KR20200087722A - Manufacturing method of carboxymethyl-dextran nanoparticle and carboxymethyl-dextran nanoparticle prepared by the method - Google Patents

Manufacturing method of carboxymethyl-dextran nanoparticle and carboxymethyl-dextran nanoparticle prepared by the method Download PDF

Info

Publication number
KR20200087722A
KR20200087722A KR1020200003924A KR20200003924A KR20200087722A KR 20200087722 A KR20200087722 A KR 20200087722A KR 1020200003924 A KR1020200003924 A KR 1020200003924A KR 20200003924 A KR20200003924 A KR 20200003924A KR 20200087722 A KR20200087722 A KR 20200087722A
Authority
KR
South Korea
Prior art keywords
carboxymethyl
dextran
nanoparticles
preparing crosslinked
electron beam
Prior art date
Application number
KR1020200003924A
Other languages
Korean (ko)
Other versions
KR102382969B1 (en
Inventor
유정수
흉풍투
이웅희
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of KR20200087722A publication Critical patent/KR20200087722A/en
Application granted granted Critical
Publication of KR102382969B1 publication Critical patent/KR102382969B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/06Macromolecular compounds, carriers being organic macromolecular compounds, i.e. organic oligomeric, polymeric, dendrimeric molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to a method for preparing crosslinked carboxymethyl-dextran nanoparticles, including the step of forming an intermolecular or intramolecular cross-linking of carboxymethyl-dextran by irradiating an electron beam to a carboxymethyl-dextran solution.

Description

카르복시메틸-덱스트란 나노 입자를 합성하는 방법 및 이 방법으로 제조된 카르복시메틸-덱스트란 나노 입자{MANUFACTURING METHOD OF CARBOXYMETHYL-DEXTRAN NANOPARTICLE AND CARBOXYMETHYL-DEXTRAN NANOPARTICLE PREPARED BY THE METHOD}Method for synthesizing carboxymethyl-dextran nanoparticles, and carboxymethyl-dextran nanoparticles prepared by this method TECHNICAL FIELD

본 발명은 가교제 없이 생체적합성을 가지며, 순수한 카르복시메틸-덱스트란 가교체인 나노 입자를 제조하는 방법 및 이렇게 제조된 나노 입자, 그리고 이러한 나노 입자의 활용에 관한 것이다.The present invention relates to a method for producing nanoparticles having a biocompatible, pure carboxymethyl-dextran crosslinker without a crosslinking agent, and nanoparticles thus prepared, and utilization of such nanoparticles.

카르복시메틸-덱스트란은 사탕수수의 사탕을 세균으로 분해하여 만든, 포도당 중합체인 다당류로 심한 출혈, 쇼크 따위에 혈액을 대신하는 혈장제로 많이 활용되고 있다. Carboxymethyl-dextran is a glucose polymer made by decomposing sugar cane into bacteria, and is widely used as a blood plasma substitute for severe bleeding and shock.

생체에서 사용가능하고, 생체적합한 순수한 카르복시메틸-덱스트란의 수화겔과 같은 나노입자는 이의 조영제로서의 사용 및 생체 내에 사용에 필수적일 것인데, 카르복시메틸-덱스트란을 가교결합을 진행하며 나노입자 형태로 전환하여 활용하는 연구는 아직 초기 단계이며 더불어 가교제를 활용하지 않고 나노입자를 합성하는 연구는 진행되고 있지 않고 있다. Nanoparticles such as a hydrogel of pure carboxymethyl-dextran, which is biocompatible and is biocompatible, will be essential for use as a contrast agent and in vivo, and converts carboxymethyl-dextran into nanoparticle form through crosslinking Research to utilize and use is still in its infancy, and research to synthesize nanoparticles without using a crosslinking agent has not been conducted.

한편, 카르복시메틸-덱스트란 수용액에 전자빔을 조사함으로써 나노입자를 제조하는 방법이 제공된 바 있으나(한국 등록특허 제10-1893549호), 카르복시메틸-덱스트란 수용액의 농도가 높고 전자빔의 세기가 일정 수준 이상인 경우에만 나노입자가 생성이 되는 한계가 있었다. On the other hand, there has been provided a method for producing nanoparticles by irradiating an electron beam to an aqueous carboxymethyl-dextran solution (Korean Patent No. 10-1893549), but the concentration of the aqueous carboxymethyl-dextran solution is high and the electron beam intensity is at a certain level. There was a limit to the generation of nanoparticles only in the above case.

이에 본 발명은 상기한 종래의 문제점 및 필요를 인식하고, 생체 적합하면서 순수한 카르복시메틸-덱스트란 나노입자 또는 나노겔을 제조하는 새로운 방법을 제공한다. Accordingly, the present invention recognizes the above-mentioned conventional problems and needs, and provides a novel method for preparing biocompatible and pure carboxymethyl-dextran nanoparticles or nanogels.

본 발명의 방법은 별도의 가교제 없고, 유기용매가 아닌 수용액 상에서, 보다 구체적으로는 산성 수용액에서 카르복시메틸-덱스트란 가교 나노 입자 형성할 수 있는 방법을 제공하며, 또한, 나노 입자의 크기를 제어할 수 있는 방법을 제공한다. The method of the present invention provides a method for forming carboxymethyl-dextran crosslinked nanoparticles in an aqueous solution other than an organic solvent, and more specifically in an acidic aqueous solution without a separate crosslinking agent, and also to control the size of the nanoparticles. It provides a way to do it.

일 측면으로서, 카르복시메틸-덱스트란 수용액에 전자빔을 조사하여, 카르복시메틸-덱스트란의 분자간 또는 분자내 가교결합을 형성함을 포함하는, 가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법을 제공한다. In one aspect, a method for producing cross-linked carboxymethyl-dextran nanoparticles comprising irradiating an electron beam to an aqueous carboxymethyl-dextran solution to form an intermolecular or intramolecular crosslink of carboxymethyl-dextran do.

본 발명에서 상기 나노입자란 크기가 수 내지 수백 나노미터(nm, 10억분의 1미터인 물질)인 입자를 말한다. 본 발명에서 상기 나노입자는 입자의 크기가 1 내지 100nm인 것을 특징으로 할 수 있으나 이에 제한되는 것은 아니다. 본 발명에서 상기 나노입자란 나노겔 또는 나노하이드로겔도 포함하는 개념으로, 이하에서 나노입자, 나노겔 또는 나노하이드로겔은 모두 본 발명에 따른 나노입자를 의미하는 것으로 사용된다.In the present invention, the nanoparticle refers to a particle having a size of several hundreds to hundreds of nanometers (nm, a material of one billionth of a meter). In the present invention, the nanoparticle may be characterized in that the particle size is 1 to 100 nm, but is not limited thereto. In the present invention, the nanoparticles are concepts including nanogels or nanohydrogels. Hereinafter, nanoparticles, nanogels, or nanohydrogels are all used to mean nanoparticles according to the present invention.

상기 수용액은 가교제 및 유기용매를 포함하지 않음을 특징으로 한다. The aqueous solution is characterized in that it does not contain a crosslinking agent and an organic solvent.

