KR20200088780A - Enhanced cytosol-penetrating antibody - Google Patents

Enhanced cytosol-penetrating antibody Download PDF

Info

Publication number
KR20200088780A
KR20200088780A KR1020200004848A KR20200004848A KR20200088780A KR 20200088780 A KR20200088780 A KR 20200088780A KR 1020200004848 A KR1020200004848 A KR 1020200004848A KR 20200004848 A KR20200004848 A KR 20200004848A KR 20200088780 A KR20200088780 A KR 20200088780A
Authority
KR
South Korea
Prior art keywords
antibody
ser
gly
chain variable
light chain
Prior art date
Application number
KR1020200004848A
Other languages
Korean (ko)
Inventor
김동명
박유진
Original Assignee
오름테라퓨틱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오름테라퓨틱 주식회사 filed Critical 오름테라퓨틱 주식회사
Publication of KR20200088780A publication Critical patent/KR20200088780A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to an antibody with enhanced cytoplasmic permeability. Specifically, the present invention relates to a cytoplasmic penetrating antibody or antigen-binding fragment thereof, comprising an amino acid mutation in at least one selected from the group consisting of CDR1, FR and CDR3 among light chain variable regions. The present invention is adopted as a screening method capable of evaluating cytoplasmic permeability without purification after synthesis of cell-free protein, and it was confirmed that the endosome escape ability is improved and antigen targeting ability is maintained.

Description

세포질 침투성이 증진된 항체{Enhanced cytosol-penetrating antibody}Enhanced cytosol-penetrating antibody

본 발명은 세포질 침투성이 증진된 항체에 관한 것으로, 세포질 침투 항체 또는 이의 항원 결합 단편에 관한 것이다. 무세포 단백질 합성 후 정제과정 없이 그대로 세포질 투과성을 평가할 수 있는 스크리닝 방법으로 채택된 것으로, 엔도좀 탈출능이 향상되고 항원 표적능이 유지되는 효과가 있다는 것을 확인하였다. The present invention relates to an antibody with improved cytoplasmic permeability, and to a cytoplasmic permeable antibody or antigen-binding fragment thereof. After cell-free protein synthesis, it was adopted as a screening method capable of evaluating cytoplasmic permeability without purification, and it was confirmed that the endosomal escape ability was improved and the antigen targeting ability was maintained.

특정 리간드에 대한 높은 특이성 및 강한 결합 친화력으로 인해, 치료용 항체는 신속하게 화학 약물을 대체하고 있으며 암 및 자가 면역 질환의 치료에서 치료제의 중심이 되었다. 항체의 표적 특이적 결합은 수용체 차단, 보체 의존성 세포 독성, 항체 의존성 세포 독성 및 T 세포 기능의 조절을 비롯한 다양한 기전을 통해 증상을 완화하거나 역전시킨다. Due to the high specificity and strong binding affinity for specific ligands, therapeutic antibodies are rapidly replacing chemical drugs and have become the center of treatment in the treatment of cancer and autoimmune diseases. Target specific binding of an antibody relieves or reverses symptoms through a variety of mechanisms including receptor blockade, complement dependent cytotoxicity, antibody dependent cytotoxicity and regulation of T cell function.

그러나 현재까지 개발된 대부분의 항체 치료제는 세포막을 통과할 수 없기 때문에 표면 노출 또는 분비 분자만을 타겟으로 하는 실정이므로, 소분자 약물이 현재 세포 내 표적에 접근하는 유일한 선택이다. 하지만, 상기한 바와 같은 기존의 화학 약물에 대비되는 항체 치료법의 장점을 살리기 위해, 세포막을 통해 항체를 전달하는 방법의 개발이 촉구되고 있다. However, since most antibody therapeutics developed to date cannot target cell membranes, they only target surface exposed or secreted molecules, so small molecule drugs are currently the only option to access intracellular targets. However, in order to take advantage of the antibody therapy compared to the existing chemical drugs as described above, development of a method of delivering the antibody through the cell membrane is being promoted.

본 발명자들은 이러한 항체의 일반적인 성질과 다르게 세포질 침투능을 보이는 경쇄가변영역(VL)과 이를 도입한 완전 IgG 형태의 세포질 침투 항체 TMab4를 개발하였다(Choi et al., 2014). 또한, 세포질 내부의 주요 종양유발인자인 활성상태의 Ras를 표적하는 중쇄가변영역과 세포질 침투능을 보이는 경쇄가변영역을 IgG 형태로 구축하여 세포질 내부의 활성상태의 Ras를 표적하는 세포질 침투 항체 RT11을 개발하였다 (Shin et al., 2017).The present inventors have developed a light chain variable region (VL) that exhibits cytoplasmic penetration ability, and the cytoplasmic penetration antibody TMab4 in the form of a complete IgG introduced therein, unlike the general properties of these antibodies (Choi et al., 2014). In addition, a heavy chain variable region targeting the active Ras, which is a major tumor inducer inside the cytoplasm, and a light chain variable region showing cytoplasmic penetration ability are constructed in IgG form to develop the cytoplasmic penetration antibody RT11 targeting the active Ras inside the cytoplasm. (Shin et al., 2017).

세포질 침투항체의 경쇄가변영역은 엔도좀의 산성 pH를 감지하여 구조적 변화가 유도되고, 이에 따라 엔도좀 탈출능을 보이는 것을 확인하였으며, 구조적 변화가 일어나는 고리 부분의 서열을 조작하여 엔도좀 탈출능을 향상시킨 TMab4-WYW (TMab4-3) 항체를 개발하였다 (Kim et al., 2016). 최종적으로, 상기 세포질 내부의 주요 종양유발인자인 활성상태의 Ras를 표적하는 중쇄가변영역과 엔도좀 탈출능이 향상된 경쇄가변영역을 조합하여 RT11-3 항체를 구축하였다.The light chain variable region of the cytoplasmic infiltrating antibody detects the acidic pH of the endosome, thereby inducing structural changes, thereby confirming the ability to escape the endosome, and the endosome escape ability is manipulated by manipulating the sequence of the ring region where structural changes occur. An improved TMab4-WYW (TMab4-3) antibody was developed (Kim et al., 2016). Finally, the RT11-3 antibody was constructed by combining the heavy chain variable region targeting the active Ras, which is the main tumor inducer inside the cytoplasm, and the light chain variable region with improved endosomal escape ability.

실험을 통하여 경쇄가변영역의 서열 중 엔도좀 탈출에 관여한다고 여겨지는 서열을 확인하였으나, 본 발명자들이 예측하지 못하는 서열도 엔도좀 탈출에 관여할 가능성이 있으므로, 큰 다양성을 가지는 경쇄가변영역 변이체를 구축하여 세포질 침투능을 비교함으로써 세포질 전달 효율이 향상된 서열을 얻을 수 있을 것으로 기대하였다. 하지만 이를 위한 다양한 세포 침투 항체 변이체의 스크리닝 및 발현은 유전자 클로닝, 재조합 발현 및 정제 등의 수많은 과정을 필요로 하며, 이후 기능 분석을 추가로 진행하는 복잡한 과정을 수행해야 한다는 한계점이 있다. 그러한 이유로 현재까지는 10개 이내 정도의 제한된 변이체를 구축하여 세포질 침투능을 평가하였다.Through the experiment, the sequence considered to be involved in the escape of the endosome among the sequences of the light chain variable region was confirmed, but the sequence not predicted by the present inventors is also likely to be involved in the escape of the endosome. By comparing the cytoplasmic penetration ability, it was expected that a sequence with improved cytoplasmic delivery efficiency could be obtained. However, screening and expression of various cell-penetrating antibody variants for this requires numerous processes such as gene cloning, recombinant expression and purification, and there is a limitation in that a complicated process of further performing functional analysis is required. For this reason, up to now, limited variants of about 10 were constructed to evaluate cytoplasmic penetration ability.

한편 항체의 세포막의 투과에 관한 기술로는 한국등록특허 제1602870호에 완전한 이뮤노글로불린 형태의 항체를 세포막을 투과하여 세포질에 위치시키는 방법 및 그의 이용에 관한 기술이 개시되어 있고, 세포질 침투 항체가 세포질에 위치 정도를 확인하기 위한 실험 방법으로는 한국등록특허 제1790669호에 개선된 분할 녹색 형광 단백질 상보시스템 및 이의 용도에 관한 기술이 개시되어 있다. 또한, 한국등록특허 제1667023호에 무세포 단백질 합성 방법을 이용하여 생산된 항체의 세포질 내로의 유입을 간편하게 분석하는 방법에 관한 기술이 개시되어 있으나, 본 발명의 세포질 침투성이 증진된 항체에 관한 기술은 개시된 바 없다. On the other hand, as a technique for permeation of the cell membrane of an antibody, a method of using a complete immunoglobulin type antibody to permeate the cell membrane and positioning it in the cytoplasm is disclosed in Korean Patent No. 1602870. As an experimental method for confirming the degree of location in the cytoplasm, Korean Patent No. 1790669 discloses an improved split green fluorescent protein complementary system and a technique for its use. In addition, Korean Patent Registration No. 1667023 discloses a technique for easily analyzing the inflow of an antibody produced into a cytoplasm using a cell-free protein synthesis method, but a technique for an antibody having improved cytoplasmic permeability of the present invention Has not been disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명은 세포질 침투성이 증진된 항체를 제공하고, 상기 항체가 세포질로의 침투성을 증진된 것을 확인함으로써, 본 발명을 완성하였다. The present invention has been derived by the above-mentioned needs, and the present invention has completed the present invention by providing an antibody with improved cytoplasmic permeability, and confirming that the antibody has improved permeability to the cytoplasm.

상기 목적을 달성하기 위하여, 본 발명은 세포질 침투성이 증진된 항체로, 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는, 세포질 침투 항체 또는 이의 항원 결합 단편을 제공한다.In order to achieve the above object, the present invention is an antibody with enhanced cytoplasmic permeability, comprising an amino acid variation in at least one selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO: 2, or a cytoplasmic penetration antibody or Antigen-binding fragments are provided.

본 발명은 상기 세포질 침투 항체 또는 이의 항원 결합 단편을 코딩하는 핵산을 제공한다. The present invention provides a nucleic acid encoding the cytoplasmic penetration antibody or antigen-binding fragment thereof.

본 발명은 상기 세포질 침투 항체 또는 이의 항원 결합 단편을 포함하는 세포질 내 활성물질 전달용 조성물을 제공한다. The present invention provides a composition for the delivery of an active substance in the cytoplasm comprising the cytoplasmic penetration antibody or antigen-binding fragment thereof.

본 발명은 상기 세포질 침투 항체 또는 이의 항원 결합 단편과 생체 활성분자가 융합된 접합체에 관한 것이다. The present invention relates to a conjugate in which the cytoplasmic penetration antibody or antigen-binding fragment thereof and a bioactive molecule are fused.

본 발명은 세포질 침투 항체 또는 이의 항원 결합 단편을 세포막을 투과하여 세포질에 위치시키는 방법으로서, 상기 항체는 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는 방법에 관한 것이다.The present invention is a method for placing a cytoplasmic penetration antibody or an antigen-binding fragment thereof through the cell membrane and placing it in the cytoplasm, wherein the antibody has amino acid mutations in one or more selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO:2. How to include.

본 발명은 세포막을 투과하여 세포질에 위치하는 것을 유도하는, 세포질 침투능을 갖는 경쇄가변영역 (VL)으로서, 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는 경쇄가변영역 (VL)에 관한 것이다.The present invention is a light chain variable region (VL) having a cytoplasmic penetration ability, which penetrates the cell membrane and induces it to be located in the cytoplasm, wherein at least one amino acid mutation selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO:2 It relates to a light chain variable region (VL) comprising a.

본 발명은 세포질 침투성이 증진된 항체에 관한 것으로, 경쇄 가변영역에 돌연변이 서열이 도입된 항체이다. 본 발명에 따른 항체는 엔도좀 탈출능이 향상되고 항원 표적능이 유지되는 효과가 있는 것이다.The present invention relates to an antibody having improved cytoplasmic permeability, and is an antibody having a mutant sequence introduced into a light chain variable region. The antibody according to the present invention has an effect of improving endosomal escape ability and maintaining antigen targeting ability.

도 1은 세포질-침투된 RT11-3 scFv 항체를 확인한 공초점 현미경 이미지다. 융합 및 원위치 절단에 의해 합성된 가용성 RT11-3 scFv 항체를 Ni-NTA 아가로오스 비드로 정제한 후, 상기 정제된 RT11-3scFv 항체를 0.25, 0.5, 0.75 및 1.0μM의 농도로 리포터 세포에 처리하고, 37℃에서 12시간 동안 5%(v/v) CO2 배양기에서 배양하였으며, 상기 배양된 리포터 세포를 15분 동안 4% 파라포름알데히드로 고정시킨 후, 리포터 세포의 GFP 형광을 분석하였고, 세포 핵은 Hoechst 33342로 염색한 것이다.
도 2는 리포터 세포에 대한 반응 혼합물의 각 성분에 대한 세포독성 시험 결과이다. 무세포 단백질 합성을 위한 반응 혼합물 중 주요 성분의 세포독성을 조사하기 위해 DMEM으로 희석한 표준 반응 혼합물과 동일한 농도로 각 성분 처리 후, 현미경을 사용하여 세포 형태를 분석한 결과이다. 희석된 혼합물 1.2㎖를 처리한 리포터 세포 1X105개를 37℃에서 12시간 동안 5%(v/v) CO2 배양기로 배양 후 확인한 것이다.
도 3은 무세포 단백질 합성된 RT11-3 scFv 항체를 다양한 비율(1, 2, 4 및 8 배)로, DMEM으로 희석하여 세포독성을 확인한 결과이다. 세포 형태와 세포 생존 능력에 최소한의 영향을 미치는 희석 비율을 최적화하기 위하여 관찰한 현미경 사진(A)과 유세포 분석(B) 결과이다.
도 4는 유비퀴틴 서열의 효과 및 RT11-3 scFv의 가용성 단백질의 양을 확인한 결과이다. (A)는 RT11-3 scFv 유전자에 유비퀴틴(UCE1)의 조작된 염기 서열을 융합시킨 후, 표준 반응 혼합물에서 무세포 단백질 합성한 단백질의 양을 TCA-침전된 방사능으로 확인한 것으로, RT11-3은 유비퀴틴(UCE1) 서열이 없는 유전자를 이용하여 합성한 것이고, UCE1-RT11-3은 유비퀴틴 서열이 융합된 유전자를 이용하여 합성한 것이며, 빈 막대는 총 단백질 합성 양이며, 채워진 막대는 가용성 단백질의 양이다. (B)는 표준 S12 추출물 및 UBP1가 풍부한 S12 추출물을 사용하여, 유비퀴틴-융합체의 발현 수준을 비교한 결과로, TCA-침전된 방사능 측정을 통해 확인한 것이다. 상단의 웨스턴블랏 결과는 유비퀴틴 태그의 절단을 확인한 것이다. (C)는 UBP1 S12 추출물의 존재하에 UCE1 융합된 RT11-3 scFv를 발현시킨 후, 반응 혼합물을 DMEM 배지에서 4배 희석시키고, 리포터 세포(1X104개)를 400㎕의 희석된 반응 혼합물 중에서 배양하였다. 처리된 리포터 세포를 4% 파라포름알데하이드로 고정시킨 후, 공초점 현미경 하에서 GFP 형광을 확인한 것이다.
도 5는 RT11-3 scFv의 변이위치 및 변이라이브러리 제작 과정을 나타낸 것이다. (A)에 검은색으로 표시된 야생형 잔기들이 빨간색으로 표시된 아미노산으로 치환되도록 설계되었으며, (B)에 나타낸 프라이머들을 사용하여 PCR증폭된 DNA조각들의 조합을 통해 라이브러리를 구축하였다.
도 6은 변이 RT11-3 scFv의 무세포 발현 및 스크리닝 결과이다. PCR-증폭된 변이형 유전자 제작물을 무세포 단백질 합성을 위한 반응 혼합물 중에서 발현시키고, DMEM에서 4배 희석하여 리포터 세포에 첨가하여 배양 12시간 후, 리포터 세포를 PBS로 세척하고, 100㎕의 PBS에서 GFP 형광(여기파장: 485nm/발광파장: 528nm)을 측정한 결과이다.
도 7은 선택된 변이체의 아미노산 서열 분석 결과이다. 야생형 (WT) 및 선택된 변이 RT11-3 scFv (#1-60, #5-10, #6-32 및 6-91)의 변이위치 아미노산 서열을 나타내는 것이다.
도 8은 채택된 변이형 클론의 세포질 투과성을 평가한 결과이다. 선별된 4 개의 클론을 5㎖의 무세포 단백질 합성 반응으로부터 발현시키고 정제한 후, 리포터 세포(1X104 세포/ 공초점 접시)를 DMEM에서 4배 희석한 후 동일한 양(1.5μM)의 정제 항체로 처리하고. 4% 파라포름알데히드로 15분 동안 고정시킨 후, 리포터 세포의 GFP 형광을 확인한 것이다. 핵은 Hoechst 33342 염료로 염색한 것이다.
도 9는 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체의 비특이적 결합능을 확인하기 위해, HSPG를 발현하지 않는 pgsD-677 세포주에서 비특이적 세포 표면 결합 ELISA를 수행한 결과이다.
도 10(A)는 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체에 의한, pH7.4 및 pH5.5의 트립판 블루를 획득한 세포의 수를 정량적으로 비교한 그래프이다.
도 10(B)는 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체에 따른 세포질로의 이동에 대하여, 칼세인(calcein)을 이용하여 공초점 현미경으로 관찰한 결과이다.
도 10(C)는 GFP11-SBP2 융합된 세포질 침투 항체 야생형 및 엔도좀 탈출능 향상 돌연변이의 개선된 분할 녹색 형광 단백질의 상보적인 결합에 의한 GFP 형광을 공초점 현미경으로 확인한 결과이다.
도 11(A)는 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체들의 GppNHp가 결합된 KRasG12D와의 특이적 결합을 확인하기 위해, 10 또는 100nM의 KRasG12D·GppNHp와, 100nM의 KRasG12D·GDP에 대한 결합능을 ELISA로 분석한 결과이다.
도 11(B)는 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체들의 인간 대장암 세포주에서의 비부착 세포 성장 억제능을 spheroid proliferation 방법으로 확인한 결과이다.
1 is a confocal microscopy image confirming the cytoplasmic-infiltrated RT11-3 scFv antibody. After soluble RT11-3 scFv antibody synthesized by fusion and in situ cleavage was purified with Ni-NTA agarose beads, the purified RT11-3scFv antibody was treated to reporter cells at concentrations of 0.25, 0.5, 0.75 and 1.0 μM. And cultured in a 5% (v/v) CO 2 incubator at 37° C. for 12 hours, fixed the cultured reporter cells with 4% paraformaldehyde for 15 minutes, and analyzed GFP fluorescence of reporter cells, Cell nuclei were stained with Hoechst 33342.
2 is a result of the cytotoxicity test for each component of the reaction mixture for reporter cells. To investigate the cytotoxicity of the major components of the reaction mixture for cell-free protein synthesis, it is the result of analyzing the cell morphology using a microscope after treating each component at the same concentration as the standard reaction mixture diluted with DMEM. Five 1X10 reporter cells treated with 1.2 ml of the diluted mixture were confirmed after incubation with a 5% (v/v) CO 2 incubator at 37° C. for 12 hours.
3 is a result of confirming cytotoxicity by diluting a cell-free protein-synthesized RT11-3 scFv antibody in various ratios (1, 2, 4 and 8 times) with DMEM. These are the results of micrograph (A) and flow cytometry (B) observed to optimize the dilution ratio with minimal effect on cell morphology and cell viability.
4 is a result confirming the effect of the ubiquitin sequence and the amount of soluble protein of RT11-3 scFv. (A) is a fusion of the nucleotide sequence of ubiquitin (UCE1) to the RT11-3 scFv gene, and the amount of protein synthesized as a cell-free protein in a standard reaction mixture was confirmed by TCA-precipitated radioactivity. Ubiquitin (UCE1) was synthesized using a gene without a sequence, UCE1-RT11-3 was synthesized using a gene fused with a ubiquitin sequence, the empty rod is the total protein synthesis amount, and the filled rod is the amount of soluble protein. to be. (B) is a result of comparing the expression level of the ubiquitin-fusion, using a standard S12 extract and a S12 extract rich in UBP1, confirmed by TCA-precipitated radioactivity measurement. The western blot result at the top confirms the cleavage of the ubiquitin tag. (C) is incubated in the diluted reaction mixture of the UCE1 then expressing the fused RT11-3 scFv, and the reaction mixture was diluted four times in the DMEM medium, the reporter cells (1X10 4 pieces) in the presence of S12 extract 400㎕ UBP1 Did. After fixing the treated reporter cells with 4% paraformaldehyde, GFP fluorescence was confirmed under confocal microscopy.
Figure 5 shows the process of manufacturing the mutation location and mutation library RT11-3 scFv. The wild-type residues indicated in black in (A) were designed to be replaced with amino acids in red, and the primers shown in (B) were used to construct a library through a combination of PCR-amplified DNA fragments.
6 is a cell expression and screening results of the mutant RT11-3 scFv. The PCR-amplified mutant gene construct is expressed in a reaction mixture for cell-free protein synthesis, diluted 4 times in DMEM, added to reporter cells, and after 12 hours of culture, the reporter cells are washed with PBS, and in 100 µl PBS. GFP fluorescence (excitation wavelength: 485nm / emission wavelength: 528nm).
7 is a result of amino acid sequence analysis of the selected variant. Wild type (WT) and selected mutation RT11-3 scFv (#1-60, #5-10, #6-32 and 6-91).
8 is a result of evaluating the cytoplasmic permeability of the adopted variant clones. After expressing and purifying the selected 4 clones from a cell-free protein synthesis reaction of 5 ml, reporter cells (1X10 4 cells/confocal dish) were diluted 4-fold in DMEM, and then used with the same amount (1.5 μM) of purified antibody. Take care of it. After fixing with 4% paraformaldehyde for 15 minutes, the reporter cells GFP fluorescence was confirmed. The nucleus was stained with Hoechst 33342 dye.
9 is a result of performing a non-specific cell surface-binding ELISA in the pgsD-677 cell line that does not express HSPG, in order to confirm the non-specific binding capacity of the anti-Ras·GTP cytoplasmic penetration antibody containing the light chain variable region with improved endosomal escape ability .
10(A) is a quantitative comparison of the number of cells obtained with trypan blue of pH7.4 and pH5.5 by anti-Ras·GTP cytoplasmic penetration antibody containing a light chain variable region with improved endosomal escape ability It is a graph.
Figure 10 (B) is a result of observation with a confocal microscope using calcein (calcein) for the migration to the cytoplasm according to the anti-Ras GTP cytoplasmic penetration antibody containing a light chain variable region with improved endosomal escape ability .
Figure 10 (C) is a result of confirming the GFP fluorescence by confocal microscopy by complementary binding of the improved split green fluorescent protein of the GFP11-SBP2 fused cytoplasmic penetration antibody wild type and endosome escape enhancing mutant.
FIG. 11(A) shows 10 or 100 nM of KRasG12D. It is the result of analyzing the binding capacity of KRasG12D·GDP by ELISA.
Figure 11 (B) is a result of confirming the non-adherent cell growth inhibitory ability in the human colon cancer cell line of anti-Ras·GTP cytoplasmic penetration antibodies containing the light chain variable region with improved endosomal escape ability by spheroid proliferation method.

본 발명은 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는, 세포질 침투 항체 또는 이의 항원 결합 단편에 관한 것이다. The present invention relates to a cytoplasmic penetration antibody or antigen-binding fragment thereof, comprising an amino acid variation in at least one selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO: 2.

상기 항체의 표적은 KRas인 것을 특징으로 하는 항체인 것이 바람직하지만 이에 한정하지 않는다.The target of the antibody is preferably an antibody characterized by KRas, but is not limited thereto.

하나의 실시예에서, 상기 세포질 침투 항체 또는 이의 항원 결합 단편은 서열번호 2의 경쇄 가변영역 중 다음으로 구성된 군에서 선택된 아미노산 치환을 포함할 수 있다 (아미노산 위치는 kabat numbering에 따름):In one embodiment, the cytoplasmic penetration antibody or antigen-binding fragment thereof may include an amino acid substitution selected from the group consisting of the light chain variable region of SEQ ID NO: 2 (amino acid position according to kabat numbering):

34번째 위치의 아미노산 A가 D 또는 E로 치환;Amino acid A at position 34 is replaced by D or E;

36번째 위치의 아미노산 Y가 F로 치환;Amino acid Y at position 36 is replaced by F;

46번째 위치의 아미노산 L이 K, M, I 또는 R로 치환;Amino acid L at position 46 is substituted with K, M, I or R;

89번째 Q가 E, M, L, I 또는 N으로 치환; 89th Q is replaced by E, M, L, I or N;

91번째 Y가 T, M, F, I 또는 K로 치환; 및91st Y is substituted with T, M, F, I or K; And

96번째 Y가 T, W, F, I 또는 K로 치환.96th Y is replaced by T, W, F, I or K.

하나의 실시예에서, 상기 세포질 침투 항체 또는 이의 항원 결합 단편은 서열번호 28 내지 31로 구성된 군에서 선택되는 경쇄 가변영역을 포함할 수 있다. 경우에 따라서, 서열번호 1의 중쇄 가변영역을 추가로 포함할 수 있다. In one embodiment, the cytoplasmic penetration antibody or antigen-binding fragment thereof may include a light chain variable region selected from the group consisting of SEQ ID NOs: 28 to 31. In some cases, the heavy chain variable region of SEQ ID NO: 1 may be further included.

"Fv" 단편은 완전한 항체 인식 및 결합 부위를 함유하는 항체 단편이다. 이러한 영역은 1개의 중쇄 가변 도메인과 1개의 경쇄 가변 도메인이, 예를 들어 scFv로 단단하게 사실상 공유적으로 연합된 이량체로 이루어진다.An “Fv” fragment is an antibody fragment that contains a complete antibody recognition and binding site. This region consists of a dimer in which one heavy chain variable domain and one light chain variable domain are tightly virtually covalently associated with, for example, scFv.

상기 항체는 예를 들어, scFv 형태일 수 있다. scFv는 항체의 VH 및 VL 도메인을 포함하며, 항원 결합을 위해 목적하는 구조를 형성할 수 있도록 하는 VH 도메인과 VL 도메인 사이에 폴리펩티드 링커를 추가로 포함할 수 있다.The antibody may be in the form of, for example, scFv. The scFv includes the VH and VL domains of the antibody, and may further include a polypeptide linker between the VH domain and the VL domain, which enables to form a desired structure for antigen binding.

"가변영역"은 상보성 결정 영역 (CDR; 즉, CDR1, CDR2, 및 CDR3), 및 골격 영역 (FR)의 아미노산 서열을 포함하는 항체 분자의 경쇄 및 중쇄 부분을 지칭한다. VH는 중쇄의 가변영역을 지칭한다. VL은 경쇄의 가변영역을 지칭한다.“Variable region” refers to the light and heavy chain portions of an antibody molecule comprising the amino acid sequences of complementarity determining regions (CDRs; ie CDR1, CDR2, and CDR3), and framework regions (FR). VH refers to the variable region of the heavy chain. VL refers to the variable region of the light chain.

"상보성 결정 영역" (CDR; 즉, CDR1, CDR2, 및 CDR3)은 항원 결합을 위해 필요한 존재인, 항체 가변영역의 아미노산 잔기를 지칭한다. 각 가변영역은 전형적으로, CDR1, CDR2 및 CDR3으로서 확인된 3개의 CDR 영역을 갖는다.“Complementarity determining regions” (CDR; ie CDR1, CDR2, and CDR3) refers to the amino acid residues of an antibody variable region, which are necessary for antigen binding. Each variable region typically has three CDR regions identified as CDR1, CDR2 and CDR3.

"골격 영역" (FR)은 CDR 잔기 이외의 가변영역 잔기이다. 각 가변영역은 전형적으로, FR1, FR2, FR3 및 FR4로서 확인된 4개의 FR을 가진다.“Framework region” (FR) is a variable region residue other than the CDR residues. Each variable region typically has four FRs identified as FR1, FR2, FR3 and FR4.

본 발명에 따른 항체 또는 이의 항원 결합 단편은 하기 스크리닝 방법으로 채택된 것이 바람직하지만 이에 한정하지 않는다.The antibody or antigen-binding fragment thereof according to the present invention is preferably adopted by the following screening method, but is not limited thereto.

(1) 무세포 단백질 합성법으로 야생형 세포질 침투성 타겟 항체를 합성하는 단계; (1) synthesizing a wild type cytoplasmic permeable target antibody by a cell-free protein synthesis method;

(2) 상기 단계(1)에서 합성된 타겟 항체를 포함하는 무세포 단백질 합성 반응액을 그대로 정제 없이 희석하여, 세포독성 및 세포질 침투성 확인 가능 농도를 결정하는 단계;(2) diluting the cell-free protein synthesis reaction solution containing the target antibody synthesized in step (1) without purification, to determine a cytotoxicity and cytoplasmic permeable concentration;

(3) 상기 단계 (1)의 타겟 항체의 경쇄 가변영역의 서열이 변이된, 변이형 세포질 침투성 항체를 생산할 수 있는 유전자 서열을 PCR 증폭시키는 단계;(3) PCR amplifying a gene sequence capable of producing a variant cytoplasmic permeable antibody, wherein the sequence of the light chain variable region of the target antibody of step (1) is mutated;

(4) 상기 단계 (3)에서 획득한 PCR 증폭 산물을 합성 주형으로 하여, 무세포 단백질 합성으로 변이형 세포질 침투성 항체를 생산하는 단계;(4) using the PCR amplification product obtained in step (3) as a synthetic template to produce mutant cytoplasmic permeable antibody by cell-free protein synthesis;

(5) 상기 단계 (4)에서 생산된 변이형 세포질 침투성 항체들을, 상기 단계 (2)에서 결정한 농도로, 리포터 세포에 처리하고, 세포의 침투성이 증진된 변이형 세포질 침투성 항체를 선별하는 단계; 및(5) treating the variant cytoplasmic permeable antibodies produced in step (4) to reporter cells at a concentration determined in step (2), and selecting the variant cytoplasmic permeability antibody with enhanced cell permeability; And

(6) 상기 단계 (5)에서 선별된 세포의 침투성이 증진된 변이형 세포질 침투성 항체의 타겟 항원에 대한 친화성을 확인하는 단계;를 포함하는 침투성이 증진된 세포질 침투성 항체의 스크리닝 방법.(6) identifying the affinity for the target antigen of the variant cytoplasmic permeable antibody with enhanced permeability of the cells selected in step (5); a method for screening for a permeable enhanced cytoplasmic permeable antibody.

상기 단계 (4)에서, PCR 증폭 산물은 5'에서 3' 방향으로 프로모터, 융합파트너, 6XHis tag, 중쇄영역, 링커1, 경쇄영역, 링커2, GFP11, SBP2 및 터미네이터 서열이 순차적으로 연결된 유전자인 것이 바람직하지만 이에 한정하지 않으며, 필요에 따라 변형이 가능하다. In step (4), the PCR amplification product is a gene in which the promoter, fusion partner, 6XHis tag, heavy chain region, linker 1, light chain region, linker 2, GFP 11 , SBP2 and terminator sequence are sequentially connected in 5'to 3'direction. It is preferred, but is not limited thereto, and can be modified as necessary.

상기 타겟 항체는 세포질 침투성 경쇄 가변 영역을 포함하는 RT11-3 scFv(single chain varible fragment) 항체 또는 이의 변이체인 것이 바람직하지만 이에 한정하지 않는다.The target antibody is preferably a RT11-3 single chain varible fragment (SCFv) antibody or a variant thereof including the cytoplasmic permeable light chain variable region, but is not limited thereto.

상기 리포터 세포는 GFP1-10를 발현하는 세포인 것이 특징이고, 상기 리포터 세포의 세포질에서 발현하는 GFP1-10는 침투한 항체에 연결된 GFP11과 결합하여 GFP 형광을 발색하는 것이 특징이다. 또한, 상기 리포터 세포는 HeLa 세포인 것이 바람직하지만 이에 한정하지 않는다. The reporter cells are characterized in cells expressing the GFP 1-10, 1-10 expressing GFP in the cytoplasm of the reporter cells is characterized in that color development of GFP fluorescence in combination with GFP 11 connected to the penetration antibody. In addition, the reporter cells are preferably HeLa cells, but are not limited thereto.

상기 융합 파트너는 하류 유전자의 발현 및 발현된 항체의 가용성과 활성을 증대시킬 수 있는 서열이면 무방하게 사용될 수 있으며, 바람직하게는 유비퀴틴 또는 염기서열이 변이된 유비퀴틴 서열이지만, 이에 한정하지 않는다. The fusion partner may be used as long as it is a sequence capable of increasing the expression of downstream genes and the solubility and activity of the expressed antibody, and is preferably a ubiquitin sequence having a ubiquitin or nucleotide sequence variation, but is not limited thereto.

본 발명은 세포질 침투 항체 또는 이의 항원 결합 단편과 생체 활성분자가 융합된 접합체에 관한 것이다. 또한, 본 발명은 세포질 침투 항체 또는 이의 항원 결합 단편을 포함하는 세포질 내 생체 활성분자 전달용 조성물에 관한 것이다. The present invention relates to a conjugate in which a cytoplasmic penetration antibody or an antigen-binding fragment thereof and a bioactive molecule are fused. In addition, the present invention relates to a composition for bioactive molecule delivery in the cytoplasm comprising a cytoplasmic penetration antibody or antigen-binding fragment thereof.

상기 생체 활성분자는 항체에 융합 또는 결합된 형태일 수 있으며, 예를 들어 펩타이드, 단백질, 독소, 항체, 항체절편, RNA, siRNA, DNA, 소분자 약물, 나노입자 및 리포좀으로 구성된 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다. The bioactive molecule may be a form fused or bound to an antibody, for example, one or more selected from the group consisting of peptides, proteins, toxins, antibodies, antibody fragments, RNA, siRNA, DNA, small molecule drugs, nanoparticles and liposomes However, it is not limited thereto.

상기 단백질은 항체, 항체 단편, 면역글로불린, 펩타이드, 효소, 성장인자 (growth factor), 사이토카인 (cytokine), 전사인자, 독소, 항원성 펩티드, 호르몬, 운반 단백질, 운동 기능 단백질, 수용체, 신호(signaling) 단백질, 저장 단백질, 막 단백질, 막횡단(transmembrane) 단백질, 내부(internal) 단백질, 외부(external) 단백질, 분비 단백질, 바이러스 단백질, 당 단백질, 절단된 단백질, 단백질 복합체, 또는 화학적으로 개질된 단백질 등일 수 있다.The proteins include antibodies, antibody fragments, immunoglobulins, peptides, enzymes, growth factors, cytokines, transcription factors, toxins, antigenic peptides, hormones, transport proteins, motor function proteins, receptors, signals ( signaling protein, storage protein, membrane protein, transmembrane protein, internal protein, external protein, secreted protein, viral protein, sugar protein, truncated protein, protein complex, or chemically modified Protein and the like.

상기 RNA 또는 리보핵산(Ribonucleic acid)는 오탄당의 일종인 리보스를 기반으로 사슬구조의 뉴클레오타이드를 이루는 핵산의 한 종류이며, 하나의 나선이 길게 꼬여 있는 구조를 지니며 DNA의 일부가 전사되어 만들어진다. 일구체에에 있어 상기 RNA는 rRNA, mRNA, tRNA, miRNA, snRNA, snoRNA, aRNA로부터 선택되는 것일 수 있으나, 이에 한정하지 아니한다.The RNA or ribonucleic acid is a type of nucleic acid constituting a nucleotide of a chain structure based on ribose, which is a kind of pentose sugar, and has a structure in which a single helix is long twisted, and a part of DNA is transcribed. In one embodiment, the RNA may be selected from rRNA, mRNA, tRNA, miRNA, snRNA, snoRNA, aRNA, but is not limited thereto.

상기 siRNA (Small interfering RNA)는 dsRNA로 구성된 작은 사이즈를 가지고 있는 RNA 간섭(RNA interference) 물질로서, 표적 서열을 가지고 있는 mRNA와 결합하여 분해하는 역할을 하며, 질병의 치료제로서 또는 실험적으로 표적 mRNA를 분해하여 표적 mRNA에 의해 번역(Translation)되는 단백질의 발현을 억제하는 활성을 이용하여 본원에서 광범위하게 사용된다. The siRNA (Small interfering RNA) is an RNA interference material having a small size composed of dsRNA, and serves to decompose by binding to an mRNA having a target sequence, and to treat a target mRNA as a therapeutic agent for a disease or experimentally It is used extensively herein, with the activity of inhibiting the expression of proteins that are degraded and translated by the target mRNA.

상기 DNA 또는 데옥시리보 핵산 (Deoxyribonucleic acid)는 핵산의 일종이며, 단당류인 디옥시리보스에 인산기가 결합된 형태의 뼈대(Backbone chain)과 퓨린(Purine), 피리미딘(Pyrimidine)의 두가지 종류를 가지고 있는 핵염기(Nucleobase)로 구성되어 있으며, 세포의 유전 정보를 저장하는 물질이다.The DNA or deoxyribonucleic acid is a type of nucleic acid, and has two types of a monosaccharide, deoxyribose, with a phosphate group bound to a backbone chain, purine, and pyrimidine. It is composed of nucleobases and is a substance that stores genetic information of cells.

상기 소분자 약물은 약 1000 달톤 미만의 분자량을 지니며 질병의 치료제로서 활성도를 지니는 유기 화합물, 무기 화합물 또는 유기금속 화합물을 나타내는 것으로 본원에서 광범위하게 사용된다. 본 발명에서 사용되는 소분자 약물은 올리고펩티드 및 약 1000 달톤 미만의 분자량을 지니는 그 밖의 바이오분자 (biomolecule)를 포함한다.The small molecule drug has a molecular weight of less than about 1000 Daltons and is widely used herein to refer to an organic compound, an inorganic compound, or an organometallic compound having activity as a therapeutic agent for a disease. Small molecule drugs used in the present invention include oligopeptides and other biomolecules having molecular weights less than about 1000 Daltons.

상기 나노입자 (nanoparticle)는 직경 1 내지 1000 nm 크기를 갖는 물질들로 이루어진 입자를 의미하며, 상기 나노 입자는 금속 나노 입자, 금속 나노 입자 코어 및 상기 코어를 둘러싸는 금속 쉘로 구성되는 금속/금속 코어쉘 복합체, 금속 나노 입자 코어 및 상기 코어를 둘러싸는 비금속 쉘로 구성되는 금속/비금속 코어쉘 또는 비금속 나노 입자 코어 및 상기 코어를 둘러싸는 금속 쉘로 구성되는 비금속/금속 코어쉘 복합체일 수 있다. 일 구체예에 따르면, 상기 금속은 금, 은, 구리, 알루미늄, 니켈, 팔라듐, 백금, 자성철 및 그의 산화물로부터 선택되는 것일 수 있으나, 이에 한정하지는 않으며, 상기 비금속은 실리카, 폴리스티렌, 라텍스 및 아크릴레이트 계열의 물질로부터 선택되는 것일 수 있으나, 이에 한정하지는 않는다.The nanoparticle (nanoparticle) means a particle made of materials having a size of 1 to 1000 nm in diameter, and the nanoparticle is a metal/metal core composed of a metal nanoparticle, a metal nanoparticle core, and a metal shell surrounding the core It may be a metal/non-metallic coreshell composed of a shell composite, a metal nanoparticle core and a non-metallic shell surrounding the core, or a non-metallic/metallic coreshell composite composed of a non-metallic nanoparticle core and a metal shell surrounding the core. According to one embodiment, the metal may be selected from gold, silver, copper, aluminum, nickel, palladium, platinum, magnetic iron and oxides thereof, but is not limited thereto, and the non-metal is silica, polystyrene, latex and acrylic It may be selected from a rate-based material, but is not limited thereto.

