부가 수산기(OH기)로 치환하여, 실란올 유도체가 된다. 실란올 유도체란, 실란올기 Si-OH를 분자 구조 중에 갖는 유기 실리콘 화합물이다. 본 발명에서는, 이 실란올 유도체에 의해 상기의 철분의 표면을 피복하지만, 피복된 실란올 유도체는, 가열하면 축합 또는 중합함으로써 폴리실록산 구조를 취하고, 폴리실록산 구조를 더욱 가열하면 실리카(SiO2)가 된다. 본 발명에서, 유기물인 알콕시기의 일부가 잔존하는 실란올 유도체 피복에서부터 실리카 피복까지를 총칭하여 실리콘 산화물 피복이라고 부른다.When the silicone alkoxide is hydrolyzed, a part or all of the alkoxy group is substituted with a hydroxyl group (OH group) to obtain a silanol derivative. The silanol derivative is an organosilicon compound having a silanol group Si-OH in its molecular structure. In the present invention, this silanol derivative covers the surface of the above iron powder, but the coated silanol derivative condenses or polymerizes when heated to obtain a polysiloxane structure, and when the polysiloxane structure is further heated, it becomes silica (SiO 2 ). . In the present invention, the covering of the silanol derivative in which a part of the alkoxy group, which is an organic substance, remains, to the coating of silica are collectively referred to as silicon oxide coating.
실리콘 산화물 피복 철분에 포함되는 Si의 함유량은, 절연성을 확보하고, 또한 고주파 영역에서의 높은 투자율 μ'를 얻기 위해, 실리콘 산화물 피복 철분의 질량에 대해 1.0질량% 이상 10질량% 이하인 것이 바람직하다. 상술한 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고, 또한 평균 축 비가 1.5 이하인 철 입자를 코어로서 사용한 실리콘 산화물 피복 철분의 경우, 상기의 Si의 함유량은, 평균 막 두께로 0.5 내지 8.0nm에 상당한다.The content of Si contained in the silicon oxide-coated iron powder is preferably 1.0% by mass or more and 10% by mass or less with respect to the mass of the silicon oxide-coated iron powder in order to ensure insulation and to obtain a high magnetic permeability μ'in the high-frequency region. In the case of a silicon oxide-coated iron powder using iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less as a core, the Si content corresponds to 0.5 to 8.0 nm in terms of average film thickness. do.
실리콘 산화물 피복 철분에 포함되는 Si의 함유량이 1.0질량% 미만이면, Si 산화물 피복층 중에 결함이 많이 존재하고, 절연성을 확보하는 것이 곤란해진다. Si의 함유량이 10질량%를 초과하면, 절연성은 향상되지만, 압분 밀도가 저하하여 자기 특성이 악화되므로 바람직하지 않다. 또한, Si 함유량은, 후술하는 용해법에 의해 측정할 수 있다.When the content of Si contained in the silicon oxide-coated iron powder is less than 1.0% by mass, many defects exist in the Si oxide-coated layer, and it becomes difficult to ensure insulation. If the Si content exceeds 10% by mass, the insulating property is improved, but the green density is lowered and the magnetic properties are deteriorated, which is not preferable. In addition, Si content can be measured by the dissolution method mentioned later.
[체적 저항률][Volume resistivity]
본 발명의 실리콘 산화물 피복 철분은, 64MPa에서 수직으로 가압 성형하여 얻어진 압분체에 10V의 인가 전압을 가한 상태에서 측정한 압분체의 체적 저항률이 1.0×105Ωㆍcm 이상인 것이 바람직하다. 체적 저항률이 1.0×105Ωㆍcm 미만이면, 입자간의 절연이 충분하지 않고, 입자 사이에서 와전류의 영향으로 손실이 커져, 인덕터 등으로 했을 때의 특성이 저하되므로 바람직하지 않다. 본 발명에서, 압분체의 체적 저항률의 상한은 특별히 규정하는 것은 아니지만, 상기의 Si 함유량의 경우, 압분체의 체적 저항률로서 1.0×105 내지 1.0×109Ωㆍcm 정도의 것이 얻어진다. 또한, 실리콘 산화물 피복층의 두께를 증대하면 체적 저항률은 상승하지만, 실리콘 산화물 피복은 비자성 성분이며, 상술한 바와 같이 자기 특성이 악화된다.It is preferable that the silicon oxide-coated iron powder of the present invention has a volume resistivity of 1.0×10 5 Ω·cm or more, measured while applying an applied voltage of 10 V to a green compact obtained by pressing vertically at 64 MPa. If the volume resistivity is less than 1.0×10 5 Ω·cm, insulation between particles is not sufficient, loss increases due to the influence of eddy current between particles, and characteristics of an inductor or the like are deteriorated, which is not preferable. In the present invention, the upper limit of the volume resistivity of the green compact is not particularly defined, but in the case of the above Si content, the volume resistivity of the green compact is about 1.0×10 5 to 1.0×10 9 Ω·cm. Further, when the thickness of the silicon oxide coating layer is increased, the volume resistivity increases, but the silicon oxide coating is a non-magnetic component, and the magnetic properties deteriorate as described above.
[압분 밀도][Dust density]
본 발명의 경우, 상기의 실리콘 산화물 피복 철분을 64MPa에서 가압 성형하여 얻어진 압분체의 압분 밀도는 4.0g/㎤ 이하인 것이 바람직하다. 압분 밀도가 작은 상태에서 상기의 높은 투자율 μ'와 높은 절연성이 얻어지면, 인덕터의 경량화, 또는 단소화가 도모되기 때문이다.In the case of the present invention, the green powder density of the green compact obtained by pressing the silicon oxide-coated iron powder at 64 MPa is preferably 4.0 g/cm 3 or less. This is because, when the above-described high magnetic permeability μ'and high insulation property are obtained in a state where the green compaction density is small, the weight or shortening of the inductor can be achieved.
[철분 제조 공정][Iron manufacturing process]
본 발명의 실리콘 산화물 피복 철분의 코어가 되는 철 입자는, 상기의 일본 특허 출원 2017-134617호에 개시된 제조 방법에 의해 제조할 수 있다. 상기의 출원에 개시된 제조 방법은, 인 함유 이온의 존재하에 습식법에 의해 행하는 것이 특징이며, 크게 나누어 3종의 실시형태가 있지만, 어느 실시형태를 사용해도, 상기의 코어가 되는, 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자에 의해 구성되는 철분을 얻을 수 있다.The iron particles used as the core of the silicon oxide-coated iron powder of the present invention can be produced by the production method disclosed in Japanese Patent Application No. 2017-134617 described above. The manufacturing method disclosed in the above application is characterized in that it is performed by a wet method in the presence of phosphorus-containing ions, and there are three types of embodiments broadly divided, but no matter which embodiment is used, the average particle diameter which becomes the above core is It is possible to obtain an iron powder composed of iron particles having an average axis ratio of 0.25 µm or more and 0.80 µm or less and having an average axis ratio of 1.5 or less.
[출발 물질][Starting material]
본 발명의 철분 제조 공정에서는, 실리콘 산화물 피복 철분의 전구체인 실리콘 산화물 피복 산화철분의 출발 물질로서 3가의 Fe 이온을 포함하는 산성의 수용액(이하, 원료 용액이라고 한다)을 사용한다. 만약, 출발 물질로서 3가의 Fe 이온 대신에 2가의 Fe 이온을 사용하는 경우, 침전물로서 3가의 철의 수화 산화물 외에 2가의 철의 수화 산화물이나 마그네타이트 등도 포함하는 혼합물이 생성되고, 최종적으로 얻어지는 철 입자의 형상이 불균일해지므로, 본 발명과 같은 철분 및 실리콘 산화물 피복 철분을 얻을 수 없다. 여기서, 산성이란 용액의 pH가 7 미만인 것을 가리킨다. 이러한 Fe 이온 공급원으로는, 입수의 용이성 및 가격의 면에서, 질산염, 황산염, 염화물과 같은 수용성의 무기산염을 사용하는 것이 바람직하다. 이러한 Fe 염을 물에 용해하면, Fe 이온이 가수분해하여, 수용액은 산성을 나타낸다. 이 Fe 이온을 포함하는 산성 수용액에 알칼리를 첨가하여 중화하면, 철의 수화 산화물의 침전물이 얻어진다. 여기서, 철의 수화 산화물은 일반식 Fe2O3·nH2O로 표시되는 물질로, n=1이면 FeOOH(옥시수산화철), n=3이면 Fe(OH)3(수산화철)이다.In the iron powder production process of the present invention, an acidic aqueous solution containing trivalent Fe ions (hereinafter referred to as a raw material solution) is used as a starting material for silicon oxide-coated iron oxide powder, which is a precursor of silicon oxide-coated iron powder. If divalent Fe ions are used instead of trivalent Fe ions as a starting material, a mixture containing divalent iron hydrated oxides or magnetite in addition to trivalent iron hydration oxides as precipitates is produced, and finally obtained iron particles Since the shape of is uneven, the iron powder and silicon oxide-coated iron powder similar to the present invention cannot be obtained. Here, acidic refers to that the pH of the solution is less than 7. As such an Fe ion source, it is preferable to use a water-soluble inorganic acid salt such as nitrate, sulfate, or chloride from the viewpoint of availability and price. When such an Fe salt is dissolved in water, Fe ions are hydrolyzed, and the aqueous solution exhibits acidity. When alkali is added and neutralized to the acidic aqueous solution containing Fe ions, a precipitate of a hydrated oxide of iron is obtained. Here, the hydrated oxide of iron is a substance represented by the general formula Fe 2 O 3 ·nH 2 O, and when n=1, it is FeOOH (iron oxyhydroxide), and when n=3, it is Fe(OH) 3 (iron hydroxide).
원료 용액 중의 Fe 이온 농도는, 본 발명은 특별히 규정하는 것은 아니지만, 0.01mol/L 이상 1mol/L 이하가 바람직하다. 0.01mol/L 미만이면 1회의 반응에서 얻어지는 침전물의 양이 적고, 경제적으로 바람직하지 않다. Fe 이온 농도가 1mol/L를 초과하면, 급속한 수화 산화물의 침전 발생에 의해, 반응 용액이 겔화하기 쉬워지므로 바람직하지 않다.The concentration of Fe ions in the raw material solution is not particularly defined in the present invention, but is preferably 0.01 mol/L or more and 1 mol/L or less. If it is less than 0.01 mol/L, the amount of precipitate obtained in one reaction is small, which is not economically preferable. When the Fe ion concentration exceeds 1 mol/L, the reaction solution is liable to gel due to rapid precipitation of hydrated oxides, which is not preferable.
[인 함유 이온][Phosphorus-containing ions]
본 발명의 철분 제조 공정은, 상기의 철의 수화 산화물의 침전물 생성시에 인 함유 이온을 공존시키거나, 가수분해 생성물 피복을 위해 실란 화합물을 첨가하는 사이에 인 함유 이온을 첨가한다. 어느 경우에도, 실란 화합물 피복시에는 인 함유 이온이 계 내에 공존하고 있다. 인 함유 이온의 공급원으로서, 인산이나 인산암모늄이나 인산Na 및 이들의 1수소염, 2수소염 등의 가용성 인산(PO4 3-)염을 사용할 수 있다. 여기서 인산은 3염기산이고, 수용액 중에서 3단 해리하므로, 수용액 중에서는 인산 이온, 인산 2수소 이온, 인산 1수소 이온의 존재 형태를 취할 수 있지만, 그 존재 형태는 인산 이온의 공급원으로서 사용한 약품의 종류가 아니라, 수용액의 pH에 의해 결정되므로, 상기의 인산기를 포함하는 이온을 인산 이온이라고 총칭한다. 또한, 본 발명의 경우 인산 이온의 공급원으로서, 축합 인산인 2인산(피로인산)을 사용하는 것도 가능하다. 또한, 본 발명에서는, 인산 이온(PO4 3-) 대신에, P의 산화수가 상이한 아인산 이온(PO3 3-)이나 차아인산 이온(PO2 2-)을 사용하는 것도 가능하다. 이러한 인(P)을 포함하는 산화물 이온을 총칭하여 인 함유 이온이라고 칭한다.In the iron powder production process of the present invention, phosphorus-containing ions are added during the formation of a precipitate of the hydrated oxide of iron, or a silane compound is added to coat a hydrolysis product. In either case, when the silane compound is coated, phosphorus-containing ions coexist in the system. As a source of phosphorus-containing ions, soluble phosphoric acid (PO 4 3- ) salts such as phosphoric acid, ammonium phosphate, Na phosphate, and monohydrogen salts and dihydrogen salts thereof can be used. Here, phosphoric acid is a tribasic acid, and since it dissociates in three stages in an aqueous solution, the presence of phosphate ions, phosphate dihydrogen ions, and monohydrogen phosphate ions can take the form of presence in the aqueous solution, but the present form is that of the drug used as a source of phosphate ions. Since it is determined not by the type but by the pH of the aqueous solution, the ions containing the above phosphate groups are collectively referred to as phosphate ions. Further, in the case of the present invention, it is also possible to use diphosphate (pyrophosphoric acid), which is condensed phosphoric acid, as a source of phosphate ions. In addition, in the present invention, instead of the phosphate ion (PO 4 3- ), it is also possible to use a phosphorous acid ion (PO 3 3- ) or a hypophosphorous acid ion (PO 2 2- ) having different oxidation numbers of P. Such oxide ions containing phosphorus (P) are collectively referred to as phosphorus-containing ions.
원료 용액에 첨가하는 인 함유 이온의 양은, 원료 용액 중에 포함되는 전체 Fe 몰량에 대한 몰 비(P/Fe 비)로 0.003 이상 0.1 이하인 것이 바람직하다. P/Fe 비가 0.003 미만이면, 실리콘 산화물 피복 산화철분 중에 포함되는 산화철분의 평균 입자 직경을 증대시키는 효과가 불충분하고, P/Fe 비가 0.1을 초과하면, 이유는 불분명하지만, 입자 직경을 증대시키는 효과가 얻어지지 않는다. 보다 바람직한 P/Fe 비의 값은 0.005 이상 0.05 이하이다.The amount of phosphorus-containing ions added to the raw material solution is preferably 0.003 or more and 0.1 or less in terms of a molar ratio (P/Fe ratio) to the total molar amount of Fe contained in the raw material solution. When the P/Fe ratio is less than 0.003, the effect of increasing the average particle diameter of the iron oxide powder contained in the silicon oxide-coated iron oxide powder is insufficient, and when the P/Fe ratio exceeds 0.1, the reason is unclear, but the effect of increasing the particle diameter. Is not obtained. A more preferable value of the P/Fe ratio is 0.005 or more and 0.05 or less.