상기 전자빔을 조사한 이후, 투석 및 동결 건조단계를 추가로 포함한다. After irradiating the electron beam, dialysis and freeze-drying steps are further included.

상기 카르복시메틸-덱스트란 수용액은 산성임을 특징으로 하며, 산성 수용액을 위해 상기 카르복시메틸-덱스트란 함유 용액에 HClO4을 추가로 포함할 수 있다. 이하에서 자세히 설명되고 입증되는 바와 같이, 카르복시메틸-덱스트란 수용액을 산성으로 하거나, 카르복시메틸-덱스트란 수용액에 산이 첨가되는 경우, 그렇지 않는 경우에 비해, 높은 나노입자 합성 효율이 증대됨을 새롭게 제공한다. 또한 pH의 조절 및 산 화합물을 첨가 농도의 조절로 예기치 않게 나노 입자의 크기를 제어할 수 있음을 제공한다.The aqueous carboxymethyl-dextran solution is characterized in that it is acidic, and for the acidic aqueous solution, HClO 4 may be additionally included in the solution containing the carboxymethyl-dextran. As described and demonstrated in detail below, it is newly provided that the carboxymethyl-dextran aqueous solution is acidic, or when the acid is added to the carboxymethyl-dextran aqueous solution, the high nanoparticle synthesis efficiency is increased compared to the case where it is not. . It also provides that the size of the nanoparticles can be unexpectedly controlled by adjusting the pH and the concentration of the acid compound.

본 발명에서 상기 카르복시메틸-덱스트란 수용액의 pH는 2.0 내지 6.0인 것을 특징으로 할 수 있다. 바람직하게는, 상기 카르복시메틸-덱스트란 수용액의 pH는 2.5 내지 5.0인 것을 특징으로 할 수 있다. In the present invention, the pH of the aqueous carboxymethyl-dextran solution may be characterized in that it is 2.0 to 6.0. Preferably, the pH of the aqueous solution of carboxymethyl-dextran may be 2.5 to 5.0.

상기 카르복시메틸-덱스트란 수용액은 0.1 내지 5.0%(w/v)의 농도인 것을 특징으로 한다. 바람직하게는, 상기 카르복시메틸-덱스트란 수용액은 0.2 내지 4.0%(w/v), 더 바람직하게는 0.3 내지 3.0%(w/v), 가장 바람직하게는 0.5 내지 2.0%(w/v)의 농도일 수 있다. The aqueous carboxymethyl-dextran solution is characterized in that it has a concentration of 0.1 to 5.0% (w/v). Preferably, the aqueous solution of carboxymethyl-dextran is 0.2 to 4.0% (w/v), more preferably 0.3 to 3.0% (w/v), most preferably 0.5 to 2.0% (w/v) Concentration.

상기 수용액은 가교제 및 유기용매를 포함하지 않음을 특징으로 한다.The aqueous solution is characterized in that it does not contain a crosslinking agent and an organic solvent.

상기 전자빔을 조사한 이후, 투석 및 동결 건조단계를 추가로 포함한다.After irradiating the electron beam, dialysis and freeze-drying steps are further included.

상기 전자빔의 조사선량을 변경하여 카르복시메틸-덱스트란 나노 입자의 크기를 제어할 수 있고, 상기 전자빔의 조사선량을 늘려 상기 카르복시메틸-덱스트란 나노 입자의 크기를 감소시킴을 특징으로 한다. It is characterized in that it is possible to control the size of the carboxymethyl-dextran nanoparticles by changing the radiation dose of the electron beam, and reducing the size of the carboxymethyl-dextran nanoparticles by increasing the radiation dose of the electron beam.

본 발명에서 상기 전자빔 조사선량은 2 내지 300kGy인 것을 특징으로 할 수 있다. 바람직하게는, 상기 전자빔 조사선량은 3 내지 200kGy인 것을 특징으로 할 수 있다. In the present invention, the electron beam irradiation dose may be characterized in that 2 to 300 kGy. Preferably, the electron beam irradiation dose can be characterized in that 3 to 200kGy.

본 발명에서 상기 전자빔 총 조사에너지 세기는 0.1MeV 내지 5.0Mev인 것을 특징으로 할 수 있다. 바람직하게는, 전자빔의 총 조사에너지 세기는 0.5MeV 내지 3.0Mev, 가장 바람직하게는 1.0MeV 내지 3.0MeV일 수 있다.In the present invention, the total irradiation energy intensity of the electron beam may be characterized in that 0.1MeV to 5.0Mev. Preferably, the total irradiation energy intensity of the electron beam may be 0.5 MeV to 3.0 Mev, most preferably 1.0 MeV to 3.0 MeV.

상기 수용액의 pH를 조절하여, 상기 카르복시메틸-덱스트란 나노 입자의 크기를 제어함을 특징으로 하며, 상기 수용액의 pH를 낮춰 상기 카르복시메틸-덱스트란 나노 입자의 크기를 증가시킴을 특징으로 한다. It is characterized by controlling the pH of the aqueous solution to control the size of the carboxymethyl-dextran nanoparticles, and decreasing the pH of the aqueous solution to increase the size of the carboxymethyl-dextran nanoparticles.

상기 카르복시메틸-덱스트란 나노입자는 10nm 이하의 둥근 구형 모양임을 특징으로 한다.The carboxymethyl-dextran nanoparticles are characterized by having a round spherical shape of 10 nm or less.

상기 나노 입자는 팽윤 특성을 가지는 하이드로젤임을 특징으로 한다. The nanoparticles are characterized by being hydrogels with swelling properties.

상기 나노 입자는 종양 선택성을 가짐을 특징으로 한다. The nanoparticles are characterized by having tumor selectivity.

또 다른 측면으로서, 본 발명은, 방사성 동위원소, 유기 형광물질, 무기물질인 양자점, 자기공명영상 조영제, 컴퓨터단층촬영 조영제, 양전자단층촬영 조영제, 초음파 조영제, 형광 조영제 및 상형변환물질로 이뤄진 군에서 선택된 하나 이상의 표지 물질로 표지된 상기한 카르복시메틸-덱스트란 나노 입자를 포함하는 조영제를 제공한다. As another aspect, the present invention, in the group consisting of radioactive isotopes, organic fluorescent materials, inorganic materials quantum dots, magnetic resonance imaging contrast medium, computed tomography contrast medium, positron tomography contrast medium, ultrasound contrast medium, fluorescent contrast agents and pictoconversion material It provides a contrast agent comprising the above-described carboxymethyl-dextran nanoparticles labeled with at least one selected labeling material.

상기 나노 입자에 접합된 리간드 화합물 및 상기 리간드 화합물에 배위결합된 방사성 동위 원소를 포함할 수 있다. The nanoparticle may include a ligand compound conjugated to the nanoparticle and a radioactive isotope coordinated to the ligand compound.

상기 리간드 화합물은 NODA-GA-NH2, DOTA-GA, DOTA, TETA 및 NOTA 중 적어도 어느 하나임을 특징으로 한다. The ligand compound is NODA-GA-NH 2 , Characterized in that at least one of DOTA-GA, DOTA, TETA and NOTA.

상기 방사성 동위 원소는 11C, 13N, 15O, 18F, 38K, 62Cu, 64Cu, 68Ga, 82Rb, 124I, 89Zr, 99mTc, 123I, 111In, 67Ga, 177Lu, 201Tl, 117mSn, 125I, 131I, 166Ho, 188Re, 67Cu, 89Sr, 90Y, 225Ac, 213Bi, 및 211At 중 적어도 어느 하나임을 특징으로 한다. The radioactive isotopes are 11 C, 13 N, 15 O, 18 F, 38 K, 62 Cu, 64 Cu, 68 Ga, 82 Rb, 124 I, 89 Zr, 99m Tc, 123 I, 111 In, 67 Ga, 177 Lu, 201 Tl, 117m Sn, 125 I, 131 I, 166 Ho, 188 Re, 67 Cu, 89 Sr, 90 Y, 225 Ac, 213 Bi, and 211 At.

본 발명은 순수한 카르복시메틸-덱스트란 나노 입자를 가교제 및 유기용매 없이 수용액 상에서 제조할 수 있는 방법을 제공한다. The present invention provides a method for preparing pure carboxymethyl-dextran nanoparticles in an aqueous solution without a crosslinking agent and an organic solvent.

본 발명은 최적화된 전자빔 조건하에서 재현성 있게 다양한 나노미터 사이즈의 카르복시메틸-덱스트란 나노입자를 균일하게 합성할 수 있었고, 방사성 표지를 통해 합성된 카르복시메틸-덱스트란 나노입자의 종양진단 조영제 및 치료제로서의 용도를 제공한다. The present invention was able to uniformly synthesize various nanometer-sized carboxymethyl-dextran nanoparticles reproducibly under optimized electron beam conditions, and as a tumor diagnostic contrast agent and therapeutic agent for carboxymethyl-dextran nanoparticles synthesized through radiolabeling Provide a use.

도 1은 카르복시메틸-덱스트란 고분자가 전자빔에 의해 가교되어 카르복시메틸-덱스트란 입자가 형성됨을 보여주는 개념도이다.
도 2 및 도 3은 본 발명의 실시예 1의 카르복시메틸-덱스트란의 크기 분포를 보여주는 그래프이다.
도 4 내지 5는 카르복시메틸-덱스트란의 종류, 산의 농도와 조사선량에 따른 입자의 크기를 보여주는 막대 그래프이다.
도 6은 본 발명의 실시예 1의 샘플 중 하나의 카르복시메틸-덱스트란 나노입자의 DLS 분석 결과이다.
도 7은 카르복시메틸-덱스트란 나노입자를 대량으로 합성하고 동결건조 과정 이후 파우더 형태로 샘플을 얻은 사진이다.
도 8은 본 발명의 실시예 1에 따라 제조된 카르복시메틸-덱스트란 나노 입자의 TEM 사진이다.
도 9는 본 발명의 실시예 1에 따라 제조된 카르복시메틸-덱스트란 나노 입자의 하이드로젤 특성을 보여주는 실험 결과 사진이다.
도 10 및 도 13은 본 발명의 실시예 2의 카르복시메틸-덱스트란 나노입자에 이중기능킬레이트를 접합하여 킬레이트 화합물을 제조하는 과정을 보여주는 개략도이다.
도 11 및 도 14는 본 발명의 실시예 2의 카르복시메틸-덱스트란 나노 입자에 Cu-64로 표지하는 과정을 보여주는 개략도이다.
도 12 및 도 15는 본 발명의 실시예 2의 카르복시메틸-덱스트란 나노 입자에 Cu-64의 방사성 표지된 킬레이트 화합물의 방사화학적 순도 결과를 보여준다.
도 16은 본 발명의 실시예 2의 카르복시메틸-덱스트란 나노 입자에 Cu-64의 방사성 표지된 킬레이트 화합물의 PBS(Phosphate Buffer Saline)와 혈청(Fetal Bovine Serum)에서의 안정도를 시간별 radio-TLC로 분석한 결과이다.
도 17 내지 도 18은 본 발명의 실시예 2의 카르복시메틸-덱스트란 나노 입자에 Cu-64의 방사성 표지된 킬레이트 화합물의 정상 마우스에서의 생체분포확인 실험의 결과이다.
도 19 내지 도 20은 본 발명의 실시예 2의 카르복시메틸-덱스트란 나노 입자에 Cu-64의 방사성 표지된 킬레이트 화합물의 종양모델에서 생체분포확인 실험의 결과이다.
1 is a conceptual diagram showing that a carboxymethyl-dextran polymer is crosslinked by an electron beam to form carboxymethyl-dextran particles.
2 and 3 are graphs showing the size distribution of carboxymethyl-dextran of Example 1 of the present invention.
4 to 5 are bar graphs showing the type of carboxymethyl-dextran, the concentration of the acid, and the particle size according to the irradiation dose.
6 is a result of DLS analysis of carboxymethyl-dextran nanoparticles in one of the samples of Example 1 of the present invention.
FIG. 7 is a photograph obtained by synthesizing carboxymethyl-dextran nanoparticles in bulk and obtaining a sample in powder form after a lyophilization process.
8 is a TEM photograph of carboxymethyl-dextran nanoparticles prepared according to Example 1 of the present invention.
Figure 9 is a photograph showing the experimental results showing the hydrogel properties of the carboxymethyl-dextran nanoparticles prepared according to Example 1 of the present invention.
10 and 13 are schematic diagrams showing a process of preparing a chelating compound by conjugating a bifunctional chelate to the carboxymethyl-dextran nanoparticles of Example 2 of the present invention.
11 and 14 are schematic diagrams showing the process of labeling carboxymethyl-dextran nanoparticles of Example 2 of the present invention with Cu-64.
12 and 15 show the radiochemical purity results of the radiolabeled chelate compound of Cu-64 in the carboxymethyl-dextran nanoparticles of Example 2 of the present invention.
Figure 16 shows the stability of the radio-labeled chelate compound of Cu-64 in the carboxymethyl-dextran nanoparticles of Example 2 of the present invention in PBS (Phosphate Buffer Saline) and serum (Fetal Bovine Serum) by hourly radio-TLC It is the result of the analysis.
17 to 18 are results of biodistribution confirmation experiments in normal mice of radiolabeled chelate compounds of Cu-64 on the carboxymethyl-dextran nanoparticles of Example 2 of the present invention.
19 to 20 are the results of the biodistribution confirmation experiment in the tumor model of the radiolabeled chelate compound of Cu-64 in the carboxymethyl-dextran nanoparticles of Example 2 of the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention may be variously modified and may have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to specific disclosure forms, and it should be understood that all modifications, equivalents, and substitutes included in the spirit and scope of the present invention are included. In describing each drawing, similar reference numerals are used for similar components.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "include" or "have" are intended to indicate that a feature, step, operation, component, part, or combination thereof described on the specification exists, and one or more other features or steps. It should be understood that it does not preclude the existence or addition possibility of the operation, components, parts or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined in the present application. Does not.

실시예 1: 카르복시메틸-덱스트란 나노젤의 제조Example 1: Preparation of carboxymethyl-dextran nanogels

카르복시메틸-덱스트란을 물에 혼합하여 카르복시메틸-덱스트란 수용액을 제조하였고, 상기 카르복시메틸-덱스트란 수용액에 전자빔을 조사하는 방식으로 실험을 수행하였으며, 다양한 조건(수용액 산성도, 전자빔 조사 세기, 카르복시메틸-덱스트란의 농도(w/v%) 등)의 총 1,488개의 샘플 중에서 264개의 샘플이 나노입자로 합성되었음을 확인할 수 있었다. A carboxymethyl-dextran aqueous solution was prepared by mixing carboxymethyl-dextran in water, and experiments were conducted by irradiating the carboxymethyl-dextran aqueous solution with an electron beam, and various conditions (aqueous acidity, electron beam irradiation intensity, carboxy It was confirmed that 264 samples were synthesized as nanoparticles among a total of 1,488 samples of the concentration of methyl-dextran (w/v%).

나노입자의 크기 분포 분석Analysis of size distribution of nanoparticles

도 2에서 확인할 수 있는 바와 같이, 합성된 카르복시메틸-덱스트란의 샘플을 분석했을 때, DLS 결과를 통해서 확인한 결과, 일부는 대략 20 nm에 해당하는 보다 더 큰 크기를 보이기는 하였지만, 대체로 3 nm 또는 7 nm로 작은 나노입자가 형성됨을 확인하였다. As can be seen in Figure 2, when analyzing the sample of the synthesized carboxymethyl-dextran, through the DLS results, some showed a larger size corresponding to approximately 20 nm, but generally 3 nm Or it was confirmed that small nanoparticles were formed at 7 nm.

수용액의 산성도에 따른 입자 분석Particle analysis according to acidity of aqueous solution

나노입자 합성을 위해 수용액에 산을 첨가하고 산의 농도를 달리하며 실험을 진행하였고 그에 따라 조사 시료의 pH가 변화하였는데, 주로 낮은 pH에서 나노입자 합성이 더 잘 이루어짐을 확인할 수 있었고, 합성되는 나노입자의 크기에 대한 범위도 더 넓음을 확인하였다.For the synthesis of nanoparticles, an acid was added to the aqueous solution, the experiment was conducted with different concentrations of the acid, and accordingly, the pH of the irradiated sample was changed. It was also confirmed that the range for the particle size was wider.

카르복시메틸-덱스트란의 분자량에 따른 입자 분석Particle analysis according to the molecular weight of carboxymethyl-dextran

카르복시메틸-덱스트란을 이용한 전자빔 조사 실험의 경우에는 분자량이 서로 다른 2종류의 카르복시메틸-덱스트란을 이용하여 실험을 진행하였다. In the case of the electron beam irradiation experiment using carboxymethyl-dextran, the experiment was conducted using two types of carboxymethyl-dextran having different molecular weights.

분자량이 큰 카르복시메틸-덱스트란(150kDa)을 사용한 전자빔 조사 실험에서는 균일한 나노입자가 잘 만들어지지 않았지만, 분자량의 크기가 보다 작은 10-20kDa의 카르복시메틸-덱스트란의 경우에는 나노 입자가 잘 만들어졌다. In the electron beam irradiation experiment using a large molecular weight carboxymethyl-dextran (150 kDa), uniform nanoparticles were not well formed, but in the case of a carboxymethyl-dextran of 10-20 kDa with a smaller molecular weight, nanoparticles were well formed. lost.

다양한 조건에서의 입자 분석Particle analysis under various conditions

또한, 수용액의 조건을 달리한 실험을 진행하였다. In addition, experiments were performed under different conditions of the aqueous solution.

카르복시메틸-덱스트란을 활용한 실험에서 산(HClO4)을 첨가하였을 때 나노입자가 잘 만들어지는 것을 확인하며 산을 첨가하며 입자 합성 실험을 진행하였다.In the experiment using carboxymethyl-dextran, when adding acid (HClO 4 ), it was confirmed that nanoparticles were well formed, and acid synthesis experiments were performed by adding acid.

우선, 0.2% HClO4 수용액(pH 3.1) 조건에서, 카르복시메틸-덱스트란의 농도(0.5%, 1%, 2%, w/v%)에 따라 합성되는 입자의 크기가 어떻게 달라지는지 확인해보는 실험을 진행해보았을 때, 도 4에서 확인할 수 있는 바와 같이, 카르복시메틸-덱스트란의 농도가 달라지더라도 합성되는 입자의 크기는 거의 동일하게 유지됨을 확인하며 카르복시메틸-덱스트란의 농도는 전자빔을 이용한 나노입자의 합성에 큰 영향을 주지 않음을 확인할 수 있었다.First, in a 0.2% HClO 4 aqueous solution (pH 3.1) conditions, an experiment to check how the size of synthesized particles varies depending on the concentration of carboxymethyl-dextran (0.5%, 1%, 2%, w/v%) When proceeding, as can be seen in Figure 4, even if the concentration of carboxymethyl-dextran is different, it is confirmed that the size of the synthesized particles remains almost the same, and the concentration of carboxymethyl-dextran is nano using an electron beam. It was confirmed that there was no significant effect on the synthesis of particles.

첨가하는 산의 농도(0.1%, pH 4.0 / 0.2%, pH 3.0)를 달리하며 실험을 진행해보았고, 도 5에서 확인할 수 있는 바와 같이, 첨가되는 산의 농도가 증가함에 따라 합성되는 입자의 크기가 증가되는 경향성을 확인할 수 있었고, 전자빔 조사선량이 증가함에 따라 입자의 크기가 감소하는 경향성을 확인할 수 있었다.The experiment was conducted while varying the concentration of the acid to be added (0.1%, pH 4.0 / 0.2%, pH 3.0). As can be seen in FIG. 5, the size of the synthesized particles increased as the concentration of the acid to be added increased. The tendency to increase was confirmed, and the tendency of the particle size to decrease as the electron beam dose increased.

전자빔 에너지의 세기(1 MeV, 2.5 MeV)를 달리하며 실험을 진행해보았지만 에너지의 세기의 차이는 형성되는 나노입자 크기 차이에 영향을 주지 않음을 확인하였다. Although experiments were conducted while varying the intensity of the electron beam energy (1 MeV, 2.5 MeV), it was confirmed that the difference in the intensity of the energy did not affect the size difference of the formed nanoparticles.

이와 같은 결과를 보이는 카르복시메틸-덱스트란 나노입자를 대량으로 합성하였고, 도 7의 사진처럼 동결건조 과정 이후 파우더 형태로 샘플을 얻을 수 있었다.Carboxymethyl-dextran nanoparticles showing these results were synthesized in large quantities, and samples in powder form were obtained after the lyophilization process as shown in FIG. 7.

나노입자의 광학 분석Optical analysis of nanoparticles

합성된 카르복시메틸-덱스트란 나노젤에 대해서도 TEM을 통해서 입자의 크기 및 모양을 확인해보는 연구를 진행하였고, 도 8의 사진에서와 같이, 입자들 간의 크기 차이가 어느 정도씩 발생되어지긴 하였지만 대부분 10nm 이내의 둥근 구형 모양을 유지하고 있음을 확인하였다.The synthesized carboxymethyl-dextran nanogels were also studied to confirm the size and shape of the particles through TEM. As shown in the photo of FIG. 8, although the size difference between the particles was generated to some extent, most of them were 10nm. It was confirmed that the inner spherical shape was maintained.

하이드로젤 특성 분석Hydrogel Characterization

합성된 나노입자가 실질적으로 물을 잘 머금는(Swelling) 하이드로젤의 특징을 지니고 있는지를 확인하는 실험을 진행해보았고, 대조군으로는 순수한 물과 전자빔을 조사하지 않은 카르복시메틸-덱스트란을 사용하여 실험을 진행하였다.We conducted an experiment to confirm whether the synthesized nanoparticles have the characteristics of a hydrogel that substantially immerses water (Swelling), and experimented with carboxymethyl-dextran without irradiation with pure water and electron beam as a control. Proceeded.

동일한 양의 카르복시메틸-덱스트란 나노입자와 대조군을 각각 500 μL의 물에 녹인 후, 분리막을 가진 원심여과기를 사용하여 원심분리를 진행하여 각각의 튜브 바닥에 떨어진 물의 양을 확인해보았고, 그 차이가 잘 보이도록 하기 위하여 튜브 아래로 떨어진 물을 초록색의 잉크로 염색시킨 후 사진을 찍었다. After dissolving the same amount of carboxymethyl-dextran nanoparticles and the control in 500 μL of water, centrifugation was performed using a centrifugal filter with a separation membrane, and the amount of water dropped on the bottom of each tube was checked. To make it visible, the water dropped under the tube was dyed with green ink and photographed.

그 결과를 확인해보았을 때, 도 9에서 확인할 수 있는 바와 같이, 전자빔을 조사하여 얻어진 나노입자 샘플에서 원심분리 과정 이후 튜브 바닥으로 떨어지는 물의 양이 보다 적고, 상층액 부분에 더 많은 용액이 남겨져 있음을 확인할 수 있었다. When the results were confirmed, as shown in FIG. 9, the amount of water falling to the bottom of the tube after the centrifugation process in the nanoparticle sample obtained by irradiating the electron beam was smaller, and more solution was left in the supernatant part. I could confirm.

이와 같은 결과를 통하여 전자빔 조사를 통해 합성된 카르복시메틸-덱스트란 나노입자가 대조군보다 물을 잘 머금으며 하이드로젤로서의 특징을 지니고 있음을 확인할 수 있었다. Through these results, it was confirmed that the carboxymethyl-dextran nanoparticles synthesized through electron beam irradiation contained water better than the control group and had characteristics as a hydrogel.

실시예 2: 카르복시메틸-덱스트란 나노젤의 활용Example 2: Utilization of carboxymethyl-dextran nanogels

합성된 나노젤이 체내에서 안정성을 유지하는지 또한 생체 내에 주사되었을 때 어느 장기에 어느 정도로 분포되는지 체외로 배출은 어떤 경로를 통해서 이루어지는 지를 효과적으로 확인해보기 위해서 나노젤을 방사성동위원소로 표지하여 이를 추적해보기 위해서 방사능표지 실험을 진행하였다. 방사성동위원소로는 반감기가 12.7 시간으로 중반감기 핵종인 구리-64(Cu-64)를 사용하여 연구를 진행하였고, Cu-64를 나노젤에 표지하기 위하여 우선 나노젤에 Cu 이온이 잘 결합할 수 있는 이중기능 킬레이트를 컨쥬게이션 하는 과정을 진행하였다. 먼저 합성된 카르복시메틸-덱스트란 나노젤을 이용하여 Cu-64가 잘 표지될 수 있는 이중기능 킬레이트를 선별하기 위한 연구를 진행하였다. In order to effectively check whether the synthesized nanogels maintain stability in the body and which organs are distributed to what extent when injected in vivo, and through which pathway, the nanogels are labeled with radioisotopes to track them. In order to do this, a radiolabeling experiment was conducted. As a radioactive isotope, the half-life was 12.7 hours, and the study was conducted using a mid-life nuclide, copper-64 (Cu-64). First, in order to label Cu-64 on a nanogel, Cu ions were well bound to the nanogel. The process of conjugating the dual function chelate was performed. First, a study was conducted to select a dual-functional chelate that can be labeled well with Cu-64 by using the synthesized carboxymethyl-dextran nanogel.

도 10의 개략도와 같이, 이중기능 킬레이트인 DOTA-GA-NH2를 사용해서 카르복시메틸-덱스트란 나노젤에 접합하는 실험을 진행하였고, 카르복시메틸-덱스트란 나노젤을 피리딘에 녹여준 후 토실 클로라이드를 한 방울씩 천천히 떨어뜨려주며 밤새 반응을 진행하였다. 이 후, 아래 화학식1의 DOTA-GA-NH2를 추가한 후 높은 열을 가해주며 하루정도 반응을 진행한 후, DOTA-GA-NH2와 접합반응이 이루어진 카르복시메틸-덱스트란 나노젤을 원심여과기로 분리하였다. 동결건조 과정을 통하여 순수한 흰색 파우더 형태의 DOTA-GA-카르복시메틸-덱스트란 나노젤을 얻었다. As shown in the schematic diagram of FIG. 10, experiments were performed in which carboxymethyl-dextran nanogels were conjugated using a dual-functional chelator, DOTA-GA-NH 2 , after dissolving carboxymethyl-dextran nanogels in pyridine, tosyl chloride The drop was slowly dropped, and the reaction was performed overnight. Thereafter, after adding DOTA-GA-NH 2 of the following Chemical Formula 1, the reaction is performed for about one day with high heat, and then centrifugation of the carboxymethyl-dextran nanogel in which a conjugation reaction with DOTA-GA-NH 2 is performed It was separated by a filter. DOTA-GA-carboxymethyl-dextran nanogel in the form of pure white powder was obtained through a lyophilization process.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

Cu-64를 이용한 방사성 표지를 진행해보았고 도 11의 개략도와 같이, pH가 6.8인 버퍼에 DOTA-GA-카르복시메틸-덱스트란 나노젤을 넣고 확립된 온도 및 시간에서 64CuCl2와 반응하였다. 반응이 완료된 후, 원심여과기를 통하여 Cu-64가 표지된 카르복시메틸-덱스트란 나노젤만을 정제해서 얻는 과정을 거친 후 Radio-TLC를 사용하여 방사화학적 순도를 확인하였다. Radiolabeling using Cu-64 was conducted, and as shown in the schematic of FIG. 11, DOTA-GA-carboxymethyl-dextran nanogel was added to a buffer having a pH of 6.8 and reacted with 64 CuCl 2 at an established temperature and time. After the reaction was completed, a process obtained by purifying only Cu-64-labeled carboxymethyl-dextran nanogels through a centrifugal filter was used to confirm radiochemical purity using Radio-TLC.

그 결과 도 12의 결과와 같이, 방사화학적 순도가 66%인 것을 확인할 수 있었다.As a result, as shown in FIG. 12, it was confirmed that the radiochemical purity was 66%.

그래서 보다 높은 수율을 보이며 더 효과적으로 Cu-64를 표지할 수 있을 것으로 예상되는 이중기능 킬레이트인 아래 화학식 2의 NODA-GA-NH2를 사용해서 카르복시메틸-덱스트란 나노젤에 접합하는 실험을 진행하며 Cu-64가 표지된 방사화학적 순도를 확인해보고자 하였다. So, we experimented with conjugation to carboxymethyl-dextran nanogels using NODA-GA-NH 2 of the formula 2 below, which is a dual-functional chelate that is expected to be able to more effectively label Cu-64 with higher yield. We wanted to confirm the radiochemical purity of Cu-64 labeled.

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

동일하게 카르복시메틸-덱스트란 나노젤을 사용하여 진행하였고, 도 13의 개략도와 같이, 먼저 피리딘에 나노젤을 녹여준 후 토실 클로라이드를 한 방울씩 천천히 떨어뜨려주며 밤새 반응을 진행하였다. NODA-GA-NH2를 추가한 후 80°C의 높은 열을 가해주며 하루정도 반응을 진행한 후, NODA-GA-NH2와 접합반응이 이루어진 카르복시메틸-덱스트란 나노젤을 원심여과기로 분리하였다. 최종적으로 동결건조를 통하여 순수한 흰색 파우더 형태의 NODA-GA-카르복시메틸-덱스트란 나노젤을 얻었다. Similarly, the carboxymethyl-dextran nanogel was used, and as shown in the schematic of FIG. 13, the nanogel was first dissolved in pyridine, and then tosyl chloride was slowly dropped dropwise, and the reaction was performed overnight. After adding NODA-GA-NH 2 and applying a high heat of 80° C. for about one day, the carboxymethyl-dextran nanogels conjugated with NODA-GA-NH 2 were separated by centrifugal filtration. Did. Finally, NODA-GA-carboxymethyl-dextran nanogel in the form of pure white powder was obtained through lyophilization.

도 14에서와 같이, Cu-64를 이용한 방사성 표지를 진행해보았고 pH가 6.8인 버퍼에 NODA-GA-카르복시메틸-덱스트란 나노젤을 넣고 적정 온도 및 시간에서 64CuCl2와 반응한 후, 원심여과기를 통하여 Cu-64가 표지된 카르복시메틸-덱스트란 나노젤을 정제해서 얻는 과정을 거친 후 Radio-TLC를 사용하여 방사화학적 순도를 확인하였다. As shown in FIG. 14, a radiolabeling process using Cu-64 was performed, and NODA-GA-carboxymethyl-dextran nanogel was added to a buffer having a pH of 6.8, and reacted with 64 CuCl 2 at an appropriate temperature and time, followed by centrifugal filtration. After undergoing the process of purifying Cu-64-labeled carboxymethyl-dextran nanogel through radio-TLC, radiochemical purity was confirmed.

그 결과 도 15에서 확인할 수 있는 바와 같이, 이중기능 킬레이트로 DOTA-GA를 사용한 결과와는 다르게 NODA-GA가 접합된 카르복시메틸-덱스트란 나노젤의 방사화학적 순도가 거의 100%로 매우 높게 Cu-64와 우수하게 표지 반응이 이루어짐을 확인할 수 있었다. As a result, as shown in FIG. 15, unlike the result of using DOTA-GA as a dual-functional chelate, the radiochemical purity of carboxymethyl-dextran nanogel conjugated with NODA-GA is almost 100% and very high Cu- It was confirmed that the labeling reaction was excellent with 64.

방사 표지된 나노입자의 안정성의 경우, 방사선분해(Radiolysis)를 확인해보는 방식으로 실험을 진행하였고 PBS (Phosphate Buffer Saline) 와 혈청 (Fetal Bovine Serum)을 이용하여 시간별로 radio-TLC로 분석하며 나노입자의 안정성을 확인해보고자 하였다. In the case of the stability of the radiolabeled nanoparticles, the experiment was conducted by confirming radiolysis, and the nanoparticles were analyzed by radio-TLC by time using PBS (Phosphate Buffer Saline) and serum (Fetal Bovine Serum). I wanted to check the stability of the.

그 결과, 도 16에서 확인할 수 있는 바와 같이, 1시간과 4시간까지 높은 안정성을 보여줌을 확인할 수 있었고, 24 시간에 대한 결과에서도 동일하게 95% 이상의 뛰어난 안정성을 보였기에 마우스 내에서도 충분히 그 안정성을 유지할 수 있을 것으로 예측해볼 수 있었다. As a result, as can be seen in Figure 16, it was confirmed that it shows high stability up to 1 hour and 4 hours, and the results for 24 hours also showed excellent stability equal to or higher than 95%, thus maintaining the stability sufficiently in the mouse. I could predict it.

정상 마우스에서 생체분포확인 실험Biodistribution confirmation experiment in normal mice

Cu-64로 표지된 카르복시메틸-덱스트란(carboxymethyl-dextran, CM-dextran) 나노젤을 이용해서도 동일하게 정상 마우스에 대해 주사 후 24시간 뒤에 생체분포확인 실험을 진행하며 장기들에 대한 분포 및 체외로 배출 경로를 확인하였다.Using a carboxymethyl-dextran (CM-dextran) nanogel labeled with Cu-64, a biodistribution confirmation experiment was conducted 24 hours after injection for the same normal mice, and distribution to the organs was confirmed. The discharge route was confirmed in vitro.

도 17에서 확인할 수 있는 바와 같이, 간과 신장에 비슷하게 가장 높은 섭취를 보이는 결과를 보여주었고, 입자의 크기가 6 nm로 작기 때문인지 체외로 빠르게 배출되어서 주사 후 24 시간 후에는 체내에 남아있는 방사능량이 다소 낮음을 확인하였다. As can be seen in Figure 17, it showed the results showing the highest intake similarly to the liver and kidneys, because the particle size is small because it is small 6 nm is discharged quickly outside the body after 24 hours after injection, the amount of radioactivity remaining in the body It was confirmed that it was rather low.

추후 B16F10 종양 모델을 이용한 실험을 위해서 검정색 털을 지닌 C57BL/6 마우스를 사용해서도 동일한 생체분포확인 실험을 진행해 보았다. For future experiments using the B16F10 tumor model, the same biodistribution verification experiment was conducted using C57BL/6 mice with black hair.

도 18에서 확인할 수 있는 바와 같이, 사용한 마우스의 종류 차이로 인해 간과 신장에 섭취 되는 정도가 조금의 차이를 보이기는 하였지만 그 이외의 장기들에 대한 섭취 분포의 정도 및 경향성은 거의 일정함을 확인할 수 있었다. As can be seen in Figure 18, due to the difference in the type of mouse used, the degree of intake in the liver and kidney showed a slight difference, but it was confirmed that the degree and tendency of the intake distribution for other organs was almost constant. there was.

다음으로는 Cu-64로 표지된 카르복시메틸-덱스트란 나노젤을 이용하여 종양모델에 대한 생체분포확인 실험을 진행하며 종양에 대한 타겟 능력 및 장기들에 대한 분포 및 배출을 확인하였다. Next, using a carboxymethyl-dextran nanogel labeled with Cu-64, a biodistribution confirmation experiment was conducted for the tumor model, and the target ability for tumors and the distribution and discharge of organs were confirmed.

먼저 카르복시메틸-덱스트란 나노젤을 흑색종인 B16F10 종양 모델에서 생체분포확인 실험을 진행하였다. 도 19에서 확인할 수 있는 바와 같이, 간과 신장에 높은 섭취를 보여주긴 하였지만 그 다음으로 종양에 대한 섭취가 1.0%ID/g으로 높게 나타남을 확인하였다. 종양 대 근육비는 41.2배, 종양 대 혈액비는 7.4배로 매우 우수하게 종양을 진단할 수 있음을 확인하였다.First, carboxymethyl-dextran nanogels were subjected to a biodistribution confirmation experiment in a melanoma B16F10 tumor model. As can be seen in Figure 19, although it showed a high intake in the liver and kidneys, it was confirmed that the intake to the tumor was high at 1.0% ID/g. The tumor-to-muscle ratio was 41.2 times, and the tumor-to-blood ratio was 7.4 times, confirming that the tumor was excellent.

다음으로 대장암종양세포(CT26)를 이용하여 종양모델에 대한 생체분포확인 실험을 진행하였고, 도 20에서 확인할 수 있는 바와 같이, 그 결과 간에 대해서 8.2 %ID/g로 가장 높은 섭취를 보여주었고, 그 다음으로 신장 (1.6 %ID/g), 비장 (1.4 %ID/g)에 대한 섭취가 높았다.Next, a biodistribution confirmation experiment was performed on the tumor model using colorectal tumor cells (CT26), and as shown in FIG. 20, the results showed the highest intake of 8.2% ID/g for the liver, Next, the intake of kidney (1.6% ID/g) and spleen (1.4% ID/g) was high.

종양에도 1.48 %ID/g의 섭취로 타 장기들보다 높은 섭취를 보여주었고, 종양 대 근육비(Tumor to muscle ratio)는 13.2배, 종양 대 혈액비(Tumor to blood ratio)는 3.7배로 우수하게 종양을 진단할 수 있음을 확인하였다.Tumors also showed higher intake than other organs by ingesting 1.48% ID/g, Tumor to muscle ratio was 13.2 times, and Tumor to blood ratio was 3.7 times, superior to tumors. It was confirmed that can diagnose.

Claims (15)

카르복시메틸-덱스트란 수용액에 전자빔을 조사하여, 카르복시메틸-덱스트란의 분자간 또는 분자내 가교결합을 형성함을 포함하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
Comprising forming an intermolecular or intramolecular crosslinking of carboxymethyl-dextran by irradiating an electron beam to an aqueous solution of carboxymethyl-dextran,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상기 카르복시메틸-덱스트란 수용액은 산성임을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
The aqueous solution of carboxymethyl-dextran is characterized in that it is acidic,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제2항에 있어서,
상기 알긴산 수용액은 pH 2 내지 6인 것을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 2,
The alginate aqueous solution is characterized in that the pH is 2 to 6,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상기 카르복시메틸-덱스트란 함유 용액에 HClO4을 추가로 포함하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
HClO 4 is further included in the solution containing carboxymethyl-dextran,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상기 카르복시메틸-덱스트란 수용액은 0.1 내지 3%(w/v)의 농도인 것을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
The carboxymethyl-dextran aqueous solution is characterized in that the concentration of 0.1 to 3% (w / v),
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상기 전자빔은 2 내지 300kGy의 조사량으로 조사되는 것을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
The electron beam is characterized in that irradiated with an irradiation amount of 2 to 300kGy,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상가 전자빔의 조사선량을 변경하여 카르복시메틸-덱스트란 나노 입자의 크기를 제어함을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
Characterized in that by controlling the size of the carboxymethyl-dextran nanoparticles by changing the irradiation dose of the additive electron beam,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상기 전자빔의 조사선량을 늘려 상기 카르복시메틸-덱스트란 나노 입자의 크기를 감소시킴을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
Characterized in that, by increasing the irradiation dose of the electron beam, the size of the carboxymethyl-dextran nanoparticles is reduced,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 있어서,
상기 수용액의 pH를 조절하여, 상기 카르복시메틸-덱스트란 나노 입자의 크기를 제어함을 특징으로 하는,
가교된 카르복시메틸-덱스트란 나노 입자를 제조하는 방법.
According to claim 1,
Characterized in that, by controlling the pH of the aqueous solution, to control the size of the carboxymethyl-dextran nanoparticles,
Method for preparing crosslinked carboxymethyl-dextran nanoparticles.
제1항에 의해 제조된 카르복시메틸-덱스트란의 분자간 또는 분자내 가교결합만으로 형성된 나노 입자로서, 상기 나노 입자는 10nm 이하의 둥근 구형 모양임을 특징으로 하는,
카르복시메틸-덱스트란 나노 입자.
Nanoparticles formed only by intermolecular or intramolecular crosslinking of carboxymethyl-dextran prepared by claim 1, characterized in that the nanoparticles have a round spherical shape of 10 nm or less,
Carboxymethyl-dextran nanoparticles.
제10항에 있어서,
상기 나노 입자는 종양 선택성을 가짐을 특징으로 하는,
카르복시메틸-덱스트란 나노 입자.
The method of claim 10,
The nanoparticles are characterized by having tumor selectivity,
Carboxymethyl-dextran nanoparticles.
방사성 동위원소, 유기 형광물질, 무기물질인 양자점, 자기공명영상 조영제, 컴퓨터단층촬영 조영제, 양전자단층촬영 조영제, 초음파 조영제, 형광 조영제 및 상형변환물질로 이뤄진 군에서 선택된 하나 이상의 표지 물질로 표지된 제7항 또는 제8항의 카르복시메틸-덱스트란 나노 입자를 포함하는 조영제 및 치료제.Radioactive isotopes, organic fluorescent materials, inorganic materials, quantum dots, magnetic resonance imaging contrast agents, computed tomography contrast agents, positron tomography contrast agents, ultrasound contrast agents, fluorescent contrast agents, and agents labeled with one or more labeling materials selected from the group consisting of pictographs A contrast agent and a therapeutic agent comprising the carboxymethyl-dextran nanoparticles of claim 7 or 8. 제12항에 있어서,
상기 나노 입자에 접합된 리간드 화합물; 및
상기 리간드 화합물에 배위결합된 방사성 동위 원소를 포함하는,
조영제 및 치료제.
The method of claim 12,
A ligand compound conjugated to the nanoparticle; And
Containing a radioactive isotope coordinated to the ligand compound,
Contrast and therapeutic agents.
제13항에 있어서,
상기 리간드 화합물은 NODA-GA-NH2, DOTA-GA, DOTA, TETA 및 NOTA 중 적어도 어느 하나임을 특징으로 하는,
조영제 및 치료제.
The method of claim 13,
The ligand compound is NODA-GA-NH 2 , Characterized in that at least one of DOTA-GA, DOTA, TETA and NOTA,
Contrast and therapeutic agents.
제13항에 있어서,
상기 방사성 동위 원소는 11C, 13N, 15O, 18F, 38K, 62Cu, 64Cu, 68Ga, 82Rb, 124I, 89Zr, 99mTc, 123I, 111In, 67Ga, 177Lu, 201Tl, 117mSn, 125I, 131I, 166Ho, 188Re, 67Cu, 89Sr, 90Y, 225Ac, 213Bi, 및 211At 중 적어도 어느 하나임을 특징으로 하는,
조영제 및 치료제.
The method of claim 13,
The radioactive isotopes are 11 C, 13 N, 15 O, 18 F, 38 K, 62 Cu, 64 Cu, 68 Ga, 82 Rb, 124 I, 89 Zr, 99m Tc, 123 I, 111 In, 67 Ga, Characterized in that at least one of 177 Lu, 201 Tl, 117m Sn, 125 I, 131 I, 166 Ho, 188 Re, 67 Cu, 89 Sr, 90 Y, 225 Ac, 213 Bi, and 211 At,
Contrast and therapeutic agents.
KR1020200003924A 2019-01-11 2020-01-10 Manufacturing method of carboxymethyl-dextran nanoparticle and carboxymethyl-dextran nanoparticle prepared by the method KR102382969B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190004143 2019-01-11
KR1020190004143 2019-01-11

Publications (2)

Publication Number Publication Date
KR20200087722A true KR20200087722A (en) 2020-07-21
KR102382969B1 KR102382969B1 (en) 2022-04-05

Family

ID=71832516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200003924A KR102382969B1 (en) 2019-01-11 2020-01-10 Manufacturing method of carboxymethyl-dextran nanoparticle and carboxymethyl-dextran nanoparticle prepared by the method

Country Status (1)

Country Link
KR (1) KR102382969B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051660A (en) * 2020-09-22 2022-04-01 アイエムジーティー カンパニー リミテッド Novel nanoparticles using anionic polymer, production methods and compositions thereof
CN117487037A (en) * 2023-12-29 2024-02-02 山东国力生物科技有限公司 Method for preparing multiposition substituted carboxymethyl dextran and its product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053282A1 (en) * 2013-10-08 2015-04-16 キユーピー株式会社 Crosslinked product of carboxymethyl-group-containing modified hyaluronic acid and/or salt thereof, and method for producing same
KR20170087427A (en) * 2016-01-20 2017-07-28 경북대학교 산학협력단 Biocompatible nanoparticle and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053282A1 (en) * 2013-10-08 2015-04-16 キユーピー株式会社 Crosslinked product of carboxymethyl-group-containing modified hyaluronic acid and/or salt thereof, and method for producing same
KR20170087427A (en) * 2016-01-20 2017-07-28 경북대학교 산학협력단 Biocompatible nanoparticle and use thereof
KR20180096562A (en) * 2016-01-20 2018-08-29 경북대학교 산학협력단 Biocompatible nanoparticle and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Min Wang et al., ‘Enhanced radiation crosslinking of carboxymethylated chitosan in the presence of acids or polyfunctional monomers’, Polymer Degradation and Stability 93 (2008) 1807-1813* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051660A (en) * 2020-09-22 2022-04-01 アイエムジーティー カンパニー リミテッド Novel nanoparticles using anionic polymer, production methods and compositions thereof
US11753489B2 (en) 2020-09-22 2023-09-12 Imgt Co, Ltd. Nanoparticles using anionic polymer, preparation method and composition thereof
CN117487037A (en) * 2023-12-29 2024-02-02 山东国力生物科技有限公司 Method for preparing multiposition substituted carboxymethyl dextran and its product
CN117487037B (en) * 2023-12-29 2024-03-15 山东国力生物科技有限公司 Method for preparing multiposition substituted carboxymethyl dextran and its product

Also Published As

Publication number Publication date
KR102382969B1 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
Peltek et al. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics
Frellsen et al. Mouse positron emission tomography study of the biodistribution of gold nanoparticles with different surface coatings using embedded copper-64
Chen et al. Target-or-clear zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: a comparison of radiolabeling strategies
Sun et al. Positron emission tomography imaging using radiolabeled inorganic nanomaterials
EP2791254B1 (en) Functionalised silicon nanoparticles
Barrefelt et al. Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99m Tc-labeled magnetic microbubbles
Cheng et al. Facile preparation of multifunctional WS2/WOx nanodots for chelator‐free 89Zr‐labeling and in vivo PET imaging
Pretze et al. Targeted 64Cu‐labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging
KR20200087722A (en) Manufacturing method of carboxymethyl-dextran nanoparticle and carboxymethyl-dextran nanoparticle prepared by the method
Gupta et al. Polyacrylamide-based biocompatible nanoplatform enhances the tumor uptake, PET/fluorescence imaging and anticancer activity of a chlorophyll analog
Chakravarty et al. Industrial-scale synthesis of intrinsically radiolabeled 64CuS nanoparticles for use in positron emission tomography (PET) imaging of cancer
CN106475569A (en) A kind of preparation method of metal nanometer cluster, nanocluster obtained by this method and the contrast agent comprising this nanocluster
Gharepapagh et al. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent
Jamre et al. Preparation and evaluation of 188Re sulfide colloidal nanoparticles loaded biodegradable poly (L‐lactic acid) microspheres for radioembolization therapy
Pellico et al. Iron oxide nanoradiomaterials: combining nanoscale properties with radioisotopes for enhanced molecular imaging
Liu et al. Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor
Shalgunov et al. Radiolabeling of a polypeptide polymer for intratumoral delivery of alpha-particle emitter, 225Ac, and beta-particle emitter, 177Lu
JP5946241B2 (en) Grafted polysaccharides with polyamines for the production of radiopharmaceutical compositions
Silva et al. In vitro/in vivo “peeling” of multilayered aminocarboxylate gold nanoparticles evidenced by a kinetically stable 99m Tc-label
Soliman et al. Polyethylene oxide–polyacrylic acid–folic acid (PEO‐PAAc) nanogel as a 99mTc targeting receptor for cancer diagnostic imaging
Kamkaew et al. Nanoparticles as radiopharmaceutical vectors
Lewis et al. Development and applications of radioactive nanoparticles for imaging of biological systems
Gajewska et al. Functionalization of filled radioactive multi-walled carbon nanocapsules by arylation reaction for in vivo delivery of radio-therapy
Xu et al. A novel, chelator-free method for 64 Cu labeling of dendrimers
Guo et al. Radioiodine based biomedical carriers for cancer theranostics

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant