KR20200103208A - Shift control method for vehicle with dct - Google Patents

Shift control method for vehicle with dct Download PDF

Info

Publication number
KR20200103208A
KR20200103208A KR1020190020831A KR20190020831A KR20200103208A KR 20200103208 A KR20200103208 A KR 20200103208A KR 1020190020831 A KR1020190020831 A KR 1020190020831A KR 20190020831 A KR20190020831 A KR 20190020831A KR 20200103208 A KR20200103208 A KR 20200103208A
Authority
KR
South Korea
Prior art keywords
torque
release
clutch
side clutch
engagement
Prior art date
Application number
KR1020190020831A
Other languages
Korean (ko)
Other versions
KR102588930B1 (en
Inventor
조성현
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190020831A priority Critical patent/KR102588930B1/en
Priority to DE102019120280.9A priority patent/DE102019120280A1/en
Publication of KR20200103208A publication Critical patent/KR20200103208A/en
Application granted granted Critical
Publication of KR102588930B1 publication Critical patent/KR102588930B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/56Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the main clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0275Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0283Clutch input shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • F16D2500/30407Clutch slip change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30421Torque of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)

Abstract

An objective of the present invention is to provide a shift control method of a DCT vehicle, which can improve the marketability of a vehicle. The shift control method of a DCT vehicle comprises: a release start step in which a controller starts releasing a release side clutch; a first initialization step of setting release side clutch torque calculated by using a release side clutch torque model as feed forward torque, and allowing the release side clutch torque to converge to the feed forward torque during a prescribed first reference time; a first feedback control step of calculating feedback torque in accordance with a clutch slip change rate when the first reference time elapses to control the release side clutch torque by the sum of the feed forward torque and the feedback torque; and a first torque handover step of increasing coupling side clutch torque to correspond to engine torque while releasing the release side clutch during a prescribed second reference time when performance preparation of a torque phase is determined to be completed while performing the first feedback control step.

Description

DCT 차량의 변속 제어 방법{SHIFT CONTROL METHOD FOR VEHICLE WITH DCT}DCT vehicle shift control method {SHIFT CONTROL METHOD FOR VEHICLE WITH DCT}

본 발명은 DCT(Dual Clutch Transmission)가 탑재된 차량의 변속 제어에 관한 기술이다.The present invention is a technology related to shift control of a vehicle equipped with DCT (Dual Clutch Transmission).

파워 온 다운쉬프트(Power On Downshift)는 운전자가 가속페달을 밟은 상태에서 현재단 보다 하위의 목표단으로 변속이 이루어지는 과정이다.Power On Downshift is a process in which the driver shifts to the target stage lower than the current stage while stepping on the accelerator pedal.

이때, 이너셔페이즈(Inertia Phase)와 토크페이즈(Torque Phase)를 차례로 수행함에 의해 변속이 이루어지는데, 상기 이너셔페이즈에서는 해방측클러치를 해제하기 시작하여 엔진속도가 현재단에 연결된 해방측클러치 속도로부터 이탈하여 목표단이 연결된 결합측클러치 속도를 향해 상승하도록 하고, 엔진속도가 결합측클러치 속도에 동기되면, 상기 토크페이즈를 수행하는 바, 상기 결합측클러치의 토크를 엔진토크에 상응하게 상승시키면서 동시에 해방측클러치를 완전히 해제하여 변속을 완료하도록 한다.At this time, shifting is performed by sequentially performing an inertia phase and a torque phase.In the inertia phase, the release clutch starts to be released and the engine speed is connected to the current end. The torque phase is performed when the target end is separated from and rises toward the coupling-side clutch speed to which the target end is connected, and when the engine speed is synchronized with the coupling-side clutch speed, the torque of the coupling-side clutch is increased corresponding to the engine torque. At the same time, completely release the release clutch to complete the shift.

상기 이너셔페이즈에서 엔진속도를 해방측클러치 속도로부터 증가시켜 결합측클러치 속도로 동기시키는 제어가 안정되고 적절하게 수행되면, 원활한 변속으로 변속감이 향상된다.If the control for synchronizing the engine speed to the engagement-side clutch speed by increasing the engine speed from the release-side clutch speed in the inertia phase is stable and properly performed, the shift feeling is improved with smooth shifting.

상기 발명의 배경이 되는 기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background technology of the present invention are only for enhancing an understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the prior art already known to those of ordinary skill in the art. Will be

KR 1020150125756 AKR 1020150125756 A

본 발명은 DCT 탑재 차량이 파워 온 다운쉬프트 수행 시, 보다 안정되고 적절한 클러치 제어를 통해, 신속하고 부드러운 변속으로 변속감을 향상시켜서 궁극적으로 차량의 상품성을 향상시킬 수 있도록 한 DCT 차량의 변속 제어 방법을 제공함에 그 목적이 있다.The present invention provides a shift control method of a DCT vehicle that improves the sense of shift with a quick and smooth shift through a more stable and appropriate clutch control when a DCT-equipped vehicle performs a power-on-downshift, thereby ultimately improving the marketability of the vehicle. It has its purpose in providing.

상기한 바와 같은 목적을 달성하기 위한 본 발명 DCT 차량의 변속 제어 방법은,The present invention DCT vehicle shift control method for achieving the above object,

파워 온 다운쉬프트가 개시되면, 컨트롤러가 해방측클러치 해제를 개시하여 엔진속도가 해방측클러치 속도보다 상승되도록 유도하는 해제개시단계와;A release start step of inducing an engine speed to rise above the release clutch speed by starting the release side clutch when the power-on downshift is started;

상기 컨트롤러가 해방측클러치 토크 모델을 이용하여 산출한 해방측클러치 토크를 피드포워드 토크로 설정하고, 상기 해방측클러치 토크를 소정의 제1기준시간 동안 상기 피드포워드 토크로 수렴시키는 제1초기화단계와;A first initialization step of setting the release-side clutch torque calculated by the controller using the release-side clutch torque model as a feed forward torque, and converging the release-side clutch torque to the feed-forward torque for a predetermined first reference time; and ;

상기 제1기준시간이 경과하면, 상기 컨트롤러가 클러치슬립변화율에 따른 피드백 토크를 산출하여, 상기 해방측클러치 토크를 상기 피드포워드 토크와 상기 피드백 토크의 합으로 제어하는 제1피드백제어단계와;A first feedback control step of calculating, by the controller, a feedback torque according to a clutch slip change rate when the first reference time elapses, and controlling the release clutch torque as a sum of the feed forward torque and the feedback torque;

상기 제1피드백제어단계 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제2기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제1토크핸드오버단계;During the execution of the first feedback control step, if the controller determines that the torque phase is ready to be performed, the release clutch is released for a predetermined second reference time and the engagement clutch torque is increased corresponding to the engine torque. A first talk handover step;

를 포함하여 구성된 것을 특징으로 한다.It characterized in that it is configured to include.

상기 해제개시단계 이후 상기 제1초기화단계 이전에, 상기 컨트롤러는 엔진속도와 해방측클러치 속도의 차이가 소정의 제1기준값 이상이 되는 것으로 판단하면, 상기 해방측클러치 토크를 저감시키는 기울기를 조정하는 변화율조정단계를 더 수행하도록 구성될 수 있다.After the release start step and before the first initialization step, when it is determined that the difference between the engine speed and the release side clutch speed is equal to or greater than a predetermined first reference value, the controller adjusts a slope for reducing the release side clutch torque. It may be configured to further perform the rate of change adjustment step.

상기 제1초기화단계 이전에, 상기 컨트롤러는 이축변속인지 동축변속인지 판단하는 변속종류판단단계를 더 수행하여, 이축변속인 경우 상기 제1초기화단계를 수행하도록 구성될 수 있다.Prior to the first initialization step, the controller may be configured to further perform a shift type determination step of determining whether a biaxial shift or a coaxial shift is performed, and in the case of a biaxial shift, perform the first initialization step.

상기 컨트롤러가 상기 변속종류판단단계 수행결과, 동축변속 상황인 경우,When the controller is in a coaxial shift situation as a result of performing the shift type determination step,

상기 컨트롤러가 해방측클러치 토크 모델을 이용하여 산출한 해방측클러치 토크를 피드포워드 토크로 설정하고, 상기 해방측클러치 토크를 소정의 제3기준시간 동안 상기 피드포워드 토크로 수렴시키는 제2초기화단계와;A second initialization step of setting the release-side clutch torque calculated by the controller using the release-side clutch torque model as a feed forward torque, and converging the release-side clutch torque to the feed-forward torque for a predetermined third reference time; and ;

상기 제3기준시간이 경과하면, 상기 컨트롤러가 클러치슬립변화율에 따른 피드백 토크를 산출하여, 상기 해방측클러치 토크를 상기 피드포워드 토크와 상기 피드백 토크의 합으로 제어하는 제2피드백제어단계와;A second feedback control step of calculating, by the controller, a feedback torque according to a clutch slip change rate, and controlling the release clutch torque as a sum of the feed forward torque and the feedback torque when the third reference time elapses;

상기 제2피드백제어단계 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제4기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제2토크핸드오버단계와;During the execution of the second feedback control step, if the controller determines that the torque phase is ready to be performed, the release side clutch is released for a predetermined fourth reference time and the engagement side clutch torque is increased corresponding to the engine torque. A second talk handover step;

상기 제4기준시간이 경과하면, 상기 컨트롤러는 상기 결합측클러치와 해방측클러치의 역할을 서로 전환하여, 지금까지 결합측클러치로 작용하던 클러치를 해방측클러치로 하고, 이 해방측클러치의 토크를 상기 해방측클러치 토크 모델로부터 산출한 피드포워드 토크와 클러치슬립변화율에 따른 피드백 토크의 합으로 제어하는 제3피드백제어단계와;When the fourth reference time elapses, the controller switches the roles of the engagement-side clutch and the release-side clutch to each other, making the clutch that has been acting as the engagement-side clutch so far as the release-side clutch, and the torque of the release-side clutch A third feedback control step of controlling the feed forward torque calculated from the release-side clutch torque model and the sum of the feedback torque according to the clutch slip change rate;

상기 제3피드백제어단계 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제5기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제3토크핸드오버단계;During the execution of the third feedback control step, if the controller determines that the torque phase is ready to be performed, the release clutch is released for a predetermined fifth reference time, and the coupling-side clutch torque is increased corresponding to the engine torque. A third torque handover step;

를 더 수행하도록 구성될 수 있다.It may be configured to further perform.

상기 해방측클러치 토크 모델은 다음 수식,The release clutch torque model is the following equation,

Figure pat00001
Figure pat00001

Figure pat00002
; 해방측클러치 토크
Figure pat00002
; Release clutch torque

Figure pat00003
; 엔진토크
Figure pat00003
; Engine torque

Figure pat00004
; 엔진 관성모멘트
Figure pat00004
; Engine moment of inertia

Slip; Ne-NiSlip; Ne-Ni

Ne; 엔진회전수Ne; Engine speed

Ni; 결합측클러치 회전수Ni; Coupling side clutch rotation speed

Figure pat00005
; 구동계 관성에 기인한 토크
Figure pat00005
; Torque due to drive system inertia

와 같이 구성될 수 있다.It can be configured as

상기 컨트롤러는 상기 제1피드백제어단계 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제2기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제3기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성될 수 있다.In the controller, the engagement of the target gear is completed while the first feedback control step is performed, the shift progress rate is equal to or greater than a predetermined second reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to the third reference value, and the engagement side clutch When the preparation for fastening of is completed, it may be configured to determine that the preparation for performing the torque phase is complete.

상기 컨트롤러는 상기 제2피드백제어단계 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제4기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제5기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성될 수 있다.During the second feedback control step, the engagement of the target gear is completed, the shift progress rate is greater than or equal to a predetermined fourth reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to the fifth reference value, and the engagement side clutch When the preparation for fastening of is completed, it may be configured to determine that the preparation for performing the torque phase is complete.

상기 컨트롤러는 상기 제3피드백제어단계 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제6기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제7기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성될 수 있다.During the third feedback control step, the engagement of the target gear is completed, the shift progress rate is equal to or greater than a predetermined sixth reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to the seventh reference value, and the engagement side clutch When the preparation for fastening of is completed, it may be configured to determine that the preparation for performing the torque phase is complete.

상기 피드백 토크는 목표 클러치슬립 변화율과 측정된 엔진속도와 클러치속도의 차이로부터 산출되는 측정 클러치슬립 변화율의 차이를 이용하여 산출되며;The feedback torque is calculated using a difference between a target clutch slip change rate and a measured clutch slip change rate calculated from a difference between the measured engine speed and the clutch speed;

상기 피드포워드 토크를 산출하는 해방측클러치 토크 모델은 상기 목표 클러치슬립 변화율을 이용하도록 구성될 수 있다.The release-side clutch torque model for calculating the feedforward torque may be configured to use the target clutch slip change rate.

본 발명은 DCT 탑재 차량이 파워 온 다운쉬프트 수행 시, 보다 안정되고 적절한 클러치 제어를 통해, 신속하고 부드러운 변속으로 변속감을 향상시켜서 궁극적으로 차량의 상품성을 향상시킬 수 있도록 한다.The present invention enables a DCT-equipped vehicle to improve the sense of shift through a more stable and appropriate clutch control when performing a power-on-downshift, and ultimately improve the marketability of the vehicle.

도 1은 본 발명이 적용될 수 있는 DCT 탑재 차량의 구성도,
도 2는 본 발명에 따른 DCT 차량의 변속 제어 방법의 실시예를 도시한 순서도,
도 3은 본 발명의 변속제어 방법을 설명한 블록도이다.
1 is a configuration diagram of a DCT-equipped vehicle to which the present invention can be applied,
2 is a flow chart showing an embodiment of a shift control method of a DCT vehicle according to the present invention;
3 is a block diagram illustrating a shift control method of the present invention.

도 1은 본 발명이 적용될 수 있는 DCT 탑재 차량의 구성도로서, 엔진(E)의 동력이 제1클러치(CL1) 및 제2클러치(CL2)를 통해 각각 DCT의 제1입력축(IN1) 및 제2입력축(IN2)으로 전달되어 변속된 후 출력축(OUT)을 통해 구동륜(W)으로 공급되도록 되어 있다.1 is a configuration diagram of a DCT-equipped vehicle to which the present invention can be applied, wherein the power of the engine E is through a first clutch CL1 and a second clutch CL2, respectively, a first input shaft IN1 and a first input shaft of the DCT. 2 It is transmitted to the input shaft IN2 and shifted, and then supplied to the driving wheel W through the output shaft OUT.

또한, 상기 제1클러치(CL1) 및 제2클러치(CL2)를 구동하기 위한 클러치액츄에이터(CA)와, 셀렉팅 및 쉬프팅 기능으로 변속을 수행하기 위한 변속액츄에이터(SA)가 구비되어 컨트롤러(CLR)에 의해 제어됨으로써, 자동적으로 변속이 이루어지도록 구성된다.In addition, a clutch actuator (CA) for driving the first clutch (CL1) and the second clutch (CL2), and a shift actuator (SA) for performing a shift with a selecting and shifting function are provided, and a controller (CLR) By being controlled by, it is configured to automatically shift.

상기 컨트롤러(CLR)는 운전자의 가속페달 조작량을 APS(Accelerator Position Sensor)를 통해 입력 받고, 그 외 엔진의 속도와 토크 및 차속 등의 정보를 전달받아 상기 클러치액츄에이터(CA)와 변속액츄에이터(SA)를 제어하여 차량의 주행상황에 맞게 자동적으로 DCT의 변속을 수행하도록 구성된다.The controller (CLR) receives the driver's accelerator pedal operation amount through the APS (Accelerator Position Sensor), and receives other information such as engine speed, torque, and vehicle speed, and receives the clutch actuator (CA) and the shift actuator (SA). It is configured to automatically change the DCT according to the driving situation of the vehicle by controlling the control.

한편, 상기 엔진은 별도의 EMS(Engine Management System)에 의해 제어되며, 상기 컨트롤러(CLR)는 상기 EMS와 통신함으로써, 상기 엔진의 정보를 전달받을 수 있으며, 차량의 주행 상황 및 변속 상황에 따라 엔진의 토크를 조절하여 줄 것을 상기 EMS에게 요청하면, 상기 EMS가 그 요청을 감안하여 상기 엔진을 제어하도록 구성되어 있다.Meanwhile, the engine is controlled by a separate EMS (Engine Management System), and the controller (CLR) communicates with the EMS to receive the engine information, and the engine is When requesting the EMS to adjust the torque of the EMS, the EMS is configured to control the engine in consideration of the request.

참고로, 상기한 바와 같은 컨트롤러(CLR)는 TMS(Transmission Management System)로 구성될 수 있으며, 경우에 따라서는 상기 EMS와 TMS를 통합한 통합 컨트롤 시스템으로 구성할 수도 있을 것이다.For reference, the controller (CLR) as described above may be configured as a TMS (Transmission Management System), and in some cases may be configured as an integrated control system in which the EMS and TMS are integrated.

여기서, 상기 제1클러치(CL1)와 제2클러치(CL2)는 변속 시에 어느 하나는 해방되면서 다른 하나는 결합되는 작용을 수행하게 되는 바, 그 변속 상황에 따라 두 클러치 중 하나는 엔진으로부터 분리되는 해방측클러치가 되고 다른 하나는 상기 엔진에 결합되는 결합측클러치가 되는 것이다.Here, when the first clutch CL1 and the second clutch CL2 are shifted, one of the clutches is released while the other is engaged, and one of the two clutches is separated from the engine according to the shifting situation. The release side clutch to be used, the other is to be a coupling side clutch that is coupled to the engine.

도 2를 참조하면, 본 발명 DCT 차량의 변속 제어 방법의 실시예는, 파워 온 다운쉬프트가 개시되면, 컨트롤러가 해방측클러치 해제를 개시하여 엔진속도가 해방측클러치 속도보다 상승되도록 유도하는 해제개시단계(S10)와; 상기 컨트롤러가 해방측클러치 토크 모델을 이용하여 산출한 해방측클러치 토크를 피드포워드 토크로 설정하고, 상기 해방측클러치 토크를 소정의 제1기준시간 동안 상기 피드포워드 토크로 수렴시키는 제1초기화단계(S40)와; 상기 제1기준시간이 경과하면, 상기 컨트롤러가 클러치슬립변화율에 따른 피드백 토크를 산출하여, 상기 해방측클러치 토크를 상기 피드포워드 토크와 상기 피드백 토크의 합으로 제어하는 제1피드백제어단계(S50)와; 상기 제1피드백제어단계(S50) 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제2기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제1토크핸드오버단계(S60)를 포함하여 구성된다.Referring to FIG. 2, in an embodiment of the shift control method of a DCT vehicle according to the present invention, when the power-on and downshift is initiated, the controller initiates the release-side clutch release to induce the engine speed to increase above the release-side clutch speed. Step (S10) and; A first initialization step of setting the release-side clutch torque calculated by the controller using the release-side clutch torque model as a feed forward torque, and converging the release-side clutch torque to the feed-forward torque for a predetermined first reference time ( S40) and; When the first reference time elapses, the controller calculates a feedback torque according to the clutch slip change rate, and controls the release clutch torque as the sum of the feed forward torque and the feedback torque (S50). Wow; During the execution of the first feedback control step (S50), if the controller determines that the preparation of the torque phase is completed, the release clutch is released for a predetermined second reference time and the engagement clutch torque corresponds to the engine torque. It is configured to include a first torque handover step (S60) to increase the upward.

즉, 본 발명 실시예는 파워 온 다운쉬프트가 개시되면, 우선적으로 해방측클러치의 해제를 개시하여 엔진속도를 해방측클러치 속도로부터 벗어나서 상승할 수 있도록 한 후, 상기 해방측클러치 토크를 해방측클러치 토크 모델을 통해 산출된 피드포워드 토크로 수렴시키고, 이어 상기 해방측클러치 토크를 상기 피드포워드 토크와 피드백 토크의 합에 따라 피드백 제어함에 의해, 파워 온 다운쉬프트 이너셔페이즈를 신속하고 안정된 상태로 적절히 제어할 수 있도록 함으로써, 차량의 변속감을 향상시킬 수 있도록 한 것이다.That is, in the embodiment of the present invention, when the power-on-downshift is initiated, the release-side clutch is firstly released to increase the engine speed away from the release-side clutch speed, and then the release-side clutch torque is reduced to the release-side clutch. By converging to the feed forward torque calculated through the torque model, and then controlling the release clutch torque according to the sum of the feed forward torque and the feedback torque, the power-on downshift inertia phase is appropriately fast and stable. By making it possible to control, it is possible to improve the shifting feeling of the vehicle.

특히, 도 3에 도시된 바와 같이, 상기 피드백 토크는 목표 클러치슬립 변화율과 측정된 엔진속도와 클러치속도의 차이로부터 산출되는 측정 클러치슬립 변화율의 차이를 이용하여 산출되며, 상기 피드포워드 토크를 산출하는 해방측클러치 토크 모델은 상기 목표 클러치슬립 변화율을 이용하도록 구성됨으로써, 상기 피드포워드 토크와 피드백 토크가 모두 동일한 물리량인 목표 클러치슬립 변화율을 이용하여 산출되도록 함으로써, 제어의 일관성이 확보되어 해방측클러치의 적절한 제어가 보장되도록 한 것이다. In particular, as shown in Figure 3, the feedback torque is calculated by using the difference between the target clutch slip change rate and the measured clutch slip change rate calculated from the difference between the measured engine speed and the clutch speed, and calculates the feed forward torque. The release clutch torque model is configured to use the target clutch slip change rate, so that both the feed forward torque and the feedback torque are calculated using the target clutch slip change rate, which is the same physical quantity, thereby ensuring the consistency of control and This is to ensure adequate control.

한편, 도 2의 실시예에서, 본 발명은 상기 해제개시단계(S10) 이후 상기 제1초기화단계(S40) 이전에, 상기 컨트롤러가 엔진속도와 해방측클러치 속도의 차이가 소정의 제1기준값 이상이 되는 것으로 판단하면, 상기 해방측클러치 토크를 저감시키는 기울기를 조정하는 변화율조정단계(S20)를 더 수행하도록 구성된다.On the other hand, in the embodiment of Figure 2, the present invention, after the release start step (S10) and before the first initialization step (S40), the controller has a difference between the engine speed and the release clutch speed is equal to or greater than a predetermined first reference value. If it is determined to be, it is configured to further perform a rate of change adjustment step (S20) of adjusting a slope for reducing the release clutch torque.

이는 상기 해제개시단계(S10)에서 해방측클러치의 토크를 저감시키기 시작하는 기울기와 상기 엔진속도와 해방측클러치 속도의 차이가 상기 제1기준값 이상이 된 이후의 해방측클러치 토크 저감 기울기를 다르게 설정할 수 있도록 함으로써, 보다 부드러운 이너셔페이즈의 개시와 보다 신속한 이너셔페이즈의 종료를 도모할 수 있도록 할 수 있도록 한다.This is to set a different slope for reducing the torque of the release-side clutch in the release start step (S10) and the release-side clutch torque reduction slope after the difference between the engine speed and the release-side clutch speed becomes more than the first reference value. By doing so, it is possible to start a smoother inertia phase and to end the inertia phase more quickly.

즉, 상기 해제개시단계(S10)에서 해방측클러치 토크를 저감시키기 시작하는 기울기는 상대적으로 작게 하여 엔진이 해방측클러치로부터 비교적 완만히 이격되도록 함으로써 부드러운 이너셔페이즈의 개시가 가능하도록 하고, 이후 상기 해방측클러치 토크의 저감 기울기를 상대적으로 크게 하여, 엔진속도가 보다 신속히 증가하여 보다 짧은 시간 내에 이너셔페이즈의 종료가 가능하도록 할 수 있는 것이다.That is, in the release start step (S10), the slope at which the release-side clutch torque starts to be reduced is relatively small, so that the engine is relatively gently separated from the release-side clutch, thereby enabling the initiation of a smooth inertia phase, and then the release. By making the reduction slope of the side clutch torque relatively large, the engine speed is increased more rapidly and the inertia phase can be terminated within a shorter time.

따라서, 상기 제1기준값은 상기한 바와 같은 취지에 따라 실험 및 해석에 의해 설계적으로 결정될 수 있을 것이며, 예컨대, 50RPM 등으로 설정될 수 있을 것이다.Accordingly, the first reference value may be determined design by experiment and analysis according to the above-described purpose, and may be set to 50 RPM, for example.

한편, 본 실시예는 상기 제1초기화단계(S40) 이전에, 상기 컨트롤러가 이축변속인지 동축변속인지 판단하는 변속종류판단단계(S30)를 더 수행하여, 이축변속인 경우 상기 제1초기화단계(S40)를 수행하도록 하고, 상기 변속종류판단단계(S30) 수행결과, 동축변속 상황인 경우에는 다음의 단계들을 추가적으로 수행하도록 한다.On the other hand, in this embodiment, before the first initialization step (S40), a shift type determination step (S30) for determining whether the controller is a biaxial shift or a coaxial shift is further performed, and in the case of a biaxial shift, the first initialization step ( S40) is performed, and as a result of performing the shift type determination step (S30), the following steps are additionally performed in the case of a coaxial shift situation.

즉, 본 발명 실시예는, 상기 변속종류판단단계(S30) 수행결과, 동축변속 상황인 경우, 상기 컨트롤러가 해방측클러치 토크 모델을 이용하여 산출한 해방측클러치 토크를 피드포워드 토크로 설정하고, 상기 해방측클러치 토크를 소정의 제3기준시간 동안 상기 피드포워드 토크로 수렴시키는 제2초기화단계(S70)와; 상기 제3기준시간이 경과하면, 상기 컨트롤러가 클러치슬립변화율에 따른 피드백 토크를 산출하여, 상기 해방측클러치 토크를 상기 피드포워드 토크와 상기 피드백 토크의 합으로 제어하는 제2피드백제어단계(S80)와; 상기 제2피드백제어단계(S80) 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제4기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제2토크핸드오버단계(S90)와; 상기 제4기준시간이 경과하면, 상기 컨트롤러는 상기 결합측클러치와 해방측클러치의 역할을 서로 전환하여, 지금까지 결합측클러치로 작용하던 클러치를 해방측클러치로 하고, 이 해방측클러치의 토크를 상기 해방측클러치 토크 모델로부터 산출한 피드포워드 토크와 클러치슬립변화율에 따른 피드백 토크의 합으로 제어하는 제3피드백제어단계(S100)와; 상기 제3피드백제어단계(S100) 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제5기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제3토크핸드오버단계(S110)를 더 수행하도록 구성된 것이다.That is, in the embodiment of the present invention, as a result of performing the shift type determination step (S30), in the case of a coaxial shift situation, the controller sets the release side clutch torque calculated using the release side clutch torque model as the feed forward torque, A second initialization step (S70) of converging the release clutch torque to the feed forward torque for a predetermined third reference time; When the third reference time elapses, the controller calculates a feedback torque according to the clutch slip change rate, and controls the release clutch torque as the sum of the feed forward torque and the feedback torque (S80). Wow; While performing the second feedback control step (S80), if the controller determines that the preparation of the torque phase is completed, the release clutch is released for a predetermined fourth reference time, and the engagement clutch torque corresponds to the engine torque. A second torque handover step (S90) of increasing the level; When the fourth reference time elapses, the controller switches the roles of the engagement-side clutch and the release-side clutch to each other, making the clutch that has been acting as the engagement-side clutch so far as the release-side clutch, and the torque of the release-side clutch A third feedback control step (S100) of controlling the sum of the feed forward torque calculated from the release clutch torque model and the feedback torque according to the clutch slip change rate; During the execution of the third feedback control step (S100), if the controller determines that the preparation of the torque phase is completed, the release clutch is released for a predetermined fifth reference time, and the engagement clutch torque corresponds to the engine torque. It is configured to further perform the third torque handover step (S110) to increase the level.

참고로, 상기 제1기준시간과 시점은 상기 변화율조정단계(S20) 완료 후 또는 상기 변속종류판단단계(S30) 완료 후로 설정할 수 있을 것이며, 그 길이는 상기 해방측클러치 토크 모델에 의해 산출된 피드포워드 토크와 상기 제1기준시간의 시점에서의 해방측클러치 토크의 차이에 따라 그 차이가 클수록 보다 긴 시간이 확보되도록 하는 맵 등에 의해 구해지도록 구성할 수 있을 것이다.For reference, the first reference time and time may be set after completion of the change rate adjustment step (S20) or after completion of the shift type determination step (S30), and the length is the feed calculated by the release clutch torque model. According to the difference between the forward torque and the release clutch torque at the time point of the first reference time, the larger the difference may be configured to be obtained by a map or the like to ensure a longer time.

즉, 상기 제1기준시간은 상기 해방측클러치 토크가 상기 피드포워드 토크로 수렴하는 데에 소요되는 시간으로 볼 수 있으므로, 그 차이가 클수록 긴 시간이 확보되는 맵을 구비하고, 그 차이에 따라 적절한 시간 값이 선택되도록 구성하는 것이다.That is, the first reference time can be viewed as a time required for the release clutch torque to converge to the feed forward torque, so a map is provided in which a longer time is secured as the difference increases, and an appropriate It configures the time value to be selected.

또한, 상기 제3기준시간도 상기 제1기준시간과 거의 동일한 기술적 의미를 가지며, 상기 제3기준시간은 단지 상기 제1기준시간이 이축변속인 경우에 사용되는 것과 구별하여 동축변속인 경우에 사용하기 위한 것으로서, 상기 제1기준시간과 마찬가지로, 그 시점은 상기 변화율조정단계(S20) 완료 후 또는 상기 변속종류판단단계(S30) 완료 후로 설정할 수 있을 것이며, 이 시점에서의 해방측클러치 토크와 해방측클러치 토크 모델에 의해 결정된 피드포워드 토크의 차이에 따른 맵 등을 통해 결정되도록 할 수 있다.In addition, the third reference time has almost the same technical meaning as the first reference time, and the third reference time is only used when the first reference time is a coaxial transmission, different from that used when the first reference time is a biaxial transmission. As for the first reference time, the time point may be set after the completion of the change rate adjustment step (S20) or after the completion of the shift type determination step (S30), and the release side clutch torque and release at this time It can be determined through a map or the like according to a difference in feed forward torque determined by the side clutch torque model.

상기 해방측클러치 토크 모델은 다음 수학식 1과 같이 표현될 수 있다.The release clutch torque model can be expressed as Equation 1 below.

Figure pat00006
Figure pat00006

여기서, here,

Figure pat00007
; 해방측클러치 토크
Figure pat00007
; Release clutch torque

Figure pat00008
; 엔진토크
Figure pat00008
; Engine torque

Figure pat00009
; 엔진 관성모멘트
Figure pat00009
; Engine moment of inertia

Slip; Ne-Ni (=클러치슬립)Slip; Ne-Ni (= clutch slip)

Ne; 엔진회전수Ne; Engine speed

Ni; 결합측클러치 회전수 (=결합측입력축 회전수)Ni; Engagement side clutch rotation speed (= engagement side input shaft rotation number)

Figure pat00010
; 구동계 관성에 기인한 토크
Figure pat00010
; Torque due to drive system inertia

한편, 상기 피드백 토크는 상술한 바와 같이, 상기 목표 클러치슬립 변화율과, 측정된 엔진속도와 클러치속도의 차이로부터 산출되는 측정 클러치슬립 변화율의 차이인 클러치슬립변화율에러를 이용하여, 종래 공지의 PID제어(Proportional Integral Derivative Control)에 의하여 산출하는 것과 동일한 방법에 의해 피드백 토크를 산출하도록 구성할 수 있을 것이다.Meanwhile, the feedback torque is, as described above, using a clutch slip change rate error that is a difference between the target clutch slip change rate and the measured clutch slip change rate calculated from the difference between the measured engine speed and clutch speed, It can be configured to calculate the feedback torque by the same method as calculated by (Proportional Integral Derivative Control).

상기 컨트롤러는 상기 제1피드백제어단계(S50) 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제2기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제3기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성된다.In the controller, while performing the first feedback control step (S50), the engagement of the target gear is completed, and the shift progress rate is equal to or greater than a predetermined second reference value, or the difference between the engine speed and the engagement side clutch speed is equal to or greater than a third reference value, When the preparation for fastening of the coupling side clutch is completed, it is configured to determine that the preparation for performing the torque phase is complete.

여기서, 상기 변속진행율은 다음의 수학식 2에 의해 계산된다.Here, the shift progress rate is calculated by Equation 2 below.

Figure pat00011
Figure pat00011

즉, 상기 변속진행율은 엔진속도가 해방측클러치속도로부터 얼마만큼 결합측클러치속도(=동기속도)에 가까워졌는지를 나타낸다.That is, the shift progress rate indicates how close the engine speed to the engagement clutch speed (= synchronous speed) from the release clutch speed.

따라서, 상기 제2기준값과 제3기준값은 실질적으로 엔진속도가 결합측클러치 속도에 거의 근접하여, 실질적인 이너셔페이즈의 종료 시점이 되었음을 확인할 수 있는 값들로 설정되는 바, 다수의 실험 및 해석에 의해 설계적으로 결정될 수 있다.Accordingly, the second reference value and the third reference value are set to values that can confirm that the engine speed is substantially close to the coupling side clutch speed, and the actual inertia phase ends. It can be determined by design.

또한, 상기 결합측클러치의 체결준비가 완료된 경우란, 결합측클러치가 터치포인트 근처로 이동되어, 제어를 개시하면 즉각적으로 결합측클러치 토크가 발생할 수 있는 상황을 말하는 바, 예컨대 결합측클러치 토크가 -2Nm 이상이 되면, 체결준비가 완료된 것으로 할 수 있을 것이다.In addition, the case where the preparation of the engagement side clutch is completed refers to a situation in which the engagement side clutch torque may be immediately generated when the engagement side clutch moves near the touch point and control is started. For example, the engagement side clutch torque is If it is more than -2Nm, it can be said that the preparation for fastening is complete.

참고로, 상기 제1초기화단계(S40)와 제1피드백제어단계(S50) 및 제1토크핸드오버단계(S60)는 이축변속 시 진행되는 단계들로서, 예컨대 상기 변속종류판단단계(S30)에서 [현재단-목표단 < 2단]인 경우, 즉, 현재단이 4단이고 목표단이 3단인 경우에 수행되는 일련의 단계들이다.For reference, the first initialization step (S40), the first feedback control step (S50), and the first torque handover step (S60) are steps performed during biaxial shifting. For example, in the shift type determination step (S30), [ This is a series of steps performed when the current stage-target stage <2 stage], that is, when the current stage is 4 stages and the target stage is 3 stages.

따라서, 상기와 같이 제1피드백제어단계(S50) 수행 중, 토크페이즈 수행 준비가 완료되었다고 판단되는 경우에는, 상기 컨트롤러가 상기 해방측클러치를 해제함과 동시에 결합측클러치를 엔진토크에 상응하도록 상승시키면서 토크페이즈를 수행하여 변속을 종료하도록 한다.Therefore, while performing the first feedback control step (S50) as described above, when it is determined that the preparation for performing the torque phase is complete, the controller releases the release clutch and at the same time raises the engagement clutch to correspond to the engine torque. While performing a torque phase to finish shifting.

이때, 상기 컨트롤러는 소정의 제2기준시간 동안 상기 토크페이즈를 완료하도록 제어하는데, 이 제2기준시간은 차속 등을 고려하여 미리 설정된 값을 사용하도록 구성할 수 있다.In this case, the controller controls to complete the torque phase during a predetermined second reference time, and the second reference time may be configured to use a preset value in consideration of vehicle speed and the like.

한편, 상기 변속종류판단단계(S30)에서 동축변속이라고 판단된 경우, 즉 현재단과 목표단의 차이가 2단이어서, 예컨대 현재단이 4단이고 목표단이 2단인 경우에는, 상기 제2초기화단계(S70), 제2피드백제어단계(S80), 제2토크핸드오버단계(S90), 제3피드백제어단계(S100), 및 제3토크핸드오버단계(S110)가 차례로 수행되어 동축변속을 완료하도록 되어 있다.On the other hand, when it is determined in the shift type determination step (S30) that the difference between the current stage and the target stage is 2 stages, for example, when the current stage is 4 stages and the target stage is 2 stages, the second initialization step (S70), the second feedback control step (S80), the second torque handover step (S90), the third feedback control step (S100), and the third torque handover step (S110) are sequentially performed to complete the coaxial shift. It is supposed to be.

이하에서는 현재단이 4단이고, 최종적인 목표단이 2단인 경우를 가정하여 설명한다.Hereinafter, it is assumed that the current stage is the 4th stage and the final target stage is the 2nd stage.

상기 컨트롤러는 상기 제2피드백제어단계(S80) 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제4기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제5기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성된다.In the controller, while the second feedback control step (S80) is performed, the target gear is completely engaged, and the shift progress rate is greater than or equal to a predetermined fourth reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to a fifth reference value, When the preparation for fastening of the coupling side clutch is completed, it is configured to determine that the preparation for performing the torque phase is complete.

이 경우, 상기 목표단기어는 3단의 기어를 말한다. 즉 동축변속은 4단에서 3단으로의 변속과 3단에서 2단으로의 변속이 연속해서 수행되는 방식으로 이루어지는 바, 이 단계에서는 우선적으로 목표단을 3단으로 하여 3단기어가 치합되었는지에 의해 토크페이즈의 수행 준비 완료 여부를 판정하도록 하는 것이다.In this case, the target gear refers to a gear of the third gear. In other words, coaxial shifting is performed in a manner in which shifting from 4th to 3rd and shifting from 3rd to 2nd is carried out in succession.In this step, the target gear is first set to 3rd and the 3rd gear is engaged. It is to determine whether the talk phase is ready to be performed.

상기 제4기준값과 제5기준값도 상기 제2기준값 및 제3기준값과 마찬가지로, 실질적으로 엔진속도가 결합측클러치 속도(=동기속도)에 거의 근접하여, 실질적인 이너셔페이즈의 종료 시점이 되었음을 확인할 수 있는 값들로 설정되는 바, 다수의 실험 및 해석에 의해 설계적으로 결정될 수 있다.Similar to the second and third reference values, the fourth and fifth reference values are substantially close to the coupling-side clutch speed (= synchronous speed), and thus it can be confirmed that the actual inertia phase ends. As the values are set, they can be determined by design through a number of experiments and analysis.

상기 컨트롤러는 상기 제2피드백제어단계(S80) 수행 중, 토크페이즈의 수행 준비가 완료된 것으로 판단하면, 소정의 제4기준시간 동안 토크페이즈를 수행한다.During the execution of the second feedback control step (S80), when it is determined that the preparation of the torque phase is completed, the controller performs the torque phase for a predetermined fourth reference time.

여기서, 상기 제4기준시간은 상기 제2기준시간과 마찬가지로, 차속 등을 고려하여 미리 설정된 값을 사용하도록 구성된다.Here, the fourth reference time, like the second reference time, is configured to use a preset value in consideration of vehicle speed and the like.

이로써, 실질적으로 DCT는 3단으로 거의 변속이 완료된 상태가 되고, 바로 이어서 2단으로의 변속이 이루어지게 되는 바, 상술한 바와 같이 지금까지 결합측클러치로 역할을 하던 클러치는 해방측클러치가 되고, 해방측클러치로 역할을 하던 클러치는 결합측클러치가 되는 것이다.As a result, the DCT is in a state in which the shift to the third gear is substantially completed, and the shift to the second gear is carried out immediately. As described above, the clutch that has served as the engagement side clutch until now becomes the release side clutch. In addition, the clutch that used to serve as the release side clutch becomes the engagement side clutch.

상기와 같이 클러치들의 역할 전환이 이루어진 후, 상기 제3피드백제어단계(S100)가 수행되며, 상기 컨트롤러는 상기 제3피드백제어단계(S100) 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제6기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제7기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성된다.After the role of the clutches is switched as described above, the third feedback control step (S100) is performed, and the controller completes the engagement of the target gear while performing the third feedback control step (S100), and the shift progress rate When the predetermined sixth reference value or more or the difference between the engine speed and the engagement-side clutch speed is greater than or equal to the seventh reference value, and the preparation for fastening of the engagement-side clutch is completed, it is determined that the preparation of the torque phase is completed.

이 경우, 상기 목표단기어는 2단기어를 말하고, 상기 제6기준값과 제7기준값도 상기 제2기준값이나 제3기준값과 같이 실질적으로 엔진속도가 결합측클러치 속도(=동기속도)에 거의 근접하여, 실질적인 이너셔페이즈의 종료 시점이 되었음을 확인할 수 있는 값들로서, 다수의 실험 및 해석에 의해 설계적으로 결정될 수 있다.In this case, the target gear refers to a second gear, and the sixth reference value and the seventh reference value are substantially close to the coupling side clutch speed (= synchronous speed) like the second reference value or the third reference value. , As values that can confirm that the actual inertia phase has ended, and can be determined by design through a number of experiments and analysis.

상기 컨트롤러는 상기 제3피드백제어단계(S100) 수행 중, 토크페이즈 수행 준비가 완료된 것으로 판단하면, 제5기준시간 동안 상기 해방측클러치를 해제함과 동시에 결합측클러치를 엔진토크에 상응하도록 상승시키면서 토크페이즈를 수행하여 변속을 종료하도록 한다.When the controller determines that the preparation for torque phase execution is complete while performing the third feedback control step (S100), the controller releases the release clutch for a fifth reference time and increases the engagement clutch to correspond to the engine torque. Perform a torque phase to end shifting.

여기서, 상기 제5기준시간도 차속 등을 고려하여 미리 설정된 값을 사용하도록 구성한다.Here, the fifth reference time is also configured to use a preset value in consideration of vehicle speed and the like.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Although the present invention has been shown and described in connection with specific embodiments, it is understood in the art that the present invention can be variously improved and changed within the scope of the technical spirit of the present invention provided by the following claims. It will be obvious to a person of ordinary knowledge.

E; 엔진
CL1; 제1클러치
CL2; 제2클러치
IN1; 제1입력축
IN2; 제2입력축
OUT; 출력축
W; 구동륜
CA; 클러치액츄에이터
SA; 변속액츄에이터
CLR; 컨트롤러
S10; 해제개시단계
S40; 제1초기화단계
S50; 제1피드백제어단계
S60; 제1토크핸드오버단계
S20; 변화율조정단계
S30; 변속종류판단단계
S70; 제2초기화단계
S80; 제2피드백제어단계
S90; 제2토크핸드오버단계
S100; 제3피드백제어단계
S110; 제3토크핸드오버단계
E; engine
CL1; 1st clutch
CL2; 2nd clutch
IN1; 1st input axis
IN2; 2nd input shaft
OUT; Output shaft
W; Drive wheel
CA; Clutch actuator
SA; Variable speed actuator
CLR; controller
S10; Release start stage
S40; 1st initialization step
S50; The first feedback control step
S60; 1st torque handover phase
S20; Change rate adjustment stage
S30; Shift type judgment step
S70; 2nd initialization step
S80; 2nd feedback control step
S90; Second torque handover step
S100; 3rd feedback control step
S110; 3rd torque handover step

Claims (9)

파워 온 다운쉬프트가 개시되면, 컨트롤러가 해방측클러치 해제를 개시하여 엔진속도가 해방측클러치 속도보다 상승되도록 유도하는 해제개시단계와;
상기 컨트롤러가 해방측클러치 토크 모델을 이용하여 산출한 해방측클러치 토크를 피드포워드 토크로 설정하고, 상기 해방측클러치 토크를 소정의 제1기준시간 동안 상기 피드포워드 토크로 수렴시키는 제1초기화단계와;
상기 제1기준시간이 경과하면, 상기 컨트롤러가 클러치슬립변화율에 따른 피드백 토크를 산출하여, 상기 해방측클러치 토크를 상기 피드포워드 토크와 상기 피드백 토크의 합으로 제어하는 제1피드백제어단계와;
상기 제1피드백제어단계 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제2기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제1토크핸드오버단계;
를 포함하여 구성된 것을 특징으로 하는 DCT 차량의 변속 제어 방법.
A release start step of inducing an engine speed to rise above the release clutch speed by starting the release side clutch when the power-on downshift is started;
A first initialization step of setting the release-side clutch torque calculated by the controller using the release-side clutch torque model as a feed forward torque, and converging the release-side clutch torque to the feed-forward torque for a predetermined first reference time; and ;
A first feedback control step of calculating, by the controller, a feedback torque according to a clutch slip change rate when the first reference time elapses, and controlling the release clutch torque as a sum of the feed forward torque and the feedback torque;
During the execution of the first feedback control step, if the controller determines that the torque phase is ready to be performed, the release clutch is released for a predetermined second reference time and the engagement clutch torque is increased corresponding to the engine torque. A first talk handover step;
DCT vehicle shift control method, characterized in that configured to include.
청구항 1에 있어서,
상기 해제개시단계 이후 상기 제1초기화단계 이전에, 상기 컨트롤러는 엔진속도와 해방측클러치 속도의 차이가 소정의 제1기준값 이상이 되는 것으로 판단하면, 상기 해방측클러치 토크를 저감시키는 기울기를 조정하는 변화율조정단계를 더 수행하도록 구성된 것
을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method according to claim 1,
After the release start step and before the first initialization step, when it is determined that the difference between the engine speed and the release side clutch speed is equal to or greater than a predetermined first reference value, the controller adjusts a slope for reducing the release side clutch torque. Configured to further carry out rate-of-change adjustment steps
DCT vehicle shift control method, characterized in that.
청구항 1에 있어서,
상기 제1초기화단계 이전에, 상기 컨트롤러는 이축변속인지 동축변속인지 판단하는 변속종류판단단계를 더 수행하여, 이축변속인 경우 상기 제1초기화단계를 수행하도록 구성된 것
을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method according to claim 1,
Before the first initializing step, the controller further performs a shift type determination step of determining whether a biaxial shift or a coaxial shift is performed, and in the case of a biaxial shift, the first initialization step is performed.
DCT vehicle shift control method, characterized in that.
청구항 3에 있어서,
상기 컨트롤러가 상기 변속종류판단단계 수행결과, 동축변속 상황인 경우,
상기 컨트롤러가 해방측클러치 토크 모델을 이용하여 산출한 해방측클러치 토크를 피드포워드 토크로 설정하고, 상기 해방측클러치 토크를 소정의 제3기준시간 동안 상기 피드포워드 토크로 수렴시키는 제2초기화단계와;
상기 제3기준시간이 경과하면, 상기 컨트롤러가 클러치슬립변화율에 따른 피드백 토크를 산출하여, 상기 해방측클러치 토크를 상기 피드포워드 토크와 상기 피드백 토크의 합으로 제어하는 제2피드백제어단계와;
상기 제2피드백제어단계 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제4기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제2토크핸드오버단계와;
상기 제4기준시간이 경과하면, 상기 컨트롤러는 상기 결합측클러치와 해방측클러치의 역할을 서로 전환하여, 지금까지 결합측클러치로 작용하던 클러치를 해방측클러치로 하고, 이 해방측클러치의 토크를 상기 해방측클러치 토크 모델로부터 산출한 피드포워드 토크와 클러치슬립변화율에 따른 피드백 토크의 합으로 제어하는 제3피드백제어단계와;
상기 제3피드백제어단계 수행 중, 상기 컨트롤러가 토크페이즈의 수행 준비가 완료되었다고 판단하면, 소정의 제5기준시간 동안 상기 해방측클러치를 해제하면서, 결합측클러치 토크를 엔진토크에 상응하게 상승시키는 제3토크핸드오버단계;
를 더 수행하도록 구성된 것을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method of claim 3,
When the controller is in a coaxial shift situation as a result of performing the shift type determination step,
A second initialization step of setting the release-side clutch torque calculated by the controller using the release-side clutch torque model as a feed forward torque, and converging the release-side clutch torque to the feed-forward torque for a predetermined third reference time; and ;
A second feedback control step of calculating, by the controller, a feedback torque according to a clutch slip change rate, and controlling the release clutch torque as a sum of the feed forward torque and the feedback torque when the third reference time elapses;
During the execution of the second feedback control step, if the controller determines that the torque phase is ready to be performed, the release side clutch is released for a predetermined fourth reference time and the engagement side clutch torque is increased corresponding to the engine torque. A second talk handover step;
When the fourth reference time elapses, the controller switches the roles of the engagement-side clutch and the release-side clutch to each other, making the clutch that has been acting as the engagement-side clutch so far as the release-side clutch, and the torque of the release-side clutch A third feedback control step of controlling the feed forward torque calculated from the release-side clutch torque model and the sum of the feedback torque according to the clutch slip change rate;
During the execution of the third feedback control step, if the controller determines that the torque phase is ready to be performed, the release clutch is released for a predetermined fifth reference time, and the coupling-side clutch torque is increased corresponding to the engine torque. A third torque handover step;
DCT vehicle shift control method, characterized in that configured to perform further.
청구항 1에 있어서,
상기 해방측클러치 토크 모델은 다음 수식,
Figure pat00012

Figure pat00013
; 해방측클러치 토크
Figure pat00014
; 엔진토크
Figure pat00015
; 엔진 관성모멘트
Slip; Ne-Ni
Ne; 엔진회전수
Ni; 결합측클러치 회전수
Figure pat00016
; 구동계 관성에 기인한 토크
와 같이 구성된 것을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method according to claim 1,
The release clutch torque model is the following equation,
Figure pat00012

Figure pat00013
; Release clutch torque
Figure pat00014
; Engine torque
Figure pat00015
; Engine moment of inertia
Slip; Ne-Ni
Ne; Engine speed
Ni; Coupling side clutch rotation speed
Figure pat00016
; Torque due to drive system inertia
DCT vehicle shift control method, characterized in that configured as.
청구항 1에 있어서,
상기 컨트롤러는 상기 제1피드백제어단계 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제2기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제3기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성된 것
을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method according to claim 1,
In the controller, the engagement of the target gear is completed while the first feedback control step is performed, the shift progress rate is equal to or greater than a predetermined second reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to the third reference value, and the engagement side clutch It is configured to judge that the preparation for the execution of the torque phase is completed when the preparation for the tightening is completed.
DCT vehicle shift control method, characterized in that.
청구항 4에 있어서,
상기 컨트롤러는 상기 제2피드백제어단계 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제4기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제5기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성된 것
을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method of claim 4,
During the second feedback control step, the engagement of the target gear is completed, the shift progress rate is greater than or equal to a predetermined fourth reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to the fifth reference value, and the engagement side clutch It is configured to judge that the preparation for the execution of the torque phase is completed when the preparation for the tightening is completed.
DCT vehicle shift control method, characterized in that.
청구항 4에 있어서,
상기 컨트롤러는 상기 제3피드백제어단계 수행 중, 목표단기어의 치합이 완료되고, 변속진행율이 소정의 제6기준값 이상이거나 엔진속도와 결합측클러치 속도의 차이가 제7기준값 이상이고, 결합측클러치의 체결준비가 완료된 경우, 토크페이즈의 수행 준비가 완료된 것으로 판단하도록 구성된 것
을 특징으로 하는 DCT 차량의 변속 제어 방법.
The method of claim 4,
During the third feedback control step, the engagement of the target gear is completed, the shift progress rate is equal to or greater than a predetermined sixth reference value, or the difference between the engine speed and the engagement side clutch speed is greater than or equal to the seventh reference value, and the engagement side clutch It is configured to judge that the preparation for the execution of the torque phase is completed when the preparation for the tightening is completed.
DCT vehicle shift control method, characterized in that.
청구항 1에 있어서,
상기 피드백 토크는 목표 클러치슬립 변화율과 측정된 엔진속도와 클러치속도의 차이로부터 산출되는 측정 클러치슬립 변화율의 차이를 이용하여 산출되며;
상기 피드포워드 토크를 산출하는 해방측클러치 토크 모델은 상기 목표 클러치슬립 변화율을 이용하도록 구성된 것
을 특징으로 하는 DCT 차량의 변속 제어 방법.

The method according to claim 1,
The feedback torque is calculated using a difference between a target clutch slip change rate and a measured clutch slip change rate calculated from a difference between the measured engine speed and the clutch speed;
The release clutch torque model for calculating the feedforward torque is configured to use the target clutch slip change rate.
DCT vehicle shift control method, characterized in that.

KR1020190020831A 2019-02-22 2019-02-22 Shift control method for vehicle with dct KR102588930B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190020831A KR102588930B1 (en) 2019-02-22 2019-02-22 Shift control method for vehicle with dct
DE102019120280.9A DE102019120280A1 (en) 2019-02-22 2019-07-26 SHIFT CONTROL PROCEDURE FOR A VEHICLE WITH DOUBLE CLUTCH TRANSMISSION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190020831A KR102588930B1 (en) 2019-02-22 2019-02-22 Shift control method for vehicle with dct

Publications (2)

Publication Number Publication Date
KR20200103208A true KR20200103208A (en) 2020-09-02
KR102588930B1 KR102588930B1 (en) 2023-10-16

Family

ID=72138766

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190020831A KR102588930B1 (en) 2019-02-22 2019-02-22 Shift control method for vehicle with dct

Country Status (2)

Country Link
KR (1) KR102588930B1 (en)
DE (1) DE102019120280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230115369A (en) * 2022-01-26 2023-08-03 비테스코 테크놀로지스 게엠베하 Apparatus for pre learning the reference point of dct system and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247698B (en) * 2021-04-26 2023-09-12 广州汽车集团股份有限公司 Gear shifting interruption control method and system for wet double-clutch transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125065A (en) * 2014-04-29 2015-11-09 현대자동차주식회사 Clutch torque control method for vehicel with dct
KR20150125756A (en) 2014-04-30 2015-11-10 현대자동차주식회사 Shift control method for vehicle with dct
KR101806666B1 (en) * 2016-02-15 2017-12-08 현대자동차주식회사 Shifting control method for vehicles with dual clutch transmission
KR20180002098A (en) * 2016-06-28 2018-01-08 현대자동차주식회사 Shifting control method for vehicles with dual clutch transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125065A (en) * 2014-04-29 2015-11-09 현대자동차주식회사 Clutch torque control method for vehicel with dct
KR20150125756A (en) 2014-04-30 2015-11-10 현대자동차주식회사 Shift control method for vehicle with dct
KR101806666B1 (en) * 2016-02-15 2017-12-08 현대자동차주식회사 Shifting control method for vehicles with dual clutch transmission
KR20180002098A (en) * 2016-06-28 2018-01-08 현대자동차주식회사 Shifting control method for vehicles with dual clutch transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230115369A (en) * 2022-01-26 2023-08-03 비테스코 테크놀로지스 게엠베하 Apparatus for pre learning the reference point of dct system and method thereof

Also Published As

Publication number Publication date
DE102019120280A1 (en) 2020-08-27
KR102588930B1 (en) 2023-10-16

Similar Documents

Publication Publication Date Title
KR101592695B1 (en) Shift control method for a vehicle with dct
KR102588929B1 (en) Shift control method for hybrid vehicle with dct
JP6336805B2 (en) Shift control method for hybrid vehicle
KR20200105605A (en) Shift control method for vehicle with dct
JP6433382B2 (en) Downshift control device for hybrid vehicle
KR101806666B1 (en) Shifting control method for vehicles with dual clutch transmission
CN113074248A (en) Automatic transmission downshift control method and computer-readable storage medium
WO2013161718A1 (en) Vehicle launch control device and launch control method
KR101887755B1 (en) Shift control method for dct vehicle
CN107401562B (en) Clutch control method and clutch control filter for vehicle
CN107813810B (en) Vehicle start control method
KR101856331B1 (en) Shift control method for vehicle with dct
KR102588930B1 (en) Shift control method for vehicle with dct
US10316957B2 (en) Shifting control method for vehicles with dual clutch transmission
KR20170015643A (en) Method of launching of vehicle with dct
KR102177599B1 (en) Shift control method for vehecle with dct
CN107539315B (en) Method for controlling vehicle start
KR20190070501A (en) Downshift control method for hybrid vehicle with dct
KR20160064359A (en) Shift control method for vehicle with dct
CN107487316B (en) Vehicle gear shifting control method
KR102532332B1 (en) Shifting control method for vehicles with dual clutch transmission
KR101988133B1 (en) Shift control method for vhicle with dct
KR102465907B1 (en) Upshift control method for vehicle with dct
KR102191826B1 (en) Power on upshift control method for vehicle
KR20180054991A (en) Shifting control method for vehicles with dual clutch transmission

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant