KR20200093426A - 이미지 분석 기반으로 환경에 영향 받지 않는 감시를 위한 보행자 검출기의 학습 방법 및 학습 장치, 그리고, 이를 이용하여 테스트 방법 및 테스트장치 - Google Patents
이미지 분석 기반으로 환경에 영향 받지 않는 감시를 위한 보행자 검출기의 학습 방법 및 학습 장치, 그리고, 이를 이용하여 테스트 방법 및 테스트장치 Download PDFInfo
- Publication number
- KR20200093426A KR20200093426A KR1020190166180A KR20190166180A KR20200093426A KR 20200093426 A KR20200093426 A KR 20200093426A KR 1020190166180 A KR1020190166180 A KR 1020190166180A KR 20190166180 A KR20190166180 A KR 20190166180A KR 20200093426 A KR20200093426 A KR 20200093426A
- Authority
- KR
- South Korea
- Prior art keywords
- test
- image
- learning
- pedestrian
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 238000010191 image analysis Methods 0.000 title claims abstract description 23
- 238000012360 testing method Methods 0.000 title claims description 241
- 238000012549 training Methods 0.000 claims abstract description 142
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 230000008569 process Effects 0.000 claims description 39
- 230000001131 transforming effect Effects 0.000 claims description 8
- 238000010998 test method Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000011176 pooling Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 5
- 238000013527 convolutional neural network Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G06K9/00348—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
- G06V40/25—Recognition of walking or running movements, e.g. gait recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Human Computer Interaction (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Algebra (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
도 1은 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향 받지 않는 감시(Robust Surveillance)에 사용되는 보행자 검출기(Pedestrian Detector)를 학습하는 학습 장치를 개략적으로 도시한 것이고,
도 2는 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 학습하는 방법을 개략적으로 도시한 것이고,
도 3은 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 학습하는 방법에서 적어도 하나의 트레이닝 이미지를 획득하는 프로세스를 개략적으로 도시한 것이고,
도 4는 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 개략적으로 도시한 것이고,
도 5는 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 학습하는 방법에서 적대적 스타일 변환기(Adversarial Style Transformer)를 학습하는 프로세스를 개략적으로 도시한 것이고,
도 6은 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 학습하는 방법에서 판별기(Discriminator)를 학습하는 프로세스를 개략적으로 도시한 것이고,
도 7은 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 테스트하는 테스트 장치를 개략적으로 도시한 것이고,
도 8은 본 발명의 일 실시예에 따라 이미지 분석 기반으로 환경에 영향을 받지 않는 감시에 사용되는 보행자 검출기를 이용하여 적어도 하나의 보행자를 검출하는 프로세스를 개략적으로 도시한 것이다.
110: 메모리,
120: 프로세서,
130: 적대적 스타일 변환기,
140: 보행자 검출기
150: 판별기
200: 테스트 장치,
210: 메모리,
220: 프로세서
Claims (28)
- 이미지 분석 기반으로 환경에 영향 받지 않는 감시(Robust Surveillance)에 사용되는 보행자 검출기(Pedestrian Detector)를 학습하는 방법에 있어서,
(a) 적어도 하나의 트레이닝 이미지 상에 생성된 학습용 보행자 각각에 대응되는 바운딩 박스 각각을 갖는 상기 트레이닝 이미지가 획득되면, 학습 장치가, 상기 트레이닝 이미지 상에서 상기 바운딩 박스 각각에 대응되는 영역 각각을 크롭(Crop)하여 적어도 하나의 이미지 패치(Image Patch)를 생성하고, 적대적 스타일 변환기(Adversarial Style Transformer)로 하여금, 상기 이미지 패치 각각에 대응되는 상기 학습용 보행자 각각을, 상기 보행자 검출기에 의한 검출을 어렵게 할 수 있는 변형 보행자 각각으로 변환함으로써 적어도 하나의 변형 이미지 패치(Transformed Image Patch)를 생성하도록 하는 단계; 및
(b) 상기 학습 장치가, 상기 트레이닝 이미지 상에서 상기 바운딩 박스 각각에 대응하는 상기 영역 각각을 상기 변형 이미지 패치로 대체하여 적어도 하나의 변형 트레이닝 이미지(Transformed Training Image)를 생성하며, 상기 보행자 검출기로 하여금 상기 변형 트레이닝 이미지 내에 위치하는 상기 변형 보행자를 검출하여 학습용 보행자 검출 정보를 생성하도록 하고, 제1 로스 레이어로 하여금 상기 각각의 학습용 보행자 검출 정보와 이에 대응되는 GT를 참조하여 적어도 하나의 제1 로스를 산출하도록 하며, 상기 제1 로스를 최소화하도록 상기 보행자 검출기의 적어도 하나의 파라미터의 적어도 일부를 학습하는 단계;
를 포함하는 것을 특징으로 하는 방법. - 제 1 항에 있어서,
상기 (b) 단계에서,
상기 학습 장치가, 판별기(Discriminator)로 하여금 상기 각각의 변형 이미지 패치가 상기 각각의 학습용 보행자일 각각의 확률을 나타내는 학습용 보행자 스코어(Pedestrian Score) 각각을 생성하도록 하며, 상기 학습용 보행자 스코어 및 상기 제1 로스를 최대화하도록 상기 적대적 스타일 변환기의 적어도 하나의 파라미터의 적어도 일부를 더 학습하도록 하는 것을 특징으로 하는 방법. - 제 2 항에 있어서,
상기 판별기는 (i) 적어도 하나의 컨벌루션 레이어와 적어도 하나의 FC 레이어(Fully Connected Layer)를 포함하거나, (ii) 풀리 컨벌루션 네트워크(Fully Convolutional Network)를 포함하는 이미지 분류기(Image Classifier)인 것을 특징으로 하는 방법. - 제 1 항에 있어서,
상기 (b) 단계에서,
상기 학습 장치가, 제2 로스 레이어로 하여금, 상기 각각의 학습용 보행자 스코어와 이에 대응되는 GT를 참조하여 적어도 하나의 제 2 로스를 산출하도록 하며, 상기 제2 로스를 최소화하도록 상기 판별기의 적어도 하나의 파라미터의 적어도 일부를 학습하도록 하는 것을 특징으로 하는 방법. - 제 1 항에 있어서,
상기 적대적 스타일 변환기는, 상기 이미지 패치에 대하여 컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 컨벌루션 레이어를 가지는 인코더와, 상기 인코더에서 출력되는 적어도 하나의 특징 맵에 대하여 디컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 디컨벌루션 레이어를 가지는 디코더를 포함하는 것을 특징으로 하는 방법. - 제 1 항에 있어서,
상기 (a) 단계에서,
상기 학습 장치는, 적어도 하나의 상기 이미지 패치를 리사이즈(Resize)하여 상기 이미지 패치들이 동일한 사이즈를 갖도록 한 다음, 상기 적대적 스타일 변환기로 하여금 동일한 사이즈의 상기 변형 이미지 패치를 출력하도록 하며,
상기 (b) 단계에서,
상기 학습 장치는, 상기 동일한 사이즈의 상기 변형 이미지 패치를 리사이즈하여 상기 변형 이미지 패치 각각이 변형되기 전 원래 사이즈가 되도록 한 다음, 상기 변형 트레이닝 이미지를 생성하도록 하는 특징으로 하는 방법. - 제 1 항에 있어서,
상기 트레이닝 이미지는, (i) 감시 카메라로부터 획득된 적어도 하나의 테스트 이미지 내에 위치하는 테스트용 보행자를 검출하여 상기 바운딩 박스를 포함하는 테스트용 보행자 검출 정보를 출력하는 상기 보행자 검출기, 및 (ii) 상기 바운딩 박스에 대응되는 트루 라벨(True Label)을 가지는 상기 트레이닝 이미지를 저장하는 데이터베이스 중 하나로부터 획득되는 것을 특징으로 하는 방법. - 이미지 분석 기반으로 환경에 영향 받지 않는 감시(Robust Surveillance)에 사용되는 테스트용 보행자 검출기(Pedestrian Detector)를 테스트하는 방법에 있어서,
(a) (1) 학습 장치가, 적어도 하나의 트레이닝 이미지 상에 생성된 학습용 보행자 각각에 대응되는 학습용 바운딩 박스 각각을 갖는 상기 트레이닝 이미지 상에서 학습용 바운딩 박스 각각에 대응되는 학습용 영역 각각을 크롭(Crop)하여 적어도 하나의 학습용 이미지 패치(Image Patch)를 생성하고, 적대적 스타일 변환기(Adversarial Style Transformer)로 하여금, 상기 학습용 이미지 패치 각각에 대응되는 상기 학습용 보행자 각각을, 상기 보행자 검출기에 의한 학습용 검출을 어렵게 할 수 있는 학습용 변형 보행자 각각으로 변환함으로써 적어도 하나의 학습용 변형 이미지 패치(Transformed Image Patch)를 생성하도록 하고, (2) 상기 학습 장치가, 상기 트레이닝 이미지 상에서 상기 학습용 바운딩 박스 각각에 대응하는 상기 학습용 영역 각각을 상기 학습용 변형 이미지 패치로 대체하여 적어도 하나의 변형 트레이닝 이미지(Transformed Training Image)를 생성하며, 상기 보행자 검출기로 하여금 상기 변형 트레이닝 이미지 내에 위치하는 상기 학습용 변형 보행자를 검출하여 학습용 보행자 검출 정보를 생성하도록 하고, 제1 로스 레이어로 하여금 상기 각각의 학습용 보행자 검출 정보와 이에 대응되는 GT를 참조하여 적어도 하나의 제1 로스를 산출하도록 하며, 상기 제1 로스를 최소화하도록 상기 보행자 검출기의 적어도 하나의 파라미터의 적어도 일부를 학습한 상태에서, 적어도 하나의 테스트 이미지에 생성된 테스트용 보행자 각각에 대응하는 테스트용 바운딩 박스 각각을 가지는 상기 테스트 이미지가 획득되면, 테스트 장치가, 상기 테스트 이미지 상에서 상기 테스트용 바운딩 박스 각각에 대응되는 테스트용 영역 각각을 크롭하여 적어도 하나의 테스트용 이미지 패치를 생성하고, 상기 적대적 스타일 변환기로 하여금, 상기 테스트용 이미지 패치 각각에 대응되는 상기 테스트용 보행자 각각을, 상기 보행자 검출기에 의한 테스트용 검출을 어렵게 할 수 있는 테스트용 변형 보행자 각각으로 변환함으로써 적어도 하나의 테스트용 변형 이미지 패치를 생성하도록 단계; 및
(b) 상기 테스트 장치가, 상기 테스트 이미지 상에서 상기 테스트용 바운딩 박스 각각에 대응하는 상기 테스트용 영역 각각을 상기 테스트용 변형 이미지 패치로 대체하여 적어도 하나의 변형 테스트 이미지(Transformed Test Image)를 생성하며, 상기 보행자 검출기로 하여금 상기 변형 테스트 이미지 내에 위치하는 상기 테스트용 변형 보행자를 검출하여 테스트용 보행자 검출 정보를 생성하도록 단계;
를 포함하는 것을 특징으로 하는 방법. - 제 8 항에 있어서,
상기 (b) 단계에서,
상기 테스트 장치는, 판별기(Discriminator)로 하여금 상기 각각의 테스트용 변형 이미지 패치가 상기 각각의 테스트용 보행자일 각각의 확률을 나타내는 테스트용 보행자 스코어(Pedestrian Score) 각각을 생성하도록 하는 방법. - 제 9 항에 있어서,
상기 판별기는 (i) 적어도 하나의 컨벌루션 레이어와 적어도 하나의 FC 레이어(Fully Connected Layer)를 포함하거나, (ii) 풀리 컨벌루션 네트워크(Fully Convolutional Network)를 포함하는 이미지 분류기(Image Classifier)인 것을 특징으로 하는 방법. - 제 8 항에 있어서,
상기 (2) 프로세스에서,
상기 학습 장치가, 제2 로스 레이어로 하여금, 상기 각각의 학습용 보행자 스코어와 이에 대응되는 GT를 참조하여 적어도 하나의 제 2 로스를 산출하도록 하며, 상기 제2 로스를 최소화하도록 상기 판별기의 적어도 하나의 파라미터의 적어도 일부를 학습하도록 하는 것을 특징으로 하는 방법. - 제 8 항에 있어서,
상기 적대적 스타일 변환기는, 상기 테스트용 이미지 패치에 대하여 컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 컨벌루션 레이어를 가지는 인코더와, 상기 인코더에서 출력되는 적어도 하나의 테스트용 특징 맵에 대하여 디컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 디컨벌루션 레이어를 가지는 디코더를 포함하는 것을 특징으로 하는 방법. - 제 8 항에 있어서,
상기 (a) 단계에서,
상기 테스트 장치는, 적어도 하나의 상기 테스트용 이미지 패치를 리사이즈(Resize)하여 상기 테스트용 이미지 패치들이 동일한 사이즈를 갖도록 한 다음, 상기 적대적 스타일 변환기로 하여금 동일한 사이즈의 상기 테스트용 변형 이미지 패치를 출력하도록 하며,
상기 (b) 단계에서,
상기 테스트 장치는, 상기 동일한 사이즈의 상기 테스트용 변형 이미지 패치를 리사이즈하여 상기 테스트용 변형 이미지 패치 각각이 변형되기 전 원래 사이즈가 되도록 한 다음, 상기 변형 테스트 이미지를 생성하도록 하는 특징으로 하는 방법. - 제 8 항에 있어서,
상기 트레이닝 이미지는, (i) 감시 카메라로부터 획득된 상기 테스트 이미지 내에 위치하는 테스트용 보행자를 검출하여 상기 테스트용 바운딩 박스를 포함하는 테스트용 보행자 검출 정보를 출력하는 상기 보행자 검출기, 및 (ii) 상기 테스트용 바운딩 박스에 대응되는 트루 라벨(True Label)을 가지는 상기 트레이닝 이미지를 저장하는 데이터베이스 중 하나로부터 획득되는 것을 특징으로 하는 방법. - 이미지 분석 기반으로 환경에 영향 받지 않는 감시(Robust Surveillance)에 사용되는 보행자 검출기(Pedestrian Detector)를 학습하는 장치에 있어서,
인스트럭션을 저장하는 적어도 하나의 메모리; 및
(I) 적어도 하나의 트레이닝 이미지 상에 생성된 학습용 보행자 각각에 대응되는 바운딩 박스 각각을 갖는 상기 트레이닝 이미지가 획득되면, 상기 트레이닝 이미지 상에서 상기 바운딩 박스 각각에 대응되는 영역 각각을 크롭(Crop)하여 적어도 하나의 이미지 패치(Image Patch)를 생성하고, 적대적 스타일 변환기(Adversarial Style Transformer)로 하여금, 상기 이미지 패치 각각에 대응되는 상기 학습용 보행자 각각을, 상기 보행자 검출기에 의한 검출을 어렵게 할 수 있는 변형 보행자 각각으로 변환함으로써 적어도 하나의 변형 이미지 패치(Transformed Image Patch)를 생성하도록 하는 프로세스, 및 (II) 상기 트레이닝 이미지 상에서 상기 바운딩 박스 각각에 대응하는 상기 영역 각각을 상기 변형 이미지 패치로 대체하여 적어도 하나의 변형 트레이닝 이미지(Transformed Training Image)를 생성하며, 상기 보행자 검출기로 하여금 상기 변형 트레이닝 이미지 내에 위치하는 상기 변형 보행자를 검출하여 학습용 보행자 검출 정보를 생성하도록 하고, 제1 로스 레이어로 하여금 상기 각각의 학습용 보행자 검출 정보와 이에 대응되는 GT를 참조하여 적어도 하나의 제1 로스를 산출하도록 하며, 상기 제1 로스를 최소화하도록 상기 보행자 검출기의 적어도 하나의 파라미터의 적어도 일부를 학습하는 프로세스를 수행하기 위한 상기 인스트럭션을 실행하도록 구성된 적어도 하나의 프로세서;
를 포함하는 것을 특징으로 하는 장치. - 제 15 항에 있어서,
상기 (II) 프로세스에서,
상기 프로세서가, 판별기(Discriminator)로 하여금 상기 각각의 변형 이미지 패치가 상기 각각의 학습용 보행자일 각각의 확률을 나타내는 학습용 보행자 스코어(Pedestrian Score) 각각을 생성하도록 하며, 상기 학습용 보행자 스코어 및 상기 제1 로스를 최대화하도록 상기 적대적 스타일 변환기의 적어도 하나의 파라미터의 적어도 일부를 더 학습하도록 하는 것을 특징으로 하는 장치. - 제 16 항에 있어서,
상기 판별기는 (i) 적어도 하나의 컨벌루션 레이어와 적어도 하나의 FC 레이어(Fully Connected Layer)를 포함하거나, (ii) 풀리 컨벌루션 네트워크(Fully Convolutional Network)를 포함하는 이미지 분류기(Image Classifier)인 것을 특징으로 하는 장치. - 제 15 항에 있어서,
상기 (II) 프로세스에서,
상기 프로세서가, 제2 로스 레이어로 하여금, 상기 각각의 학습용 보행자 스코어와 이에 대응되는 GT를 참조하여 적어도 하나의 제 2 로스를 산출하도록 하며, 상기 제2 로스를 최소화하도록 상기 판별기의 적어도 하나의 파라미터의 적어도 일부를 학습하도록 하는 것을 특징으로 하는 장치. - 제 15 항에 있어서,
상기 적대적 스타일 변환기는, 상기 이미지 패치에 대하여 컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 컨벌루션 레이어를 가지는 인코더와, 상기 인코더에서 출력되는 적어도 하나의 특징 맵에 대하여 디컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 디컨벌루션 레이어를 가지는 디코더를 포함하는 것을 특징으로 하는 장치. - 제 15 항에 있어서,
상기 (I) 프로세스에서,
상기 프로세서는, 적어도 하나의 상기 이미지 패치를 리사이즈(Resize)하여 상기 이미지 패치들이 동일한 사이즈를 갖도록 한 다음, 상기 적대적 스타일 변환기로 하여금 동일한 사이즈의 상기 변형 이미지 패치를 출력하도록 하며,
상기 (II) 프로세스에서,
상기 프로세서는, 상기 동일한 사이즈의 상기 변형 이미지 패치를 리사이즈하여 상기 변형 이미지 패치 각각이 변형되기 전 원래 사이즈가 되도록 한 다음, 상기 변형 트레이닝 이미지를 생성하도록 하는 특징으로 하는 장치. - 제 15 항에 있어서,
상기 트레이닝 이미지는, (i) 감시 카메라로부터 획득된 적어도 하나의 테스트 이미지 내에 위치하는 테스트용 보행자를 검출하여 상기 바운딩 박스를 포함하는 테스트용 보행자 검출 정보를 출력하는 상기 보행자 검출기, 및 (ii) 상기 바운딩 박스에 대응되는 트루 라벨(True Label)을 가지는 상기 트레이닝 이미지를 저장하는 데이터베이스 중 하나로부터 획득되는 것을 특징으로 하는 장치. - 이미지 분석 기반으로 환경에 영향 받지 않는 감시(Robust Surveillance)에 사용되는 테스트용 보행자 검출기(Pedestrian Detector)를 위한 테스트 장치에 있어서,
인스트럭션을 저장하는 적어도 하나의 메모리; 및
(1) 학습 장치가, 적어도 하나의 트레이닝 이미지 상에 생성된 학습용 보행자 각각에 대응되는 학습용 바운딩 박스 각각을 갖는 상기 트레이닝 이미지 상에서 학습용 바운딩 박스 각각에 대응되는 학습용 영역 각각을 크롭(Crop)하여 적어도 하나의 학습용 이미지 패치(Image Patch)를 생성하고, 적대적 스타일 변환기(Adversarial Style Transformer)로 하여금, 상기 학습용 이미지 패치 각각에 대응되는 상기 학습용 보행자 각각을, 상기 보행자 검출기에 의한 학습용 검출을 어렵게 할 수 있는 학습용 변형 보행자 각각으로 변환함으로써 적어도 하나의 학습용 변형 이미지 패치(Transformed Image Patch)를 생성하도록 하고, (2) 상기 학습 장치가, 상기 트레이닝 이미지 상에서 상기 학습용 바운딩 박스 각각에 대응하는 상기 학습용 영역 각각을 상기 학습용 변형 이미지 패치로 대체하여 적어도 하나의 변형 트레이닝 이미지(Transformed Training Image)를 생성하며, 상기 보행자 검출기로 하여금 상기 변형 트레이닝 이미지 내에 위치하는 상기 학습용 변형 보행자를 검출하여 학습용 보행자 검출 정보를 생성하도록 하고, 제1 로스 레이어로 하여금 상기 각각의 학습용 보행자 검출 정보와 이에 대응되는 GT를 참조하여 적어도 하나의 제1 로스를 산출하도록 하며, 상기 제1 로스를 최소화하도록 상기 보행자 검출기의 적어도 하나의 파라미터의 적어도 일부를 학습한 상태에서, (I) 적어도 하나의 테스트 이미지에 생성된 테스트용 보행자 각각에 대응하는 테스트용 바운딩 박스 각각을 가지는 상기 테스트 이미지가 획득되면, 상기 테스트 이미지 상에서 상기 테스트용 바운딩 박스 각각에 대응되는 테스트용 영역 각각을 크롭하여 적어도 하나의 테스트용 이미지 패치를 생성하고, 상기 적대적 스타일 변환기로 하여금, 상기 테스트용 이미지 패치 각각에 대응되는 상기 테스트용 보행자 각각을, 상기 보행자 검출기에 의한 테스트용 검출을 어렵게 할 수 있는 테스트용 변형 보행자 각각으로 변환함으로써 적어도 하나의 테스트용 변형 이미지 패치를 생성하도록 하는 프로세스, 및 (II) 상기 테스트 이미지 상에서 상기 테스트용 바운딩 박스 각각에 대응하는 상기 테스트용 영역 각각을 상기 테스트용 변형 이미지 패치로 대체하여 적어도 하나의 변형 테스트 이미지(Transformed Test Image)를 생성하며, 상기 보행자 검출기로 하여금 상기 변형 테스트 이미지 내에 위치하는 상기 테스트용 변형 보행자를 검출하여 테스트용 보행자 검출 정보를 생성하도록 하는 프로세스를 수행하기 위한 상기 인스트럭션을 실행하도록 구성된 적어도 하나의 프로세서;
를 포함하는 것을 특징으로 하는 장치. - 제 22 항에 있어서,
상기 (II) 프로세스에서,
상기 프로세서는, 판별기(Discriminator)로 하여금 상기 각각의 테스트용 변형 이미지 패치가 상기 각각의 테스트용 보행자일 각각의 확률을 나타내는 테스트용 보행자 스코어(Pedestrian Score) 각각을 생성하도록 하는 장치. - 제 23 항에 있어서,
상기 판별기는 (i) 적어도 하나의 컨벌루션 레이어와 적어도 하나의 FC 레이어(Fully Connected Layer)를 포함하거나, (ii) 풀리 컨벌루션 네트워크(Fully Convolutional Network)를 포함하는 이미지 분류기(Image Classifier)인 것을 특징으로 하는 장치. - 제 22 항에 있어서,
상기 (2) 프로세스에서,
상기 학습 장치가, 제2 로스 레이어로 하여금, 상기 각각의 학습용 보행자 스코어와 이에 대응되는 GT를 참조하여 적어도 하나의 제 2 로스를 산출하도록 하며, 상기 제2 로스를 최소화하도록 상기 판별기의 적어도 하나의 파라미터의 적어도 일부를 학습하도록 하는 것을 특징으로 하는 장치. - 제 22 항에 있어서,
상기 적대적 스타일 변환기는, 상기 테스트용 이미지 패치에 대하여 컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 컨벌루션 레이어를 가지는 인코더와, 상기 인코더에서 출력되는 적어도 하나의 테스트용 특징 맵에 대하여 디컨벌루션 연산을 적어도 한 번 적용하는 적어도 하나의 디컨벌루션 레이어를 가지는 디코더를 포함하는 것을 특징으로 하는 장치. - 제 22 항에 있어서,
상기 (I) 프로세스에서,
상기 프로세서는, 적어도 하나의 상기 테스트용 이미지 패치를 리사이즈(Resize)하여 상기 테스트용 이미지 패치들이 동일한 사이즈를 갖도록 한 다음, 상기 적대적 스타일 변환기로 하여금 동일한 사이즈의 상기 테스트용 변형 이미지 패치를 출력하도록 하며,
상기 (II) 프로세스에서,
상기 프로세서는, 상기 동일한 사이즈의 상기 테스트용 변형 이미지 패치를 리사이즈하여 상기 테스트용 변형 이미지 패치 각각이 변형되기 전 원래 사이즈가 되도록 한 다음, 상기 변형 테스트 이미지를 생성하도록 하는 특징으로 하는 장치. - 제 22 항에 있어서,
상기 트레이닝 이미지는, (i) 감시 카메라로부터 획득된 상기 테스트 이미지 내에 위치하는 테스트용 보행자를 검출하여 상기 테스트용 바운딩 박스를 포함하는 테스트용 보행자 검출 정보를 출력하는 상기 보행자 검출기, 및 (ii) 상기 테스트용 바운딩 박스에 대응되는 트루 라벨(True Label)을 가지는 상기 트레이닝 이미지를 저장하는 데이터베이스 중 하나로부터 획득되는 것을 특징으로 하는 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/259,372 US10692002B1 (en) | 2019-01-28 | 2019-01-28 | Learning method and learning device of pedestrian detector for robust surveillance based on image analysis by using GAN and testing method and testing device using the same |
US16/259,372 | 2019-01-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200093426A true KR20200093426A (ko) | 2020-08-05 |
KR102382693B1 KR102382693B1 (ko) | 2022-04-06 |
Family
ID=69172615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190166180A Active KR102382693B1 (ko) | 2019-01-28 | 2019-12-12 | 이미지 분석 기반으로 환경에 영향 받지 않는 감시를 위한 보행자 검출기의 학습 방법 및 학습 장치, 그리고, 이를 이용하여 테스트 방법 및 테스트장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10692002B1 (ko) |
EP (1) | EP3690712A1 (ko) |
JP (1) | JP6901802B2 (ko) |
KR (1) | KR102382693B1 (ko) |
CN (1) | CN111488789B (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102256409B1 (ko) * | 2020-11-23 | 2021-05-25 | 주식회사 에이모 | 학습 데이터 세트를 생성하는 방법 및 학습 데이터 세트를 생성하기 위한 컴퓨터 장치 |
WO2022065817A1 (en) * | 2020-09-25 | 2022-03-31 | Deeping Source Inc. | Methods for training and testing obfuscation network capable of performing distinct concealing processes for distinct regions of original image and learning and testing devices using the same |
KR102470187B1 (ko) * | 2021-11-19 | 2022-11-23 | 부산대학교 산학협력단 | 비적대적 패치 생성 방법 및 시스템 |
KR20230080332A (ko) * | 2021-11-29 | 2023-06-07 | 주식회사 딥핑소스 | 러닝 네트워크의 학습에 이용하기 위한 익명화 이미지를 생성하는 방법 및 이를 이용한 라벨링 장치 |
US12026231B2 (en) | 2020-11-06 | 2024-07-02 | Electronics And Telecommunications Research Institute | System for local optimization of object detector based on deep neural network and method of creating local database therefor |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10678244B2 (en) | 2017-03-23 | 2020-06-09 | Tesla, Inc. | Data synthesis for autonomous control systems |
US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
JP6841345B2 (ja) * | 2017-12-06 | 2021-03-10 | 日本電気株式会社 | 画像認識モデル生成装置、画像認識モデル生成方法および画像認識モデル生成プログラム |
US12307350B2 (en) | 2018-01-04 | 2025-05-20 | Tesla, Inc. | Systems and methods for hardware-based pooling |
US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
US11215999B2 (en) | 2018-06-20 | 2022-01-04 | Tesla, Inc. | Data pipeline and deep learning system for autonomous driving |
US11361457B2 (en) | 2018-07-20 | 2022-06-14 | Tesla, Inc. | Annotation cross-labeling for autonomous control systems |
US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
US11562231B2 (en) | 2018-09-03 | 2023-01-24 | Tesla, Inc. | Neural networks for embedded devices |
CN113039556B (zh) | 2018-10-11 | 2022-10-21 | 特斯拉公司 | 用于使用增广数据训练机器模型的系统和方法 |
US11196678B2 (en) | 2018-10-25 | 2021-12-07 | Tesla, Inc. | QOS manager for system on a chip communications |
US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
US11610117B2 (en) | 2018-12-27 | 2023-03-21 | Tesla, Inc. | System and method for adapting a neural network model on a hardware platform |
US10997461B2 (en) | 2019-02-01 | 2021-05-04 | Tesla, Inc. | Generating ground truth for machine learning from time series elements |
US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
US11567514B2 (en) | 2019-02-11 | 2023-01-31 | Tesla, Inc. | Autonomous and user controlled vehicle summon to a target |
US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
US10997748B2 (en) * | 2019-04-19 | 2021-05-04 | The Boeing Company | Machine learning model development with unsupervised image selection |
DE102020207324A1 (de) * | 2020-06-12 | 2021-12-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Plausibilisierung der Ausgabe eines Bildklassifikators mit einem Generator für abgewandelte Bilder |
CN111753786A (zh) * | 2020-06-30 | 2020-10-09 | 中国矿业大学 | 一种基于全尺度特征融合和轻量级生成式对抗网络的行人重识别方法 |
CN111931707A (zh) * | 2020-09-16 | 2020-11-13 | 平安国际智慧城市科技股份有限公司 | 基于对抗补丁的人脸图像预测方法、装置、设备和介质 |
US12045992B2 (en) * | 2020-11-10 | 2024-07-23 | Nec Corporation | Multi-domain semantic segmentation with label shifts |
CN112529114B (zh) * | 2021-01-13 | 2021-06-29 | 北京云真信科技有限公司 | 基于gan的目标信息识别方法、电子设备和介质 |
CN113537136B (zh) * | 2021-07-30 | 2024-09-27 | 合肥工业大学 | 一种面向边缘设备的遮挡行人闯红灯姿态识别方法 |
CN113792806B (zh) * | 2021-09-17 | 2024-08-23 | 中南大学 | 一种对抗补丁生成方法 |
CN114120393A (zh) * | 2021-10-22 | 2022-03-01 | 广西中科曙光云计算有限公司 | 一种基于对抗网络原理的行人道路违章检测方法及装置 |
CN114529946B (zh) * | 2022-02-23 | 2024-12-10 | 厦门市美亚柏科信息股份有限公司 | 基于自监督学习的行人重识别方法、装置、设备及存储介质 |
CN114550217B (zh) * | 2022-02-28 | 2024-12-03 | 清华大学 | 对抗图像生成方法及装置、以及目标覆盖物加工方法 |
CN115063831B (zh) * | 2022-04-19 | 2025-05-30 | 浙江工商大学 | 一种高性能行人检索与重识别方法及装置 |
KR20240064222A (ko) * | 2022-11-04 | 2024-05-13 | 주식회사 누비랩 | 바운딩 박스를 이용한 오토 세그멘테이션 방법 및 장치 |
CN118170936B (zh) * | 2024-05-08 | 2024-07-26 | 齐鲁工业大学(山东省科学院) | 一种基于多模态的数据与关系增强的遮挡行人检索方法 |
CN118277839B (zh) * | 2024-06-03 | 2024-07-26 | 贵州大学 | 一种极端不平衡数据故障诊断的bctgan数据扩充方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9292967B2 (en) * | 2010-06-10 | 2016-03-22 | Brown University | Parameterized model of 2D articulated human shape |
CN101887524B (zh) * | 2010-07-06 | 2012-07-04 | 湖南创合制造有限公司 | 基于视频监控的行人检测方法 |
US20190130215A1 (en) * | 2016-04-21 | 2019-05-02 | Osram Gmbh | Training method and detection method for object recognition |
US10346723B2 (en) * | 2016-11-01 | 2019-07-09 | Snap Inc. | Neural network for object detection in images |
CN107133570B (zh) * | 2017-04-07 | 2018-03-13 | 武汉睿智视讯科技有限公司 | 一种车辆/行人检测方法及系统 |
US10303953B2 (en) * | 2017-04-17 | 2019-05-28 | Intel Corporation | Person tracking and privacy and acceleration of data using autonomous machines |
WO2018204120A1 (en) * | 2017-05-02 | 2018-11-08 | Hrl Laboratories, Llc | System and method for detecting moving obstacles based on sensory prediction from ego-motion |
US10395385B2 (en) * | 2017-06-27 | 2019-08-27 | Qualcomm Incorporated | Using object re-identification in video surveillance |
JP2019015692A (ja) * | 2017-07-11 | 2019-01-31 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 付着物検出方法、付着物学習方法、付着物検出装置、付着物学習装置、付着物検出システム、および、プログラム |
US20190147320A1 (en) * | 2017-11-15 | 2019-05-16 | Uber Technologies, Inc. | "Matching Adversarial Networks" |
US11080886B2 (en) * | 2017-11-15 | 2021-08-03 | Qualcomm Incorporated | Learning disentangled invariant representations for one shot instance recognition |
-
2019
- 2019-01-28 US US16/259,372 patent/US10692002B1/en active Active
- 2019-12-12 KR KR1020190166180A patent/KR102382693B1/ko active Active
-
2020
- 2020-01-08 CN CN202010016997.5A patent/CN111488789B/zh active Active
- 2020-01-14 EP EP20151836.2A patent/EP3690712A1/en active Pending
- 2020-01-15 JP JP2020004614A patent/JP6901802B2/ja active Active
Non-Patent Citations (2)
Title |
---|
Xi Ouyang et al., "Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond," arXiv:1804.02047v2 [cs.CV] 14 Apr 2018 (2018.04.14.)* * |
Xiaolong Wang et al., "A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection," arXiv:1704.03414v1 [cs.CV] 11 Apr 2017 (2017.04.11.)* * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022065817A1 (en) * | 2020-09-25 | 2022-03-31 | Deeping Source Inc. | Methods for training and testing obfuscation network capable of performing distinct concealing processes for distinct regions of original image and learning and testing devices using the same |
KR20220041743A (ko) * | 2020-09-25 | 2022-04-01 | 주식회사 딥핑소스 | 원본 이미지의 영역별로 서로 다른 컨실링 프로세스가 수행되도록 하여 원본 이미지를 컨실링 처리하는 변조 네트워크를 학습하는 방법 및 테스트하는 방법, 그리고, 이를 이용한 학습 장치 및 테스트 장치 |
US12026231B2 (en) | 2020-11-06 | 2024-07-02 | Electronics And Telecommunications Research Institute | System for local optimization of object detector based on deep neural network and method of creating local database therefor |
KR102256409B1 (ko) * | 2020-11-23 | 2021-05-25 | 주식회사 에이모 | 학습 데이터 세트를 생성하는 방법 및 학습 데이터 세트를 생성하기 위한 컴퓨터 장치 |
KR102470187B1 (ko) * | 2021-11-19 | 2022-11-23 | 부산대학교 산학협력단 | 비적대적 패치 생성 방법 및 시스템 |
KR20230080332A (ko) * | 2021-11-29 | 2023-06-07 | 주식회사 딥핑소스 | 러닝 네트워크의 학습에 이용하기 위한 익명화 이미지를 생성하는 방법 및 이를 이용한 라벨링 장치 |
Also Published As
Publication number | Publication date |
---|---|
KR102382693B1 (ko) | 2022-04-06 |
CN111488789B (zh) | 2023-11-07 |
US10692002B1 (en) | 2020-06-23 |
JP6901802B2 (ja) | 2021-07-14 |
EP3690712A1 (en) | 2020-08-05 |
CN111488789A (zh) | 2020-08-04 |
JP2020119558A (ja) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102382693B1 (ko) | 이미지 분석 기반으로 환경에 영향 받지 않는 감시를 위한 보행자 검출기의 학습 방법 및 학습 장치, 그리고, 이를 이용하여 테스트 방법 및 테스트장치 | |
EP3690742A1 (en) | Method for auto-labeling training images for use in deep learning network to analyze images with high precision, and auto-labeling device using the same | |
US10430691B1 (en) | Learning method and learning device for object detector based on CNN, adaptable to customers' requirements such as key performance index, using target object merging network and target region estimating network, and testing method and testing device using the same to be used for multi-camera or surround view monitoring | |
US8379994B2 (en) | Digital image analysis utilizing multiple human labels | |
CN111985458B (zh) | 一种检测多目标的方法、电子设备及存储介质 | |
US10387752B1 (en) | Learning method and learning device for object detector with hardware optimization based on CNN for detection at distance or military purpose using image concatenation, and testing method and testing device using the same | |
CN111507459A (zh) | 降低神经网络的注解费用的方法和装置 | |
Nordeng et al. | DEBC detection with deep learning | |
EP3913527A1 (en) | Method and device for performing behavior prediction by using explainable self-focused attention | |
CN112101185B (zh) | 一种训练皱纹检测模型的方法、电子设备及存储介质 | |
EP4323952A1 (en) | Semantically accurate super-resolution generative adversarial networks | |
KR102427884B1 (ko) | 객체 검출 모델 학습 장치 및 방법 | |
CN116597413A (zh) | 一种基于改进的YOLOv5的实时交通标志检测方法 | |
CN113837001A (zh) | 监控场景下的异常闯入物实时检测方法及装置 | |
CN110956097A (zh) | 遮挡人体提取方法及模块、场景转换方法及装置 | |
CN117911900A (zh) | 一种变电站巡检无人机避障目标检测方法及系统 | |
CN116958840A (zh) | 基于深度学习的安全帽佩戴检测方法、装置及设备 | |
JP7365261B2 (ja) | コンピュータシステムおよびプログラム | |
KR102781755B1 (ko) | 영유아 표정 인식 알고리즘 개선 방법 | |
KR102738343B1 (ko) | 제1 오브젝트 클래스들을 검출하도록 학습된 오브젝트 디텍터를 제2 오브젝트 클래스들을 검출할 수 있도록 전이 학습하는 방법 및 학습 장치, 이를 이용한 테스트 방법 및 테스트 장치 | |
EP4312195A1 (en) | Method, device and storage medium for post-processing in multi-target tracking | |
CN118570249B (zh) | 基于脉冲神经网络的视觉追踪方法、装置及电子设备 | |
US20230196752A1 (en) | Information processing apparatus, information processing method, and non-transitory computer-readable storage medium | |
US20240071105A1 (en) | Cross-modal self-supervised learning for infrastructure analysis | |
CN112241784B (zh) | 训练生成模型和判别模型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20191212 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210729 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220325 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220331 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220401 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20250304 Start annual number: 4 End annual number: 4 |