상기 리포좀은 자기 스스로 회합할 수 있는, 수성 내부 구획을 둘러싸는 하나 이상의 지질 이중층 막으로 구성된다. 리포좀은 막 타입 및 그 크기에 의하여 특정 수 있다. 작은 유니라멜라 소포(SUV)는 단일막을 갖고 20nm 내지 50nm의 직경을 가질 수 있다. 큰 유니라멜라 소포(LUV)는 50nm이상의 직경을 가질 수 있다. 올리고라멜라 큰 소포 및 멀티라멜라 큰 소포는 다중, 일반적으로 동심원, 막 층을 가지고 직경이 100nm 이상일 수 있다. 여러 비동심원 막을 가진 리포좀, 즉 더 큰 소포 내에서 포함된 여러 작은 소포는 멀티소포성 소포 (multivesicular vesicle)라고 한다.The liposome consists of one or more lipid bilayer membranes surrounding the aqueous inner compartment, which are capable of associating themselves. Liposomes can be characterized by membrane type and size. Small unilamellar vesicles (SUVs) have a single film and may have a diameter of 20 nm to 50 nm. Large unilamellar vesicles (LUV) can have a diameter of 50 nm or more. Oligolamellar large vesicles and multilamellar large vesicles have multiple, generally concentric, membrane layers and may be 100 nm or more in diameter. Liposomes with multiple non-concentric membranes, ie several small vesicles contained within larger vesicles, are called multivesicular vesicles.

상기 "융합" 또는 "결합"은 기능 또는 구조가 다르거나 같은 두 분자를 일체화하는 것으로, 상기 단백질, 소분자 약물, 나노입자 또는 리포좀에 상기 종양 침투성 펩타이드가 결합할 수 있는 모든 물리, 화학적 또는 생물학적 방법에 의한 융합일 수 있다. 상기 융합은 바람직하게는 연결자 펩타이드에 의할 수 있으며, 이 연결자 펩타이드는 본 발명의 항체 경쇄 가변 영역, 항체, 또는 이의 절편의 다양한 위치에서 상기 활성물질과의 융합을 중계할 수 있다.The "fusion" or "binding" is to integrate two molecules with different or identical functions or structures, and any physical, chemical or biological method capable of binding the tumor-penetrating peptide to the protein, small molecule drug, nanoparticle or liposome. It may be a fusion by. The fusion may preferably be by a linker peptide, and the linker peptide may relay fusion with the active material at various positions of the antibody light chain variable region, antibody, or fragment thereof of the present invention.

본 발명은 세포질 침투 항체 또는 이의 항원 결합 단편을 세포막을 투과하여 세포질에 위치시키는 방법으로서, 상기 항체는 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는 방법에 관한 것이다. The present invention is a method for placing a cytoplasmic penetration antibody or an antigen-binding fragment thereof through the cell membrane and placing it in the cytoplasm, wherein the antibody has amino acid mutations in one or more selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO:2. How to include.

본 발명은 세포막을 투과하여 세포질에 위치하는 것을 유도하는, 세포질 침투능을 갖는 경쇄가변영역 (VL)으로서, 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는 경쇄가변영역 (VL)에 관한 것이다. The present invention is a light chain variable region (VL) having a cytoplasmic penetration ability, which penetrates the cell membrane and induces it to be located in the cytoplasm, wherein at least one amino acid mutation selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO:2 It relates to a light chain variable region (VL) comprising a.

상기 항체는 서열번호 2의 경쇄 가변영역 중 다음으로 구성된 군에서 선택된 아미노산 치환을 포함 (위치는 Kabat numbering에 따름)할 수 있다. The antibody may include an amino acid substitution selected from the group consisting of light chain variable region of SEQ ID NO: 2 (position is according to Kabat numbering).

34번째 위치의 아미노산 A가 D 또는 E로 치환;Amino acid A at position 34 is replaced by D or E;

36번째 위치의 아미노산 Y가 F로 치환;Amino acid Y at position 36 is replaced by F;

46번째 위치의 아미노산 L이 K, M, I 또는 R로 치환;Amino acid L at position 46 is substituted with K, M, I or R;

89번째 Q가 E, M, L, I 또는 N으로 치환; 89th Q is replaced by E, M, L, I or N;

91번째 Y가 T, M, F, I 또는 K로 치환; 및91st Y is substituted with T, M, F, I or K; And

96번째 Y가 T, W, F, I 또는 K로 치환.96th Y is replaced by T, W, F, I or K.

구체적으로, 상기 항체는 서열번호 28 내지 31로 구성된 군에서 선택되는 경쇄 가변영역을 포함할 수 있다. Specifically, the antibody may include a light chain variable region selected from the group consisting of SEQ ID NOs: 28 to 31.

본 발명은 상기 세포질 침투 항체 또는 이의 항원 결합 단편 및 이에 의해 전달되는 세포질 내 활성물질을 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for the prevention or treatment of cancer, comprising the cytoplasmic penetration antibody or antigen-binding fragment thereof and an active substance in the cytoplasm delivered thereby.

상기 활성물질을 이용하여 항원 고특이성 및 고친화도에 영향을 주지 않으면서 세포 내부로 침투하여 세포질에 잔류하는 특성을 항체에 부여할 수 있으며, 이를 통해 세포질 내에 존재하면서 단백질과 단백질 사이의 넓고 평평한 표면을 통해 구조복합성 상호작용을 이루는 종양 및 질환 관련 인자와 관련된 치료 및 진단에 있어 높은 효과를 기대할 수 있다.By using the active material, it is possible to impart to the antibody the characteristics of remaining in the cytoplasm by penetrating into the cell without affecting the antigen's high specificity and high affinity. Through this, it is present in the cytoplasm, and a wide flat surface between the protein and the protein Through this, it is possible to expect a high effect in treatment and diagnosis related to tumor- and disease-related factors constituting a structure-composite interaction.

기존 다양한 종양치료제의 주요 약물 저항성 관련 인자인 KRas 돌연변이를 선택적 저해가 가능하면서 기존 치료제와의 병행 치료를 통해 효과적인 항암 활성을 기대할 수 있다.While it is possible to selectively inhibit KRas mutant, which is a major drug resistance-related factor of various existing tumor therapeutic agents, effective anticancer activity can be expected through concurrent treatment with existing therapeutic agents.

상기 암은 편평상피세포암, 소세포폐암, 비소세포폐암, 폐의 선암, 폐의 편평상피암, 복막암, 피부암, 피부 또는 안구내 흑색종, 직장암, 항문부근암, 식도암, 소장암, 내분비선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 만성 또는 급성 백혈병, 림프구 림프종, 간세포암, 위장암, 췌장암, 교아종, 경부암, 난소암, 간암, 방광암, 간종양, 유방암, 결장암, 대장암, 자궁내막 또는 자궁암, 침샘암, 신장암, 간암, 전립선암, 음문암, 갑상선암, 간암 및 두경부암으로 이루어진 군으로부터 선택되는 것일 수 있다.The cancer is squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous cell carcinoma of the lung, peritoneal cancer, skin cancer, melanoma of the skin or eye, rectal cancer, anal cancer, esophageal cancer, small intestine cancer, endocrine adenocarcinoma, Parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, chronic or acute leukemia, lymphocyte lymphoma, hepatocellular carcinoma, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, liver tumor, breast cancer, colon cancer, colon cancer, Endometrial or uterine cancer, salivary gland cancer, kidney cancer, liver cancer, prostate cancer, vulva cancer, thyroid cancer, liver cancer and head and neck cancer may be selected from the group consisting of.

상기 조성물이 암의 예방 또는 치료용 약학적 조성물로 제조되는 경우, 상기 조성물은 약학적으로 허용되는 담체를 포함할 수 있다. 상기 조성물에 포함되는 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로오스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 상기 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.When the composition is prepared as a pharmaceutical composition for preventing or treating cancer, the composition may include a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier included in the composition is commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, fine Crystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like, but is not limited thereto. The pharmaceutical composition may further include a lubricant, a wetting agent, a sweetener, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.

상기 암의 예방 또는 치료용 약학적 조성물은 경구 또는 비경구로 투여할 수 있다. 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 내피 투여, 국소 투여, 비내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있다. 경구 투여시, 단백질 또는 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 되어야 한다. 또한, 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.The pharmaceutical composition for the prevention or treatment of cancer may be administered orally or parenterally. In the case of parenteral administration, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, intrapulmonary administration, and rectal administration may be administered. When administered orally, proteins or peptides are digested, so oral compositions must be formulated to coat the active agent or to protect it from degradation in the stomach. In addition, the composition can be administered by any device capable of transporting the active substance to the target cell.

상기 암의 예방 또는 치료용 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 상기 조성물의 바람직한 투여량은 성인 기준으로 0.001-100 ㎎/kg 범위 내이다. 용어 "약학적 유효량"은 암을 예방 또는 치료하는 데, 또는 혈관신생으로 인한 질환의 예방 또는 치료하는 데 충분한 양을 의미한다.Suitable dosages of the pharmaceutical composition for the prevention or treatment of cancer are factors such as formulation method, mode of administration, patient's age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and response sensitivity. It can be variously prescribed by. The preferred dosage of the composition is in the range of 0.001-100 mg/kg on an adult basis. The term “pharmaceutically effective amount” means an amount sufficient to prevent or treat cancer, or to prevent or treat diseases caused by angiogenesis.

상기 조성물은 당해 당업자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. 또한, 상기 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 한편, 상기 조성물은 항체 또는 항원 결합 단편을 포함하므로, 면역 리포좀으로 제형화될 수 있다. 항체를 포함하는 리포좀은 당업계에 널리 알려진 방법에 따라 제조될 수 있다. 상기 면역 리포좀은 포스파티딜콜린, 콜레스테롤 및 폴리에틸렌글리콜-유도체화된 포스파티딜에탄올아민을 포함하는 지질 조성물로서 역상 증발법에 의해 제조될 수 있다. 예를 들어, 항체의 Fab' 단편은 디설파이드-교체 반응을 통해 리포좀에 접합될 수 있다. 독소루비신과 같은 화학치료제가 추가로 리포좀 내에 포함될 수 있다.The composition may be prepared in a unit dose form by formulating using a pharmaceutically acceptable carrier and/or excipient, or by incorporating it into a multi-dose container, according to a method easily carried out by those skilled in the art. At this time, the formulation may be in the form of a solution, suspension, syrup or emulsion in an oil or aqueous medium, or may be in the form of ex-agent, powder, granule, tablet or capsule, and may further include a dispersant or stabilizer. In addition, the composition may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. Meanwhile, since the composition includes an antibody or an antigen-binding fragment, it may be formulated as an immune liposome. Liposomes comprising antibodies can be prepared according to methods well known in the art. The immune liposome is a lipid composition comprising phosphatidylcholine, cholesterol and polyethylene glycol-derivatized phosphatidylethanolamine, and may be prepared by reverse phase evaporation. For example, Fab' fragments of an antibody can be conjugated to liposomes through a disulfide-replacement reaction. Chemotherapeutic agents, such as doxorubicin, may additionally be included in the liposome.

본 발명은 상기 세포질 침투 항체 또는 이의 항원 결합 단편 및 이에 의해 전달되는 세포질 내 활성물질을 포함하는 암 진단용 조성물을 제공한다. The present invention provides a composition for diagnosing cancer comprising the cytoplasmic penetration antibody or an antigen-binding fragment thereof and an active substance in the cytoplasm delivered thereby.

상기 "진단"은 병태 생리의 존재 또는 특징을 확인하는 것을 의미한다. 본 발명에서의 진단은 암의 발병 여부 및 경과를 확인하는 것이다.The "diagnosis" means identifying the presence or characteristics of the pathophysiology. Diagnosis in the present invention is to confirm the onset and progress of cancer.

상기 완전한 이뮤노글로불린 형태의 항체 및 이의 절편은 영상을 통하여 암을 진단하기 위하여 분자 영상용 형광체와 결합할 수 있다. The complete immunoglobulin antibody and fragments thereof can be combined with a phosphor for molecular imaging to diagnose cancer through imaging.

상기 분자 영상용 형광체는 형광을 발생시키는 모든 물질을 말하며, 적색이나 근적외선(near-infrared)의 형광을 발광하는 것이 바람직하며, 양자 수득량(quantaum yield)이 높은 형광체가 더욱 바람직하나 이에 한정되지 않는다.The molecular imaging phosphor refers to all materials that generate fluorescence, and it is preferable to emit red or near-infrared fluorescence, and a phosphor having a high quantum yield is more preferable, but is not limited thereto. .

상기 분자 영상용 형광체는 상기 완전한 이뮤노글로불린 형태의 항체 및 이의 절편에 특이적으로 결합하는 종양 침투성 펩타이드와 결합할 수 있는 형광체, 형광 단백질 또는 기타 영상용 물질이 바람직하나 이에 한정되지 않는다.The molecular imaging phosphor is preferably, but is not limited to, a phosphor, a fluorescent protein, or other imaging material capable of binding to the tumor-penetrating peptide specifically binding to the complete immunoglobulin-type antibody and a fragment thereof.

상기 형광체는 플루오레신 (fluorescein), 보디피 (BODYPY), 테트라메틸로드아민 (Trtramethylrhodamine), 알렉사 (Alexa), 시아닌 (Cyanine), 알로피코시아닌 (allopicocyanine) 또는 이들의 유도체가 바람직하나 이에 한정되지 않는다.The phosphor is preferably fluorescein, BODYPY, tetramethyl rhodamine, Alexa, cyanine, allopicocyanine or derivatives thereof. Does not work.

상기 형광 단백질은 드론파 (Dronpa) 단백질, 형광 발색 유전자 (EGFP), 적색 형광 프로테인 (red fluorescent protein, DsRFP), 근적외선 형광을 나타내는 시아닌 형광체인 Cy5.5 또는 기타 형광 단백질이 바람직하나 이에 한정되지 않는다.The fluorescent protein is preferably, but not limited to, Dronepa protein, fluorescent chromogenic gene (EGFP), red fluorescent protein (DsRFP), cyanine phosphor that exhibits near-infrared fluorescence, or other fluorescent protein. .

기타 영상용 물질은 산화철, 방사성 동위원소 등이 바람직하나 이에 한정되지 않으며, MR, PET과 같은 영상 장비에 응용될 수 있다.Other imaging materials are preferably iron oxide, radioactive isotopes, etc., but are not limited thereto, and may be applied to imaging equipment such as MR and PET.

본 발명은 상기 세포질 침투 항체 또는 이의 항원 결합 단편을 코딩하는 핵산에 관한 것이다.The present invention relates to a nucleic acid encoding the cytoplasmic penetration antibody or antigen-binding fragment thereof.

상기 핵산은 폴리뉴클레오티드 (polynucleotide)로, 상기 "폴리뉴클레오티드(polynucleotide)"는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오티드 또는 리보뉴클레오티드의 중합체이다. RNA 게놈 서열, DNA(gDNA 및 cDNA) 및 이로부터 전사되는 RNA 서열을 포괄하며, 특별하게 다른 언급이 없는 한 천연의 폴리뉴클레오티드의 유사체를 포함한다.The nucleic acid is a polynucleotide, and the "polynucleotide" is a polymer of deoxyribonucleotides or ribonucleotides present in single-stranded or double-stranded form. It encompasses RNA genomic sequences, DNA (gDNA and cDNA) and RNA sequences transcribed therefrom, and includes analogs of natural polynucleotides unless otherwise specified.

상기 폴리뉴클레오티드는 상기 기술한 엔도좀 탈출능이 향상된 경쇄 가변영역 (VL) 및 중쇄 가변영역 (VH)을 코딩하는 뉴클레오티드 서열뿐만 아니라, 그 서열에 상보적인(complementary) 서열도 포함한다. 상기 상보적인 서열은 완벽하게 상보적인 서열뿐만 아니라, 실질적으로 상보적인 서열도 포함한다.The polynucleotide includes not only the nucleotide sequence encoding the light chain variable region (VL) and heavy chain variable region (VH) with improved endosomal escape ability described above, but also a complementary sequence to the sequence. The complementary sequence includes not only perfectly complementary sequences, but also substantially complementary sequences.

상기 핵산은 변형될 수 있다. 상기 변형은 뉴클레오티드의 추가, 결실 또는 비보존적 치환 또는 보존적 치환을 포함한다. 상기 아미노산 서열을 코딩하는 핵산은 상기 뉴클레오티드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오티드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기 뉴클레오티드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 최소 90%의 상동성 또는 최소 95%의 상동성을 나타내는 서열일 수 있다.The nucleic acid can be modified. Such modifications include addition, deletion or non-conservative substitutions or conservative substitutions of nucleotides. The nucleic acid encoding the amino acid sequence is also interpreted to include a nucleotide sequence showing substantial identity to the nucleotide sequence. The substantial identity is at least 80% homology when aligning the nucleotide sequence with any other sequence to the maximum correspondence and analyzing the aligned sequence using an algorithm commonly used in the art. It may be a sequence that exhibits at least 90% homology or at least 95% homology.

상기 항체를 암호화하는 DNA는 통상적인 과정을 사용하여 (예를 들어, 항체의 중쇄와 경쇄를 암호화하는 DNA와 특이적으로 결합할 수 있는 올리고뉴클레오티드 프로브를 사용함으로써) 용이하게 분리 또는 합성한다. The DNA encoding the antibody is readily separated or synthesized using conventional procedures (eg, by using an oligonucleotide probe capable of specifically binding DNA encoding the heavy and light chains of the antibody).

벡터는 경쇄와 중쇄를 하나의 벡터에서 동시에 발현되는 벡터 시스템이거나 또는 각각 별도의 벡터에서 발현시키는 시스템 모두 가능하다. 후자의 경우, 두 벡터는 동시 형질전환(co-transfomation) 및 표적 형질전환(targeted transformation)을 통하여 숙주 세포로 도입될 수 있다.The vector may be a vector system that simultaneously expresses the light and heavy chains in one vector, or a system that expresses each in separate vectors. In the latter case, both vectors can be introduced into the host cell through co-transfomation and targeted transformation.

본 발명에서 사용하는 용어 "벡터(vector)"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단을 의미한다. 예를 들어, 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터와 같은 바이러스 벡터를 포함한다. 상기 재조합 벡터로 사용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드(예를 들면, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지(예를 들면, λgt4λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스(예를 들면, CMV, SV40 등)를 조작하여 제작될 수 있다.The term "vector" used in the present invention means a means for expressing a target gene in a host cell. For example, viral vectors such as plasmid vectors, cosmid vectors and bacteriophage vectors, adenovirus vectors, retroviral vectors and adeno-associated virus vectors. Vectors that can be used as the recombinant vector are plasmids often used in the art (e.g., pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14) , pGEX series, pET series, and pUC19, etc., phages (e.g., λgt4λB, λ-Charon, λΔz1 and M13, etc.) or viruses (e.g., CMV, SV40, etc.).

상기 재조합 벡터에서 본 발명에서 제공하는 경쇄 가변영역, 중쇄 가변영역 및/또는 이들 사이의 링커가 프로모터에 작동적으로 연결될 수 있다. 용어 "작동적으로 연결된(operatively linked)"은 뉴클레오티드 발현 조절 서열(예를 들면, 프로모터 서열)과 다른 뉴클레오티드 서열 사이의 기능적인 결합을 의미한다. 따라서, 이에 의해 상기 조절 서열은 상기 다른 뉴클레오티드 서열의 전사 및/또는 해독을 조절할 수 있다.In the recombinant vector, the light chain variable region, heavy chain variable region and/or linker between them provided in the present invention may be operably linked to a promoter. The term “operatively linked” refers to a functional bond between a nucleotide expression control sequence (eg, promoter sequence) and another nucleotide sequence. Thus, the regulatory sequence can thereby regulate the transcription and/or translation of the other nucleotide sequence.

상기 재조합 벡터는, 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 상기 발현용 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 단백질을 발현하는데 사용되는 통상의 것을 사용할 수 있다. 상기 재조합 벡터는 당업계에 공지된 다양한 방법을 통해 구축될 수 있다. The recombinant vector can typically be constructed as a vector for cloning or for expression. The expression vector can be used in the art, conventional ones used to express foreign proteins in plants, animals or microorganisms. The recombinant vector can be constructed through various methods known in the art.

상기 재조합 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 사용되는 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예를 들어, pLλ프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 진핵 세포를 숙주로 하는 경우에는, 벡터에 포함되는 진핵 세포에서 작동하는 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점, CMV 복제원점 및 BBV 복제원점 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 포유동물 세포의 게놈으로부터 유래된 프로모터(예를 들어, 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예를 들어, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스(CMV) 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.The recombinant vector can be constructed using prokaryotic or eukaryotic cells as hosts. For example, when the vector used is an expression vector, and a prokaryotic cell is a host, a strong promoter capable of progressing transcription (eg, pLλ promoter, trp promoter, lac promoter, tac promoter, T7 promoter, etc.) , It usually contains a ribosome binding site for initiation of translation and a transcription/detox termination sequence. When eukaryotic cells are used as hosts, the origin of replication operating in eukaryotic cells included in the vector includes f1 origin of replication, SV40 origin of replication, pMB1 origin of replication, adeno origin of replication, AAV origin of replication, CMV origin of replication, and BBV origin of replication. Including, but not limited to. In addition, a promoter derived from the genome of a mammalian cell (eg, a metallothionine promoter) or a promoter derived from a mammalian virus (eg, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, Cytomegalovirus (CMV) promoter and HSK's tk promoter) can be used and generally have a polyadenylation sequence as the transcription termination sequence.

상기 재조합 벡터로 형질전환된 숙주세포를 제공할 수 있다.A host cell transformed with the recombinant vector can be provided.

숙주 세포는 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있으며, 원핵 세포로는, 예를 들어, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있으며, 진핵 세포에 형질 전환시키는 경우에는 숙주 세포로서, 효모(Saccharomyce cerevisiae), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, SP2/0, CHO(Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN 및 MDCK 세포주 등이 이용될 수 있다.The host cell may be any host cell known in the art, and prokaryotic cells include, for example, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, Bacillus strains such as E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and intestinal bacteria and strains such as Salmonella typhimurium, Serratia marcesons, and various Pseudomonas species. When transformed into cells, as host cells, yeast (Saccharomyce cerevisiae), insect cells, plant cells and animal cells, for example, SP2/0, Chinese hamster ovary (CHO) K1, CHO DG44, PER.C6, W138 , BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN and MDCK cell lines and the like can be used.

상기 재조합 벡터의 숙주 세포 내로의 삽입은, 당업계에 널리 알려진 삽입 방법을 사용할 수 있다. 상기 운반 방법은 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 또는 전기 천공 방법 등을 사용할 수 있고, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀-매개 형질감염법 및 유전자 밤바드먼트 등을 사용할 수 있으나, 이에 한정하지는 않는다.For insertion of the recombinant vector into a host cell, an insertion method well known in the art can be used. For the transport method, for example, when the host cell is a prokaryotic cell, a CaCl 2 method or an electroporation method can be used, and when the host cell is a eukaryotic cell, a micro-injection method, a calcium phosphate precipitation method, an electroporation method, Liposomal-mediated transfection and gene bombardment may be used, but are not limited thereto.

상기 형질전환된 숙주 세포를 선별하는 방법은 선택 표지에 의해 발현되는 표현형을 이용하여, 당업계에 널리 알려진 방법에 따라 용이하게 실시할 수 있다. 예를 들어, 상기 선택 표지가 특정 항생제 내성 유전자인 경우에는, 상기 항생제가 함유된 배지에서 형질전환체를 배양함으로써 형질전환체를 용이하게 선별할 수 있다.The method for selecting the transformed host cell can be easily performed according to a method well known in the art using a phenotype expressed by a selection label. For example, when the selection marker is a specific antibiotic resistance gene, the transformant can be easily selected by culturing the transformant in a medium containing the antibiotic.

이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail using examples. It is obvious to those skilled in the art that these examples are only intended to illustrate the present invention in more detail and that the scope of the present invention is not limited by them.

[재료 및 방법][Materials and methods]

1. 재료1. Materials

HeLa 세포는 ATCC(American Type Culture Collection)로부터 구입하여, 10%의 소태아 혈청(GE Healthcare, Logan, UT, USA)과 1%의 항생제-항균제(Thermo Fisher Scientific, Waltham, MA, USA)를 보충한 DMEM(Life Technologies, Grand Island, NY, USA)에서 배양하였다.HeLa cells were purchased from the American Type Culture Collection (ATCC) and supplemented with 10% fetal bovine serum (GE Healthcare, Logan, UT, USA) and 1% antibiotic-antibacterial (Thermo Fisher Scientific, Waltham, MA, USA). Cultured in one DMEM (Life Technologies, Grand Island, NY, USA).

ATP, GTP, UTP, CTP, 크레아틴 포스페이트 및 크레아틴 키나아제는 로슈 어플라이드 사이언스(Roche Applied Science, Indianapolis, IN, USA)로부터 구입하였다. ATP, GTP, UTP, CTP, Creatine Phosphate and Creatine Kinase were purchased from Roche Applied Science, Indianapolis, IN, USA.

L-[U-14C] 류신은 퍼킨엘머사(Waltham, MA, USA)로부터 구입하였다. 다른 모든 화학 시약은 시그마-알드리치(St. Louis, MO, USA)에서 구입하여 더 이상의 정제 없이 사용하였다. L-[U- 14 C] leucine was purchased from Perkin Elmer (Waltham, MA, USA). All other chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further purification.

S12 추출물은 종래에 알려진 방법에 따라 플라스미드 pTUM4을 포함하는 E. coli 균주 BL21Star(DE3)(Thermo Fisher Scientific)로부터 제조하였다.The S12 extract was prepared from E. coli strain BL21Star (DE3) (Thermo Fisher Scientific) containing plasmid pTUM4 according to a method known in the art.

2. 변형 RT11-3 scFv 유전자의 제작2. Construction of modified RT11-3 scFv gene

세포질에 내재되고 KRas·GTP에 결합하는 항체의 VL 및 VH 서열은 두 개 쇄(chain) 사이에 (G4S)3 링커가 있는 scFv 형식으로 조립하였다(RT11-3 scFv). The VL and VH sequences of antibodies that are inherent in the cytoplasm and bind to KRas·GTP were assembled in the scFv format with (G 4 S) 3 linkers between the two chains (RT11-3 scFv).

변이 RT11-3 scFvs의 3차원 구조에 대한 모델링은 ABodyBuilder 알고리즘(http://opig.stats.ox.ac.uk/webapps/sabpred))을 사용하여 수행하였고, 항체의 3차원적 구조 이미지는 PyMol 프로그램(Schrodinger, Cambridge, MA, USA)을 이용하여 나타냈다. Modeling of the three-dimensional structure of the mutant RT11-3 scFvs was performed using the ABodyBuilder algorithm (http://opig.stats.ox.ac.uk/webapps/sabpred), and the three-dimensional structure image of the antibody was PyMol It was shown using the program (Schrodinger, Cambridge, MA, USA).

RT11-3 scFv를 구성하는 RT11 VH 와 hT4-3 VL의 서열은 표 1에 개시하였다. The sequences of RT11 VH and hT4-3 VL constituting RT11-3 scFv are shown in Table 1.

[표 1] RT11-3 scFv를 구성하는 RT11 VH와 hT4-3 VL의 서열[Table 1] Sequence of RT11 VH and hT4-3 VL constituting RT11-3 scFv

Figure pat00001
Figure pat00001

*서열 기재는 kabat numbering에 따름*Sequence description is according to kabat numbering

표 2에 개시한 프라이머를 사용하여, RT11-3 scFv를 구성하는 아미노산 잔기 중에서 FR2, CDR1 및 CDR3에 위치하는 6종의 아미노산 잔기를 돌연변이시켰다.Using the primers disclosed in Table 2, among the amino acid residues constituting RT11-3 scFv, six amino acid residues located in FR2, CDR1 and CDR3 were mutated.

[표 2] RT11-3 scFv 항체의 변형된 아미노산 서열을 증폭하기 위한 프라이머 서열Table 2: Primer sequences for amplifying the modified amino acid sequence of RT11-3 scFv antibody

Figure pat00002
Figure pat00002

상기 표 2에서 개시한 프라이머 서열을 이용한 PCR 기법으로 각각 돌연변이화 하였고, 중첩-확장 PCR(overlap-extension PCR)에 의해 조합하여 조합 변형 유전자의 라이브러리를 제조하였다.Each of the PCR techniques using the primer sequences disclosed in Table 2 was mutated, and a combination of modified genes was prepared by combining by overlap-extension PCR.

이후 상기 PCR 라이브러리는 플라스미드 pK7(pK7-RT11-3Lib)에 클로닝하여 대장균 DH5α 균주를 형질전환하는데 사용하였다. 개별 변이체 RT11-3 유전자를 콜로니 PCR에 의해 증폭시키고, 무세포 단백질 합성에서 주형으로 사용하였다. 실험에 따라, 가용성 발현을 증진시키기 위해, 변형 RT11-3 scFv 유전자의 업스트림(upstream)에 유비퀴틴 서열을 삽입하였다.Then, the PCR library was cloned into plasmid pK7 (pK7-RT11-3Lib) and used to transform the E. coli DH5α strain. The individual variant RT11-3 gene was amplified by colony PCR and used as a template in cell-free protein synthesis. According to the experiment, to enhance soluble expression, a ubiquitin sequence was inserted upstream of the modified RT11-3 scFv gene.

3. 변형 RT11-3 scFvs의 무세포 단백질 합성3. Cell-free protein synthesis of modified RT11-3 scFvs

RT11-3 scFv의 무세포 단백질 합성을 위한 표준 반응 혼합물은 57mM의 HEPES-KOH(pH 8.2); 1.2mM의 ATP; GTP, UTP 및 CTP 각각 0.85mM; 80mM의 암모늄 아세테이트; 34㎍/㎖의 1-5-포르밀-5,6,7,8-테트라하이드로 폴산(폴린산); 20개의 아미노산 각각 1.0mM; 2%의 PEG(8,000); 3.2 U/㎖ 크레아틴 키나아제; 67mM의 크레아틴 포스페이트; 0.01mM L-[U-14C] 루신 (11.1GBq/mmol); 27%(v/v) S12 추출물; 및 50ng/㎖의 PCR 증폭 DNA 성분으로 구성하였다.The standard reaction mixture for cell-free protein synthesis of RT11-3 scFv is 57 mM HEPES-KOH (pH 8.2); 1.2 mM ATP; 0.85 mM each of GTP, UTP and CTP; 80 mM ammonium acetate; 34 μg/ml 1-5-formyl-5,6,7,8-tetrahydro folic acid (folic acid); 1.0 amino acid each of 20 amino acids; 2% PEG (8,000); 3.2 U/ml creatine kinase; 67 mM creatine phosphate; 0.01 mM L-[U- 14 C] leucine (11.1 GBq/mmol); 27% (v/v) S12 extract; And 50 ng/ml of PCR amplified DNA component.

한편, N 말단 유비퀴틴 서열을 갖는 구조물의 발현 중에 유비퀴틴의 in situ절단을 위해, 표준 S12 추출물 대신에 UBP1이 풍부한 S12 추출물을 사용하여 반응 혼합물을 제조하였고, 무세포 단백질 합성 반응은 30℃에서 1시간 동안 수행하였다. On the other hand, for in situ cleavage of ubiquitin during expression of a structure having an N-terminal ubiquitin sequence, a reaction mixture was prepared using a S12 extract rich in UBP1 instead of a standard S12 extract, and the cell-free protein synthesis reaction was performed at 30°C for 1 hour. For a while.

scFv의 정량은 Tri-Carb 2810TR 액체 섬광 계수기를 사용하여 TCA 불용성 방사능 수준을 측정함으로써 정량화하였다. 가용성 항체의 양은 원심 분리(13,000Xg, 10분) 후 상등액에서 TCA 불용성 방사능의 수준을 측정하여 결정하였다. 무세포 단백질 합성된 scFv의 크기는 16%의 트리신 젤(tricine gel) 상의 전기영동 후, 쿠마쉬블루 염색 또는 웨스턴 블랏팅으로 확인하였다. Quantification of scFv was quantified by measuring the TCA insoluble radioactivity level using a Tri-Carb 2810TR liquid scintillation counter. The amount of soluble antibody was determined by measuring the level of TCA insoluble radioactivity in the supernatant after centrifugation (13,000Xg, 10 minutes). The size of the cell-free protein synthesized scFv was confirmed by electrophoresis on 16% tricine gel, followed by Coomassie blue staining or Western blotting.

4. 무세포 단백질 합성된 RT11-3 scFv의 정제4. Purification of cell-free protein synthesized RT11-3 scFv

무세포 단백질 합성 반응 후, 반응 혼합물을 13,000Xg에서 10 분 동안 원심 분리하고 상등액 5㎖를 PBS로 평형화 시킨 후, Ni-NTA 슬러리 400㎕와 혼합하였다. 2㎖의 세척 완충액(50mM의 NaH2PO4, 300mM의 NaCl 및 10mM의 이미다졸)으로 3회 세척한 후, 수지가 결합된 scFv를 250㎕의 용출 완충액(50mM의 NaH2PO4, 300mM의 NaCl 및 100mM의 이미다졸)으로 2번 용출하였다. 용출된 용액을 10,000 분자량의 차단막이 장착된 원심 한외 여과 장치(Merck Millipore, Burlington, MA, USA)를 사용하여 탈염시키고 농축시켰다. 용리액 500㎕를 넣은 후 14,000Xg에서 10 분 동안 원심 분리하였다. 농축된 단백질(50㎕)을 PBS 450㎕로 희석하고 다시 원심 분리하였다. 이 과정을 5번 반복하였다. 최종 원심 분리 단계 후에, 탈염되고, 농축된 scFv를 회수하고 PBS로 원하는 농도로 희석시켰다.After the cell-free protein synthesis reaction, the reaction mixture was centrifuged at 13,000Xg for 10 minutes, and 5 ml of the supernatant was equilibrated with PBS, and then mixed with 400 µl of the Ni-NTA slurry. After washing 3 times with 2 ml of washing buffer (50 mM NaH 2 PO 4 , 300 mM NaCl and 10 mM imidazole), the resin-bound scFv was dissolved in 250 μl of elution buffer (50 mM NaH 2 PO 4 , 300 mM) NaCl and 100mM imidazole). The eluted solution was desalted and concentrated using a centrifugal ultrafiltration device (Merck Millipore, Burlington, MA, USA) equipped with a barrier membrane of 10,000 molecular weight. After 500 µl of the eluent was added, it was centrifuged at 14,000Xg for 10 minutes. The concentrated protein (50 μl) was diluted with 450 μl of PBS and centrifuged again. This process was repeated 5 times. After the final centrifugation step, desalted, concentrated scFv was recovered and diluted with PBS to the desired concentration.

5. 무세포 단백질 합성된 scFv의 세포질 침투 효율 분석5. Analysis of cytoplasmic penetration efficiency of cell-free protein synthesized scFv

RT11-3 scFv의 세포질 침투 효율은 split-GFP 보정(complementation) 어세이 에 의해 평가되었다. 스트렙트아비딘 및 GFP1-10 단편 [HeLa (SA-GFP1-10)]의 융합 구조를 발현하는 HeLa 세포주를 사용하여 무세포 단백질 합성된 RT11-3 scFv 변이체의 세포질-침투 효율을 측정하였다. The cytoplasmic penetration efficiency of RT11-3 scFv was evaluated by split-GFP complementation assay. The cytoplasmic-penetration efficiency of a cell-free protein synthesized RT11-3 scFv variant was measured using a HeLa cell line expressing a fusion structure of streptavidin and GFP 1-10 fragment [HeLa (SA-GFP 1-10 )].

RT11-3 scFv 항체는 GFP11 단편에 연결된 스트렙트아비딘-결합 펩티드(streptavidin-binding peptide 2: SBP2) 서열을 포함하므로, 항체가 세포질로 전달되었을 때, 스트렙트아비딘과 SBP2 사이의 상호 작용을 통해, 쪼개진 GFP1-10 및 GFP11 단편이 융합하여 GFP 형광을 나타내는 것으로부터 RT11-3 scFv 항체의 세포질 침투를 확인하였다. RT11-3 scFv antibody contains a streptavidin-binding peptide (SBP2) sequence linked to the GFP 11 fragment, and thus, when the antibody is delivered to the cytoplasm, through the interaction between streptavidin and SBP2 , From the fragmented GFP 1-10 and GFP 11 fragments fused to show GFP fluorescence, cytoplasmic penetration of the RT11-3 scFv antibody was confirmed.

HeLa-SA-GFP1-10 세포를 100㎕의 DMEM에 웰당 1X104개의 세포 밀도로 96웰 플레이트에 접종하고, 37℃에서 12시간 동안 5%(v/v) CO2 조건에서 배양하였다. PBS로 세척한 후, 리포터 세포를 무세포 단백질 합성 RT11-3 scFv 50㎕로 12시간 동안 처리하였다. 그 후, 리포터 세포를 PBS로 2회 세척하고, 100㎕의 PBS에서 재 현탁시킨 후, GFP 형광(여기 파장: 485nm /발광파장: 528nm)을 측정하였다. RT11-3 scFv의 세포질 전달 여부는 리포터 세포의 공초점 현미경 이미지 분석을 통해 확인하였다. HeLa-SA-GFP 1-10 cells were added to 100 μl of DMEM at 1×10 4 per well. The cells were inoculated in 96-well plates at a cell density, and cultured at 37°C for 12 hours at 5% (v/v) CO 2 conditions. After washing with PBS, reporter cells were treated with 50 μl of cell-free protein synthesis RT11-3 scFv for 12 hours. Thereafter, the reporter cells were washed twice with PBS, and resuspended in 100 μl of PBS, and then GFP fluorescence (excitation wavelength: 485 nm / emission wavelength: 528 nm) was measured. Whether or not the cytoplasmic delivery of RT11-3 scFv was confirmed through confocal microscopy image analysis of reporter cells.

6. 세포 형태학 및 생존력 분석6. Cell Morphology and Viability Analysis

무세포 단백질 합성을 위한 반응 혼합물이 리포터 세포의 형태 및 생존력에 영향을 주는지를 결정하기 위해, 유세포 분석(FACS Canto, BD Biosciences, East Rutherford, NJ, USA)을 수행하였다. Flow cytometry (FACS Canto, BD Biosciences, East Rutherford, NJ, USA) was performed to determine if the reaction mixture for cell-free protein synthesis affects the morphology and viability of reporter cells.

3X105개의 리포터 세포를 다양한 비율로 희석된 1.2㎖의 반응 혼합물로 12시간 동안 처리한 후, 유세포 분석법으로 분석하였다. 세포의 형태학은 전방 산란 및 측면 산란광에 기초하여 결정되었다.3X10 5 reporter cells were treated with 1.2 ml of the reaction mixture diluted in various ratios for 12 hours, and then analyzed by flow cytometry. Cell morphology was determined based on forward scattering and lateral scattering light.

7.7. RT11-3 scFv의 IgG로의 전환Conversion of RT11-3 scFv to IgG

완전 IgG 형태의 단일클론항체 형태로 생산하기 위한 중쇄 발현벡터를 구축하기 위해 5' 말단에 분비 시그널 펩타이드를 코딩하는 DNA가 융합된 항체의 중쇄 가변영역(RT11 VH: 서열번호 X)과 중쇄불변영역(CH1-hinge-CH2-CH3)를 포함하는 중쇄를 코딩하는 DNA를 각각 pcDNA3.4 (Invitrogen) 벡터에 NotI/HindIII로 클로닝하였다. 또한, 경쇄를 발현하는 벡터를 구축하기 위해 5' 말단에 분비 시그널 펩타이드를 코딩하는 DNA가 융합된 세포질 침투 경쇄 가변영역(hT4-3, #1-60, #5-10, #6-32, 6-91)과 경쇄 불변영역(CL)을 포함하는 경쇄를 코딩하는 DNA를 각각 pcDNA3.4 벡터에 NotI/HindIII로 클로닝하였다.Heavy chain variable region (RT11 VH: SEQ ID NO: X) and heavy chain constant region of an antibody in which DNA encoding the secretion signal peptide is fused at the 5'end to construct a heavy chain expression vector for production in the form of a complete IgG monoclonal antibody DNAs encoding heavy chains containing (CH1-hinge-CH2-CH3) were cloned into NotD/HindIII into pcDNA3.4 (Invitrogen) vector, respectively. In addition, in order to construct a vector expressing a light chain, a cytoplasmic penetration light chain variable region (hT4-3, #1-60, #5-10, #6-32, fused with DNA encoding a secretory signal peptide at the 5'end) 6-91) and the DNA encoding the light chain containing the light chain constant region (CL) were cloned into NotD/HindIII into the pcDNA3.4 vector, respectively.

상기 경쇄, 중쇄 발현 벡터를 일시적 트랜스펙션(transient transfection)을 이용하여 단백질을 발현 및 정제하였다. 진탕 플라스크에서, 무혈청 FreeStyle 293 발현 배지에서 부유 성장하는 HEK293-F 세포를 플라스미드 및 폴리에틸렌이민 (Polyethylenimine, PEI) (Polyscience)의 혼합물로 트랜스펙션하였다. 진탕 플라스크 (Corning)에 200㎖ 트랜스펙션 시, HEK293-F 세포를 2X106 세포/㎖의 밀도로 배지 100㎖에 파종하여, 150rpm, 8% CO2 조건에서 배양하였다. 각각의 단일클론항체 생산하기 위해 알맞은 중쇄와 경쇄 플라스미드를 10㎖의 FreeStyle 293 발현 배지에 중쇄 125㎍, 경쇄 125㎍ 총 250㎍ (2.5㎍/㎖)으로 희석하여, PEI 750㎍(7.5㎍/㎖)을 희석한 10㎖의 배지와 혼합하여 실온에서 10분 동안 반응시켰다. 그 후, 반응시킨 혼합배지를 앞서 100㎖로 파종한 세포에 넣어 4시간 동안 150rpm, 8% CO2 조건에서 배양 후, 나머지 100㎖의 FreeStyle 293 발현 배지를 추가하여 6일 동안 배양하였다. 표준 프로토콜을 참조하여 채취한 세포 배양 상등액으로부터 단백질을 정제하였다. 단백질 A 세파로오스 컬럼(Protein A Sepharose column)(GE healthcare)에 항체를 적용하고 PBS (pH 7.4)로 세척하였다. 0.1M 글라이신 완충액을 이용하여 pH 3.0에서 항체를 용리한 후 1M Tris 완충액을 이용하여 샘플을 즉시 중화하였다. 용리한 항체 분획은 투석방법을 통해 PBS (pH 7.4)로 완충액을 교환하며 농축을 진행하였다. 정제된 단백질은 280nm에서의 흡광도와 흡광계수를 이용하여 정량하였다.The light chain and heavy chain expression vectors were expressed and purified using transient transfection. In a shake flask, HEK293-F cells suspended in serum-free FreeStyle 293 expression medium were transfected with a mixture of plasmid and Polyethylenimine (PEI) (Polyscience). When 200 ml was transfected in a shake flask (Corning), HEK293-F cells were seeded in 100 ml of medium at a density of 2X10 6 cells/ml, and cultured at 150 rpm and 8% CO 2 conditions. For the production of each monoclonal antibody, suitable heavy and light chain plasmids were diluted in 10 ml of FreeStyle 293 expression medium with 125 μg of heavy chain and 125 μg of light chain with a total of 250 μg (2.5 μg/ml), 750 μg of PEI (7.5 μg/ml) ) Was mixed with 10 ml of diluted medium and reacted at room temperature for 10 minutes. Thereafter, the reacted mixed medium was put in cells seeded with 100 ml previously, and then cultured at 150 rpm and 8% CO 2 for 4 hours, and then the remaining 100 ml of FreeStyle 293 expression medium was added and cultured for 6 days. Protein was purified from the cell culture supernatant taken with reference to the standard protocol. Antibodies were applied to Protein A Sepharose column (GE healthcare) and washed with PBS (pH 7.4). After eluting the antibody at pH 3.0 with 0.1M glycine buffer, the sample was immediately neutralized with 1M Tris buffer. The eluted antibody fraction was concentrated by exchanging buffer with PBS (pH 7.4) through a dialysis method. The purified protein was quantified using the absorbance at 280 nm and the extinction coefficient.

8. 변이 RT11-3 IgG 의 비특이적 결합능 확인을 위한 세포기반8. Cell-based for identification of non-specific binding ability of mutant RT11-3 IgG 효소 결합 면역 흡착(ELISA) 분석Enzyme-linked immunosorbent (ELISA) analysis

경쇄가변영역 서열의 조작에 따른 항체의 비특이적 결합능 변화를 확인하기 위하여 실험을 진행하였다. 96웰 플레이트에 웰 바닥 전체에 세포가 꽉 채워지도록 HeLa(HSPG+), pgsD-677(HSPG-) 세포주를 배양한 후, 세척 버퍼(HBSS buffer, 50MM HEPES)로 3회 세척하였다. 그 후, 블로킹 버퍼 (HBSS buffer, 50MM HEPES, 1% BSA)에 PBS, RT11-3, #1-60, #5-10, #6-32, 6-91, 세툭시맙(cetuximab)을 100, 50, 25, 12.5, 6.25 및 3.125ng/㎖ 농도로 희석하여 4℃에서 2시간 동안 배양했다. 세척 버퍼로 3회 세척한 후, 표지항체로 HRP가 접합된 항-인간 항체(HRP-conjugated anti-human mAb)로 결합시킨다. TMB ELISA 용액으로 반응시켜 450nm에서 흡광도를 정량하였다.The experiment was conducted to confirm the change in the non-specific binding capacity of the antibody according to the manipulation of the light chain variable region sequence. After culturing the HeLa (HSPG+) and pgsD-677 (HSPG-) cell lines in a 96-well plate so that the cells were completely filled at the bottom of the well, the cells were washed three times with a washing buffer (HBSS buffer, 50MM HEPES). Then, PBS, RT11-3, #1-60, #5-10, #6-32, 6-91, cetuximab (cetuximab) in blocking buffer (HBSS buffer, 50MM HEPES, 1% BSA) 100 , 50, 25, 12.5, 6.25 and 3.125ng/ml diluted and incubated for 2 hours at 4 ℃. After washing three times with washing buffer, HRP-conjugated anti-human mAb is conjugated with a labeled antibody. Absorbance was quantified at 450 nm by reacting with TMB ELISA solution.

9. 변이 RT11-3 IgG 항체의 세포질 침투능 분석9. Analysis of cytoplasmic penetration ability of mutant RT11-3 IgG antibody

세포질 침투 항체의 세포질 침투능을 분석하는 3가지 어세이를 실시하였다.Three assays were performed to analyze the cytoplasmic penetration ability of the cytoplasmic penetration antibody.

(1) 트립판 블루 어세이(1) Trypan Blue Assay

24웰 플레이트에, 커버슬립을 넣고 부유세포인 Ramos를 플레이트에 부착시키기 위해, 200㎕의 0.01% 폴리-L-리신 용액을 넣고 25℃ 조건에서 20분 동안 반응시켰다. PBS로 세척 후, 각 웰 당 5X104개의 Ramos 세포를 10% FBS가 포함된 0.5㎖의 배지를 넣어 37℃ 조건에서 30분 동안 배양시켰다. 세포 부착을 확인하고 세포질 pH인 pH 7.4 버퍼(HBSS(Welgene), 50mM HEPES pH 7.4), 초기 엔도좀 pH인 pH 5.5 버퍼(HBSS(Welgene), 50mM MES pH 5.5) 200㎕에, 0.5μM 및 1μM의 RT11-3, #1-60, #5-10, #6-32 및 6-91을 첨가하여 37℃ 조건에서 2시간 동안 배양시켰다. 이후 PBS로 조심스럽게 세척 후, PBS 190㎕에, 트립판 블루(trypan blue) 10㎕을 섞어 각 웰 당 200㎕씩 분주하여 현미경으로 관찰하였다.In a 24-well plate, a cover slip was placed and 200 μl of 0.01% poly-L-lysine solution was added to the floating cell to attach Ramos to the plate, and reacted at 25° C. for 20 minutes. After washing with PBS, 5 ×10 4 Ramos cells per well were put in 0.5 ml of medium containing 10% FBS and cultured for 30 minutes at 37°C. Cell adhesion was confirmed and the cytoplasmic pH 7.4 buffer (HBSS (Welgene), 50 mM HEPES pH 7.4), the initial endosomal pH pH 5.5 buffer (HBSS (Welgene), 50 mM MES pH 5.5) 200 μl, 0.5 μM and 1 μM RT11-3, #1-60, #5-10, #6-32, and 6-91 were added and incubated at 37°C for 2 hours. Then, after carefully washing with PBS, 10 μl of trypan blue was mixed with 190 μl of PBS, and 200 μl per well was dispensed and observed under a microscope.

(2) 칼세인 어세이 (2) Calcein Assay

24웰 플레이트에 커버슬립을 넣고 각 웰 당 2.5X104개의 HeLa 세포를 10% FBS가 포함된 배지 0.5㎖로 넣어 12시간 동안 5% CO2, 37℃ 조건에서 배양하였다. 세포 부착을 확인한 후, RT11-3, #1-60, #5-10, #6-32, 6-91 0.1, 0.25, 0.5μM을 37℃에서 6시간 동안 배양하였다. 4시간이 지난 후, 항체가 담겨 있는 웰에 150μM의 칼세인을 처리하여 37℃에서 2시간 동안 배양하였다. 이후 배지를 제거하고 PBS로 세척한 후, 약산성용액(200mM의 글리신(glycine), 150mM의 NaCl pH 2.5)으로 세포 표면에 붙은 단백질들을 제거했다. PBS 세척 후, 4% 파라포름알데히드 첨가 후 25 ℃ 조건으로 10분 동안 세포를 고정했다. Hoechst 33342를 이용하여 핵을 염색(청색 형광)하여 공초점 현미경으로 관찰하였다.A cover slip was placed in a 24-well plate, and 2.5×10 4 HeLa cells per well were put into 0.5 ml of a medium containing 10% FBS and cultured at 5% CO 2 and 37° C. for 12 hours. After confirming cell adhesion, RT11-3, #1-60, #5-10, #6-32, 6-91 0.1, 0.25, 0.5 μM were cultured at 37° C. for 6 hours. After 4 hours, the wells containing the antibody were treated with 150 μM calcein and incubated at 37° C. for 2 hours. After removing the medium and washing with PBS, proteins attached to the cell surface were removed with a weakly acidic solution (200 mM glycine, 150 mM NaCl pH 2.5). After PBS washing, cells were fixed for 10 minutes at 25°C after adding 4% paraformaldehyde. The nuclei were stained (blue fluorescence) using Hoechst 33342 and observed with a confocal microscope.

(3) split-GFP 보정(complementation) 어세이(3) Split-GFP Compensation Assay

24웰 플레이트에 커버슬립을 넣고 각 웰 당 2.5X104개의 HeLa 세포를 10% FBS가 포함된 배지 0.5㎖를 넣어 12시간 동안 5% CO2, 37℃ 조건에서 배양하였다. 세포 부착을 확인한 후, 200㎕의 RT11-3, #1-60, #5-10, #6-32 및 6-91 IgG를 처리하고 6시간 동안 인큐베이션하였다. 그 후, 리포터 세포를 PBS와 약산성 용액으로 세척 후, 세포 고정하였다. Hoechst 33342를 이용하여 핵을 염색(청색 형광)하여 공초점 현미경으로 관찰하였다.A cover slip was placed in a 24-well plate, and 2.5 mL of 4 HeLa cells per well were added to 0.5 ml of a medium containing 10% FBS, and cultured at 5% CO 2 and 37° C. for 12 hours. After confirming cell adhesion, 200 μl of RT11-3, #1-60, #5-10, #6-32 and 6-91 IgG were treated and incubated for 6 hours. Thereafter, the reporter cells were washed with PBS and a weakly acidic solution, and then the cells were fixed. The nuclei were stained (blue fluorescence) using Hoechst 33342 and observed with a confocal microscope.

10. 변이 RT11-3 IgG의 항원에 대한10. Mutation RT11-3 IgG against antigen 효소 결합 면역 흡착 분석 (ELISA)Enzyme-linked immunosorbent assay (ELISA)

경쇄가변영역의 변화에 따른 중쇄가변영역의 기능 변화를 확인하기 위하여 실험을 진행하였다. 항원 표적능이 없는 TMab4 VH와 세포질 침투 경쇄가변영역을 포함하는 세포질 침투 항체인 TMab4-3을 대조군으로 사용하였으며, 세포질 침투능이 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체 RT11-3, #1-60, #5-10, #6-32 및 6-91을 96웰 EIA/RIA 플레이트의 각각 5㎍/㎖의 농도로 1시간 동안 상온에서 결합시킨 후, 0.1% TBST (12mM Tris, pH 7.4, 137mM NaCl, 2.7mM KCl, 0.1% Tween20, 5mM MgCl2)로 10분 동안 3회 세척하였다. 이후 4% TBSB (12mM Tris, pH7.4, 137mM NaCl, 2.7mM KCl, 4% BSA, 10mM MgCl2)로 1시간 동안 결합한 후 0.1% TBST로 10분 동안 3회 세척하였다. GppNHp가 결합된 KRas 단백질은 100nM 및 10nM의 농도로, GDP가 결합된 KRas 단백질은 100nM 농도로 4% TBSB로 희석하여 상온에서 1시간 동안 결합시킨 후, 0.1% TBST로 10분 동안 3회 세척하였다. 표지항체로 HRP가 접합된 항-His 항체(HRP-conjugated anti-his mAb)로 결합시켰다. TMB ELISA 용액으로 반응시켜 450nm에서 흡광도를 정량하였다.The experiment was conducted to confirm the functional change of the heavy chain variable region according to the change of the light chain variable region. TMab4-3, which is a cytoplasmic penetration antibody comprising TMab4 VH without antigenic targeting ability and cytoplasmic penetration light chain variable region, was used as a control, and anti-Ras·GTP cytoplasmic penetration antibody RT11-3 containing light chain variable region with improved cytoplasmic penetration ability, After #1-60, #5-10, #6-32 and 6-91 were combined at a concentration of 5 μg/ml in 96-well EIA/RIA plates for 1 hour at room temperature, 0.1% TBST (12 mM Tris, It was washed three times for 10 minutes with pH 7.4, 137 mM NaCl, 2.7 mM KCl, 0.1% Tween20, 5 mM MgCl 2 ). Then, 4% TBSB (12mM Tris, pH7.4, 137mM NaCl, 2.7mM KCl, 4% BSA, 10mM MgCl 2 ) was combined for 1 hour and washed 3 times with 0.1% TBST for 10 minutes. KRas protein bound with GppNHp was diluted with concentrations of 100nM and 10nM, and KRas protein bound with GDP was diluted with 4% TBSB at a concentration of 100nM for 1 hour at room temperature, washed 3 times for 10 minutes with 0.1% TBST. . HRP-conjugated anti-his mAb was conjugated with a labeled antibody. Absorbance was quantified at 450 nm by reacting with TMB ELISA solution.

11.11. 변이 RT11-3 IgG의Mutation RT11-3 IgG 종양 세포 성장 억제능 평가Tumor cell growth inhibition evaluation

항-Ras·GTP 세포질 침투항체의 세포질 침투능 향상에 따른 종양 세포 성장 억제능 변화를 분석하였다. 초저부착 (low-attchatment) 96웰 플레이트에 웰 당 1X103 개의 인간 대장암 세포주 SW480과 Colo320DM을 각각 1% FBS가 포함된 50㎕ 배지에 희석하고 12-18시간 후, spheroid 형성을 확인하였다. 이후 1% FBS가 포함된 배지 50㎕에, 0.5 및 2μM의 항체와 함께, 37℃, 5% CO2 조건에서 48시간 동안 배양하였다. 이후, 항체를 2회 추가 처리하여 48 시간씩 배양하였다. 마지막으로 총 144 시간 배양 후, CellTiterGlo (Promega) 50㎕를 넣고 발광을 정량하였다.The change in tumor cell growth inhibitory ability according to the improvement of cytoplasmic penetration ability of anti-Ras·GTP cytoplasmic penetration antibody was analyzed. After diluting 1×10 3 human colon cancer cell lines SW480 and Colo320DM per well in 50 μl medium containing 1% FBS in an ultra-low-attachment 96-well plate, spheroid formation was confirmed after 12-18 hours. Then, 50 μl of the medium containing 1% FBS was incubated for 48 hours at 37° C. and 5% CO 2 conditions with 0.5 and 2 μM antibodies. Thereafter, the antibody was further treated twice, and cultured for 48 hours. Finally, after incubation for a total of 144 hours, 50 μl of CellTiterGlo (Promega) was added to quantify luminescence.

실시예 1. 무세포 단백질 합성된 RT11-3 scFv의 세포질 침투Example 1. Cytoplasmic penetration of cell-free protein synthesized RT11-3 scFv

RT11-3 scFv를 표현하는 플랫폼으로 대장균 추출물에서 유래한 무세포 단백질 합성 시스템을 사용하였다. 상기 RT11-3 scFv는 표준 반응 혼합물을 사용한 초기 실험에서 6.4μM(221㎍/㎖)의 농도로 생산되었으며, 합성 단백질의 약 25%가 가용성 분획에 포함되었다. 5㎖ 반응에서 합성된 RT11-3 scFv를 Ni-NTA 아가로스 수지를 이용하여 정제하였다. 상기 [재료 및 방법]에 개시한 바, 탈염 및 농축 후, 약 1.8nmole(62㎍)의 정제 단백질을 0.3㎖의 인산 완충 식염수(PBS: 6.0μM)에서 획득하였다. As a platform expressing RT11-3 scFv, a cell-free protein synthesis system derived from E. coli extract was used. The RT11-3 scFv was produced at a concentration of 6.4 μM (221 μg/ml) in an initial experiment using a standard reaction mixture, and about 25% of the synthetic protein was included in the soluble fraction. RT11-3 scFv synthesized in 5 ml reaction was purified using Ni-NTA agarose resin. As described in [Materials and Methods], after desalting and concentration, about 1.8 nmole (62 μg) of purified protein was obtained in 0.3 ml of phosphate buffered saline (PBS: 6.0 μM).

정제된 RT11-3 scFv 항체를 HeLa-SA-GFP1-10 리포터 세포가 함유된 배지에 처리한 후, 공초점 현미경 이미지 분석을 통해 확인하였다. 배지에 첨가된 단백질의 양에 비례하여 증가하는 GFP 형광 세기로부터 무세포 단백질 합성된 RT11-3 scFv 항체의 세포질 침투를 확인하였다(도 1).The purified RT11-3 scFv antibody was treated in a medium containing HeLa-SA-GFP1-10 reporter cells, and then confirmed through confocal microscopy image analysis. The cytoplasmic penetration of the cell-free protein-synthesized RT11-3 scFv antibody was confirmed from the GFP fluorescence intensity increasing in proportion to the amount of protein added to the medium (FIG. 1 ).

실시예 2. 세포질-침투 어세이 확립Example 2. Establishing cytoplasmic-penetration assay

세포질 침투 항체의 공학은 많은 유전자 구조의 발현과 스크리닝을 포함하며, 각 변이체가 기능 분석을 위해 정제되어야만 하는 경우 매우 어렵다. 따라서 무세포 단백질 합성된 RT11-3 scFv가 별도의 정제과정 없이 세포 기반 기능 분석에 직접 사용될 수 있는지 여부를 조사했다. Engineering cytoplasmic infiltrating antibodies involves the expression and screening of many gene structures, and is very difficult if each variant must be purified for functional analysis. Therefore, it was investigated whether the cell-free protein-synthesized RT11-3 scFv can be directly used for cell-based functional analysis without a separate purification process.

RT11-3 scFv의 무세포 단백질 합성 후, 400㎕의 반응 혼합물을 정제없이 리포터 세포에 첨가하였다. 그 결과, 무세포 단백질 합성물이 첨가된 리포터 세포가 사멸하는 것으로 나타났는데, 12시간 동안 배양 한 후 세포가 죽고 분해되었다. 이후, 상기 세포 독성이 대장균 유래 S12 추출물의 성분에 의해 유발된 것으로 나타난다는 것을 확인하였다. 리포터 세포는 무세포 단백질 합성 시 첨가되는 대장균 유래 S12 추출물 이외의 나머지 주요 반응물(염 용액, PEG, 크레아틴 포스페이트 및 아미노산)과 별도로 배양되었을 때 거의 영향을 받지 않았다(도 2). After the cell-free protein synthesis of RT11-3 scFv, 400 μl of the reaction mixture was added to the reporter cells without purification. As a result, the reporter cells to which the cell-free protein compound was added were found to die. After incubation for 12 hours, the cells died and decomposed. Subsequently, it was confirmed that the cytotoxicity appeared to be caused by the components of the S12 extract derived from E. coli. Reporter cells were hardly affected when cultured separately from the rest of the main reactants (salt solution, PEG, creatine phosphate and amino acids) other than E. coli derived S12 extract added during cell-free protein synthesis (Fig. 2).

또한, 무세포 단백질 합성 반응 혼합물을 희석함으로써, 상기 나타난 세포 독성이 완화되는지 확인하기 위하여, 무세포 단백질 합성 반응 혼합물을 DMEM(Dulbecco's Modified Eagle's Medium)에서 농도별로 희석하여 리포터 세포의 세포생존력을 분석하였다. In addition, by diluting the cell-free protein synthesis reaction mixture, the cell viability of reporter cells was analyzed by diluting the cell-free protein synthesis reaction mixture by concentration in DMEM (Dulbecco's Modified Eagle's Medium) in order to confirm that the above-mentioned cytotoxicity is alleviated. .

공초점 현미경 이미지 분석 결과, 반응 혼합물이 4배 이상 희석되었을 때 리포터 세포는 현저하게 영향을 받지 않았고(도 3A), 마찬가지로 유세포 분석 결과에서도 살아있는 세포의 비율이 12시간 동안 4배 이상 희석된 반응 혼합물과 함께 항온 배양하여도 영향을 받지않고, 세포가 생존하고 있다는 것을 확인하였다(도 3B). As a result of confocal microscopy image analysis, the reporter cells were not significantly affected when the reaction mixture was diluted 4 times or more (FIG. 3A), and similarly, in the flow cytometry, the proportion of living cells was diluted 4 times or more for 12 hours. It was confirmed that cells were alive without being affected by incubation with (FIG. 3B).

최근 융합 단백질의 번역을 야생형 유비퀴틴 서열보다 훨씬 더 효과적으로 자극하는 유비퀴틴(이하 'UCE1'이라 함) 염기 서열을 개발하였고, UCE1 서열과의 융합은 야생형 서열과 비교하여 다양한 단백질에서의 발현을 약 2배까지 향상시킬 수 있다. 본 발명의 RT11-3을 암호화하는 유전자에 융합되었을 때는, UCE1이 융합된 RT11-3 scFv의 무세포 단백질 합성 결과, 약 2.8μM의 가용성 RT11-3 scFv를 생산하였다(도 4A). Recently, a ubiquitin (hereinafter referred to as'UCE1') base sequence has been developed that stimulates the translation of a fusion protein much more effectively than a wild-type ubiquitin sequence. Can be improved up to. When fused to the gene encoding RT11-3 of the present invention, as a result of acellular protein synthesis of RT11-3 scFv fused with UCE1, soluble RT11-3 scFv of about 2.8 μM was produced (FIG. 4A ).

또한 UBP1(ubiquitin carboxyl-terminal hydrolase 1)이 존재하는 S12 추출물을 사용하여 야생형 RT11-3 scFv 서열을 갖는 항체를 생산하였으며, S12 추출물에 함유된 UBP1이 무세포 단백질 합성 반응 동안 UCE1 태그를 원위치에서 절단하였다. 웨스턴 블랏 분석은 UBP1이 풍부한 추출물에서 무세포 단백질 합성하여, 유비퀴틴 서열을 제거한 RT11-3 scFv의 용해성 단백질의 농도가 유지되는 것을 확인하였다(도 4B).In addition, an antibody having a wild-type RT11-3 scFv sequence was produced using S12 extract containing UBP1 (ubiquitin carboxyl-terminal hydrolase 1), and UBP1 contained in the S12 extract cleaves the UCE1 tag in situ during a cell-free protein synthesis reaction. Did. Western blot analysis confirmed that the concentration of the soluble protein of RT11-3 scFv in which the ubiquitin sequence was removed was maintained by maintaining cell-free protein synthesis from the extract rich in UBP1 (FIG. 4B ).

실시예 3. RT11-3 변형의 발현 및 세포질 침투성 평가Example 3. Expression of RT11-3 modification and evaluation of cytoplasmic permeability

변이주 RT11-3 유전자를 도 5에 개시된 과정을 통해 변이 시키고, 변이된 유전자 라이브러리를 pK7 플라스미드에 클로닝 하였다(pK7RT11-3).The mutant RT11-3 gene was mutated through the process disclosed in FIG. 5, and the mutated gene library was cloned into the pK7 plasmid (pK7RT11-3).

pK7RT11-3Lib로 형질 전환된 대장균 950개의 콜로니로부터 개별 변이 유전자를 PCR 증폭하고, 재료 및 방법에 기재된 바와 같이 96웰 마이크로 타이터 플레이트에서 무세포 단백질 합성을 위한 반응 혼합물로 발현시켰다. 플레이트를 1시간 동안 인큐베이션 한 후, 15㎕의 각 반응 혼합물을 DMEM에서 4배 희석시키고, 50㎕를 흡인된 리포터 세포에 옮겼다. 도 6에 개시한 바와 같이 세포 내 GFP 시그널을 리포터 세포에서 분석했을 때, 돌연변이 클론은 GFP 형광의 강도가 다양하게 나타났으며, 일부 변종 클론은 부모 유전자보다 현저하게 강한 GFP 형광을 나타냈다. 이 중에서 우리는 부모 RT11-3에 비해 가장 강한 형광을 나타내는 네 개의 클론(#1-60, #5-10, #6-32 및 6-91)을 선별하였고, 이들 변이체의 염기 서열((#1-60(서열번호 24), #5-10(서열번호 25), #6-32(서열번호 26), 6-91(서열번호 27))) 및 아미노산 서열(#1-60(서열번호 28), #5-10(서열번호 29), #6-32(서열번호 30), 6-91(서열번호 31))을 분석하였다(도 7). 상기 분석에서 세포질 침투 항체의 양은 엔도솜 탈출의 효율뿐만 아니라 그것의 발현 수준에 영향을 받을 수 있다. Split-GFP complementation assay 결과에 따라, 정제 후 선택된 변이 scFv와 동일한 농도(1.5μM)의 리포터 세포를 처리하였다. 공초점 현미경에 의한 리포터 세포에서 GFP 형광의 강도의 측정은 GFP 형광이 #6-32의 항체가 가장 강하게 나타났고, 6-91, #1-60 및 #5-10의 항체 순으로 GFP 형광 세기를 확인할 수 있었다(도 8). Individual mutant genes were PCR amplified from 950 colonies of E. coli transformed with pK7RT11-3Lib and expressed in a reaction mixture for cell-free protein synthesis in 96-well micro titer plates as described in Materials and Methods. After the plate was incubated for 1 hour, 15 μl of each reaction mixture was diluted 4 fold in DMEM and 50 μl was transferred to aspirated reporter cells. When the intracellular GFP signal was analyzed in the reporter cell, as shown in FIG. 6, the mutant clones showed various GFP fluorescence intensities, and some variant clones showed significantly stronger GFP fluorescence than the parent gene. Among them, we selected the four clones (#1-60, #5-10, #6-32 and 6-91) that showed the strongest fluorescence compared to the parent RT11-3, and the nucleotide sequence of these variants ((# 1-60 (SEQ ID NO: 24), #5-10 (SEQ ID NO: 25), #6-32 (SEQ ID NO: 26), 6-91 (SEQ ID NO: 27)) and amino acid sequence (#1-60 (SEQ ID NO: 28), #5-10 (SEQ ID NO: 29), #6-32 (SEQ ID NO: 30), 6-91 (SEQ ID NO: 31)) were analyzed (FIG. 7). The amount of cytoplasmic penetrating antibody in this assay can be influenced by the efficiency of endosomal escape as well as its expression level. According to the results of the Split-GFP complementation assay, reporter cells of the same concentration (1.5 μM) as the selected mutant scFv were purified after purification. Measurement of the intensity of GFP fluorescence in reporter cells by confocal microscopy showed that GFP fluorescence showed the strongest antibody with #6-32, and GFP fluorescence intensity in the order of antibodies with 6-91, #1-60, and #5-10. It was confirmed (Fig. 8).

실시예 4. 선별한 엔도솜 탈출능이 향상된 경쇄가변영역(VL)을 포함하는 완전 IgG 형태의 세포질 침투 항체 변이 RT11-3Example 4. Fully IgG-type cytoplasmic penetration antibody variant RT11-3 comprising a light chain variable region (VL) with improved endosomal escape ability 발현 및 정제Expression and purification

상기 실시예 1~3에서 세포질 침투 항체를 scFv 형태로 구축하여, 엔도좀 탈출능이 향상된 경쇄가변영역을 선별하였다. 선별한 엔도좀 탈출능 향상 경쇄가변영역를 완전 IgG 형태의 단일클론항체로 동물세포에서 발현 및 정제하여 엔도좀 탈출능 향상을 확인하고자 하였다.In Examples 1 to 3, the cytoplasmic penetration antibody was constructed in scFv form to select a light chain variable region with improved endosomal escape ability. Improving the escape ability of the selected endosomes The light chain variable region was expressed and purified in animal cells as a monoclonal antibody in the form of a complete IgG to confirm the improvement of the escape ability of endosomes.

구체적으로는, 완전 IgG 형태의 단일클론항체 형태로 생산하기 위한 중쇄 발현벡터를 구축하기 위해 5' 말단에 분비 시그널 펩타이드를 코딩하는 DNA가 융합된 항체의 중쇄 가변영역(RT11 VH: 서열번호 1)과 중쇄불변영역 (CH1-hinge-CH2-CH3)를 포함하는 중쇄를 코딩하는 DNA를 각각 pcDNA3.4(Invitrogen) 벡터에 NotI/HindIII로 클로닝하였다. 또한, 경쇄를 발현하는 벡터를 구축하기 위해 5' 말단에 분비 시그널 펩타이드를 코딩하는 DNA가 융합된 세포질 침투 경쇄 가변영역(hT4-3, #1-60, #5-10, #6-32, 6-91)과 경쇄 불변영역(CL)을 포함하는 경쇄를 코딩하는 DNA를 각각 pcDNA3.4 (Invitrogen) 벡터에 NotI/HindIII로 클로닝하였다.Specifically, in order to construct a heavy chain expression vector for producing in the form of a complete IgG monoclonal antibody, a heavy chain variable region of an antibody in which DNA encoding the secretion signal peptide is fused at the 5'end (RT11 VH: SEQ ID NO: 1) DNA encoding the heavy chain containing the heavy chain constant region (CH1-hinge-CH2-CH3) was cloned into NotD/HindIII in pcDNA3.4 (Invitrogen) vector, respectively. In addition, in order to construct a vector expressing a light chain, a cytoplasmic penetration light chain variable region (hT4-3, #1-60, #5-10, #6-32, fused with DNA encoding a secretory signal peptide at the 5'end) 6-91) and the DNA encoding the light chain containing the light chain constant region (CL) were cloned into NotD/HindIII into pcDNA3.4 (Invitrogen) vector, respectively.

상기 경쇄, 중쇄 발현 벡터를 일시적 트랜스펙션 (transient transfection)을 이용하여 단백질을 발현 및 정제하였다. 진탕 플라스크에서, 무혈청 FreeStyle 293 발현 배지(Invitrogen)에서 부유 성장하는 HEK293-F 세포(Invitrogen)를 플라스미드 및 폴리에틸렌이민(Polyethylenimine, PEI)(Polyscience)의 혼합물로 트랜스펙션하였다. 진탕 플라스크 (Corning)에 200㎖ 트랜스펙션 시, HEK293-F 세포를 2X106 세포/㎖의 밀도로 배지 100㎖에 파종하여, 150rpm, 8% CO2에서 배양하였다. 각각의 단일클론항체 생산하기 위해 알맞은 중쇄와 경쇄 플라스미드를 10㎖ FreeStyle 293 발현 배지 (Invitrogen)에 중쇄 125μg, 경쇄 125μg 총 250μg (2.5㎍/㎖)으로 희석하여, PEI 750㎍ (7.5㎍/㎖)을 희석한 10㎖의 배지와 혼합하여 실온에서 10분 동안 반응시켰다. 그 후, 반응시킨 혼합배지를 앞서 100㎖로 파종한 세포에 넣어 4시간 동안 150rpm, 8% CO2에서 배양 후, 나머지 100 ㎖의 FreeStyle 293 발현 배지를 추가하여 6일 동안 배양하였다. 표준 프로토콜을 참조하여 채취한 세포 배양 상등액으로부터 단백질을 정제하였다. 단백질 A 세파로오스 컬럼 (Protein A Sepharose column) (GE healthcare)에 항체를 적용하고 PBS (pH 7.4)로 세척하였다. 0.1M 글라이신 완충액을 이용하여 pH 3.0에서 항체를 용리한 후 1M Tris 완충액을 이용하여 샘플을 즉시 중화하였다. 용리한 항체 분획은 투석방법을 통해 PBS (pH 7.4)로 완충액을 교환하며 농축을 진행하였다. 정제된 단백질은 280nm 파장에서 흡광도와 흡광계수를 이용하여 정량하였다. The light chain and heavy chain expression vectors were expressed and purified using transient transfection. In a shake flask, HEK293-F cells (Invitrogen) suspended in serum-free FreeStyle 293 expression medium (Invitrogen) were transfected with a mixture of plasmid and Polyethylenimine (PEI) (Polyscience). Upon 200 ml transfection in a shake flask (Corning), HEK293-F cells were seeded in 100 ml of medium at a density of 2X10 6 cells/ml, and cultured at 150 rpm, 8% CO 2 . For the production of each monoclonal antibody, the appropriate heavy and light chain plasmids were diluted in 10 ml of FreeStyle 293 expression medium (Invitrogen) to 125 μg of heavy chain and 125 μg of light chain to a total of 250 μg (2.5 μg/ml), 750 μg (7.5 μg/ml) of PEI Was mixed with diluted 10 ml of medium and reacted at room temperature for 10 minutes. Thereafter, the reacted mixed medium was put into cells previously seeded with 100 ml, and cultured at 150 rpm and 8% CO 2 for 4 hours, followed by incubation for 6 days by adding the remaining 100 ml of FreeStyle 293 expression medium. Protein was purified from the cell culture supernatant taken with reference to the standard protocol. Antibodies were applied to Protein A Sepharose column (GE healthcare) and washed with PBS (pH 7.4). After eluting the antibody at pH 3.0 with 0.1M glycine buffer, the sample was immediately neutralized with 1M Tris buffer. The eluted antibody fraction was concentrated by exchanging buffer with PBS (pH 7.4) through a dialysis method. The purified protein was quantified using absorbance and absorption coefficient at a wavelength of 280 nm.

실시예 5. 선별한 엔도좀 탈출능 향상된 경쇄가변영역(VL)을 포함하는 완전 IgG 형태의 세포질 침투 항체의 비특이적 결합 확인Example 5. Confirmation of non-specific binding of the cytoplasmic penetration antibody in the form of a complete IgG comprising a light chain variable region (VL) with improved endosome escape capability

상기 실시예 4에서 구축한, 선별한 엔도좀 탈출능 향상된 경쇄가변영역(VL)을 포함하는 완전 IgG 형태의 세포질 침투 항체의 비특이적 결합이 기존 hT4-3 경쇄를 사용하고 있는 항 Ras·GTP 세포질 침투 항체 (RT11-3)와 비교하기 위하여 세포기반 ELISA를 이용하여 관찰하였다.Anti-Ras·GTP cytoplasmic penetration using the existing hT4-3 light chain, wherein the non-specific binding of the complete IgG form of the cytoplasmic penetration antibody comprising the light chain variable region (VL) enhanced in the selected endosomes escape ability constructed in Example 4 above It was observed using a cell-based ELISA for comparison with the antibody (RT11-3).

구체적으로는, 96 웰 플레이트에 웰 바닥 전체에 세포가 꽉 채워지도록 HeLa (HSPG+), pgsD-677 (HSGP-) 세포주를 배양한 후, 세척 버퍼 (HBSS buffer, 50mM HEPES)로 3회 세척하였다. 그 후, 블로킹 버퍼 (HBSS buffer, 50mM HEPES, 1% BSA) 에 PBS, RT11-3, #1-60, #5-10, #6-32, #6-91, cetuximab을 100, 50, 25, 12.5, 6.25 및 3.125ng/㎖의 농도로 희석하여 4℃에서 2시간 동안 배양하였다. 세척 버퍼로 3회 세척한 후, 표지항체로 HRP가 접합된 항-인간 항체(HRP-conjugated anti-human mAb)로 결합시켰다. TMB ELISA 용액으로 반응시켜 450nm 흡광도를 정량하였다. #6-32 항체에서 가장 높은 비특이적 세포표면 결합능이 측정되었고, 다른 항체는 야생형인 RT11-3과 거의 유사한 정도의 비특이적 세포표면 결합능을 확인하였다(도 9)Specifically, the HeLa (HSPG+), pgsD-677 (HSGP-) cell line was incubated in a 96-well plate so that the cells were completely filled at the bottom of the well, and then washed three times with a washing buffer (HBSS buffer, 50 mM HEPES). Then, PBS, RT11-3, #1-60, #5-10, #6-32, #6-91, cetuximab were added to blocking buffer (HBSS buffer, 50mM HEPES, 1% BSA) 100, 50, 25 , 12.5, 6.25 and diluted to a concentration of 3.125ng/ml, and incubated at 4°C for 2 hours. After washing three times with washing buffer, HRP-conjugated anti-human mAb was conjugated with a labeled antibody. Absorbance was quantified by reacting with TMB ELISA solution. The highest non-specific cell surface binding capacity was measured in #6-32 antibody, and the other antibodies confirmed the non-specific cell surface binding capacity almost similar to that of wild type RT11-3 (FIG. 9).

실시예 6. 선별한 엔도좀 탈출능 향상된 경쇄가변영역(VL)을 포함하는 완전 IgG 형태의 세포질 침투 항체의 엔도좀 탈출능 평가Example 6 Evaluation of Endosomes Escape Ability of Cytoplasmic Infiltration Antibodies in Complete IgG Form Containing Enhanced Light Chain Variable Region (VL)

상기 실시예 5에서 scFv 형태로 엔도좀 탈출능 향상된 경쇄가변영역을 선별하였고, 이 경쇄가변영역이 포함된 완전 IgG 형태의 엔도좀 탈출능 향상 세포질 침투 항체의 엔도좀 탈출능 향상을 확인하고자 하였다.In Example 5, a light chain variable region with improved endosomal escape ability was selected in the form of scFv, and the endosomes escape ability improvement of the complete IgG form containing this light chain variable region was improved.

(1) 트립판 블루 어세이(1) Trypan Blue Assay

24웰 플레이트에, 커버슬립을 넣고 부유세포인 Ramos를 플레이트에 부착시키기 위해 0.01% poly-L-lysine 용액을 200㎕ 넣고, 25℃ 조건에서 20분 동안 반응시켰다. PBS로 세척 후, 각 웰 당 5X104개의 Ramos 세포를 10% FBS가 포함된 배지 0.5㎖로 넣어 37℃ 조건에서 30분 동안 배양시켰다. 세포 부착을 확인하고 세포질 pH인 pH 7.4 버퍼(HBSS(Welgene), 50mM HEPES pH 7.4), 초기 엔도좀 pH인 pH 5.5 버퍼 (HBSS(Welgene), 50mM MES pH 5.5) 200㎕에 RT11-3, #1-60, #5-10, #6-32, #6-91 0.5 μM 과 1 μM 넣어 37℃ 조건에서 2시간 배양시켰다. PBS로 조심스럽게 세척 후, PBS 190㎕에 트립판 블루(trypan blue) 10㎕을 섞어 각 웰 당 200㎕씩 분주하여 현미경으로 관찰하였다. #6-91 항체를 제외한 #1-60, #5-10, #6-32 항체는 RT11-3에 비교하여 향상된 트립판 블루 결과를 확인하였다(도 10(A)).In a 24-well plate, 200 µl of a 0.01% poly-L-lysine solution was added to attach a cover slip and attach the floating cell Ramos to the plate, and reacted at 25° C. for 20 minutes. After washing with PBS, 5 ×10 4 Ramos cells per well were put into 0.5 ml of a medium containing 10% FBS and cultured at 37° C. for 30 minutes. Check the cell adhesion and the pH 7.4 buffer (HBSS (Welgene), 50 mM HEPES pH 7.4), which is the cytoplasmic pH, pH 5.5 buffer (HBSS (Welgene), 50 mM MES pH 5.5), which is the initial endosomal pH, RT11-3, # 200 μl 1-60, #5-10, #6-32, #6-91 0.5 μM and 1 μM were added and cultured for 2 hours at 37°C. After carefully washing with PBS, 10 μl of trypan blue was mixed with 190 μl of PBS, and 200 μl per well was dispensed and observed under a microscope. The #1-60, #5-10, and #6-32 antibodies except for the #6-91 antibody showed improved trypan blue results compared to RT11-3 (FIG. 10(A)).

(2) 칼세인 형광 어세이(2) Calcein Fluorescence Assay

24웰 플레이트에 커버슬립을 넣고 각 웰 당 2.5X104개의 HeLa 세포를 10 % FBS가 포함된 배지 0.5 ㎖로 넣어 12시간 동안 5 % CO2, 37℃ 조건에서 배양하였다. 세포 부착을 확인한 후, RT11-3, #1-60, #5-10, #6-32, #6-91 0.1, 0.25, 0.5μM을 37℃에서 6시간 동안 배양하였다. 4시간이 지난 후, 항체가 담겨 있는 웰에 칼세인 150μM을 처리하여 37℃에서 2시간 배양하였다. 이후 배지를 제거하고 PBS로 세척한 후, 약산성용액(200mM glycine, 150mM NaCl pH 2.5)으로 세포 표면에 붙은 단백질들을 제거했다. PBS 세척 후, 4 % 파라포름알데히드 첨가 후 25 도 조건으로 10분 동안 세포를 고정했다. Hoechst 33342를 이용하여 핵을 염색(청색형광)하여 공초점 현미경으로 관찰하였다. #1-60, #5-10, #6-32 항체를 처리한 세포에서는 세포질에 퍼져있는 녹색 칼세인 형광이 RT11-3를 처리한 세포보다 뚜렷히 관찰되었다. 반면, #6-91 항체를 처리한 세포에서는 세포질에 퍼져있는 녹색 칼세인 형광이 RT11-3과 유사하게 관찰되었다(도 10(B)).A cover slip was placed in a 24-well plate, and 2.5×10 4 HeLa cells per well were put into 0.5 ml of a medium containing 10% FBS and cultured at 5% CO 2 and 37° C. for 12 hours. After confirming cell adhesion, RT11-3, #1-60, #5-10, #6-32, #6-91 0.1, 0.25, 0.5 μM were cultured at 37° C. for 6 hours. After 4 hours, 150 μM of calcein was treated in the wells containing the antibody and cultured at 37° C. for 2 hours. After removing the medium and washing with PBS, proteins attached to the cell surface were removed with a weakly acidic solution (200 mM glycine, 150 mM NaCl pH 2.5). After PBS washing, 4% paraformaldehyde was added and cells were fixed for 10 minutes at 25 degrees. The nuclei were stained (blue fluorescence) using Hoechst 33342 and observed with a confocal microscope. In cells treated with #1-60, #5-10, and #6-32 antibodies, green calcein fluorescence spreading in the cytoplasm was more clearly observed than those treated with RT11-3. On the other hand, in cells treated with #6-91 antibody, green calcein fluorescence spreading in the cytoplasm was observed similarly to RT11-3 (Fig. 10(B)).

따라서, scFv 형태로 선별한 엔도좀 탈출능 향상된 경쇄가변영역을 완전 IgG 형태의 엔도좀 탈출능 향상 세포질 침투 항체로 새롭게 구축 및 발현 정제하여도 야생형과 비교하여 엔도좀 탈출능이 향상됨을 확인하였다.Accordingly, it was confirmed that even when the light chain variable region with improved endosomes escape ability selected in the form of scFv was newly constructed and expressed and purified with an endosomes escape ability enhancement cytoplasmic penetration antibody in full IgG form, it was confirmed that the endosomes escape ability was improved compared to the wild type.

실시예 7. 개선된 분할 녹색 형광 단백질의 상보적인 결합을 통한 세포질 침투 단일클론항체의 세포질 위치 확인Example 7. Cytoplasmic penetration through complementary binding of an improved split green fluorescent protein Confirmation of the cytoplasmic location of a monoclonal antibody

엔도좀 탈출능 향상 세포질 침투 항체의 세포질 위치 향상을 확인하기 위해 개선된 분할 녹색 형광 단백질 상보 시스템(등록번호: 10-1790669)을 이용하였다. 이를 위해, RT11의 중쇄 C-말단에 GFP11-SBP2 peptide가 융합된 RT11-3-GFP11-SBP2, #1-60-GFP11-SBP2, #5-10-GFP11-SBP2, #6-32-GFP11-SBP2, 및 #6-91-GFP11-SBP2를 구축하였다.Improved endosomal escape ability An improved split green fluorescent protein complementation system (Registration No.: 10-1790669) was used to confirm the improvement of the cytoplasmic position of the cytoplasmic penetration antibody. To this end, RT11-3-GFP11-SBP2, #1-60-GFP11-SBP2, #5-10-GFP11-SBP2, #6-32-GFP11- fused with GFP11-SBP2 peptide to the heavy chain C-terminus of RT11 SBP2, and #6-91-GFP11-SBP2 were constructed.

구체적으로, 실시예 2와 동일하게 SA-GFP1-10을 안정적으로 발현하는 형질전환된 HeLa 세포주를 준비하여 세포가 안정화되면, RT11-3-GFP11-SBP2, #1-60-GFP11-SBP2, #5-10-GFP11-SBP2, #6-32-GFP11-SBP2, #6-91-GFP11-SBP2 0.2, 0.4, 0.8μM을 37℃에서 6시간 동안 배양하였다. 이후 PBS와 약산성 용액으로 세척 후, 세포를 고정하였다. Hoechst 33342를 이용하여 핵을 염색 (청색형광)하여 공초점 현미경으로 관찰하였다. #1-60, #5-10, #6-32 항체를 처리한 세포에서는 RT11-3를 처리한 세포보다 향상된 GFP 형광이 관찰되었다. 반면, #6-91 항체를 처리한 세포에서는 RT11-3과 유사한 GFP 형광이 관찰되었다. 따라서, 엔도좀 탈출하여 세포질에 위치하는 세포질 침투 항체의 양이 결과적으로 향상되었음을 확인하였다(도 10(C)).Specifically, in the same manner as in Example 2, when the transformed HeLa cell line stably expressing SA-GFP1-10 was prepared to stabilize the cells, RT11-3-GFP11-SBP2, #1-60-GFP11-SBP2, # 5-10-GFP11-SBP2, #6-32-GFP11-SBP2, #6-91-GFP11-SBP2 0.2, 0.4, and 0.8 μM were cultured at 37° C. for 6 hours. After washing with PBS and a weakly acidic solution, the cells were fixed. The nuclei were stained (blue fluorescence) using Hoechst 33342 and observed with a confocal microscope. In cells treated with #1-60, #5-10, and #6-32 antibodies, improved GFP fluorescence was observed compared to cells treated with RT11-3. On the other hand, GFP fluorescence similar to RT11-3 was observed in cells treated with #6-91 antibody. Therefore, it was confirmed that the amount of cytoplasmic penetration antibody located in the cytoplasm by escaping the endosome was improved as a result (FIG. 10(C)).

실시예 8. 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체의 종양 세포 성장 억제능 평가Example 8. Evaluation of tumor cell growth inhibitory ability of anti-Ras·GTP cytoplasmic penetration antibody containing light chain variable region with improved endosomal escape ability

항원 표적능이 없는 TMab4 VH와 엔도좀 탈출 경쇄가변영역을 포함하는 세포질 침투 항체인 TMab4-3을 대조군으로 사용하였으며, 엔도좀 탈출능 향상된 경쇄가변영역을 포함하는 항-Ras·GTP 세포질 침투 항체 RT11-3, #1-60, #5-10, #6-32, #6-91을 96웰 EIA/RIA 플레이트의 각각 5㎍/㎖의 농도로 1시간 동안 상온에서 결합시킨 후 0.1 % TBST (12mM Tris, pH 7.4, 137mM NaCl, 2.7mM KCl, 0.1 % Tween20, 5mM MgCl2) 로 10분 동안 3회 세척하였다. 이후 4% TBSB (12mM Tris, pH 7.4, 137mM NaCl, 2.7mM KCl, 4 % BSA, 10mM MgCl2)로 1시간 동안 결합한 후 0.1% TBST로 10분 동안 3회 세척하였다. GppNHp가 결합된 KRas 단백질은 100nM, 10nM의 다양한 농도로, GDP가 결합된 KRas 단백질은 100nM 농도로 4% TBSB로 희석하여 상온에서 1시간동안 결합시킨 후 0.1% TBST로 10분 동안 3회 세척했다. 표지항체로 HRP가 접합된 항-His 항체(HRP-conjugated anti-his mAb)로 결합시켰다. TMB ELISA 용액으로 반응시켜 450nm 흡광도를 정량하였다. #5-10 항체를 제외한 #1-60, #6-32, #6-91 항체는 RT11-3과 유사한 KRasG12D 결합정도를 보이며, 경쇄가변영역의 변화에 따라 중쇄가변영역의 Ras 표적능은 영향을 거의 받지 않음을 확인하였다(도 11(A)).TMab4-3, which is a cytoplasmic penetration antibody containing TMab4 VH without an antigen targeting ability and an endosomal escape light chain variable region, was used as a control, and an anti-Ras·GTP cytoplasmic penetration antibody RT11- containing an endosomal escape ability enhanced light chain variable region 3, #1-60, #5-10, #6-32, #6-91 were combined at a concentration of 5 μg/ml in 96-well EIA/RIA plates for 1 hour at room temperature, followed by 0.1% TBST (12 mM) Tris, pH 7.4, 137mM NaCl, 2.7mM KCl, 0.1% Tween20, 5mM MgCl 2 ) were washed 3 times for 10 minutes. Then, 4% TBSB (12mM Tris, pH 7.4, 137mM NaCl, 2.7mM KCl, 4% BSA, 10mM MgCl 2 ) was combined for 1 hour and washed 3 times with 0.1% TBST for 10 minutes. KRas protein bound with GppNHp was diluted with various concentrations of 100nM and 10nM, and KRas protein bound with GDP was diluted with 4% TBSB at 100nM concentration for 1 hour at room temperature and then washed 3 times for 10 minutes with 0.1% TBST. . HRP-conjugated anti-his mAb was conjugated with a labeled antibody. 450nm absorbance was quantified by reacting with TMB ELISA solution. Antibodies #1-60, #6-32, and #6-91, except for #5-10 antibodies, show KRasG12D binding similar to RT11-3, and the Ras targeting ability of heavy chain variable regions is affected by changes in light chain variable regions. It was confirmed that it was hardly received (Fig. 11(A)).

또한, 초저부착(low-attchatment) 96웰 플레이트에 웰 당 1X103 개의 상기 세포주들을 각각 1% FBS가 포함된 배지 50㎕에 희석하고 12-18시간 후, spheroid 형성을 확인하였다. 이후 1% FBS가 포함된 배지 50㎕에 0.5, 2μM 농도의 항체와 함께 37℃, 5% CO2 조건에서 48시간 동안 배양하였다. 이후, 항체를 2회 추가 처리하여 48시간 동안 배양하였다. 마지막으로 총 144시간 배양 후, CellTiterGlo (Promega) 50㎕ 넣고 발광을 정량하였다.In addition, 1×10 3 of the above cell lines were diluted in 50 µl of a medium containing 1% FBS per well in a low-attchatment 96-well plate, and after 12-18 hours, spheroid formation was confirmed. Subsequently, 50 μl of the medium containing 1% FBS was incubated for 48 hours at 37° C. and 5% CO 2 conditions with 0.5 and 2 μM antibodies. Thereafter, the antibody was further treated twice to incubate for 48 hours. Finally, after incubation for a total of 144 hours, 50 μl of CellTiterGlo (Promega) was added to quantify luminescence.

그 결과, 도 11(B)에서 나타난 바와 같이, 기존 RT11-3와 비교하였을 때, 엔도좀 탈출능이 향상되고 항원 표적능이 유지되는 #1-60, #6-32 항체는 Ras 돌연변이 세포주 특이적 세포 성장 억제 효과가 향상된 것을 확인하였다.As a result, as shown in FIG. 11(B), when compared with the existing RT11-3, the #1-60 and #6-32 antibodies, which have improved endosomal escape ability and maintain antigen targeting ability, are Ras mutant cell line specific cells. It was confirmed that the growth inhibitory effect was improved.

<110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Enhanced cytosol-penetrating antibody <130> PP-B2350 <160> 31 <170> KopatentIn 2.0 <210> 1 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv VH <400> 1 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Tyr Ile Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser 115 <210> 2 <211> 114 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (hT4-3 VL) <400> 2 Asp Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Phe Asn Ser 20 25 30 Arg Thr Arg Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys 35 40 45 Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln 85 90 95 Tyr Trp Tyr Trp Met Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110 Lys Arg <210> 3 <211> 244 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv <400> 3 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Tyr Ile Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125 Gly Ser Asp Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 130 135 140 Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Phe 145 150 155 160 Asn Ser Arg Thr Arg Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro 165 170 175 Gly Lys Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser 180 185 190 Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 195 200 205 Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Phe Cys 210 215 220 Gln Gln Tyr Trp Tyr Trp Met Tyr Thr Phe Gly Gln Gly Thr Lys Val 225 230 235 240 Glu Ile Lys Arg <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F1) <400> 4 tcgatcccgc gaaattaata cgactcacta taggg 35 <210> 5 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Ori) <400> 5 tgccgggctt ctgctgatac caggccaggt agttcttgcg ggtgc 45 <210> 6 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut1) <400> 6 tgccgggctt ctgctgaaac caggccaggt agttcttgcg ggtgc 45 <210> 7 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut2) <400> 7 tgccgggctt ctgctgccac caggccaggt agttcttgcg ggtgc 45 <210> 8 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut3) <400> 8 tgccgggctt ctgctgatac caatccaggt agttcttgcg ggtgc 45 <210> 9 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut4) <400> 9 tgccgggctt ctgctgaaac caatccaggt agttcttgcg ggtgc 45 <210> 10 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut5) <400> 10 tgccgggctt ctgctgccac caatccaggt agttcttgcg ggtgc 45 <210> 11 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut6) <400> 11 tgccgggctt ctgctgatac cattccaggt agttcttgcg ggtgc 45 <210> 12 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut7) <400> 12 tgccgggctt ctgctgaaac cattccaggt agttcttgcg ggtgc 45 <210> 13 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut8) <400> 13 tgccgggctt ctgctgccac cattccaggt agttcttgcg ggtgc 45 <210> 14 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Ori) <400> 14 cagcagaagc ccggcaaggc ccccaagctg ctgatctact gggccagcac 50 <210> 15 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut1) <400> 15 cagcagaagc ccggcaaggc ccccaagatg ctgatctact gggccagcac 50 <210> 16 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut2) <400> 16 cagcagaagc ccggcaaggc ccccaagatt ctgatctact gggccagcac 50 <210> 17 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut3) <400> 17 cagcagaagc ccggcaaggc ccccaagaac ctgatctact gggccagcac 50 <210> 18 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut4) <400> 18 cagcagaagc ccggcaaggc ccccaagcag ctgatctact gggccagcac 50 <210> 19 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut5) <400> 19 cagcagaagc ccggcaaggc ccccaagcgt ctgatctact gggccagcac 50 <210> 20 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut6) <400> 20 cagcagaagc ccggcaaggc ccccaagaaa ctgatctact gggccagcac 50 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R2) <400> 21 gcagaagtag gtggcgaagt cctcgggctg caggctgctg 40 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F3-deg) <400> 22 gacttcgcca cctacttctg cvwbcagwdk tggtactgga tgwdkacctt cggccagggc 60 60 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R3) <400> 23 caaaaaaccc ctcaagaccc gttta 25 <210> 24 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (1-60) <400> 24 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgcac ccgcaagaac tacctggatt ggtttcagca gaagcccggc 840 aaggccccca agaaactgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg ccagcagtac tggtactgga tgtacacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 25 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (5-10) <400> 25 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgaac ccgcaagaac tacctggatt ggtttcagca gaagcccggc 840 aaggccccca agatgctgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg cgaacagaca tggtactgga tgatcacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 26 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (6-32) <400> 26 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgcac ccgcaagaac tacctggcct ggtaccagca gaagcccggc 840 aaggccccca agattctgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg cgagcagata tggtactgga tgacaacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 27 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (6-91) <400> 27 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgcac ccgcaagaac tacctggaat ggtatcagca gaagcccggc 840 aaggccccca agcgtctgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg cgaacagata tggtactgga tgaaaacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 28 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (1-60) <400> 28 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Asp Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Lys Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Gln Gln Tyr Trp Tyr Trp Met Tyr Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <210> 29 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (5-10) <400> 29 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Asp Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Met Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Glu Gln Thr Trp Tyr Trp Met Ile Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <210> 30 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (6-32) <400> 30 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Ile Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Glu Gln Ile Trp Tyr Trp Met Thr Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <210> 31 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (6-91) <400> 31 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Glu Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Glu Gln Ile Trp Tyr Trp Met Lys Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Enhanced cytosol-penetrating antibody <130> PP-B2350 <160> 31 <170> KopatentIn 2.0 <210> 1 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv VH <400> 1 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Tyr Ile Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser 115 <210> 2 <211> 114 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (hT4-3 VL) <400> 2 Asp Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Phe Asn Ser 20 25 30 Arg Thr Arg Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys 35 40 45 Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln 85 90 95 Tyr Trp Tyr Trp Met Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110 Lys Arg <210> 3 <211> 244 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv <400> 3 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Tyr Ile Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125 Gly Ser Asp Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 130 135 140 Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Phe 145 150 155 160 Asn Ser Arg Thr Arg Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro 165 170 175 Gly Lys Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser 180 185 190 Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 195 200 205 Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Phe Cys 210 215 220 Gln Gln Tyr Trp Tyr Trp Met Tyr Thr Phe Gly Gln Gly Thr Lys Val 225 230 235 240 Glu Ile Lys Arg <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F1) <400> 4 tcgatcccgc gaaattaata cgactcacta taggg 35 <210> 5 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Ori) <400> 5 tgccgggctt ctgctgatac caggccaggt agttcttgcg ggtgc 45 <210> 6 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut1) <400> 6 tgccgggctt ctgctgaaac caggccaggt agttcttgcg ggtgc 45 <210> 7 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut2) <400> 7 tgccgggctt ctgctgccac caggccaggt agttcttgcg ggtgc 45 <210> 8 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut3) <400> 8 tgccgggctt ctgctgatac caatccaggt agttcttgcg ggtgc 45 <210> 9 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut4) <400> 9 tgccgggctt ctgctgaaac caatccaggt agttcttgcg ggtgc 45 <210> 10 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut5) <400> 10 tgccgggctt ctgctgccac caatccaggt agttcttgcg ggtgc 45 <210> 11 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut6) <400> 11 tgccgggctt ctgctgatac cattccaggt agttcttgcg ggtgc 45 <210> 12 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut7) <400> 12 tgccgggctt ctgctgaaac cattccaggt agttcttgcg ggtgc 45 <210> 13 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R1_Mut8) <400> 13 tgccgggctt ctgctgccac cattccaggt agttcttgcg ggtgc 45 <210> 14 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Ori) <400> 14 cagcagaagc ccggcaaggc ccccaagctg ctgatctact gggccagcac 50 <210> 15 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut1) <400> 15 cagcagaagc ccggcaaggc ccccaagatg ctgatctact gggccagcac 50 <210> 16 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut2) <400> 16 cagcagaagc ccggcaaggc ccccaagatt ctgatctact gggccagcac 50 <210> 17 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut3) <400> 17 cagcagaagc ccggcaaggc ccccaagaac ctgatctact gggccagcac 50 <210> 18 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut4) <400> 18 cagcagaagc ccggcaaggc ccccaagcag ctgatctact gggccagcac 50 <210> 19 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut5) <400> 19 cagcagaagc ccggcaaggc ccccaagcgt ctgatctact gggccagcac 50 <210> 20 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F2_Mut6) <400> 20 cagcagaagc ccggcaaggc ccccaagaaa ctgatctact gggccagcac 50 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R2) <400> 21 gcagaagtag gtggcgaagt cctcgggctg caggctgctg 40 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (F3-deg) <400> 22 gacttcgcca cctacttctg cvwbcagwdk tggtactgga tgwdkacctt cggccagggc 60 60 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (R3) <400> 23 caaaaaaccc ctcaagaccc gttta 25 <210> 24 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (1-60) <400> 24 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgcac ccgcaagaac tacctggatt ggtttcagca gaagcccggc 840 aaggccccca agaaactgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg ccagcagtac tggtactgga tgtacacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 25 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (5-10) <400> 25 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgaac ccgcaagaac tacctggatt ggtttcagca gaagcccggc 840 aaggccccca agatgctgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg cgaacagaca tggtactgga tgatcacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 26 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (6-32) <400> 26 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgcac ccgcaagaac tacctggcct ggtaccagca gaagcccggc 840 aaggccccca agattctgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg cgagcagata tggtactgga tgacaacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 27 <211> 1227 <212> DNA <213> Artificial Sequence <220> <223> RT11-3 scFv (6-91) <400> 27 atgagtggcg ggcaaatatt tgtaaaaacc ctgaccggga agactattac cctggaggtg 60 gaatctagcg acacgattga caacgtcaaa agtaaaattc aggataaaga aggtataccg 120 ccggatcagc agcgtctgat ctttgccggt aaacagcttg aggatggacg gacactgtca 180 gattataata tccaaaaaga atccaccctg catttagttt tgcgcctccg cggcggcatc 240 gaaggtcgta gcagcggcca tcatcatcac catcatcacg aggtgcagct ggtggagagc 300 ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 360 accttcagca gctacagcat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 420 gtgagctaca tcagccgcac cagccacacc acctactacg ccgacagcgt gaagggccgc 480 ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 540 gccgaggaca ccgccgtgta ctactgcgcc cgcggcttct tcatggacta ctggggccag 600 ggcaccctgg tgaccgtgag cagcggcggc ggtggcagcg gtggcggcgg aagcggcgga 660 ggcggtagcg gtggcggcgg tagcggtgga ggcggctcgg acctggtgat gacccagagc 720 cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgcaa gagcagccag 780 agcctgttca acagccgcac ccgcaagaac tacctggaat ggtatcagca gaagcccggc 840 aaggccccca agcgtctgat ctactgggcc agcacccgcg agagcggcgt gcccagccgc 900 ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 960 gacttcgcca cctacttctg cgaacagata tggtactgga tgaaaacctt cggccagggc 1020 accaaggtgg agatcaagcg tgggggtggt ggaagccgtg accacatggt ccttcatgag 1080 tacgtaaatg ctgctgggat tacaggcgga ggcggaagcg gcggtggagg ctcgggtggc 1140 ggtggcagcg gtcacgttgt tgaaggtctg gctggtgaac tggaacagct gcgtgctcgt 1200 ctggaacacc acccgcaggg ttaatag 1227 <210> 28 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (1-60) <400> 28 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Asp Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Lys Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Gln Gln Tyr Trp Tyr Trp Met Tyr Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <210> 29 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (5-10) <400> 29 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Asp Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Met Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Glu Gln Thr Trp Tyr Trp Met Ile Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <210> 30 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (6-32) <400> 30 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Ile Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Glu Gln Ile Trp Tyr Trp Met Thr Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405 <210> 31 <211> 407 <212> PRT <213> Artificial Sequence <220> <223> RT11-3 scFv (6-91) <400> 31 Met Ser Gly Gly Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile 1 5 10 15 Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Ser Lys 20 25 30 Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe 35 40 45 Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile 50 55 60 Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ile 65 70 75 80 Glu Gly Arg Ser Ser Gly His His His His His His His Glu Val Gln 85 90 95 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 100 105 110 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Ser 115 120 125 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile 130 135 140 Ser Arg Thr Ser His Thr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 145 150 155 160 Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 165 170 175 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 180 185 190 Phe Phe Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 195 200 205 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 210 215 220 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Leu Val Met Thr Gln Ser 225 230 235 240 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 245 250 255 Lys Ser Ser Gln Ser Leu Phe Asn Ser Arg Thr Arg Lys Asn Tyr Leu 260 265 270 Glu Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr 275 280 285 Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 290 295 300 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 305 310 315 320 Asp Phe Ala Thr Tyr Phe Cys Glu Gln Ile Trp Tyr Trp Met Lys Thr 325 330 335 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly Ser 340 345 350 Arg Asp His Met Val Leu His Glu Tyr Val Asn Ala Ala Gly Ile Thr 355 360 365 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 370 375 380 His Val Val Glu Gly Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg 385 390 395 400 Leu Glu His His Pro Gln Gly 405

Claims (17)

서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는, 세포질 침투 항체 또는 이의 항원 결합 단편.A cytoplasmic penetration antibody or antigen-binding fragment thereof, comprising an amino acid variation in at least one selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO: 2. 제1항에 있어서, 상기 항체의 표적은 KRas인 것을 특징으로 하는 세포질 침투 항체 또는 이의 항원 결합 단편.The cytoplasmic penetration antibody or antigen-binding fragment thereof according to claim 1, wherein the target of the antibody is KRas. 제1항에 있어서, 서열번호 2의 경쇄 가변영역 중 다음으로 구성된 군에서 선택된 아미노산 치환을 포함 (위치는 Kabat numbering에 따름)하는, 세포질 침투 항체 또는 이의 항원 결합 단편:
34번째 위치의 아미노산 A가 D 또는 E로 치환;
36번째 위치의 아미노산 Y가 F로 치환;
46번째 위치의 아미노산 L이 K, M, I 또는 R로 치환;
89번째 Q가 E, M, L, I 또는 N으로 치환;
91번째 Y가 T, M, F, I 또는 K로 치환; 및
96번째 Y가 T, W, F, I 또는 K로 치환.
According to claim 1, wherein the light chain variable region of SEQ ID NO: 2 comprises an amino acid substitution selected from the group consisting of (position according to Kabat numbering), cytoplasmic penetration antibody or antigen-binding fragment thereof:
Amino acid A at position 34 is replaced by D or E;
Amino acid Y at position 36 is replaced by F;
Amino acid L at position 46 is substituted with K, M, I or R;
89th Q is replaced by E, M, L, I or N;
91st Y is substituted with T, M, F, I or K; And
96th Y is replaced by T, W, F, I or K.
제1항에 있어서, 서열번호 28 내지 31로 구성된 군에서 선택되는 경쇄 가변영역을 포함하는, 세포질 침투 항체 또는 이의 항원 결합 단편.According to claim 1, comprising a light chain variable region selected from the group consisting of SEQ ID NO: 28 to 31, cytoplasmic penetration antibody or antigen-binding fragment thereof. 제1항에 있어서, 상기 항체는 scFv 형태인 것을 특징으로 하는 세포질 침투 항체 또는 이의 항원 결합 단편.According to claim 1, wherein the antibody is a cytoplasmic penetration antibody or antigen-binding fragment thereof, characterized in that the scFv form. 제1항에 있어서, 서열번호 1의 중쇄 가변영역을 추가로 포함하는, 세포질 침투 항체 또는 이의 항원 결합 단편.According to claim 1, Further comprising a heavy chain variable region of SEQ ID NO: 1, the cytoplasmic penetration antibody or antigen-binding fragment thereof. 제1항 내지 제6항 중 어느 한 항의 세포질 침투 항체 또는 이의 항원 결합 단편을 코딩하는 핵산.A nucleic acid encoding the cytoplasmic penetration antibody of any one of claims 1 to 6 or an antigen-binding fragment thereof. 제1항 내지 제6항 중 어느 한 항의 세포질 침투 항체 또는 이의 항원 결합 단편을 포함하는 세포질 내 생체 활성분자 전달용 조성물.A composition for delivery of a bioactive molecule in the cytoplasm comprising the cytoplasmic penetration antibody of any one of claims 1 to 6 or an antigen-binding fragment thereof. 제8항에 있어서, 상기 활성물질은 펩타이드, 단백질, 독소, 항체, 항체절편, RNA, siRNA, DNA, 소분자 약물, 나노입자 및 리포좀으로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 조성물.The composition of claim 8, wherein the active material is at least one selected from the group consisting of peptides, proteins, toxins, antibodies, antibody fragments, RNA, siRNA, DNA, small molecule drugs, nanoparticles, and liposomes. 제1항 내지 제6항 중 어느 한 항의 세포질 침투 항체 또는 이의 항원 결합 단편과 생체 활성분자가 융합된 접합체.A conjugate in which the cytoplasmic penetrating antibody of any one of claims 1 to 6 or an antigen-binding fragment thereof and a bioactive molecule are fused. 제10항에 있어서, 상기 생체 활성분자는 펩타이드, 단백질, 소분자 약물, 나노입자 및 리포좀으로 구성된 군으로부터 선택된 접합체.The conjugate of claim 10, wherein the bioactive molecule is selected from the group consisting of peptides, proteins, small molecule drugs, nanoparticles, and liposomes. 세포질 침투 항체 또는 이의 항원 결합 단편을 세포막을 투과하여 세포질에 위치시키는 방법으로서, 상기 항체는 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는 방법.A method of placing a cytoplasmic penetration antibody or antigen-binding fragment thereof through the cell membrane and placing it in the cytoplasm, wherein the antibody comprises an amino acid variation in one or more selected from the group consisting of CDR1, FR and CDR3 among the light chain variable regions of SEQ ID NO:2 . 제12항에 있어서, 상기 항체는 서열번호 2의 경쇄 가변영역 중 다음으로 구성된 군에서 선택된 아미노산 치환을 포함 (위치는 Kabat numbering에 따름)하는, 방법:
34번째 위치의 아미노산 A가 D 또는 E로 치환;
36번째 위치의 아미노산 Y가 F로 치환;
46번째 위치의 아미노산 L이 K, M, I 또는 R로 치환;
89번째 Q가 E, M, L, I 또는 N으로 치환;
91번째 Y가 T, M, F, I 또는 K로 치환; 및
96번째 Y가 T, W, F, I 또는 K로 치환.
The method of claim 12, wherein the antibody comprises an amino acid substitution selected from the group consisting of the light chain variable region of SEQ ID NO: 2 (position is according to Kabat numbering):
Amino acid A at position 34 is replaced by D or E;
Amino acid Y at position 36 is replaced by F;
Amino acid L at position 46 is substituted with K, M, I or R;
89th Q is replaced by E, M, L, I or N;
91st Y is substituted with T, M, F, I or K; And
96th Y is replaced by T, W, F, I or K.
제12항에 있어서, 서열번호 28 내지 31로 구성된 군에서 선택되는 경쇄 가변영역을 포함하는, 방법.The method of claim 12, comprising a light chain variable region selected from the group consisting of SEQ ID NOs: 28 to 31. 세포막을 투과하여 세포질에 위치하는 것을 유도하는, 세포질 침투능을 갖는 경쇄가변영역 (VL)으로서, 서열번호 2의 경쇄 가변영역 중 CDR1, FR 및 CDR3로 구성된 군에서 선택된 하나 이상에 아미노산 변이를 포함하는 경쇄가변영역 (VL).A light chain variable region (VL) having a cytoplasmic penetration ability that penetrates into a cell membrane and induces its location in the cytoplasm, wherein the light chain variable region of SEQ ID NO: 2 comprises an amino acid variation in one or more selected from the group consisting of CDR1, FR and CDR3 Light chain variable region (VL). 제15항에 있어서, 상기 항체는 서열번호 2의 경쇄 가변영역 중 다음으로 구성된 군에서 선택된 아미노산 치환을 포함 (위치는 Kabat numbering에 따름)하는, 경쇄가변영역 (VL):
34번째 위치의 아미노산 A가 D 또는 E로 치환;
36번째 위치의 아미노산 Y가 F로 치환;
46번째 위치의 아미노산 L이 K, M, I 또는 R로 치환;
89번째 Q가 E, M, L, I 또는 N으로 치환;
91번째 Y가 T, M, F, I 또는 K로 치환; 및
96번째 Y가 T, W, F, I 또는 K로 치환.
The light chain variable region (VL) according to claim 15, wherein the antibody comprises an amino acid substitution selected from the group consisting of light chain variable region of SEQ ID NO: 2 (position is according to Kabat numbering):
Amino acid A at position 34 is replaced by D or E;
Amino acid Y at position 36 is replaced by F;
Amino acid L at position 46 is substituted with K, M, I or R;
89th Q is replaced by E, M, L, I or N;
91st Y is substituted with T, M, F, I or K; And
96th Y is replaced by T, W, F, I or K.
제15항에 있어서, 서열번호 28 내지 31로 구성된 군에서 선택되는 경쇄 가변영역을 포함하는, 경쇄가변영역 (VL).
The light chain variable region (VL) according to claim 15, comprising a light chain variable region selected from the group consisting of SEQ ID NOs: 28 to 31.
KR1020200004848A 2019-01-15 2020-01-14 Enhanced cytosol-penetrating antibody KR20200088780A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190005299 2019-01-15
KR20190005299 2019-01-15

Publications (1)

Publication Number Publication Date
KR20200088780A true KR20200088780A (en) 2020-07-23

Family

ID=71613957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200004848A KR20200088780A (en) 2019-01-15 2020-01-14 Enhanced cytosol-penetrating antibody

Country Status (2)

Country Link
KR (1) KR20200088780A (en)
WO (1) WO2020149613A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202241940A (en) * 2020-12-23 2022-11-01 日商中外製藥股份有限公司 Antigen-binding molecules with improved cytosol-penetrating activity
CN116574748B (en) * 2023-07-10 2023-09-12 昆明医科大学 Chimeric nTCR-T construction method for targeting KRAS high-frequency mutant tumor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040867B2 (en) * 2014-03-04 2018-08-07 Yale University Cell penetrating anti-guanosine antibody based therapy for cancers with Ras mutations
KR101602876B1 (en) * 2014-07-22 2016-03-11 아주대학교산학협력단 Method for inhibiting activated RAS using intact immunoglobulin antibody having Cell-penetrating ability and use thereof
KR20180129514A (en) * 2017-05-26 2018-12-05 오름테라퓨틱 주식회사 Cytosol-Penetrating Antibodies and Uses Thereof
CN111936521A (en) * 2017-11-16 2020-11-13 奥隆制药 Antibodies that inhibit activated Ras in cells by internalization into the cytosol and uses thereof

Also Published As

Publication number Publication date
WO2020149613A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
KR101602870B1 (en) Method for Cell-penetrating and cytosol-localizing of intact immunoglobulin antibody, and use thereof
US20220298220A1 (en) Neuropilin-1 Specific Binding Peptide, Fusion Protein Fused with Same, and Use Thereof
KR101732553B1 (en) Activated RAS-specific VH of antibody and use thereof
AU2017271189B2 (en) Cytosol-penetrating antibody and use thereof
JP2013534813A (en) Anti-CD133 antibody single chain variable fragments and uses thereof
JP2018134109A (en) Neuropilin specific tumor penetrating peptide and fusion protein fused with the same
US20110263829A1 (en) Cell-penetrating, sequence-specific and nucleic acid-hydrolyzing antibody, method for preparing the same and pharmaceutical composition comprising the same
KR20200088780A (en) Enhanced cytosol-penetrating antibody
KR102091195B1 (en) Cytosol-Penetrating Antibodies and Uses Thereof
KR20180129514A (en) Cytosol-Penetrating Antibodies and Uses Thereof
KR20230013143A (en) Neuropilin-1 Specific Binding Non-CendR Peptide, Fusion Protein Comprising the Same Fused Thereto and Use Thereof
KR102154177B1 (en) Method for screening enhanced cytosol-penetrating antibody
EP3466970A1 (en) Cytosol-penetrating antibody and use thereof
NZ749020B2 (en) Cytosol-penetrating antibody and use thereof
KR101421792B1 (en) RNA aptamer that selectively binds to extracellular domain of PAP

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application