인 함유 이온을 공존시킴으로써, 상술한 평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자가 얻어지는 기구는 불분명하지만, 본 발명자 등은, 후술하는 실리콘 산화물 피복층이 인 함유 이온을 함유하므로, 그 물성이 변화하기 때문인 것으로 추정하고 있다.The mechanism by which phosphorus-containing ions are coexisted to obtain iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less is unclear, but the present inventors and others believe that the silicon oxide coating layer described later contains phosphorus-containing ions. Since it contains, it is presumed that this is because the physical properties change.
또한, 상술한 바와 같이, 원료 용액에 인 함유 이온을 첨가하는 시기는, 후술하는 중화 처리의 전, 중화 처리 후 실리콘 산화물 피복을 행하기 전, 실란 화합물을 첨가하는 동안 중 언제라도 상관 없다.In addition, as described above, the timing of adding phosphorus-containing ions to the raw material solution may be any time before the neutralization treatment described later, before the silicon oxide coating after the neutralization treatment, or during the addition of the silane compound.
[중화 처리][Neutralization treatment]
본 발명의 철분 제조 공정의 제1 실시형태에서, 공지의 기계적 수단에 의해 교반하면서 인 함유 이온을 포함하는 원료 용액에 알칼리를 첨가하고, 그 pH가 7 이상 13 이하가 될 때까지 중화하여 철의 수화 산화물의 침전물을 생성한다. 또한, 후술하는 실시예에 있어서는, 주로 이 제1 실시형태에 기초하여 설명을 행한다.In the first embodiment of the iron powder production process of the present invention, an alkali is added to the raw material solution containing phosphorus-containing ions while stirring by a known mechanical means, and the pH is neutralized until the pH is 7 or more and 13 or less. A precipitate of hydrated oxide is formed. In addition, in Examples described later, explanation is mainly based on this first embodiment.
중화 후의 pH가 7 미만이면, 철 이온이 철의 수화 산화물로서 침전하지 않기 때문에 바람직하지 않다. 중화 후의 pH가 13을 초과하면, 후술의 실리콘 산화물 피복 공정에서 첨가하는 실란 화합물의 가수분해가 빠르고, 실란 화합물의 가수분해 생성물의 피복이 불균일해지므로, 역시 바람직하지 않다.If the pH after neutralization is less than 7, it is not preferable because iron ions do not precipitate as hydrated oxides of iron. If the pH after neutralization exceeds 13, the hydrolysis of the silane compound added in the silicon oxide coating step described later becomes rapid, and the coating of the hydrolysis product of the silane compound becomes uneven, which is also not preferable.
또한, 본 발명의 제조 방법에 있어서, 인 함유 이온을 포함하는 원료 용액을 알칼리로 중화함에 있어서는, 인 함유 이온을 포함하는 원료 용액에 알칼리를 첨가하는 방법 이외에, 알칼리에 인 함유 이온을 포함하는 원료 용액을 첨가하는 방법을 채용해도 좋다.In the production method of the present invention, in neutralizing the raw material solution containing phosphorus-containing ions with alkali, in addition to the method of adding alkali to the raw material solution containing phosphorus-containing ions, raw materials containing phosphorus-containing ions in alkali A method of adding a solution may be employed.
또한, 본 명세서에 기재된 pH의 값은, JIS Z8802에 기초하여, 유리 전극을 사용하여 측정하였다. pH 표준액으로서, 측정하는 pH 영역에 따른 적절한 완충액을 사용하여 교정한 pH계에 의해 측정한 값을 말한다. 또한, 본 명세서에 기재된 pH는, 온도 보상 전극에 의해 보상된 pH계가 나타내는 측정값을, 반응 온도 조건하에 직접 판독한 값이다.In addition, the value of pH described in this specification was measured using a glass electrode based on JIS Z8802. As a pH standard solution, it refers to a value measured by a pH meter calibrated using an appropriate buffer solution according to the pH range to be measured. In addition, the pH described in the present specification is a value obtained by directly reading a measurement value indicated by a pH meter compensated by a temperature compensation electrode under reaction temperature conditions.
중화에 사용하는 알칼리로서는, 알칼리 금속 또는 알칼리 토금속의 수산화물, 암모니아수, 탄산수소암모늄 등의 암모늄염 중 어느 것이라도 좋지만, 최종적으로 열처리하여 철의 수화 산화물의 침전물을 철 산화물로 했을 때에 불순물이 남기 어려운 암모니아수나 탄산수소암모늄을 사용하는 것이 바람직하다. 이러한 알칼리는, 출발 물질의 수용액에 고체로 첨가해도 상관없지만, 반응의 균일성을 확보하는 관점에서는, 수용액의 상태로 첨가하는 것이 바람직하다.The alkali used for neutralization may be any of an ammonium salt such as an alkali metal or alkaline earth metal hydroxide, ammonia water, or ammonium hydrogen carbonate, but ammonia water that is unlikely to remain impurities when the precipitate of iron hydrated oxide is finally heat treated. It is preferable to use ammonium hydrogen carbonate. Such an alkali may be added as a solid to the aqueous solution of the starting material, but from the viewpoint of securing the uniformity of the reaction, it is preferably added in the form of an aqueous solution.
중화 반응의 종료 후, 침전물을 포함하는 슬러리를 교반하면서 그 pH로 5min 내지 24h 보지하고, 침전물을 숙성시킨다.After completion of the neutralization reaction, the slurry containing the precipitate is maintained at the pH for 5 min to 24 h while stirring, and the precipitate is aged.
본 발명의 제조 방법에 있어서는, 중화 처리시의 반응 온도는 특별히 규정하는 것은 아니지만, 10℃ 이상 90℃ 이하로 하는 것이 바람직하다. 반응 온도가 10℃ 미만, 또는 90℃ 초과에서는 온도 조정에 필요한 에너지 비용을 고려하면 바람직하지 않다.In the production method of the present invention, the reaction temperature during the neutralization treatment is not particularly defined, but it is preferably 10°C or more and 90°C or less. When the reaction temperature is less than 10°C or more than 90°C, it is not preferable considering the energy cost required for temperature adjustment.
본 발명의 제조 방법의 제2 실시형태에서, 공지의 기계적 수단에 의해 교반하면서 원료 용액에 알칼리를 첨가하고, 그 pH가 7 이상 13 이하가 될 때 까지 중화하여 철의 수화 산화물 물건의 침전물을 생성한 후, 침전물을 숙성시키는 과정에서 침전물을 포함하는 슬러리에 인 함유 이온을 첨가한다. 인 함유 이온의 첨가 시기는, 침전물 생성의 직후라도 숙성의 도중이라도 상관 없다. 또한, 제2 실시형태에서의 침전물의 숙성 시간 및 반응 온도는, 제1 실시형태의 것 등과 동일하다.In the second embodiment of the production method of the present invention, an alkali is added to the raw material solution while stirring by a known mechanical means, and the pH is neutralized until the pH is 7 or more and 13 or less to form a precipitate of a hydrated oxide product of iron. After that, in the process of aging the precipitate, phosphorus-containing ions are added to the slurry containing the precipitate. The timing of addition of the phosphorus-containing ions may be immediately after formation of a precipitate or during aging. In addition, the aging time and reaction temperature of the precipitate in the second embodiment are the same as those in the first embodiment.
본 발명의 제조 방법의 제3 실시형태에서, 공지의 기계적 수단에 의해 교반하면서 원료 용액에 알칼리를 첨가하고, 그 pH가 7 이상 13 이하가 될 때 까지 중화하여 철의 수화 산화물의 침전물을 생성한 후, 침전물을 숙성시킨다. 이 실시형태에 있어서, 인 함유 이온은 실리콘 산화물 피복을 행할 때에 첨가한다.In the third embodiment of the production method of the present invention, an alkali is added to the raw material solution while stirring by a known mechanical means, and the pH is neutralized until the pH is 7 or more and 13 or less to produce a precipitate of hydrated oxide of iron. Then, the precipitate is aged. In this embodiment, phosphorus-containing ions are added when silicon oxide coating is performed.
[실란 화합물의 가수분해 생성물에 의한 피복][Coating by hydrolysis product of silane compound]
본 발명의 철분 제조 공정에서, 상기까지의 공정에서 생성된 철의 수화 산화물의 침전물에 실란 화합물의 가수분해 생성물의 피복을 실시한다. 실란 화합물의 가수분해 생성물의 피복법으로서는, 이른바 졸-겔법을 적용하는 것이 바람직하다.In the iron powder production process of the present invention, the hydrolysis product of the silane compound is coated on the precipitate of the hydrated oxide of iron produced in the above process. It is preferable to apply a so-called sol-gel method as a coating method for the hydrolysis product of the silane compound.
졸-겔법의 경우, 철의 수화 산화물의 침전물의 슬러리에, 가수분해기를 갖는 실리콘 화합물, 예를 들면 테트라에톡시실란(TEOS), 테트라메톡시실란(TMOS)이나, 각종의 실란커플링제 등의 실란 화합물을 첨가하여 교반 하에서 가수분해 반응을 생기(生起)시켜, 생성된 실란 화합물의 가수분해 생성물에 의해 철의 수화 산화물의 침전물의 표면을 피복한다. 또한, 그 때, 산 촉매, 알칼리 촉매를 첨가해도 상관 없지만, 처리 시간을 고려하면 그러한 촉매를 첨가하는 것이 바람직하다. 대표적인 예로서 산 촉매로는 염산, 알칼리 촉매로는 암모니아가 된다. 산 촉매를 사용하는 경우에는, 철의 수화 산화물의 침전물이 용해되지 않는 양의 첨가로 고정할 필요가 있다.In the case of the sol-gel method, a silicon compound having a hydrolyzable group, such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), various silane coupling agents, etc. A silane compound is added to cause a hydrolysis reaction under stirring, and the surface of a precipitate of a hydrated oxide of iron is coated with a hydrolysis product of the resulting silane compound. In that case, although an acid catalyst and an alkali catalyst may be added, it is preferable to add such a catalyst in consideration of the treatment time. As a representative example, hydrochloric acid is used as an acid catalyst and ammonia is used as an alkali catalyst. In the case of using an acid catalyst, it is necessary to fix it in an amount in which the precipitate of the hydrated oxide of iron is not dissolved.
실란 화합물의 가수분해 생성물에 의한 피복에 대한 구체적 수법은, 공지 프로세스에서의 졸-겔법과 동일하게 할 수 있고, 원료 용액에 주입한 3가의 Fe 이온의 전체 몰수와, 슬러리에 적하하는 실리콘 화합물에 포함되는 Si의 전체 몰수의 비(Si/Fe비)는 0.05 이상 0.5 이하로 한다. 실란 화합물의 가수분해 생성물 피복의 반응 온도로서는 20℃ 이상 60℃ 이하, 반응 시간으로서는 1h 이상 20h 이하 정도이다.The specific method for coating the silane compound with the hydrolysis product can be the same as the sol-gel method in a known process, and the total number of moles of trivalent Fe ions injected into the raw material solution, and the silicon compound added dropwise to the slurry. The ratio of the total number of moles of Si contained (Si/Fe ratio) is set to be 0.05 or more and 0.5 or less. The reaction temperature for coating the hydrolysis product of the silane compound is 20°C or more and 60°C or less, and the reaction time is about 1h or more and 20h or less.
본 발명의 철분 제조 공정의 제3 실시형태에서, 상기의 중화 후의 숙성에 의해 얻어진 철의 수화 산화물의 침전물을 포함하는 슬러리에, 상기의 가수분해기를 갖는 실리콘 화합물의 첨가 개시부터 첨가 종료까지의 사이에, 인 함유 이온을 동시에 첨가한다. 인 함유 이온의 첨가 시기는, 가수분해기를 갖는 실리콘 산화물의 첨가 개시와 동시, 또는 첨가 종료와 동시라도 상관 없다.In the third embodiment of the iron powder production process of the present invention, between the start of addition of the silicon compound having a hydrolyzable group to the end of the addition to the slurry containing the precipitate of the hydrated oxide of iron obtained by aging after neutralization. To, phosphorus-containing ions are simultaneously added. The timing of addition of the phosphorus-containing ions may be at the same time as the start of the addition of the silicon oxide having a hydrolyzable group or the same time as the addition of the silicon oxide.
[침전물의 회수][Recovery of sediment]
상기의 공정에 의해 얻어진 슬러리로부터, 실란 화합물의 가수분해 생성물을 피복한 철의 수화 산화물의 침전물을 분리한다. 고액 분리 수단으로서는, 여과, 원심 분리, 데칸테이션 등의 공지의 고액 분리 수단을 사용할 수 있다. 고액 분리시에는, 응집제를 첨가하여 고액 분리해도 상관 없다. 계속해서, 고액 분리하여 얻어진 실란 화합물의 가수분해 생성물을 피복한 철의 수화 산화물의 침전물을 세정한 후, 다시 고액 분리하는 것이 바람직하다. 세정 방법은 리펄프 세정 등의 공지의 세정 수단을 사용할 수 있다. 최종적으로 회수된 실란 화합물의 가수분해 생성물을 피복한 철의 수화 산화물의 침전물에 건조 처리를 실시한다. 또한, 당해 건조 처리는, 침전물에 부착된 수분을 제거하는 것을 목적으로 한 것이며, 물의 비점 이상의 110℃ 정도의 온도에서 행해도 상관 없다.A precipitate of a hydrated oxide of iron coated with a hydrolysis product of a silane compound is separated from the slurry obtained by the above process. As the solid-liquid separation means, known solid-liquid separation means such as filtration, centrifugation and decantation can be used. In the case of solid-liquid separation, a coagulant may be added to separate solid-liquid. Subsequently, after washing the precipitate of the hydrated oxide of iron coated with the hydrolysis product of the silane compound obtained by solid-liquid separation, it is preferable to perform solid-liquid separation again. As the cleaning method, known cleaning means such as repulp cleaning can be used. A drying treatment is performed on the precipitate of hydrated oxide of iron coated with the hydrolysis product of the finally recovered silane compound. In addition, this drying treatment is aimed at removing moisture adhering to the precipitate, and may be performed at a temperature of about 110°C above the boiling point of water.
[가열 처리][Heat treatment]
본 발명의 철분 제조 공정에서, 상기의 실란 화합물의 가수분해 생성물을 피복한 철의 수화 산화물의 침전물을 가열 처리함으로써 실리콘 산화물 피복 철분의 전구체인 실리콘 산화물 피복 산화철분을 얻는다. 가열 처리의 분위기 중은 특별히 규정하는 것은 아니지만, 대기 분위기로 상관 없다. 가열은 대략 500℃ 이상 1500℃ 이하의 범위에서 행할 수 있다. 가열 처리 온도가 500℃ 미만이면 입자가 충분히 성장하지 않으므로 바람직하지 않다. 1500℃를 초과하면 필요 이상의 입자 성장이나 입자의 소결이 일어나므로 바람직하지 않다. 가열 시간은 10min 내지 24h의 범위에서 조정하면 좋다. 당해 가열 처리에 의해, 철의 수화 산화물은 철 산화물로 변화한다. 가열 처리 온도는 바람직하게는 800℃ 이상 1250℃ 이하, 보다 바람직하게는 900℃ 이상 1150℃ 이하이다. 또한, 당해 열처리시, 철의 수화 산화물의 침전을 피복하는 실란 화합물의 가수분해 생성물도 실리콘 산화물로 변화한다. 당해 실리콘 산화물 피복층은, 철의 수화 산화 침전끼리의 가열 처리시의 소결을 방지하는 작용도 갖고 있다.In the iron powder production process of the present invention, a precipitate of a hydrated oxide of iron coated with the hydrolysis product of the silane compound is heat treated to obtain a silicon oxide-coated iron oxide powder, which is a precursor of a silicon oxide-coated iron powder. Although it does not specifically define in the atmosphere of heat treatment, it does not matter with an atmospheric atmosphere. Heating can be performed in the range of approximately 500°C or more and 1500°C or less. If the heat treatment temperature is less than 500°C, the particles do not grow sufficiently, which is not preferable. If it exceeds 1500°C, it is not preferable because more than necessary particle growth or sintering of particles occurs. The heating time may be adjusted within the range of 10 min to 24 h. By this heat treatment, the hydrated oxide of iron changes to an iron oxide. The heat treatment temperature is preferably 800°C or more and 1250°C or less, and more preferably 900°C or more and 1150°C or less. In addition, during the heat treatment, the hydrolysis product of the silane compound that coats the precipitation of the hydrated oxide of iron also changes to silicon oxide. The silicon oxide coating layer also has an effect of preventing sintering during heat treatment between the hydration and oxidation precipitation of iron.
[환원 열처리][Reduction heat treatment]
본 발명의 철분 제조 공정에서, 상기의 공정에서 얻어진 전구체인 실리콘 산화물 피복 산화철분을 환원 분위기 중에서 열처리함으로써, 실리콘 산화물 피복 철분이 얻어진다. 환원 분위기를 형성하는 가스로서는, 수소 가스나 수소 가스와 불활성 가스의 혼합 가스를 들 수 있다. 환원 열처리의 온도는 300℃ 이상 1000℃ 이하의 범위로 할 수 있다. 환원 열처리 온도가 300℃ 미만이면 산화철의 환원이 불충분해지므로 바람직하지 않다. 1000℃를 초과하면 환원의 효과가 포화한다. 가열 시간은 10 내지 120min의 범위에서 조정하면 좋다.In the iron powder production process of the present invention, silicon oxide-coated iron powder is obtained by heat-treating the silicon oxide-coated iron oxide powder, which is a precursor obtained in the above process, in a reducing atmosphere. Examples of the gas forming the reducing atmosphere include hydrogen gas or a mixed gas of hydrogen gas and inert gas. The temperature of the reduction heat treatment can be in the range of 300°C or more and 1000°C or less. If the reduction heat treatment temperature is less than 300°C, the reduction of iron oxide becomes insufficient, which is not preferable. If it exceeds 1000°C, the effect of reduction is saturated. The heating time may be adjusted in the range of 10 to 120 min.
[안정화 처리][Stabilization treatment]
통상, 환원 열처리에 의해 얻어지는 철분은, 그 표면이 화학적으로 매우 활성이기 때문에, 서산화(徐酸化)에 의한 안정화 처리를 실시하는 경우가 많다. 본 발명의 철분 제조 공정 방법으로 얻어지는 철분은, 그 표면이 화학적으로 불활성인 실리콘 산화물로 피복되어 있지만, 표면의 일부가 피복되어 있지 않은 경우도 있기 때문에, 바람직하게는 안정화 처리를 실시하여, 철분 표면의 노출부에 산화 보호층을 형성한다. 안정화 처리의 수순으로서, 일례로서 이하의 수단을 들 수 있다.Usually, since the surface of iron powder obtained by reduction heat treatment is chemically very active, a stabilization treatment by slow oxidation is often performed. The iron powder obtained by the iron powder manufacturing process method of the present invention is coated with a chemically inert silicon oxide, but a part of the surface is not covered. Therefore, a stabilization treatment is preferably applied to the iron powder surface. An oxide protective layer is formed on the exposed portion of the. As a procedure of stabilization treatment, the following means can be mentioned as an example.
환원 열처리 후의 실리콘 산화물 피복 철분이 노출되는 분위기를 환원 분위기에서 불활성 가스 분위기로 치환한 후, 당해 분위기 중의 산소 농도를 서서히 증대시키면서 20 내지 200℃, 보다 바람직하게는 60 내지 100℃에서 상기 노출부의 산화 반응을 진행시킨다. 불활성 가스로서는, 희가스 및 질소 가스에서 선택되는 1종 이상의 가스 성분을 적용할 수 있다. 산소 함유 가스로서는, 순산소 가스나 공기를 사용할 수 있다. 산소 함유 가스와 함께, 수증기를 도입해도 좋다. 실리콘 산화물 피복 철분을 20 내지 200℃, 바람직하게는 60 내지 100℃로 보지할 때의 산소 농도는, 최종적으로는 0.1 내지 21체적%로 한다. 산소 함유 가스의 도입은 연속으로 또는 간헐적으로 행할 수 있다. 안정화 공정의 초기의 단계에서, 산소 농도가 1.0체적% 이하인 시간을 5min 이상 보지하는 것이 보다 바람직하다.After the atmosphere in which the silicon oxide-coated iron powder is exposed after the reduction heat treatment is replaced with an inert gas atmosphere in the reducing atmosphere, oxidation of the exposed portion at 20 to 200°C, more preferably 60 to 100°C, gradually increasing the oxygen concentration in the atmosphere. The reaction proceeds. As the inert gas, at least one gas component selected from rare gas and nitrogen gas can be applied. As the oxygen-containing gas, pure oxygen gas or air can be used. Water vapor may be introduced together with the oxygen-containing gas. When the silicon oxide-coated iron powder is held at 20 to 200°C, preferably at 60 to 100°C, the oxygen concentration is finally set at 0.1 to 21% by volume. The oxygen-containing gas can be introduced continuously or intermittently. In the initial stage of the stabilization process, it is more preferable to hold the time when the oxygen concentration is 1.0 vol% or less for 5 min or more.
[실리콘 산화물 피복의 용해 처리][Dissolution treatment of silicon oxide coating]
상술한 일련의 처리에 의해 얻어진 실리콘 산화물 피복 철분은, 예를 들어, 인덕터용 재료로서, 만족하는 가압 성형을 할 수 없다. 또한, 지금까지의 실리콘 산화물은 상기와 같이 반응에 의해 철분을 얻기 위한 조제(助劑)이며, 후술의 피복막과는 기능적으로 다른 것이다. 한번 실리콘 산화물 피복층을 알칼리 수용액 중에서 용해 제거하여, 무(無)피복의 철분을 얻은 후, 그 철분에 다시 고절연성의 실리콘 산화물 피복을 행할 필요가 있다.The silicon oxide-coated iron powder obtained by the series of treatments described above is, for example, a material for an inductor, and satisfactory pressure molding cannot be performed. In addition, the conventional silicon oxide is an aid for obtaining iron powder by reaction as described above, and is functionally different from the coating film described later. Once the silicon oxide coating layer is dissolved and removed in an aqueous alkali solution to obtain a non-coated iron powder, it is necessary to coat the iron powder with a highly insulating silicon oxide again.
상기의 압분체의 체적 저항률이 낮은 이유는, 현시점에서는 분명하지 않지만, 실리콘 산화물 피복층 중에 인 함유 화합물이 혼입됨으로써 실리콘 산화물 피복층의 체적 저항률이 저하했거나, 혹은, 실리콘 산화물 피복층의 물성이 변화함으로써 피복층 중의 결함 밀도가 증대된 것 등이 생각된다.The reason for the low volume resistivity of the green compact is not clear at this point, but the incorporation of a phosphorus-containing compound in the silicon oxide coating layer lowers the volume resistivity of the silicon oxide coating layer, or changes in the physical properties of the silicon oxide coating layer. It is considered that the defect density has increased.
용해 처리에 사용하는 알칼리 수용액으로서는, 수산화나트륨 용액, 수산화칼륨 용액, 암모니아수 등, 공업적으로 사용되고 있는 통상의 알칼리 수용액을 사용할 수 있다. 처리 시간 등을 고려하면, 처리액의 pH는 10 이상, 처리액의 온도는 60℃ 이상의 비점 이하인 것이 바람직하다.As the aqueous alkali solution used for the dissolution treatment, a conventional aqueous alkali solution used industrially, such as sodium hydroxide solution, potassium hydroxide solution, and aqueous ammonia, can be used. In consideration of treatment time and the like, it is preferable that the pH of the treatment liquid is 10 or more and the temperature of the treatment liquid is 60°C or more and less than or equal to the boiling point.
[해쇄 처리][Disintegration treatment]
상기의 실리콘 산화물 피복의 용해 처리에 의해 얻어진 철분은, 후술하는 두 번째의 실리콘 산화물 피복 처리의 일련의 공정에 제공되지만, 다음 공정에 제공하기 전에 철분을 해쇄해도 좋다. 해쇄를 행함으로써, 철분의 마이크로트랙 측정 장치에 의한 체적 기준의 누적 50% 입자 직경을 작게 할 수 있다. 해쇄 수단으로서는, 비즈밀 등과 같은 미디어를 사용한 분쇄 장치에 의한 방법이나, 제트밀과 같이 미디어레스의 분쇄 장치에 의한 방법 등, 공지의 방법을 채용할 수 있다. 미디어를 사용한 분쇄 장치에 의한 방법의 경우에는, 얻어지는 철분의 입자 형상이 변형하여 축 비가 커져 버려, 그 결과로서 후공정에서 성형체를 작성할 때의 철분의 충전도가 떨어지는, 철분의 자기 특성이 악화되는 등의 불량이 생길 우려가 있기 때문에, 미디어레스의 분쇄 장치를 채용하는 것이 바람직하고, 제트밀 분쇄 장치를 사용하여 해쇄를 행하는 것이 특히 바람직하다. 여기서 제트밀 분쇄 장치란, 분쇄 대상물 또는 분쇄 대상물과 액체를 혼합한 슬러리를, 고압 가스에 의해 분사시켜서 충돌판 등과 충돌시키는 방식의 분쇄 장치를 말한다. 액체를 사용하지 않고 분쇄 대상물을 고압 가스로 분사시키는 타입을 건식 제트밀 분쇄 장치, 분쇄 대상물과 액체를 혼합한 슬러리를 사용하는 타입을 습식 제트밀 분쇄 장치라고 부른다. 이 분쇄 대상물 또는 분쇄 대상물과 액체를 혼합한 슬러리를 충돌시키는 대상물로서는, 충돌판 등의 정지물이 아니어도 좋고, 고압 가스에 의해 분사된 분쇄 대상물끼리나, 분쇄 대상물과 액체를 혼합한 슬러리끼리를 충돌시키는 방법을 채용해도 좋다.The iron powder obtained by the dissolution treatment of the silicon oxide coating described above is provided in a series of steps of the second silicon oxide coating treatment described later, but the iron powder may be pulverized before being applied to the next step. By performing disintegration, the cumulative 50% particle diameter on a volume basis by the microtrack measuring device of iron powder can be reduced. As the pulverization means, a known method such as a method using a pulverizing device using a medium such as a bead mill or a method using a medialess pulverizing device such as a jet mill can be adopted. In the case of the method using a pulverizing device using a media, the shape of the particles of the iron powder obtained is deformed, resulting in an increase in the axial ratio, and as a result, the degree of filling of the iron powder at the time of forming the molded body in the post process is poor, and the magnetic properties of the iron powder are deteriorated. Since there is a possibility that defects such as may occur, it is preferable to employ a medialess pulverizing device, and it is particularly preferable to pulverize using a jet mill pulverizing device. Here, the jet mill pulverizing device refers to a pulverizing device of a method in which an object to be pulverized or a slurry obtained by mixing the object to be pulverized and a liquid is sprayed with high-pressure gas to collide with a collision plate or the like. The type in which the object to be pulverized is sprayed with high-pressure gas without using a liquid is referred to as a dry jet mill pulverizing device, and a type using a slurry obtained by mixing the object and liquid is called a wet jet mill pulverizing device. As the object to collide with the object to be pulverized or the slurry in which the object to be pulverized and the liquid are mixed, it may not be a stationary object such as a collision plate, etc. You may adopt a method of colliding.
또한, 습식 제트밀 분쇄 장치를 사용하여 해쇄를 행하는 경우의 액체로서는, 순수나 에탄올 등 일반적인 분산매를 채용할 수 있지만, 에탄올을 사용하는 것이 바람직하다.In addition, as a liquid in the case of pulverizing using a wet jet mill pulverizing device, a general dispersion medium such as pure water or ethanol can be used, but ethanol is preferably used.
해쇄에 습식 제트밀 분쇄 장치를 사용한 경우에는, 해쇄된 철분과 분산매와의 혼합물인 해쇄 처리 후의 슬러리가 얻어지고, 이 슬러리 중의 분산매를 건조시킴으로써 해쇄된 철분을 얻을 수 있다. 건조 방법으로서는 공지의 방법을 채용할 수 있고, 분위기로서는 대기라도 좋다. 단, 철분의 산화를 방지하는 관점에서, 질소 가스, 아르곤 가스, 수소 가스 등의 비산화성 분위기에서의 건조나, 진공 건조를 행하는 것이 바람직하다. 또한, 건조 속도를 빠르게 하기 위해서 예를 들면 100℃ 이상으로 가온하여 행하는 것이 바람직하다. 또한, 건조 후에 얻어진 철분을 다시 에탄올과 혼합하여 마이크로트랙 입도 분포 측정을 행한 경우, 상기 해쇄 처리 후의 슬러리에서의 철분의 D50을 거의 재현할 수 있다. 즉, 건조의 전후로 철분의 D50은 변화하지 않는다.When a wet jet mill grinding device is used for pulverization, a slurry after pulverization treatment, which is a mixture of pulverized iron powder and a dispersion medium, is obtained, and pulverized iron powder can be obtained by drying the dispersion medium in this slurry. As the drying method, a known method can be employed, and the atmosphere may be air. However, from the viewpoint of preventing oxidation of iron powder, drying in a non-oxidizing atmosphere such as nitrogen gas, argon gas, or hydrogen gas, or vacuum drying is preferably performed. In addition, in order to accelerate the drying rate, it is preferable to perform heating at, for example, 100°C or higher. Further, when the iron powder obtained after drying is mixed with ethanol again to measure the microtrack particle size distribution, the D50 of the iron powder in the slurry after the disintegration treatment can be almost reproduced. That is, the D50 of iron powder does not change before and after drying.
[슬러리 보지 공정][Slurry holding process]
이하에, 상술한 일련의 철분 제조 공정에서 얻어진 철분에 고절연성의 실리콘 산화물 피복을 실시하는 공정을 기술한다.Hereinafter, a process of coating the iron powder obtained in the above-described series of iron powder production processes with highly insulating silicon oxide will be described.
본 발명의 제조 방법에 있어서는, 상기의 철분 제조 공정에서 얻어진 철분을, 공지의 기계적 수단에 의해 교반하면서, 1질량% 이상 40질량% 이하의 물을 포함하는 물과 유기물의 혼합 용매 중에 분산시켜서 슬러리로 한 후, 일정 시간 보지한다. 철분의 표면에는 Fe가 매우 연한 산화물이 존재하지만, 이 슬러리 보지 공정에서는, 당해 Fe 산화물이 혼합 용매 중에 포함되는 물에 의해 수화된다. 수화된 Fe 산화물 표면은 일종의 고체 산이며, 브뢴스테트산으로서 약산과 유사한 거동을 나타내므로, 다음 공정에서 혼합 용매 중에 철분을 포함하는 슬러리에 실리콘 알콕사이드를 첨가했을 때에, 실리콘 알콕사이드의 가수분해 생성물인 실란올 유도체와 철분 표면과의 반응성이 향상되고, 그 결과로서 최종적으로 생성되는 실리콘 산화물 피복층의 균일성이 향상된다.In the production method of the present invention, the iron powder obtained in the above iron powder production process is dispersed in a mixed solvent of water and organic matter containing 1% by mass or more and 40% by mass or less water while stirring by a known mechanical means, After making it, hold it for a certain time. An oxide with very soft Fe exists on the surface of the iron powder, but in this slurry holding step, the Fe oxide is hydrated by water contained in the mixed solvent. The surface of the hydrated Fe oxide is a solid acid and exhibits a behavior similar to that of a weak acid as a Bronsted acid, so when silicon alkoxide is added to the slurry containing iron in the mixed solvent in the next step, the hydrolysis product of silicon alkoxide is silane. The reactivity between the all derivative and the iron powder surface is improved, and as a result, the uniformity of the finally formed silicon oxide coating layer is improved.
혼합 용매 중의 물의 함유량은, 1질량% 이상 40질량% 이하인 것이 바람직하다. 보다 바람직하게는 10질량% 이상 35질량% 이하이고, 더욱 바람직하게는 15질량% 이상 30질량% 이하이다. 물의 함유량이 1질량% 미만이면, 상술한 Fe 산화물을 수화하는 작용이 부족하다. 물의 함유량이 40질량%를 초과하면, 실리콘 알콕사이드의 가수분해 속도가 빨라지고, 균일한 실리콘 산화물 피복층이 얻어지지 않게 되므로, 각각 바람직하지 않다.The content of water in the mixed solvent is preferably 1% by mass or more and 40% by mass or less. More preferably, it is 10 mass% or more and 35 mass% or less, More preferably, it is 15 mass% or more and 30 mass% or less. If the water content is less than 1% by mass, the above-described function of hydrating the Fe oxide is insufficient. If the water content exceeds 40% by mass, the rate of hydrolysis of the silicon alkoxide increases and a uniform silicon oxide coating layer cannot be obtained, which is not preferable respectively.
혼합 용매에 사용하는 유기 용매로서는, 물과 친화성이 있는 메탄올, 에탄올, 1-프로판올, 2-프로판올, 부탄올, 펜탄올, 헥산올 등의 지방족 알코올을 사용하는 것이 바람직하다. 단, 유기 용매의 용해도 파라미터가 물의 그것에 너무 가까우면, 혼합 용매 중의 물의 반응성이 저하되므로, 1-프로판올, 2-프로판올(이소프로필알코올), 부탄올, 펜탄올, 헥산올을 사용하는 것이 보다 바람직하다.As the organic solvent used for the mixed solvent, it is preferable to use an aliphatic alcohol such as methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol, and hexanol that has an affinity for water. However, if the solubility parameter of the organic solvent is too close to that of water, the reactivity of water in the mixed solvent decreases, so it is more preferable to use 1-propanol, 2-propanol (isopropyl alcohol), butanol, pentanol, and hexanol. .
본 발명에서, 슬러리 보지 공정의 온도는 특별히 규정하는 것은 아니지만, 20℃ 이상 60℃ 이하로 하는 것이 바람직하다. 보지 온도가 20℃ 미만이면, Fe 산화물의 수화 반응의 속도가 느려지므로 바람직하지 않다. 또한, 보지 온도가 60℃를 초과하면, 다음 공정의 알콕사이드 첨가 공정에 있어서, 첨가한 실리콘 알콕사이드의 가수분해 반응 속도가 증대하고, 실리콘 산화물 피복층의 균일성이 악화되기 때문에 바람직하지 않다. 본 발명에서, 보지 시간도 특별히 규정하는 것은 아니지만, Fe화물의 수화 반응이 균일하게 일어나도록, 보지 시간이 10min 이상 180min 이하가 되도록 조건을 적절하게 선택한다.In the present invention, the temperature of the slurry holding step is not particularly defined, but it is preferably 20°C or more and 60°C or less. If the holding temperature is less than 20°C, the rate of the hydration reaction of the Fe oxide is slowed, which is not preferable. Further, when the holding temperature exceeds 60°C, in the alkoxide addition step of the next step, the hydrolysis reaction rate of the added silicon alkoxide increases, and the uniformity of the silicon oxide coating layer is deteriorated, which is not preferable. In the present invention, the holding time is also not particularly defined, but conditions are appropriately selected so that the holding time is 10 min or more and 180 min or less so that the hydration reaction of the Fe product occurs uniformly.
[알콕사이드 첨가 공정][Alkoxide addition process]
상기의 슬러리 보지 공정에 의해 얻어진, 혼합 용매 중에 철분을 분산시킨 슬러리를, 공지의 기계적 수단에 의해 교반하면서, 실리콘 알콕사이드를 첨가한 후, 그 상태로 슬러리를 일정 시간 보지한다. 실리콘 알콕사이드로서는, 상술한 바와 같이, 트리메톡시실란, 테트라메톡시실란, 트리에톡시실란, 테트라에톡시실란, 트리프로폭시실란, 테트라프로폭시실란, 트리부톡시실란, 테트라부톡시실란 등을 사용할 수 있다.The slurry obtained by the above-described slurry holding step in which iron powder is dispersed in a mixed solvent is stirred by a known mechanical means, while silicon alkoxide is added, and the slurry is held in that state for a certain period of time. As the silicone alkoxide, as described above, trimethoxysilane, tetramethoxysilane, triethoxysilane, tetraethoxysilane, tripropoxysilane, tetrapropoxysilane, tributoxysilane, tetrabutoxysilane, etc. Can be used.
실리콘 알콕사이드의 첨가량은, 압분체의 체적 저항률의 원하는 값에 의해 설정할 수 있다. 구체적으로는, 10질량% 이상이다. 이 이유로서는 철 입자의 축 비를 1.5 이하로 함으로써, 원형에 가깝기 때문에, 피복물이 입자 내의 이형 개소에서 편재될 가능성이 낮고, 입자 사이에서도 편재하지 않고, 실리콘 알콕사이드가 철 입자의 표면에 대부분 피착한다고 추찰한다. 또한, 잉여로 첨가하면, 철 입자의 표면으로부터 유리되어 존재하므로 바람직하지 않으며, 구체적으로는 100질량% 이하가 된다.The amount of silicon alkoxide added can be set by a desired value of the volume resistivity of the green compact. Specifically, it is 10 mass% or more. For this reason, when the axial ratio of the iron particles is set to 1.5 or less, it is close to the circular shape, so the possibility of the coating being unevenly distributed at the release sites in the particles is low, and the silicon alkoxide is mostly deposited on the surface of the iron particles. I guess. In addition, when added in excess, it is not preferable because it is released from the surface of the iron particles, and is specifically 100% by mass or less.
본 공정에서 첨가한 실리콘 알콕사이드는, 혼합 용매 중에 포함되는 물의 작용에 의해 가수분해하여 실란올 유도체가 된다. 생성된 실란올 유도체는, 축합, 화학 흡착 등에 의해, 철분 표면에 실란올 유도체의 반응층을 형성한다. 본 공정에서는, 가수분해 촉매를 첨가하고 있지 않으므로, 실리콘 알콕사이드의 가수분해가 완만하게 일어나므로, 상기의 실란올 유도체의 반응층이 균일하게 형성되는 것으로 생각된다.The silicone alkoxide added in this step is hydrolyzed by the action of water contained in the mixed solvent to become a silanol derivative. The resulting silanol derivative forms a reaction layer of the silanol derivative on the surface of the iron powder by condensation, chemical adsorption, or the like. In this step, since the hydrolysis catalyst is not added, the hydrolysis of the silicon alkoxide occurs gently, and it is considered that the reaction layer of the silanol derivative described above is formed uniformly.
본 발명에서, 알콕사이드 첨가 공정의 반응 온도는 특별히 규정하는 것은 아니지만, 20℃ 이상 60℃ 이하로 하는 것이 바람직하다. 반응 온도가 20℃ 미만이면, 철분 표면과 실란올 유도체와의 반응의 속도가 느려지므로 바람직하지 않다. 또한, 반응 온도가 60℃를 초과하면, 첨가한 실리콘 알콕사이드의 가수분해 반응 속도가 증대하고, 실리콘 산화물 피복층의 균일성이 악화되므로 바람직하지 않다. 본 발명에서, 알콕사이드 첨가 공정의 반응 시간도 특별히 규정하는 것은 아니지만, 철분 표면과 실란올 유도체와의 반응이 균일하게 일어나도록, 반응 시간이 5min 이상 180min 이하가 되도록 조건을 적절히 선택한다.In the present invention, the reaction temperature in the alkoxide addition step is not particularly defined, but it is preferably 20°C or more and 60°C or less. If the reaction temperature is less than 20°C, the rate of reaction between the surface of the iron powder and the silanol derivative is slowed, which is not preferable. Further, when the reaction temperature exceeds 60°C, the rate of hydrolysis reaction of the added silicon alkoxide increases, and the uniformity of the silicon oxide coating layer is deteriorated, which is not preferable. In the present invention, the reaction time of the alkoxide addition step is not particularly defined, but conditions are appropriately selected so that the reaction time is 5 min or more and 180 min or less so that the reaction between the iron powder surface and the silanol derivative occurs uniformly.
[가수분해 촉매 첨가 공정][Hydrolysis catalyst addition process]
본 발명의 제조 방법에 있어서는, 상기의 알콕사이드 첨가 공정에서 철분 표면에 실란올 유도체의 반응층을 형성한 후, 혼합 용매 중에 철분을 분산시킨 슬러리를 공지의 기계적 수단에 의해 교반하면서, 실리콘 알콕사이드의 가수분해 촉매를 첨가한다. 본 공정에서, 가수분해 촉매의 첨가에 의해, 실리콘 알콕사이드의 가수분해 반응이 촉진되고, 실리콘 산화물 피복층의 성막 속도가 증대된다. 또한, 본 공정 이후에는, 통상의 졸-겔법에 의한 성막법과 동일한 수법이 된다.In the production method of the present invention, after forming a reaction layer of a silanol derivative on the surface of the iron powder in the alkoxide addition step, a slurry obtained by dispersing iron powder in a mixed solvent is stirred by a known mechanical means, A decomposition catalyst is added. In this step, the hydrolysis reaction of the silicon alkoxide is accelerated by the addition of the hydrolysis catalyst, and the film formation rate of the silicon oxide coating layer is increased. In addition, after this step, the same method as the film formation method by a conventional sol-gel method is performed.
가수분해 촉매는 알칼리 촉매를 사용한다. 산 촉매를 사용하면 철분이 용해되므로 바람직하지 않다. 알칼리 촉매로서는, 실리콘 산화물 피복층 중에 불순물이 잔존하기 어려운 것과 입수의 용이함에 있어서, 암모니아수를 사용하는 것이 바람직하다.As the hydrolysis catalyst, an alkali catalyst is used. The use of an acid catalyst is not preferable because iron is dissolved. As the alkali catalyst, it is preferable to use aqueous ammonia in terms of difficulty in remaining impurities in the silicon oxide coating layer and ease of availability.
본 발명에서, 가수분해 촉매 첨가 공정의 반응 온도는 특별히 규정하는 것은 아니고, 이전 공정인 알콕사이드 첨가 공정의 반응 온도와 동일해도 상관 없다. 또한, 본 발명에서, 가수분해 촉매 첨가 공정의 반응 시간도 특별히 규정하는 것은 아니지만, 장시간의 반응 시간은 경제적으로 불리해지므로, 반응 시간이 10min 이상 180min 이하가 되도록 조건을 적절히 선택한다.In the present invention, the reaction temperature in the hydrolysis catalyst addition step is not particularly defined, and may be the same as the reaction temperature in the previous step, the alkoxide addition step. Further, in the present invention, the reaction time of the hydrolysis catalyst addition step is not particularly defined, but since the long reaction time is economically disadvantageous, conditions are appropriately selected so that the reaction time is 10 min or more and 180 min or less.
[고액 분리 및 건조][Solid-liquid separation and drying]
상기까지의 일련의 공정에서 얻어진 실리콘 산화물 피복 철분을 포함하는 슬러리로부터, 공지의 고액 분리 수단을 사용하여 실리콘 산화물 피복 철분을 회수한다. 고액 분리 수단으로서는, 여과, 원심 분리, 데칸테이션 등의 공지의 고액 분리 수단을 사용할 수있다. 고액 분리시에는, 응집제를 첨가하여 고액 분리해도 상관 없다.From the slurry containing the silicon oxide-coated iron powder obtained in the series of steps up to the above, the silicon oxide-coated iron powder is recovered using a known solid-liquid separation means. As the solid-liquid separation means, known solid-liquid separation means such as filtration, centrifugation and decantation can be used. In the case of solid-liquid separation, a coagulant may be added to separate solid-liquid.
회수한 실리콘 산화물 피복 철분은, 50배량 정도의 순수를 사용하여 세정한 후, 질소 분위기 하에서 50℃ 이상 200℃ 이하, 2h 이상, 예를 들면 100℃, 10h 건조시킨다. 건조 후, 자성체의 자기 특성을 개선하기 위해, 추가로 고온에서의 소성 처리를 추가해도 상관 없다.The recovered silicon oxide-coated iron powder is washed with 50 times the amount of pure water, and then dried under a nitrogen atmosphere at 50°C or higher and 200°C or lower, for 2 hours or longer, such as 100°C and 10 hours. After drying, in order to improve the magnetic properties of the magnetic body, a firing treatment at a high temperature may be further added.
[입자 직경][Particle diameter]
실리콘 산화물 피복 철분을 구성하는 철 입자의 입자 직경, 및, 실리콘 산화물 피복 산화철분을 구성하는 산화철 입자의 입자 직경은, 각각 10질량% 수산화나트륨 수용액을 사용하여 실리콘 산화물 피복을 용해·제거한 후, 주사형 전자 현미경(SEM) 관찰에 의해 구하였다. SEM 관찰에는, 히타치 세이사쿠쇼 제조 S-4700을 사용하였다.The particle diameters of the iron particles constituting the silicon oxide-coated iron powder, and the particle diameters of the iron oxide particles constituting the silicon oxide-coated iron oxide powder are respectively determined after dissolving and removing the silicon oxide coating using 10% by mass aqueous sodium hydroxide solution. It was determined by observation with a serpentine electron microscope (SEM). For SEM observation, Hitachi Seisakusho S-4700 was used.
실리콘 산화물의 용해 제거는, 실리콘 산화물 피복 철분 또는 실리콘 산화물 피복 산화철분을 60℃의 10질량% 수산화나트륨 수용액에 넣고, 24h 교반시킨 후에, 여과, 수세 및 건조함으로써 행하였다. 또한, 상기 수산화나트륨 수용액의 양은, 실리콘 산화물 피복 철분 또는 실리콘 산화물 피복 산화철분 5g에 대해 0.8L의 비율로 하였다.The dissolution and removal of the silicon oxide was performed by putting silicon oxide-coated iron powder or silicon oxide-coated iron oxide powder in a 10% by mass sodium hydroxide aqueous solution at 60°C, stirring for 24 hours, filtration, washing with water, and drying. In addition, the amount of the aqueous sodium hydroxide solution was 0.8 L with respect to 5 g of silicon oxide coated iron powder or silicon oxide coated iron oxide powder.
실리콘 산화물의 용해 제거 후에 SEM 관찰을 행하여, 어느 입자에 대해서, 면적이 최소가 되는 외접하는 직사각형의 장변의 길이를 그 입자의 입자 직경(장경)으로 정한다. 구체적으로는, 3,000배 내지 30,000배 정도의 배율로 촬영한 SEM 사진 중에서, 바깥 가장자리부 전체가 관찰되는 입자를 랜덤으로 300개 선택하여 그 입자 직경을 측정하고, 그 평균값을, 당해 실리콘 산화물 피복 철분을 구성하는 철 입자의 평균 입자 직경으로 하였다. 또한, 이 측정에 의해 얻어지는 입자 직경은, 1차 입자 직경이다.After dissolution and removal of the silicon oxide, SEM observation is performed, and the length of the circumscribed rectangular long side at which the area is minimum is determined as the particle diameter (long diameter) of the particle. Specifically, among the SEM photographs taken at a magnification of about 3,000 to 30,000 times, 300 particles in which the entire outer edge is observed is randomly selected, the particle diameter is measured, and the average value is calculated as the silicon oxide coated iron powder. It was set as the average particle diameter of the iron particle which comprises. In addition, the particle diameter obtained by this measurement is a primary particle diameter.
[축비][Celebration]
SEM 화상 상의 어느 입자 대해, 면적이 최소가 되는 외접하는 직사각형의 단변의 길이를 「단경」으로 부르고, 장경/단경의 비를 그 입자의 「축비」로 부른다. 분말로서의 평균적인 축 비인 「평균 축 비」는 이하와 같이 하여 정할 수 있다. SEM 관찰에 의해, 랜덤으로 선택한 300개의 입자에 대해 「장경」과 「단경」을 측정하고, 측정 대상의 전체 입자에 대한 장경의 평균값 및 단경의 평균값을 각각 「평균 장경」 및 「평균 단경」으로 하고, 평균 장경/평균 단경의 비를 「평균 축 비」로 정한다. 장경, 단경, 축 비의 각각에 대해, 그 불균일의 크기를 나타내는 지표로서 변동 계수를 산출할 수 있다.For a certain particle on the SEM image, the length of the short side of the circumscribed rectangle with the minimum area is referred to as "shorter diameter", and the ratio of the longest diameter/shorter diameter is referred to as the "axis ratio" of the particle. The "average axis ratio", which is an average axis ratio as a powder, can be determined as follows. By SEM observation, ``long diameter'' and ``short diameter'' were measured for 300 randomly selected particles, and the average value of the long diameter and the average value of the short diameter for all the particles to be measured were set as the ``average long diameter'' and the ``average short diameter'', respectively. And, the ratio of the average long diameter/average short diameter is set as the "average axis ratio". For each of the long axis, the short axis, and the axis ratio, a coefficient of variation can be calculated as an index indicating the magnitude of the unevenness.
[Si 함유량의 측정][Measurement of Si Content]
출발 물질인 철분(미피복 처리품) 및 실리콘 산화물 피복을 실시한 철분의 Si 함유량은, 하기 방법에 의해 구하였다. 시료를 칭량하여 염산에 의해 용해한 후, 과염소산을 첨가하여, 액이 없어질 때까지 가열한 후에, 다시 염산을 첨가하여, 산에 가용인 성분을 모두 용해하였다. 그 후, 이산화규소를 주로 하는 잔사를 여과하고, 백금 도가니 안에 넣어, 전기로(爐)에서 강열하여, 방냉 후에 질량을 측정하였다. 질량 측정 후의 백금 도가니 안에 불화수소산과 황산을 첨가하여, 이산화규소를 용해하고, 추가로 가열하여 규소분을 4불화규소로 해서 증발·제거하였다. 그 후, 백금 도가니를 다시 강열하고, 방냉 후에 질량을 측정하여, 먼저 측정한 질량과의 차를 이산화규소량으로 하였다. 구한 이산화규소량으로부터, 시료 중의 규소량을 산출하였다.The Si content of the iron powder (uncoated treated product) as a starting material and the iron powder coated with silicon oxide was determined by the following method. After the sample was weighed and dissolved with hydrochloric acid, perchloric acid was added and heated until the liquid disappeared, and then hydrochloric acid was added again to dissolve all components soluble in the acid. Thereafter, the residue mainly composed of silicon dioxide was filtered, placed in a platinum crucible, ignited in an electric furnace, and the mass was measured after standing to cool. Hydrofluoric acid and sulfuric acid were added to the platinum crucible after the mass measurement, silicon dioxide was dissolved, and further heated to evaporate and remove the silicon component as silicon tetrafluoride. Then, the platinum crucible was ignited again, and the mass was measured after standing to cool, and the difference from the mass measured earlier was taken as the amount of silicon dioxide. From the obtained amount of silicon dioxide, the amount of silicon in the sample was calculated.
[Fe 및 P 함유량의 측정][Measurement of Fe and P content]
출발 물질인 철분(미피복 처리품) 및 실리콘 산화물 피복을 실시한 철분의 Fe 및 P 함유량은, 하기 방법에 의해 구하였다. 시료를 칭량하여 36질량%의 염화수소 수용액과 60질량%의 질산 수용액을 체적비 1:1로 혼합한 100℃의 수용액에 가열 용해한 후, 잔사를 여과하고, 여과액을 메스플라스크에 넣어 정용(定容)하였다. 이 용액을 희석한 후, Fe 및 P 농도를 ICP 발광 분광 분석법(ICP-AES)으로 측정하였다.The iron powder (uncoated treated product) as a starting material and the Fe and P contents of the iron powder coated with silicon oxide were determined by the following method. The sample was weighed and dissolved by heating in an aqueous solution at 100°C in which a 36% by mass aqueous hydrogen chloride solution and an aqueous 60% by mass nitric acid solution were mixed in a volume ratio of 1:1, and then the residue was filtered, and the filtrate was placed in a volumetric flask for determination. ). After diluting this solution, the concentrations of Fe and P were measured by ICP emission spectrometry (ICP-AES).
또한, 상기에서 얻어진 잔사를 여과지째로 백금 도가니에 넣고 전기로에서 강열하여 여과지를 소각하고, 방냉 후에 탄산나트륨 및 탄산칼륨을 첨가하여 전기로에서 용해시켰다. 방냉 후, 융해물을 온수에 침출시켜, 염산을 첨가하여 가열 용해하였다. 용액을 메스플라스크에 넣고 정용한 후, Fe 및 P 농도를 ICP 발광 분광 분석법(ICP-AES)으로 측정하였다. 여과액의 ICP 측정값, 잔사를 용해 후의 용액의 ICP 측정값으로부터 각 원소의 함유량을 구하였다.Further, the residue obtained above was put into a platinum crucible as a filter paper, heated in an electric furnace to incinerate the filter paper, and after standing to cool, sodium carbonate and potassium carbonate were added and dissolved in an electric furnace. After standing to cool, the melt was leached into hot water, and hydrochloric acid was added to dissolve by heating. After the solution was put into a volumetric flask and measured, the concentrations of Fe and P were measured by ICP emission spectroscopy (ICP-AES). The content of each element was determined from the ICP measurement value of the filtrate and the ICP measurement value of the solution after dissolving the residue.
[실리콘 산화물 피복의 평균 막 두께의 산출][Calculation of average thickness of silicon oxide coating]
또한, 실리콘 산화물 피복 철분에서의 실리콘 산화물 피복의 평균 막 두께 t를 이하의 수식에 의해 산출하였다.In addition, the average film thickness t of the silicon oxide coating in the silicon oxide coating iron powder was calculated by the following equation.
평균 막 두께 t=Si 함유량(질량%)/100×(SiO2 분자량/Si 원자량)/(SiO2 밀도×철분(미피복 처리품)의 BET 비표면적)Average film thickness t=Si content (mass%)/100×(SiO 2 molecular weight/Si atomic weight)/(SiO 2 density×BET specific surface area of iron powder (uncoated product))
또한, SiO2 밀도는 2.65(g/㎤)로 해서 산출하였다. 본 발명에 있어서, 실리콘 산화물의 평균 막 두께 t는 1.0nm 이상 6.0nm 이하로 하는 것이 바람직하다. 평균 막 두께 t를 상기 범위로 함으로써, 높은 μ'와 압분체의 높은 체적 저항률을 양립할 수 있다. 평균 막 두께 t가 1.0nm 미만의 경우에는, 압분체의 체적 저항률이 저하되기 때문에 바람직하지 않다. 또한, 평균 막 두께 t가 6.0nm를 초과하면, μ'가 저하되기 때문에 바람직하지 않다.In addition, the SiO 2 density was calculated as 2.65 (g/cm 3 ). In the present invention, it is preferable that the average film thickness t of the silicon oxide is 1.0 nm or more and 6.0 nm or less. By setting the average film thickness t in the above range, it is possible to achieve both a high μ'and a high volume resistivity of the green compact. When the average film thickness t is less than 1.0 nm, the volume resistivity of the green compact decreases, which is not preferable. In addition, when the average film thickness t exceeds 6.0 nm, μ'decreases, which is not preferable.
[자기 특성][Magnetic properties]
VSM(토에이 코교사 제조 VSM-P7)을 사용하여, 인가 자장 795.8kA/m(10kOe)에서 B-H 곡선을 측정하고, 보자력 Hc, 포화 자화 σs, 각형비 SQ에 대해 평가를 행하였다.Using VSM (VSM-P7 manufactured by Toei Kogyo Corporation), the B-H curve was measured at an applied magnetic field of 795.8 kA/m (10 kOe), and the coercive force Hc, saturation magnetization sigma s, and angle ratio SQ were evaluated.
[복소 투자율][Complex Permeability]
철분 또는 실리콘 산화물 피복 철분과 비스페놀F형 에폭시 수지(가부시키가이샤 테스크 제조; 일액성 에폭시 수지 B-1106)를 90:10의 질량 비율로 칭량하고, 자전 공전 믹서(THINKY사 제조: ARE-250)를 사용하여 이들을 혼련하고, 공시(供試; 실험에 제공함, 또는 그 시료) 분말이 에폭시 수지 중에 분산된 페이스트로 하였다. 이 페이스트를 핫 플레이트 위에서 60℃, 2h 건조시켜서 금속 분말과 수지의 복합체로 한 후, 분말상으로 해립(解粒)하여, 복합체 분말로 하였다. 이 복합체 분말 0.2g을 도넛 형상의 용기 내에 넣고, 핸드 프레스기에 의해 9800N(1TON)의 하중을 가함으로써, 바깥 직경 7mm, 안쪽 직경 3mm의 트로이달 형상의 성형체를 얻었다. 이 성형체 대해, RF 임피던스 애널라이저(키사이트 테크놀로지사 제조; E4990A)와 터미널 어댑터(키사이트 테크놀로지사 제조; 42942A), 테스트 픽스쳐(키사이트 테크놀로지사 제조; 16454A를 사용하여, 100MHz에서의 복소 비투자율의 실수부 μ' 및 허수부 μ"를 측정하고, 복소 비투자율의 손실 계수 tanδ=μ"/μ'를 구하였다. 이, 복소 비투자율의 실수부를, 본 명세서에서 단순히 「투자율」 및 「μ'」로 부르는 경우가 있다. 본 발명의 실리콘 산화물 피복 철분을 사용함으로써, 100MHz에서의 투자율 μ'가 3.0 이상인 성형체가 얻어진다.Iron powder or silicon oxide-coated iron powder and bisphenol F type epoxy resin (manufactured by Tesco; one-component epoxy resin B-1106) were weighed in a mass ratio of 90:10, and a rotating orbiting mixer (manufactured by THINKY: ARE-250) These were kneaded using, and the test powder was obtained as a paste dispersed in an epoxy resin. This paste was dried on a hot plate at 60° C. for 2 hours to form a composite of a metal powder and a resin, and then disintegrated into powder to obtain a composite powder. 0.2 g of this composite powder was placed in a donut-shaped container, and a load of 9800 N (1 TON) was applied by a hand press to obtain a toroidal shaped body having an outer diameter of 7 mm and an inner diameter of 3 mm. With respect to this molded body, an RF impedance analyzer (manufactured by Keysight Technologies; E4990A), a terminal adapter (manufactured by Keysight Technologies; 42942A), and a test fixture (manufactured by Keysight Technologies; 16454A) were used to achieve a complex relative magnetic permeability at 100 MHz. The real part μ'and the imaginary part μ" were measured, and the loss factor tanδ=μ"/μ' of the complex relative magnetic permeability was obtained. Here, the real part of the complex relative magnetic permeability is simply "permeability" and "μ" in this specification. It may be referred to as "." By using the silicon oxide-coated iron powder of the present invention, a molded article having a magnetic permeability µ'at 100 MHz of 3.0 or more can be obtained.
본 발명의 실리콘 산화물 피복 철분을 사용하여 제조된 성형체는, 뛰어난 복소 투자율 특성을 나타내어, 인덕터의 자심 등의 용도에 적합하게 사용할 수 있다.The molded article manufactured using the silicon oxide-coated iron powder of the present invention exhibits excellent complex permeability characteristics, and can be suitably used for applications such as magnetic cores of inductors.
[BET 비표면적][BET specific surface area]
BET 비표면적은 가부시키가이샤 마운테크 제조의 MACSORB MODEL-1210을 사용하여 BET 일점법에 의해 구하였다.The BET specific surface area was determined by the BET single point method using MACSORB MODEL-1210 manufactured by MUNTECH Co., Ltd.
[마이크로트랙 입도 분포 측정][Microtrack particle size distribution measurement]
철분의 마이크로트랙 측정 장치에 의한 체적 기준의 누적 50% 입자 직경, 및 누적 90% 입자 직경의 측정에는, 마이크로트랙벨사 제조의 마이크로트랙 입도 분포 측정 장치 MT3300EXII를 사용하였다. 또한, 측정 장치의 시료 순환기에 넣는 액체로서는, 에탄올을 사용하였다. 또한, 철분과 에탄올 또는 순수를 혼합한 슬러리의 형태로서, 공급 직전에 이 슬러리를 육안으로 불균일한 개소가 보이지 않을 정도로 교반한 후에 측정 장치에 공급하였다.For the measurement of the cumulative 50% particle diameter on a volume basis and the cumulative 90% particle diameter by the microtrack measuring device of iron powder, a microtrack particle size distribution measuring device MT3300EXII manufactured by Microtrac Bell was used. In addition, ethanol was used as a liquid to be put into the sample circulator of the measuring device. In addition, in the form of a slurry in which iron powder and ethanol or pure water were mixed, the slurry was stirred to the extent that uneven spots were not visible with the naked eye immediately before supply, and then supplied to the measuring device.
[체적 저항률 및 압분 밀도의 측정][Measurement of volume resistivity and green density]
실리콘 산화물 피복 철분의 체적 저항률의 측정은, 미츠비시 카가쿠 어널리텍 가부시키가이샤 제조 분체 저항 측정 유닛(MCP-PD51), 미츠비시 카가쿠 어널리텍 가부시키가이샤 제조 고저항 저항률계 하이레스터 UP(MCP-HT450), 미츠비시 카가쿠 어널리텍 가부시키가이샤 제조 고저항 분체 측정 시스템 소프트웨어를 사용하여, 이중 링 전극법에 의해, 분말 4.0g을 64MPa(20kN)에서 수직으로 가압 성형하여 얻어진 압분체에, 전압을 10V 인가한 상태에서 측정함으로써 구하였다.The measurement of the volume resistivity of silicon oxide-coated iron powder is a powder resistance measurement unit (MCP-PD51) manufactured by Mitsubishi Kagaku Analytech Co., Ltd., and a high resistance resistivity meter Hirester UP (MCP) manufactured by Mitsubishi Kagaku Analytech Co., Ltd. -HT450), using a high-resistance powder measurement system software manufactured by Mitsubishi Kagaku Analytech Co., Ltd., by double ring electrode method, to a green compact obtained by vertically pressing and molding 4.0 g of powder at 64 MPa (20 kN), voltage Was determined by measuring in a state where 10V was applied.
구체적으로는, 체적 저항률 ρv는 이하의 수식으로 산출하였다.Specifically, the volume resistivity ρv was calculated by the following equation.
ρv=R×πd2/4tρv=R×πd 2 /4t
여기서, R은 체적 저항의 측정값, d는 표면 전극의 내측 링의 직경, t는 분말 시료 두께이다. 이하의 실시예에 있어서는 표면 전극의 내측 링의 직경 d를 모두 2.0cm로 하였다.Here, R is the measured volume resistance, d is the diameter of the inner ring of the surface electrode, and t is the thickness of the powder sample. In the following examples, the diameter d of the inner ring of the surface electrode was all set to 2.0 cm.
압분 밀도는, 상기 64MPa(20kN)에서 가압 성형하여 얻어진 압분체의 시료 체적과 시료 중량으로부터 산출하였다.The green compact density was calculated from the sample volume and the sample weight of the green compact obtained by pressure molding at the above 64 MPa (20 kN).
실시예Example
[비교예 1][Comparative Example 1]
5L 반응조에서, 순수 4113.24g에, 순도 99.7질량%의 질산철(III) 9수화물 566.47g, 인 함유 이온의 공급원으로서 85질량% H3PO4 1.39g을 대기 분위기에서 교반 날개에 의해 기계적으로 교반하면서 용해하였다(수순 1). 이 용해액의 pH는 약 1이었다. 또한, 이 조건에서는 P/Fe 비는 0.0086이다.In a 5L reactor, to 4113.24 g of pure water, 566.47 g of iron (III) nitrate 9 hydrate having a purity of 99.7% by mass, and 1.39 g of 85% by mass H 3 PO 4 as a source of phosphorus-containing ions were mechanically stirred by a stirring blade in an air atmosphere. While dissolving (Procedure 1). The pH of this solution was about 1. In addition, the P/Fe ratio is 0.0086 under this condition.
대기 분위기에서 이 주입 용해액을 30℃의 조건하에, 교반 날개에 의해 기계적으로 교반하면서, 23.47질량%의 암모니아 용액 409.66g을 10min 걸쳐서 첨가하고(약 40g/L), 적하 종료 후에 30min간 교반을 계속하여 생성된 침전물의 숙성을 행하였다. 그 때, 침전물을 포함하는 슬러리의 pH는 약 9였다(수순 2).In an atmospheric atmosphere, under the condition of 30°C, while mechanically stirring with a stirring blade, 409.66 g of a 23.47% by mass ammonia solution was added over 10 minutes (about 40 g/L), followed by stirring for 30 minutes after the dropping was completed. Subsequently, the resulting precipitate was aged. At that time, the pH of the slurry containing the precipitate was about 9 (procedure 2).
수순 2에서 얻어진 슬러리를 교반하면서, 대기 중 30℃에서, 순도 95.0질량%의 테트라에톡시실란(TEOS) 55.18g을 10min 걸쳐서 적하하였다. 그 후 20시간 그대로 교반을 계속하고, 가수분해에 의해 생성된 실란 화합물의 가수분해 생성물로 침전물을 피복하였다(수순 3). 또한, 이 조건에서는 Si/Fe비는 0.18이다. 본 비교예의 Si/Fe비 및 P/Fe 비를, 표 1에 나타낸다.While stirring the slurry obtained in step 2, 55.18 g of tetraethoxysilane (TEOS) having a purity of 95.0 mass% was added dropwise at 30° C. in the air over 10 minutes. After that, stirring was continued as it is for 20 hours, and the precipitate was coated with a hydrolysis product of the silane compound produced by hydrolysis (Procedure 3). In addition, the Si/Fe ratio is 0.18 under this condition. Table 1 shows the Si/Fe ratio and the P/Fe ratio of this comparative example.
수순 3에서 얻어진 슬러리를 여과하여, 얻어진 실란 화합물의 가수분해 생성물로 피복한 침전물의 수분을 가능한 한 제거하고 나서 순수 중에 다시 분산시켜, 리펄프 세정하였다. 세정 후의 슬러리를 다시 여과하여, 얻어진 케이크를 대기 중 110℃에서 건조하였다(수순 4).The slurry obtained in step 3 was filtered, the moisture of the precipitate coated with the hydrolysis product of the obtained silane compound was removed as much as possible, and then again dispersed in pure water, followed by repulping washing. The washed slurry was filtered again, and the resulting cake was dried at 110°C in air (Procedure 4).
수순 4에서 얻어진 건조품을, 상자형 소성로를 사용하여, 대기 중 1050℃에서 가열 처리하여, 실리콘 산화물 피복 산화철분을 얻었다(수순 5).The dried product obtained in step 4 was subjected to heat treatment at 1050° C. in air using a box-shaped sintering furnace to obtain silicon oxide-coated iron oxide powder (Step 5).
수순 5에서 얻어진 실리콘 산화물 피복 산화철분을 통기 가능한 버킷에 넣고, 그 버킷을 관통형 환원로 내에 장입하여, 노(爐) 내에 수소 가스를 흐르게 하면서 630℃에서 40min 보지함으로써 환원 열처리를 실시하였다(수순 6).Reduction heat treatment was performed by placing the silicon oxide-coated iron oxide powder obtained in Step 5 into a ventilable bucket, charging the bucket into a through-type reduction furnace, and holding the bucket at 630°C for 40 minutes while flowing hydrogen gas in the furnace (D). 6).
계속해서, 노 내의 분위기 가스를 수소에서 질소로 변환하고, 질소 가스를 흐르게 한 상태에서 노 내 온도를 강온 속도 20℃/min으로 80℃까지 저하시켰다. 그 후, 안정화 처리를 행하는 초기의 가스로서, 질소 가스/공기의 체적 비율이 125/1이 되도록 질소 가스와 공기를 혼합한 가스(산소 농도 약 0.17체적%)를 노 내에 도입하여 금속 분말 입자 표층부의 산화 반응을 개시시키고, 그 후 점차 공기의 혼합 비율을 증대시켜, 최종적으로 질소 가스/공기의 체적 비율이 25/1이 되는 혼합 가스(산소 농도 약 0.80체적%)를 노 내에 연속으로 도입함으로써, 입자의 표층부에 산화 보호층을 형성하였다. 안정화 처리 중, 온도는 80℃로 유지(維持)하고, 가스의 도입 유량도 거의 일정하게 보지하였다(수순 7).Subsequently, the atmospheric gas in the furnace was converted from hydrogen to nitrogen, and the temperature in the furnace was lowered to 80°C at a temperature-fall rate of 20°C/min while nitrogen gas was flowed. Thereafter, as the initial gas for stabilization treatment, a gas (oxygen concentration about 0.17% by volume) of nitrogen gas and air is introduced into the furnace so that the volume ratio of nitrogen gas/air becomes 125/1, and the surface layer of metal powder particles The oxidation reaction of is started, and thereafter, the mixing ratio of air is gradually increased, and finally, a mixed gas (oxygen concentration of about 0.80% by volume) having a volume ratio of nitrogen gas/air being 25/1 is continuously introduced into the furnace. , An oxidation protective layer was formed on the surface layer of the particles. During the stabilization treatment, the temperature was maintained at 80°C, and the flow rate of gas introduction was also maintained substantially constant (Step 7).
수순 7에서 얻어진 실리콘 산화물 피복 철분을, 10질량%, 60℃의 수산화나트륨 수용액에 24h 침지하여, 실리콘 산화물 피복을 용해하였다. 얻어진 철분을 포함하는 슬러리를 멤브레인 필터를 사용한 흡인 여과에 의해 여과하고, 수세한 후, 질소 중 110℃에서 2h 건조를 행하여, 철분을 얻었다. 또한, 상기 수산화나트륨 수용액의 양은, 실리콘 산화물 피복 철분 56g에 대해 3.2L의 비율로 하였다.The silicon oxide-coated iron powder obtained in step 7 was immersed in a 10% by mass, 60°C sodium hydroxide aqueous solution for 24 hours to dissolve the silicon oxide coating. The slurry containing the obtained iron powder was filtered by suction filtration using a membrane filter, washed with water, and then dried for 2 h at 110°C in nitrogen to obtain iron powder. In addition, the amount of the aqueous sodium hydroxide solution was made into a ratio of 3.2 L to 56 g of iron powder coated with silicon oxide.
도 1에, 본 비교예에 의해 얻어진 철분의 SEM 관찰 결과를 나타낸다. 또한,도 1의 오른쪽 아래에 나타내는 11개의 흰색 세로선으로 나타나지는 길이가 5㎛이다(도 2도 동일). 얻어진 철분에 대해, 철 입자의 평균 입자 직경, 평균 축 비, 조성, BET 비표면적 및 자기 특성의 측정을 행하였다. 그러한 측정 결과를 표 2에 나타낸다. 얻어진 철분을 구성하는 철 입자의 평균 입자 직경은 0.51㎛, 평균 축 비는 1.27이었다. 또한, 얻어진 철분을 사용하여, 상기의 방법에 의해 성형하여 얻어진 압분체의 체적 저항률을 측정한 바, 저항 측정값 R은 측정 한계 이하의 결과이고, 체적 저항률로서도 측정 한계(체적 저항률 9.9×104Ωㆍcm) 이하라는 결과였다. 또한, 얻어진 철분을 사용하여, 상기의 방법에 의해 성형하여 얻어진 압분체의 체적 저항률, 밀도 및, 상기의 방법에 의해 성형하여 얻어진 트로이달 형상의 성형체의 고주파 특성을 표 2에 함께 나타낸다. 본 비교예에서 얻어진 압분체의 체적 저항률이 측정 한계 이하로 낮은 값이었던 것은, 철분이 절연성의 실리콘 산화물로 피복되어 있지 않기 때문이다.1 shows the results of SEM observation of iron powder obtained by this comparative example. In addition, the length indicated by the 11 vertical white lines shown in the lower right of Fig. 1 is 5 µm (the same is applied to Fig. 2). About the obtained iron powder, the average particle diameter, average axial ratio, composition, BET specific surface area, and magnetic properties of the iron particles were measured. Table 2 shows the measurement results. The average particle diameter of the iron particles constituting the obtained iron powder was 0.51 µm, and the average axis ratio was 1.27. In addition, using the obtained iron powder, the volume resistivity of the green compact obtained by molding by the above method was measured, the resistance measurement value R is the result below the measurement limit, and the measurement limit also as the volume resistivity (volume resistivity 9.9×10 4 Ω·cm) or less was the result. In addition, using the obtained iron powder, the volume resistivity and density of the green compact obtained by molding by the above method, and the high frequency characteristics of the toroidal compact obtained by molding by the above method are shown together in Table 2. The reason why the volume resistivity of the green compact obtained in this comparative example was lower than the measurement limit was because the iron powder was not covered with insulating silicon oxide.
[실시예 1][Example 1]
1L 반응조에 순수 54.09g 및 이소프로필알코올(IPA) 271g을 투입하여 혼합 용매를 작성하고, 그 혼합 용매에 비교예 1과 동일한 조건에서 얻어진 철분 15.00g 첨가하여, 교반 날개에 의해 기계적으로 교반하면서, 실온에서 30min간 질소 퍼지하였다. 30min 경과 후, 교반 및 질소 퍼지를 계속하면서, 반응 용액을 40℃로 승온하였다.54.09 g of pure water and 271 g of isopropyl alcohol (IPA) were added to a 1 L reactor to prepare a mixed solvent, and 15.00 g of iron powder obtained in the same conditions as in Comparative Example 1 were added to the mixed solvent, and mechanically stirred with a stirring blade, It was purged with nitrogen for 30 min at room temperature. After 30 minutes elapsed, stirring and nitrogen purge were continued, and the reaction solution was heated up to 40 degreeC.
그 후, 반응 용액 중에 오르토규산테트라에틸(TEOS) 9.06g을 한꺼번에 첨가하고, 10min간 보지하였다. 10min 후, 농도 10질량%의 암모니아수 10.8g을 45min 걸쳐서, 반응 용액에 연속으로 첨가하였다. 암모니아수 첨가 종료 후, 반응 용액을 60min 보지하여 숙성을 행하여, 가수분해에 의해 생성된 실란 화합물의 가수분해 생성물로 철분의 표면을 피복하였다. 철분 제조 공정 및 실리콘 산화물 피복을 행하는 일련의 공정의 조건을, 표 1에 함께 나타낸다.Then, 9.06 g of tetraethyl orthosilicate (TEOS) was added to the reaction solution at once, and the mixture was held for 10 minutes. After 10 minutes, 10.8 g of ammonia water having a concentration of 10% by mass was continuously added to the reaction solution over 45 minutes. After completion of the addition of the aqueous ammonia, the reaction solution was held for 60 minutes and aged, and the surface of the iron powder was coated with a hydrolysis product of the silane compound produced by hydrolysis. Table 1 shows the conditions of the iron powder production process and a series of processes for coating silicon oxide.
얻어진 슬러리를 멤브레인 필터를 사용한 흡인 여과에 의해 여과한 후 순수로 세정하고, 얻어진 철분의 케이크를 질소 분위기 중 100℃에서 건조하였다. 도 2에, 이상의 일련의 수순에 의해 얻어진, 실리콘 산화물을 용해 제거 후에 다시 피복한 철분의 SEM 관찰 결과를 나타낸다. 당해 실리콘 산화물 피복 철분에 대해, BET 비표면적, 조성, 자기 특성, 복소 투자율 및 압분체의 밀도, 체적 저항률의 측정을 행하였다. 측정 결과를 표 2에 함께 나타낸다. 또한 체적 저항률의 측정 결과로서는, 체적 저항의 측정값 R이 1.4×106(Ω), 분말 시료 두께 t가 0.429(cm)였다.The resulting slurry was filtered by suction filtration using a membrane filter, washed with pure water, and the resulting iron cake was dried at 100°C in a nitrogen atmosphere. Fig. 2 shows the results of SEM observation of iron powder obtained by the above series of procedures and coated again after dissolution and removal of silicon oxide. With respect to the silicon oxide-coated iron powder, the BET specific surface area, composition, magnetic properties, complex permeability, density of the green compact, and volume resistivity were measured. The measurement results are also shown in Table 2. In addition, as the measurement result of the volume resistivity, the measured value R of the volume resistivity was 1.4×10 6 (Ω), and the powder sample thickness t was 0.429 (cm).
[실시예 2 내지 10][Examples 2 to 10]
실시예 1과 마찬가지로, 비교예 1과 동일한 조건에서 얻어진 철분 15.00g을 사용하여, 실리콘 산화물을 피복하는 조건을 여러 가지 변화시켜서 실리콘 산화물 피복 철분을 얻었다. 이러한 실시예에서 사용한 실리콘 산화물 피복의 조건을 표 1에 함께 나타낸다. 또한, 실시예 10에서는, 실리콘 산화물 피복 처리의 전에 철분의 해쇄 처리를 행하고 있다. 철분의 해쇄 처리 조건을 하기에 나타낸다. 비교예 1에서 얻어진 철분을 순수와 혼합하여, 철분의 함유 비율이 10질량%의 철분 순수 혼합 슬러리를 제작하였다. 이 슬러리를 제트밀 분쇄 장치(릭스 가부시키가이샤 제조; 나노 미립화 장치 G-smasher LM-1000)를 사용하여 해쇄하고, 해쇄 처리 후의 슬러리를 얻었다. 또한, 해쇄에 있어서는, 철분 순수 혼합 슬러리의 공급 속도를 100ml/min, 에어 압력을 0.6MPa로 하여, 해쇄 처리를 5회 반복하였다. 해쇄 처리 후의 슬러리를 질소 가스 중 100℃에서 2h 건조시켜, 실시예 10에 따른 철분을 얻었다.In the same manner as in Example 1, 15.00 g of iron powder obtained under the same conditions as in Comparative Example 1 was used to variously change the conditions for coating silicon oxide to obtain silicon oxide-coated iron powder. Table 1 shows the conditions of the silicon oxide coating used in this example. In addition, in Example 10, iron powder is crushed before the silicon oxide coating treatment. Iron powder disintegration treatment conditions are shown below. The iron powder obtained in Comparative Example 1 was mixed with pure water to prepare an iron powder pure mixed slurry having an iron content of 10% by mass. This slurry was pulverized using a jet mill pulverizing device (manufactured by Rix Corporation; nano-atomizing device G-smasher LM-1000) to obtain a slurry after pulverization treatment. In addition, in the pulverization, the pulverization treatment was repeated 5 times with the supply rate of the pure iron powder mixed slurry being 100 ml/min and the air pressure being 0.6 MPa. The slurry after the disintegration treatment was dried in nitrogen gas at 100° C. for 2 h to obtain iron powder according to Example 10.
이러한 실시예에서 얻어진 실리콘 산화물 피복 철분에 대해 BET 비표면적, 조성, 자기 특성, 복소 투자율 및 압분체의 밀도, 체적 저항률의 측정을 행하였다. 측정 결과를 표 2에 함께 나타낸다.The BET specific surface area, composition, magnetic properties, complex permeability, density of green compact, and volume resistivity were measured for the silicon oxide-coated iron powder obtained in these examples. The measurement results are also shown in Table 2.
[실시예 11][Example 11]
대기 중에서의 가열 처리 온도를 1020℃로 변경한 것 이외에는 상술한 비교예 1의 수순 1 내지 수순 8과 동일한 수순에 의해 철분을 얻었다. 얻어진 철분에 대해, 철 입자의 평균 입자 직경, 평균 축 비, 조성, BET 비표면적 및 자기 특성의 측정을 행하였다. 그러한 측정 결과를 표 2에 나타낸다. 얻어진 철분을 구성하는 철 입자의 평균 입자 직경은 0.31㎛, 평균 축 비는 1.20이었다.Iron powder was obtained by the same procedure as the procedure 1 to procedure 8 of Comparative Example 1, except that the heat treatment temperature in the air was changed to 1020°C. About the obtained iron powder, the average particle diameter, average axial ratio, composition, BET specific surface area, and magnetic properties of the iron particles were measured. Table 2 shows the measurement results. The average particle diameter of the iron particles constituting the obtained iron powder was 0.31 µm, and the average axis ratio was 1.20.
얻어진 철분을 순수와 혼합하여, 철분의 함유 비율이 10질량%의 철분 순수 혼합 슬러리를 제작하였다. 이 슬러리를 제트밀 분쇄 장치(스기노 머신 가부시키가이샤 제조의 스타버스트 미니, 형식 번호: HJP-25001)를 사용하여 해쇄하고, 해쇄 처리 후의 슬러리를 얻었다. 또한, 해쇄에 있어서는, 철분 순수 혼합 슬러리를 가압하는 압력을 245MPa로 하고, 해쇄 처리를 10회 반복하였다. 해쇄 처리 후의 슬러리를 질소 가스 중 100℃에서 2h 건조시켜, 해쇄 처리 후의 철분을 얻었다(수순 19).The obtained iron powder was mixed with pure water, and an iron powder pure mixed slurry having an iron content of 10% by mass was prepared. This slurry was pulverized using a jet mill pulverizing device (Sugino Machine Co., Ltd. Starburst Mini, model number: HJP-25001) to obtain a slurry after pulverization treatment. In addition, in the pulverization, the pressure to pressurize the iron powder pure water mixed slurry was 245 MPa, and the pulverization treatment was repeated 10 times. The slurry after the disintegration treatment was dried in nitrogen gas at 100°C for 2 hours to obtain iron powder after the disintegration treatment (Procedure 19).
1L 반응조에 순수 54.09g 및 이소프로필알코올(IPA) 196g을 투입하여 혼합 용매를 제작하고, 그 혼합 용매에 수순 19에서 얻어진 철분 15.00g 첨가하고, 교반 날개에 의해 기계적으로 교반하면서, 실온에서 30min간 질소 퍼지하였다. 30min 경과 후, 교반 및 질소 퍼지를 계속하면서, 반응 용액을 40℃로 승온하였다.54.09 g of pure water and 196 g of isopropyl alcohol (IPA) were added to a 1 L reactor to prepare a mixed solvent, and 15.00 g of the iron powder obtained in step 19 was added to the mixed solvent, and mechanically stirred with a stirring blade, at room temperature for 30 minutes. Purged with nitrogen. After 30 minutes elapsed, stirring and nitrogen purge were continued, and the reaction solution was heated up to 40 degreeC.
그 후, 반응 용액 중에 오르토규산테트라에틸(TEOS) 2.55g을 한꺼번에 첨가하고, 10min간 보지하였다. 10min 후, 농도 10질량%의 암모니아수 9.4g을 45min 걸쳐서, 반응 용액에 연속으로 첨가하였다. 암모니아수 첨가 종료 후, 반응 용액을 60min 보지하여 숙성을 행하여, 가수분해에 의해 생성된 실란 화합물의 가수분해 생성물로 철분의 표면을 피복하였다. 철분 제조 공정 및 실리콘 산화물 피복을 행하는 일련의 공정의 조건을, 표 1에 함께 나타낸다.Then, 2.55 g of tetraethyl orthosilicate (TEOS) was added to the reaction solution at once, and the mixture was held for 10 minutes. After 10 minutes, 9.4 g of ammonia water having a concentration of 10% by mass was continuously added to the reaction solution over 45 minutes. After completion of the addition of the aqueous ammonia, the reaction solution was held for 60 minutes and aged, and the surface of the iron powder was coated with a hydrolysis product of the silane compound produced by hydrolysis. Table 1 shows the conditions of the iron powder production process and a series of processes for coating silicon oxide.
얻어진 슬러리를, 멤브레인 필터를 사용한 흡인 여과에 의해 여과한 후 순수로 세정하여, 얻어진 철분의 케이크를 질소 분위기 중 100℃에서 건조하였다. 당해 실리콘 산화물 피복 철분에 대해, BET 비표면적, 조성, 자기 특성, 복소 투자율 및 압분체의 밀도, 체적 저항률의 측정을 행하였다. 측정 결과를 표 2에 함께 나타낸다. 또한, 체적 저항률의 측정 결과로서는, 체적 저항의 측정값 R이 3.9×104(Ω), 분말 시료 두께 t가 0.381(cm)였다.The resulting slurry was filtered by suction filtration using a membrane filter and then washed with pure water, and the resulting iron cake was dried at 100°C in a nitrogen atmosphere. With respect to the silicon oxide-coated iron powder, the BET specific surface area, composition, magnetic properties, complex permeability, density of the green compact, and volume resistivity were measured. The measurement results are also shown in Table 2. In addition, as a measurement result of the volume resistivity, the measured value R of the volume resistivity was 3.9×10 4 (Ω), and the powder sample thickness t was 0.381 (cm).
[실시예 12][Example 12]
상자형 소성로를 사용한 대기 중에서의 가열 처리를 1090℃에서 행한 것 이외에는 비교예 1과 동일한 수순에 의해 철분을 얻었다. 얻어진 철분 15.00g을 사용하여, TEOS 첨가량을 1.27g으로 변경한 것 이외에는 실시예 11과 동일한 조건에서 실리콘 산화물 피복 처리를 실시하여, 실리콘 산화물 피복 철분을 얻었다. 철분 제조 공정 및 실리콘 산화물 피복을 행하는 일련의 공정의 조건을 표 1에 함께 나타낸다.Iron powder was obtained by the same procedure as in Comparative Example 1, except that the heat treatment in the air using a box-shaped kiln was performed at 1090°C. Using 15.00 g of the obtained iron powder, a silicon oxide coating treatment was performed under the same conditions as in Example 11 except that the TEOS addition amount was changed to 1.27 g to obtain a silicon oxide coated iron powder. Table 1 shows the conditions of the iron powder production process and the series of processes for coating silicon oxide.
얻어진 슬러리를, 멤브레인 필터를 사용한 흡인 여과에 의해 여과한 후 순수로 세정하여, 얻어진 철분의 케이크를 질소 분위기 중 100℃에서 건조하였다. 당해 실리콘 산화물 피복 철분에 대해, BET 비표면적, 조성, 자기 특성, 복소 투자율 및 압분체의 밀도, 체적 저항률의 측정을 행하였다. 측정 결과를 표 2에 함께 나타낸다. 또한, 체적 저항률의 측정 결과로서는, 체적 저항의 측정값 R이 3.8×104(Ω), 분말 시료 두께 t가 0.412(cm)였다.The resulting slurry was filtered by suction filtration using a membrane filter and then washed with pure water, and the resulting iron cake was dried at 100°C in a nitrogen atmosphere. With respect to the silicon oxide-coated iron powder, the BET specific surface area, composition, magnetic properties, complex permeability, density of the green compact, and volume resistivity were measured. The measurement results are also shown in Table 2. In addition, as the measurement result of the volume resistivity, the measured value R of the volume resistivity was 3.8×10 4 (Ω), and the powder sample thickness t was 0.412 (cm).
[비교예 2][Comparative Example 2]
TEOS의 첨가량을 0.91g으로 한 것 이외에는 실시예 2와 동일한 조건을 사용하여 실리콘 산화물 피복 철분을 얻었다. 본 비교예에서 사용한 실리콘 산화물 피복의 조건을 표 1에 함께 나타낸다. 또한, 본 비교예에서 얻어진 실리콘 산화물 피복 철분에 대한 BET 비표면적, 조성, 자기 특성, 복소 투자율 및 압분체의 밀도, 체적 저항률의 측정 결과를 표 2에 함께 나타낸다.A silicon oxide-coated iron powder was obtained using the same conditions as in Example 2, except that the amount of TEOS added was 0.91 g. Table 1 shows the conditions of the silicon oxide coating used in this comparative example. In addition, the measurement results of the BET specific surface area, composition, magnetic properties, complex permeability, density of the green compact, and volume resistivity of the silicon oxide-coated iron powder obtained in this comparative example are shown together in Table 2.
본 비교예에서 얻어진 실리콘 산화물 피복 철분 Si 함유량은 0.9%이고, 실리콘 산화물 피복층의 두께가 충분하지 않았기 때문에, 압분체의 체적 저항률이 9.9×104Ωㆍcm 이하가 되었다. 이 체적 저항률은, 실시예 1 내지 10에 대한 체적 저항률과 비교하여 현저하게 뒤떨어져 있었다.Since the silicon oxide-coated iron powder Si content obtained in this comparative example was 0.9%, and the thickness of the silicon oxide coating layer was not sufficient, the volume resistivity of the green compact was 9.9×10 4 Ω·cm or less. This volume resistivity was markedly inferior to the volume resistivity for Examples 1 to 10.
[비교예 3][Comparative Example 3]
5L 반응조에, 순수 4113.24g에, 순도 99.7질량%의 질산철(III) 9수화물 566.47g, 인 함유 이온의 공급원으로서 85질량% H3PO4 1.39g을 대기 분위기에서 교반 날개에 의해 기계적으로 교반하면서 용해하였다(수순 1). 이 용해액의 pH는 약 1이었다. 또한, 이 조건에서는 P/Fe 비는 0.0086이다.In a 5L reactor, in 4113.24 g of pure water, 566.47 g of iron (III) nitrate 9 hydrate with a purity of 99.7% by mass, and 1.39 g of 85% by mass H 3 PO 4 as a source of phosphorus-containing ions were mechanically stirred with a stirring blade in an air atmosphere. While dissolving (Procedure 1). The pH of this solution was about 1. In addition, the P/Fe ratio is 0.0086 under this condition.
대기 분위기에서 이 주입 용해액을 30℃의 조건하에, 교반 날개에 의해 기계적으로 교반하면서, 23.47mass%의 암모니아 용액 409.66g을 10min 걸쳐서 첨가하고(약 40g/L), 적하 종료 후에 30min간 교반을 계속하여 생성된 침전물의 숙성을 행하였다. 그 때, 침전물을 포함하는 슬러리의 pH는 약 9였다(수순 2).In an air atmosphere, under the condition of 30°C, while mechanically stirring with a stirring blade, 409.66 g of a 23.47 mass% ammonia solution was added over 10 minutes (about 40 g/L), and stirring was performed for 30 minutes after completion of the dropwise addition. Subsequently, the resulting precipitate was aged. At that time, the pH of the slurry containing the precipitate was about 9 (procedure 2).
수순 2에서 얻어진 슬러리를 교반하면서, 대기 중 30℃에서, 순도 95.0mass%의 테트라에톡시실란(TEOS) 55.18g을 10min 걸쳐서 적하하였다. 그 후 20시간 그대로 교반을 계속하고, 가수분해에 의해 생성된 실란 화합물의 가수분해 생성물로 침전물을 피복하였다(수순 3). 또한. 이 조건에서는 Si/Fe비는 0.18이다.While stirring the slurry obtained in step 2, 55.18 g of tetraethoxysilane (TEOS) having a purity of 95.0 mass% was added dropwise over 10 minutes at 30° C. in air. After that, stirring was continued as it is for 20 hours, and the precipitate was coated with a hydrolysis product of the silane compound produced by hydrolysis (Procedure 3). Also. In this condition, the Si/Fe ratio is 0.18.
수순 3에서 얻어진 슬러리를 여과하여, 얻어진 실란 화합물의 가수분해 생성물로 피복한 침전물의 수분을 가능한 한 제거하고 나서 순수 중에 다시 분산시켜, 리펄프 세정하였다. 세정 후의 슬러리를 다시 여과하여, 얻어진 케이크를 대기 중 110℃에서 건조하였다(수순 4). 수순 4에서 얻어진 건조품을, 상자형 소성로를 사용하여, 대기 중 1050℃에서 가열 처리하여, 실리콘 산화물 피복 산화철분을 얻었다(수순 5). 수순 5에서 얻어진 실리콘 산화물 피복 산화철분을 통기 가능한 버킷에 넣고, 그 버킷을 관통형 환원로 내에 장입하여, 노 내에 수소 가스를 흐르게 하면서 630℃에서 40min 보지함으로써 환원 열처리를 실시하였다(수순 6).The slurry obtained in step 3 was filtered, the moisture of the precipitate coated with the hydrolysis product of the obtained silane compound was removed as much as possible, and then again dispersed in pure water, followed by repulping washing. The washed slurry was filtered again, and the resulting cake was dried at 110°C in air (Procedure 4). The dried product obtained in step 4 was subjected to heat treatment at 1050° C. in air using a box-shaped sintering furnace to obtain silicon oxide-coated iron oxide powder (Step 5). The silicon oxide-coated iron oxide powder obtained in step 5 was placed in a ventilable bucket, and the bucket was charged in a through-type reduction furnace, and the reduction heat treatment was performed by holding the bucket at 630°C for 40 minutes while flowing hydrogen gas in the furnace (Step 6).
계속해서, 노 내의 분위기 가스를 수소에서 질소로 변환하고, 질소 가스를 흐르게 한 상태에서 노 내 온도를 강온 속도 20℃/min으로 80℃까지 저하시켰다. 그 후, 안정화 처리를 행하는 초기의 가스로서, 질소 가스/공기의 체적 비율이 125/1이 되도록 질소 가스와 공기를 혼합한 가스(산소 농도 약 0.17체적%)를 노 내에 도입하여 금속 분말 입자 표층부의 산화 반응을 개시시켜, 그 후 점차 공기의 혼합 비율을 증대시켜, 최종적으로 질소 가스/공기의 체적 비율이 25/1이 되는 혼합 가스(산소 농도 약 0.80체적%)를 노 내에 연속으로 도입함으로써, 입자의 표층부에 산화 보호층을 형성하였다. 안정화 처리 과정에서 온도는 80℃로 유지하고, 가스의 도입 유량도 거의 일정하게 보지하였다(수순 7).Subsequently, the atmospheric gas in the furnace was converted from hydrogen to nitrogen, and the temperature in the furnace was lowered to 80°C at a temperature-fall rate of 20°C/min while nitrogen gas was flowed. After that, as the initial gas for stabilization treatment, a gas (oxygen concentration of about 0.17% by volume) of nitrogen gas and air is introduced into the furnace so that the volume ratio of nitrogen gas/air is 125/1, and the surface layer of metal powder particles By starting the oxidation reaction of, and then gradually increasing the mixing ratio of air, and finally introducing a mixed gas (oxygen concentration of about 0.80% by volume) into the furnace with a volume ratio of nitrogen gas/air being 25/1. , An oxidation protective layer was formed on the surface layer of the particles. During the stabilization process, the temperature was maintained at 80° C., and the flow rate of the gas was kept almost constant (Step 7).
이상의 일련의 수순에 의해 얻어진 실리콘 산화물 피복 철분에 대해, 자기 특성, BET 비표면적, 철 입자의 입자 직경 및 복소 투자율의 측정을 행하였다. 측정 결과를 표 2에 함께 나타낸다.For the silicon oxide-coated iron powder obtained by the above series of procedures, magnetic properties, BET specific surface area, particle diameter of iron particles, and complex permeability were measured. The measurement results are also shown in Table 2.
본 비교예에서 얻어진 실리콘 산화물 피복 철분의 실리콘 산화물 피복은, 인 함유 화합물을 포함하는 것으로, 압분체의 체적 저항률이 9.9×104Ωㆍcm 이하였다.The silicon oxide coating of the silicon oxide-coated iron powder obtained in this comparative example contained a phosphorus-containing compound, and the volume resistivity of the green compact was 9.9×10 4 Ω·cm or less.
이상의 실시예 및 비교예로부터, 본 발명에서 규정하는 철분에 소정의 실리콘 산화물 피복을 실시함으로써, 입자 직경이 작고, 고주파 대역에서 높은 μ'를 달성할 수 있고 또한 높은 절연성을 갖는 실리콘 산화물 피복 철분이 얻어지는 것을 알 수 있다.From the above Examples and Comparative Examples, by applying a predetermined silicon oxide coating to the iron powder specified in the present invention, a silicon oxide-coated iron powder having a small particle diameter, a high μ'in a high frequency band can be achieved, and a high insulating property is obtained. It can be seen that it is obtained.
Claims (6)
평균 입자 직경이 0.25㎛ 이상 0.80㎛ 이하이고 또한 평균 축 비가 1.5 이하인 철 입자로 이루어진 철분을 준비하는 철분 제조 공정과,
상기의 공정에서 얻어진 철분을, 1질량% 이상 40질량% 이하의 물을 포함하는, 물과 유기물의 혼합 용매 중에 분산시켜서 얻어진 슬러리를 보지하는 슬러리 보지 공정과,
상기의 혼합 용매에 상기 철분을 분산시켜, 보지한 슬러리에 실리콘 알콕사이드를 첨가하는 알콕사이드 첨가 공정과,
상기의 실리콘 알콕사이드를 첨가한 슬러리에 실리콘 알콕사이드의 가수분해 촉매를 첨가하여, 실리콘 산화물을 피복한 철분이 분산된 슬러리를 얻는 가수분해 촉매 첨가 공정과,
상기의 실리콘 산화물을 피복한 철분을 포함하는 슬러리를 고액 분리하여, 실리콘 산화물을 피복한 철분을 얻는 회수 공정
을 포함하는, 실리콘 산화물 피복 철분의 제조 방법.Preparation of a silicon oxide-coated iron powder having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less, wherein the Si content of the silicon oxide-coated iron powder coated with silicon oxide is 1.0 mass% or more and 10 mass% or less As a method,
An iron powder manufacturing process for preparing iron powder composed of iron particles having an average particle diameter of 0.25 µm or more and 0.80 µm or less and an average axial ratio of 1.5 or less,
A slurry holding step of holding the slurry obtained by dispersing the iron powder obtained in the above step in a mixed solvent of water and organic matter containing 1% by mass or more and 40% by mass or less of water; and
An alkoxide addition step of dispersing the iron powder in the mixed solvent and adding silicon alkoxide to the retained slurry,
A hydrolysis catalyst addition step of adding a hydrolysis catalyst of silicon alkoxide to the slurry to which the silicon alkoxide is added to obtain a slurry in which iron powder coated with silicon oxide is dispersed;
Recovery process of solid-liquid separation of the slurry containing iron powder coated with silicon oxide to obtain iron powder coated with silicon oxide
Containing, a method for producing a silicon oxide coated iron powder.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018005405 | 2018-01-17 | ||
JPJP-P-2018-005405 | 2018-01-17 | ||
JP2018230914A JP7201417B2 (en) | 2018-01-17 | 2018-12-10 | SILICON OXIDE-COATED IRON POWDER AND ITS MANUFACTURING METHOD AND INDUCTOR MOLDED BODY AND INDUCTOR USING THE SAME |
JPJP-P-2018-230914 | 2018-12-10 | ||
PCT/JP2019/000616 WO2019142727A1 (en) | 2018-01-17 | 2019-01-11 | Silicon oxide-coated iron powder and manufacturing method therefor, molded body for inductor using said iron powder, and inductor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200106181A true KR20200106181A (en) | 2020-09-11 |
KR102376001B1 KR102376001B1 (en) | 2022-03-21 |
Family
ID=67302229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207022686A KR102376001B1 (en) | 2018-01-17 | 2019-01-11 | Silicon oxide-coated iron powder, manufacturing method thereof, molded article for inductor using same, and inductor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102376001B1 (en) |
WO (1) | WO2019142727A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3969260B1 (en) * | 2019-08-09 | 2024-05-22 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing kits |
JP7480614B2 (en) * | 2020-07-20 | 2024-05-10 | 株式会社村田製作所 | Manufacturing method of coil parts |
CN113388231A (en) * | 2021-06-30 | 2021-09-14 | 航天特种材料及工艺技术研究所 | Anti-rust carbonyl iron powder wave-absorbing material and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175806A (en) * | 1988-12-27 | 1990-07-09 | Ishihara Sangyo Kaisha Ltd | Manufacture of metal magnetic powder for magnetic recorder |
JPH03229806A (en) * | 1990-02-06 | 1991-10-11 | Harima Chem Inc | Manufacture of metal fine particles |
JP2006128663A (en) * | 2004-09-30 | 2006-05-18 | Sumitomo Electric Ind Ltd | Soft magnetic material, dust core and method of producing soft magnetic material |
JP2009231481A (en) | 2008-03-21 | 2009-10-08 | Hitachi Metals Ltd | Silica coating forming method of soft magnetic powder for dust core, and manufacturing method of dust core |
JP2010024478A (en) * | 2008-07-16 | 2010-02-04 | Sumitomo Osaka Cement Co Ltd | Iron fine particle and production method therefor |
JP2014060284A (en) | 2012-09-18 | 2014-04-03 | Tdk Corp | Coil component and metal magnetic powder-containing resin for use therein |
JP2016014162A (en) | 2014-06-30 | 2016-01-28 | セイコーエプソン株式会社 | Amorphous alloy powder, dust core, magnetic element and electronic equipment |
JP2016139788A (en) | 2015-01-27 | 2016-08-04 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Inductor containing magnetic material composition and method of manufacturing the same |
-
2019
- 2019-01-11 KR KR1020207022686A patent/KR102376001B1/en active IP Right Grant
- 2019-01-11 WO PCT/JP2019/000616 patent/WO2019142727A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175806A (en) * | 1988-12-27 | 1990-07-09 | Ishihara Sangyo Kaisha Ltd | Manufacture of metal magnetic powder for magnetic recorder |
JPH03229806A (en) * | 1990-02-06 | 1991-10-11 | Harima Chem Inc | Manufacture of metal fine particles |
JP2006128663A (en) * | 2004-09-30 | 2006-05-18 | Sumitomo Electric Ind Ltd | Soft magnetic material, dust core and method of producing soft magnetic material |
JP2009231481A (en) | 2008-03-21 | 2009-10-08 | Hitachi Metals Ltd | Silica coating forming method of soft magnetic powder for dust core, and manufacturing method of dust core |
JP2010024478A (en) * | 2008-07-16 | 2010-02-04 | Sumitomo Osaka Cement Co Ltd | Iron fine particle and production method therefor |
JP2014060284A (en) | 2012-09-18 | 2014-04-03 | Tdk Corp | Coil component and metal magnetic powder-containing resin for use therein |
JP2016014162A (en) | 2014-06-30 | 2016-01-28 | セイコーエプソン株式会社 | Amorphous alloy powder, dust core, magnetic element and electronic equipment |
JP2016139788A (en) | 2015-01-27 | 2016-08-04 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Inductor containing magnetic material composition and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
Yuichiro Sugawa et al., 12th MMM/INTERMAG CONFERENCE, CONTRIBUTED PAPER, HU-04, final manuscript. |
Also Published As
Publication number | Publication date |
---|---|
KR102376001B1 (en) | 2022-03-21 |
WO2019142727A1 (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7201417B2 (en) | SILICON OXIDE-COATED IRON POWDER AND ITS MANUFACTURING METHOD AND INDUCTOR MOLDED BODY AND INDUCTOR USING THE SAME | |
JP6892797B2 (en) | Iron powder and its manufacturing method, precursor manufacturing method, inductor molded body and inductor | |
KR102376001B1 (en) | Silicon oxide-coated iron powder, manufacturing method thereof, molded article for inductor using same, and inductor | |
KR20200105933A (en) | Fe-Co alloy powder and molded body and inductor for inductor using the same | |
KR102387491B1 (en) | Iron and its manufacturing method, molded article for inductor and inductor | |
CN114365242A (en) | Silicon oxide-coated Fe-based soft magnetic powder and method for producing same | |
TWI682040B (en) | Fe-Ni ALLOY POWDER AND COMPACT FOR INDUCTOR AND INDUCTOR USING THE SAME | |
TWI761153B (en) | Iron-based oxide magnetic powder and method for manufacturing the same | |
TWI761154B (en) | Iron-based oxide magnetic powder, and green compact and radio wave absorber using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |