KR20200083890A - Evaluation method of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets - Google Patents

Evaluation method of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets Download PDF

Info

Publication number
KR20200083890A
KR20200083890A KR1020190000032A KR20190000032A KR20200083890A KR 20200083890 A KR20200083890 A KR 20200083890A KR 1020190000032 A KR1020190000032 A KR 1020190000032A KR 20190000032 A KR20190000032 A KR 20190000032A KR 20200083890 A KR20200083890 A KR 20200083890A
Authority
KR
South Korea
Prior art keywords
bioceramic
films
aerosol
film
deposited
Prior art date
Application number
KR1020190000032A
Other languages
Korean (ko)
Other versions
KR102198363B1 (en
Inventor
오종민
이대석
구상모
조명연
이동원
김원중
김익수
김윤현
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020190000032A priority Critical patent/KR102198363B1/en
Publication of KR20200083890A publication Critical patent/KR20200083890A/en
Application granted granted Critical
Publication of KR102198363B1 publication Critical patent/KR102198363B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/08Detecting presence of flaws or irregularities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/14Brackets; Fixing brackets to teeth
    • A61C7/141Brackets with reinforcing structure, e.g. inserts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

Disclosed is a method for evaluating structural and mechanical properties of aerosol-deposited bioceramic films for an orthodontic bracket. Four kinds of bioceramic films (Al_2O_3, SiO_2, hydroxyapatite (HA), and brushite) are used in a simple aerosol deposition (AD) process at room temperature of 23°C, and the structural and mechanical properties are compared in order to validate potential for being used as the orthodontic bracket. As a result thereof, the HA and brushite films show very high deposition rate as compared with other coating techniques. Furthermore, the crystallite sizes of all the samples are largely reduced to 100 nm or less, which can increase biological efficacy and the mechanical properties of the bioceramic film. In addition, the HA and brushite films have optimal mechanical properties, i.e. adhesive strength and shear bond strength, of the bioceramic film for an orthodontic bracket.

Description

치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법{Evaluation method of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets}Evaluation method of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets

본 발명은 치아교정 브라켓(orthodontic brackets) 용 에어로졸 증착 된 바이오 세라믹 필름(aerosol-deposited bioceramic films)의 구조 및 기계적 특성 평가 방법에 관한 것이다.The present invention relates to a method for evaluating the structure and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets.

본 연구는 2019년 광운대학교의 연구비 지원과, 과학기술정보통신부에 의해 펀딩된 한국 연구재단(NRF)(과제번호 2017R1C1B5017013)과 한국에너지기술평가원(KETEP)의 재생 에너지 및 전기자동차용 전력 반도체 기술 고급트랙(과제번호 20174010201290)에 의해 지원되었습니다.This research is supported by research fund of Kwangwoon University in 2019, advanced research technology of renewable energy and electric vehicle power semiconductor technology by Korea Research Foundation (NRF) (Task No. 2017R1C1B5017013) and Korea Energy Technology Evaluation Institute (KETEP) funded by Ministry of Science and Technology Supported by track (task number 20174010201290).

1. 배경 기술1. Background technology

치과 진료 문제를 가진 환자의 수가 지속적으로 증가함에 따라, 치과 교정 치료는 지난 20년 동안 상당한 주목을 받아 왔다[1-5]. 지금까지, 우수한 기계적 강도 및 화학적 안정성 때문에 경조직(hard tissue)의 수동적 대체와 파절(fracture) 치료 보조물(aid)과 같은 치과적 이용에 금속 생체적합물질(biomaterial)이 자주 사용되어 왔다[6-8]. 그러나, 금속 이온들과 독성 입자들의 확산은 부식 또는 마모 과정을 통해 세포(cell)와 뼈 조직(bone tissues)에 유해한 효과를 초래할 수 있다. 이러한 문제들을 극복하기 위해, 높은 임상 잠재력을 갖는 바이오 세라믹들이 사람의 치아(tooth)와 뼈(bone)에 대한 우수한 생체적합성과 구조 및 화학적 유사성에 기인하여 최근의 치과 치료에서 널리 조사되어 왔다[9,10]. 전술한 바와 같이, 바이오세라믹 물질들(bioceramic materials)이 많은 이점들을 가짐에 불구하고, (1) 기계적 특성(mechanical properties), (2) 표면 거칠기(surface roughness), 및 (3) 결정 크기(crystallite size)와 같은 일부 특정한 우려들이 조사자들에 의해 여전히 연구되며 추가로 고려되어야 한다[11-15].As the number of patients with dental problems continues to increase, orthodontic treatment has received considerable attention over the past 20 years [1-5]. Until now, metal biomaterials have been frequently used for dental applications such as passive replacement of hard tissue and fracture treatment aids due to their excellent mechanical strength and chemical stability [6-8] ]. However, diffusion of metal ions and toxic particles can cause detrimental effects on cells and bone tissues through corrosion or abrasion processes. To overcome these problems, bioceramics with high clinical potential have been widely investigated in recent dental treatments due to their excellent biocompatibility and structural and chemical similarity to human teeth and bones [9 ,10]. As described above, although bioceramic materials have many advantages, (1) mechanical properties, (2) surface roughness, and (3) crystallite Some specific concerns, such as size), are still studied by investigators and should be considered further [11-15].

치아교정 치료가 통상적으로는 어긋난 치아(tooth)의 조정과 턱(jaws)의 적절한 포지셔닝을 다루기 때문에, 치아 이동은 전적으로 접착력(adhesive strength)과 전단 결합 강도(shear bond strength)와 같은 생체역학적 특성들에 따른다[16,17]. 치아교정 치료의 가장 중요한 포인트는 치아(tooth)로부터 교정 브레이스 브라켓(dental brace bracket)이 분리되는 것과 더불어 예견되거나 예상되지 않는 힘으로부터 초래되는 스트레스를 방지하여 교정 치료 기간(orthodontic treatment period) 동안 높은 결합 강도(high bonding strength)를 유지하게 된다. 또한, 치아교정 브라켓(orthodontic brackets)의 임상적 성공은 치아에 대한 치과용 브라켓의 내구성 있는 결합을 효과적으로 달성하여 의료진과 환자 모두에게 이익이 될 수 있는 기계적인 시스템에 널리 의존한다[11]. 그러므로, 치아교정용 브라켓의 최적 결합 강도(optimal bonding strength of orthodontic brackets)가 조직(tissue)과 치아(tooth)에 대한 안정성이 요구되며, 바람직하지 않은 강도(unfavorable strength)는 가끔 생물학적 성능의 열화 및 트라우마적인 치과 상해를 초래한다.Because orthodontic treatment typically handles misalignment of teeth and proper positioning of jaws, tooth movement is solely biomechanical properties such as adhesive strength and shear bond strength. According to [16,17]. The most important point of orthodontic treatment is the separation of the orthodontic brace bracket from the tooth, as well as the prevention of stress resulting from foreseen or unexpected forces, resulting in high binding during the orthodontic treatment period. It maintains high bonding strength. In addition, the clinical success of orthodontic brackets relies heavily on mechanical systems that can effectively achieve the durable coupling of dental brackets to teeth and benefit both medical staff and patients [11]. Therefore, the optimal bonding strength of orthodontic brackets requires stability to tissues and teeth, and unfavorable strength sometimes degrades biological performance and Cause traumatic dental injury.

최근 브라켓 생산을 위해 생물학적 안정성과 치과 진료의 효과에 대해 표면 토폴로지(surface topologies)와 결정크기의 정도(degree of crystallite size)를 고려해야 한다. 세라믹 코팅의 표면 윤활도(lubricity)가 전단 결합 강도(shear bond strength)의 실질적 감소에 영향을 주는 구불구불한 세라믹 표면의 경우 세라믹 코팅(ceramic coating)과 레진(resin) 사이의 높은 전단 결합 강도가 허용될 수 있는데, 이는 표면 거칠기(surface roughness)를 포함하는 표면 모폴로지(morphology)가 세라믹 코팅(ceramic coating)과 레진(resin) 사이의 인터페이스의 미소기계적 강도(micro-mechanical strength)를 결정하는데 있어서 중요한 역할을 한다[19]. 결정 크기의 효과와 관련하여, 저자들은 100 nm 미만의 결정 크기를 갖는 나노상 생체 적합성 세라믹들(nanophase biocompatible ceramics)이 100 nm보다 큰 결정 크기를 갖는 것들과 비교하여 더 견고하게 접착하고 골아세포(osteoblasts)의 장기적 기능 향상을 촉진할 수 있다고 단언한다[14,20].For the recent production of brackets, it is necessary to consider surface topologies and degree of crystallite size for biological stability and effectiveness of dental treatment. For serpentine ceramic surfaces where the surface lubricity of the ceramic coating affects the substantial reduction in shear bond strength, a high shear bond strength between the ceramic coating and the resin This may be acceptable, as surface morphology, including surface roughness, is important in determining the micro-mechanical strength of the interface between the ceramic coating and the resin. Plays a role [19]. Regarding the effect of crystal size, the authors have shown that nanophase biocompatible ceramics with crystal size less than 100 nm adhere more firmly and osteoblasts than those with crystal size greater than 100 nm. It is asserted that it can promote the improvement of long-term function of osteoblasts (14,20).

상기 관심을 고려하여 최적의 바이오세라믹 코팅층을 형성하기 위해, 다양한 종류의 기술들이 시도되어 왔다. 바이오세라믹 코팅(bioceramic coating)의 대표적 방법들 중 하나 인 플라즈마 스프레잉(Plasma spraying)은 그 효과성과 경제적 이점들 때문에 널리 상용화 되었다[21-23]. 그러나, 플라즈마의 고온 때문에, 상변환, 잔여 스트레스, 쉬운 디본딩(debonding), 높은 다공성(porosity), 가스 누설과 같은 바람직하지 않은 효과들이 나타났다. 본 고에서, 글래스 이오노머 시멘트 접착제들(glass ionomer cement adhesives)이 치아교정용 브라켓들(orthodontic brackets)의 성공적인 본딩(bonding)을 위해 사용되었기는 하나, 낮은 본딩 강도(lower bonding strength)의 결함이 발생되었다[24,25]. 더욱이, 일부 연구자들과 기업들은 높은 본딩 강도(higher bonding strength)에 중요한 요소인, 기계적 인터로킹(mechanical interlocking)을 제공하기 위해 표준 메시 베이스(standard mesh base), 수퍼메시 베이스(supermesh base), 인테그랄 베이스(integral base), 및 레이저-구조 베이스(laser-structured base)와 같은, 브레킷 베이스 디자인들에 대한 보조적인 기계적 보존력을 추가하는 시도를 해 왔다[26-28]. 그러나, 기존의 방법들은 복잡하고 시간-소모적인 절차들과 프로세스의 경제적 비용을 증가시킨다.In consideration of the above interest, various types of technologies have been tried to form an optimal bioceramic coating layer. Plasma spraying, one of the representative methods of bioceramic coating, has been widely commercialized due to its effectiveness and economic advantages [21-23]. However, due to the high temperature of the plasma, undesirable effects such as phase transformation, residual stress, easy debonding, high porosity, and gas leakage have appeared. In this article, although glass ionomer cement adhesives were used for successful bonding of orthodontic brackets, defects of lower bonding strength occurred. It became [24,25]. Moreover, some researchers and companies have provided a standard mesh base, supermesh base, and integral to provide mechanical interlocking, an important factor for higher bonding strength. Attempts have been made to add auxiliary mechanical preservation to bracket-base designs, such as integral bases and laser-structured bases [26-28]. However, existing methods increase the economic cost of complex and time-consuming procedures and processes.

상기한 문제점들과 같은 단점들을 극복하기 위해, 더욱 개선된 치아교정용 브라켓들(orthodontic brackets)을 제조하여 그 이점들을 최대로 사용하는 특별한 기술들이 요구된다. 고속 파우더 스프레잉(high-speed powder spraying)에 기초하는, 에어로졸 증착 공정(AD process)은 매우 매력적이며 대안적인 코팅 방법으로서 성공적으로 사용되어 왔는데, 이는 특정 열 처리(heat treatment) 없이 진공상태(in a vacuum)의 실온(23℃, room temperature)에서 세라믹 코팅층(ceramic coating layers)의 형성을 가능하게 하기 때문이다[29,30]. 기본적으로 AD 원리는 고체 세라믹 파우더 입자들(solid ceramic powder particles)이 타겟 기판과 강하게 충돌하여 잘 접착된 세라믹 코팅층을 용이하게 형성함으로써, 기판 상에서 세밀한 나노 입자들(nanophase particles)과 높은 접착 강도(high bonding strength)를 갖는 코팅층(coating layers)을 가능하게 한다[31]. 에어로졸-증착 바이오세라믹 필름들(aerosol-deposited bioceramic films) 상에서 광범위한 작업이 될 지라도, 넓은 노즐 오리피스(broad nozzle orifice)와 저조한 가스 소모(low gas consumption)와 같이, 부적절한 실험 조건들 때문에 불량한 접착 강도(poor bonding strength) 및 높은 표면 거칠기(high surface roughness)가 발생한다[21, 32].In order to overcome the drawbacks such as the above-mentioned problems, special techniques are required to manufacture more improved orthodontic brackets and take full advantage of the advantages. Based on high-speed powder spraying, the aerosol deposition process (AD process) is a very attractive and has been used successfully as an alternative coating method, which is a vacuum without specific heat treatment (in This is because it enables formation of ceramic coating layers at room temperature (23°C, vacuum) [29,30]. Basically, the AD principle is that solid ceramic powder particles strongly collide with the target substrate to easily form a well-bonded ceramic coating layer, thereby providing fine nanophase particles and high adhesion strength on the substrate. It enables coating layers with bonding strength [31]. Poor adhesion strength due to inadequate experimental conditions, such as broad nozzle orifice and low gas consumption, even with a wide range of work on aerosol-deposited bioceramic films Poor bonding strength and high surface roughness occur [21, 32].

특허 출원번호 10-2018-0024067 (출원일자 2018년 2월 27일), "필름 저항의 적용을 위한 에어로졸 증착 공정을 통해 산화알루미늄과 구리 복합 필름의 접착 방법", 광운대학교 산학협력단Patent Application No. 10-2018-0024067 (application date February 27, 2018), "Adhesive method of aluminum oxide and copper composite film through aerosol deposition process for application of film resistance", Kwangwoon University Industry-Academic Cooperation Foundation

[1] T. Ugur, S. Ciger, A. Aksoy, A. Telli, An epidemiological survey using the Treatment Priority Index (TPI), Eur. J. Orthod. 20 (1998) 189-193 [1] T. Ugur, S. Ciger, A. Aksoy, A. Telli, An epidemiological survey using the Treatment Priority Index (TPI), Eur. J. Orthod. 20 (1998) 189-193 [2] C. Johnston, D. Burden, D. Kennedy, N. Harradine, M. Stevenson, Class III surgical-orthodontic treatment: A cephalometric study, Am. J. Orthod. Dentofac. Orthop. 130 (2006) 300-309 [2] C. Johnston, D. Burden, D. Kennedy, N. Harradine, M. Stevenson, Class III surgical-orthodontic treatment: A cephalometric study, Am. J. Orthod. Dentofac. Orthop. 130 (2006) 300-309 [3] M.L. Ganesh, K. Saravana Pandian, Acceleration of tooth movement during orthodontic treatment-A frontier in orthodontics, J. Pharm. Sci. Res. 9 (2017) 741-744 [3] M.L. Ganesh, K. Saravana Pandian, Acceleration of tooth movement during orthodontic treatment-A frontier in orthodontics, J. Pharm. Sci. Res. 9 (2017) 741-744 [4] H. Enerback, M. Moller, C Nylen, C.O. Bresin, I.O. Ros, A Westerlund, Effects of orthodontic treatment and different fluoride regimens on numbers of cariogenic bacteria and caries risk : a randomized controlled trial, Eur. J. Orthod. (2018) 1-8 [4] H. Enerback, M. Moller, C Nylen, C.O. Bresin, I.O. Ros, A Westerlund, Effects of orthodontic treatment and different fluoride regimens on numbers of cariogenic bacteria and caries risk: a randomized controlled trial, Eur. J. Orthod. (2018) 1-8 [5] S. Singh, M. Panwar, B. Jayan, V. Arora, Orthodontic management of dentition in patients with periodontally compromised dentition, J Indian Soc Periodontol 18 (2014) 200-204 [5] S. Singh, M. Panwar, B. Jayan, V. Arora, Orthodontic management of dentition in patients with periodontally compromised dentition, J Indian Soc Periodontol 18 (2014) 200-204 [6] S. Arango, A. Pelaez-Vargas, C. Garcia, Coating and Surface Treatments on Orthodontic Metallic Materials, Coatings. 3 (2012) 1-15 [6] S. Arango, A. Pelaez-Vargas, C. Garcia, Coating and Surface Treatments on Orthodontic Metallic Materials, Coatings. 3 (2012) 1-15 [7] D.S. Park, I.S. Kim, H. Kim, A.H.K. Chou, B.D. Hahn, L.H. Li, S.J. Hwang, Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition, J. Biomed. Mater. Res - Part B Appl. Biomater. 94 (2010) 353-358 [7] D.S. Park, I.S. Kim, H. Kim, A.H.K. Chou, B.D. Hahn, L.H. Li, S.J. Hwang, Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition, J. Biomed. Mater. Res-Part B Appl. Biomater. 94 (2010) 353-358 [8] B.D. Hahn, D.S. Park, J.J. Choi, J. Ryu, WH Yoon, J.H. Choi, H.E. Kim, S.G. Kim, Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy, Surf. Coatings Technol. 205 (2011) 3112-3118 [8] B.D. Hahn, D.S. Park, J.J. Choi, J. Ryu, WH Yoon, J.H. Choi, H.E. Kim, S.G. Kim, Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy, Surf. Coatings Technol. 205 (2011) 3112-3118 [9] B.D. Hahn, Y.L. Cho, D.S. Park, J.J. Choi, J. Ryu, J.W. Kim, C.W. Ahn, C. Park, H.E. Kim, SG Kim, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, J. Biomater. Appl. 27 (2013) 587-594 [9] B.D. Hahn, Y.L. Cho, D.S. Park, J.J. Choi, J. Ryu, J.W. Kim, C.W. Ahn, C. Park, H.E. Kim, SG Kim, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, J. Biomater. Appl. 27 (2013) 587-594 [10] B. Mehmeti, B. Azizi, J. Kelmendi, D. Iljazi-Shahiqi, Z. Alar, S. Anic-Milosevic, Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns, Acta Stomatol. Croat. 51 (2017) 99-105 [10] B. Mehmeti, B. Azizi, J. Kelmendi, D. Iljazi-Shahiqi, Z. Alar, S. Anic-Milosevic, Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns, Acta Stomatol. Croat. 51 (2017) 99-105 [11] M.A. Vargas, D.S. Cobb, S.R. Armstrong, Resin-dentin shear bond strength and interfacial ultrastructure with and without a hybrid layer, Oper. Dent. 22 (1997) 159-66 [11] M.A. Vargas, D.S. Cobb, S.R. Armstrong, Resin-dentin shear bond strength and interfacial ultrastructure with and without a hybrid layer, Oper. Dent. 22 (1997) 159-66 [12] J.M. Powers, H.B. Kim, D.S. Turner, Orthodontic adhesives and bond strength testing, Semin. Orthod. 3 (1997) 147-156 [12] J.M. Powers, H.B. Kim, D.S. Turner, Orthodontic adhesives and bond strength testing, Semin. Orthod. 3 (1997) 147-156 [13] W.J. Loesche, S.A. Syed, E Schmidt, E.C. Morrison, Bacterial Profiles of Subgingival Plaques in Periodontitis, J. Periodontol. 56 (1985) 447-456 [13] W.J. Loesche, S.A. Syed, E Schmidt, E.C. Morrison, Bacterial Profiles of Subgingival Plaques in Periodontitis, J. Periodontol. 56 (1985) 447-456 [14] T.J. Webster, R.W. Siegel, R. Bizios, Design and evaluation of nanophase alumina for orthopaedic/dental applications, Nanostructured Mater. 12 (1999) 983-986 [14] T.J. Webster, R.W. Siegel, R. Bizios, Design and evaluation of nanophase alumina for orthopaedic/dental applications, Nanostructured Mater. 12 (1999) 983-986 [15] T.J Webster, RW Siegel, R Bizios, Osteoblast adhesion on nanophase ceramics, Biomaterials. 20 (1999) 1221-1227 [15] T.J Webster, RW Siegel, R Bizios, Osteoblast adhesion on nanophase ceramics, Biomaterials. 20 (1999) 1221-1227 [16] S. Henneman, J.W. Von Den Hoff, J.C. Maltha, Mechanobiology of tooth movement, Eur. J. Orthod. 30 (2008) 299-306 [16] S. Henneman, J.W. Von Den Hoff, J.C. Maltha, Mechanobiology of tooth movement, Eur. J. Orthod. 30 (2008) 299-306 [17] S.H. Jonsdottir, E.B.W. Giesen, J.C. Maltha, The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement, Eur. J. Orthod. 34 (2012) 542-546 [17] S.H. Jonsdottir, E.B.W. Giesen, J.C. Maltha, The biomechanical behavior of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement, Eur. J. Orthod. 34 (2012) 542-546 [18] A.A. Campbell, Bioceramics for implant coatings, Mater. Today. 6 (2003) 26-30 [18] A.A. Campbell, Bioceramics for implant coatings, Mater. Today. 6 (2003) 26-30 [19] L.F. Bailey, R.J. Bennett, DICOR Surface Treatments for Enhanced Bonding, J. Dent. Res. 67 (1988) 925-931 [19] L.F. Bailey, R.J. Bennett, DICOR Surface Treatments for Enhanced Bonding, J. Dent. Res. 67 (1988) 925-931 [20] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials. 21 (2000) 1803-1810 [20] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials. 21 (2000) 1803-1810 [21] B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films. 518 (2010) 2194-2199 [21] B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films. 518 (2010) 2194-2199 [22] A. Klocke, H.M. Korbmacher, L.G. Huck, B. Kahl-Nieke, Plasma arc curing lights for orthodontic bonding, Am. J. Orthod. Dentofac. Orthop. 122 (2002) 643-648 [22] A. Klocke, H.M. Korbmacher, L.G. Huck, B. Kahl-Nieke, Plasma arc curing lights for orthodontic bonding, Am. J. Orthod. Dentofac. Orthop. 122 (2002) 643-648 [23] M.F. Orellana-Lezcano, P.W. Major, P.L. McNeil, J.L. Borke, Temporary loss of plasma membrane integrity in orthodontic tooth movement, Orthod. Craniofac. Res. 8 (2005) 106-113 [23] M.F. Orellana-Lezcano, P.W. Major, P.L. McNeil, J.L. Borke, Temporary loss of plasma membrane integrity in orthodontic tooth movement, Orthod. Craniofac. Res. 8 (2005) 106-113 [24] S.B. Jobalia, RM Valente, W.G. de Rijk, E.A. BeGole, C.A. Evans, Bond strength of visible light-cured glass ionomer orthodontic cement, Am. J. Orthod Dentofacial. Orthop. 112 (1997) 205-208 [24] S.B. Jobalia, RM Valente, W.G. de Rijk, E.A. BeGole, C.A. Evans, Bond strength of visible light-cured glass ionomer orthodontic cement, Am. J. Orthod Dentofacial. Orthop. 112 (1997) 205-208 [25] J.A. Miguel, M.A. Almeida, O. Chevitarese, Clinical comparison between a glass ionomer cement and a composite for direct bonding of orthodontic brackets, Am. J. Orthod. Dentofacial Orthop. 107 (1995) 484-487 [25] J.A. Miguel, M.A. Almeida, O. Chevitarese, Clinical comparison between a glass ionomer cement and a composite for direct bonding of orthodontic brackets, Am. J. Orthod. Dentofacial Orthop. 107 (1995) 484-487 [26] S.E. Bishara, M.M.A. Soliman, C. Oonsombat, J.F. Laffoon, R. Ajlouni, The effect of variation in mesh-base design on the shear bond strength of orthodontic brackets., Angle. Orthod. 74 (2004) 400-404 [26] S.E. Bishara, M.M.A. Soliman, C. Oonsombat, J.F. Laffoon, R. Ajlouni, The effect of variation in mesh-base design on the shear bond strength of orthodontic brackets., Angle. Orthod. 74 (2004) 400-404 [27] F.R. Egan, S.A. Alexander, G.E. Cartwright, Bond strength of rebonded orthodontic brackets, Am. J. Orthod. Dentofacial. Orthop. 109 (1996) 64-70 [27] F.R. Egan, S.A. Alexander, G.E. Cartwright, Bond strength of rebonded orthodontic brackets, Am. J. Orthod. Dentofacial. Orthop. 109 (1996) 64-70 [28] O. Sorel, R. El Alam, F. Chagneau, G. Cathelineau, Comparison of bond strength between simple foil mesh and laser-structured base retention brackets, Am. J. Orthod Dentofac. Orthop. 122 (2002) 260-266 [28] O. Sorel, R. El Alam, F. Chagneau, G. Cathelineau, Comparison of bond strength between simple foil mesh and laser-structured base retention brackets, Am. J. Orthod Dentofac. Orthop. 122 (2002) 260-266 [29] J. Akedo, Aerosol Deposition Method for Room-Temperature Ceramic Coating and Its Applications, in: Handb. Adv. Ceram. Mater. Appl. Process Prop. Second Ed., 2013: pp 847-860 [29] J. Akedo, Aerosol Deposition Method for Room-Temperature Ceramic Coating and Its Applications, in: Handb. Adv. Ceram. Mater. Appl. Process Prop. Second Ed., 2013: pp 847-860 [30] J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm Spray Technol 17 (2008) 181-198 [30] J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm Spray Technol 17 (2008) 181-198 [31] J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer, Mater. Sci Forum 449-452 (2004) 43-48 [31] J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer, Mater. Sci Forum 449-452 (2004) 43-48 [32] B.D. Hahn, Y.L. Cho, D.S. Park, J.J. Choi, J. Ryu, J.W. Kim, C.W. Ahn, C. Park, H.E. Kim, S.G. Kim, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, J. Biomater Appl. 27 (2013) 587-594 [32] B.D. Hahn, Y.L. Cho, D.S. Park, J.J. Choi, J. Ryu, J.W. Kim, C.W. Ahn, C. Park, H.E. Kim, S.G. Kim, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, J. Biomater Appl. 27 (2013) 587-594 [33] D. Pitriani, S.W. Logamarta, D.N.A. Imam, The shear bond strength of reconditioned sapphire bracket after rebonding with sandblasting zirconia, Padjadjaran J. Dent. 30 (2018) 45-51 [33] D. Pitriani, S.W. Logamarta, D.N.A. Imam, The shear bond strength of reconditioned sapphire bracket after rebonding with sandblasting zirconia, Padjadjaran J. Dent. 30 (2018) 45-51 [34] H. Ahmad, Biocompatible SiO2 in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential, J. Chem. 2015 (2015) 1-19 [34] H. Ahmad, Biocompatible SiO2 in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential, J. Chem. 2015 (2015) 1-19 [35] D.R. Jordan, S.R. Klapper, Enucleation and orbital implants, Elsevier Inc., n.d. [35] D.R. Jordan, S.R. Klapper, Enucleation and orbital implants, Elsevier Inc., n.d. [36] D.W. Lee, M.C. Shin, Y.N. Kim, J.M. Oh, Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition, Ceram. Int. 43 (2017) 1044-1051 [36] D.W. Lee, M.C. Shin, Y.N. Kim, J.M. Oh, Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition, Ceram. Int. 43 (2017) 1044-1051 [37] J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, S.S. Yoon, Thermally induced superhydrophilicity in TiO2 films prepared by supersonic aerosol deposition, ACS Appl. Mater. Interfaces. 5 (2013) 6155-6160 [37] J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, S.S. Yoon, Thermally induced superhydrophilicity in TiO2 films prepared by supersonic aerosol deposition, ACS Appl. Mater. Interfaces. 5 (2013) 6155-6160 [38] D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol. 6 (2015) 147-181 [38] D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol. 6 (2015) 147-181 [39] D.W. Lee, H.J. Kim, Y.N. Kim, M.S. Jeon, S.M. Nam, Substrate hardness dependency on properties of Al2O3 thick films grown by aerosol deposition, Surf. Coatings Technol. 209 (2012) 160-168 [39] D.W. Lee, H.J. Kim, Y.N. Kim, M.S. Jeon, S.M. Nam, Substrate hardness dependency on properties of Al2O3 thick films grown by aerosol deposition, Surf. Coatings Technol. 209 (2012) 160-168 [40] D.W. Lee, H.J. Kim, S.M. Nam, Al2O3 Films on Cu Substrates Using the Aerosol Deposition Method, J. Korean Phys. Soc. 57 (2010) 1115-1121 [40] D.W. Lee, H.J. Kim, S.M. Nam, Al2O3 Films on Cu Substrates Using the Aerosol Deposition Method, J. Korean Phys. Soc. 57 (2010) 1115-1121 [41] Y. Zhang, T.L. Chwee, S. Ramakrishna, Z.M. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, J. Mater. Sci. Mater. Med. 16 (2005) 933-946 [41] Y. Zhang, T.L. Chwee, S. Ramakrishna, Z.M. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, J. Mater. Sci. Mater. Med. 16 (2005) 933-946 [42] C. Wu, W. Fan, J. Chang, M. Zhang, Y. Xiao, Preparation, characterization, and in vitro bioactivity of nagelschmidtite bioceramics, J Am Ceram Soc 96 (2013) 928-934 [42] C. Wu, W. Fan, J. Chang, M. Zhang, Y. Xiao, Preparation, characterization, and in vitro bioactivity of nagelschmidtite bioceramics, J Am Ceram Soc 96 (2013) 928-934 [43] M.Y. Cho, S.J. Park, S.M. Kim, D.W. Lee, H.K. Kim, SM Koo, K.S. Moon, J.M. Oh, Hydrophobicity and transparency of Al2O3-based poly-tetra-fluoro-ethylene composite thin films using aerosol deposition, Ceram Int 44 (2018) 16548-16555 [43] M.Y. Cho, S.J. Park, S.M. Kim, D.W. Lee, H.K. Kim, SM Koo, K.S. Moon, J.M. Oh, Hydrophobicity and transparency of Al2O3-based poly-tetra-fluoro-ethylene composite thin films using aerosol deposition, Ceram Int 44 (2018) 16548-16555 [44] O.Y. Kwon, H.J. Na, H.J. Kim, D.W. Lee, S.M. Nam, Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett. 7 (2012) 261 [44] O.Y. Kwon, H.J. Na, H.J. Kim, D.W. Lee, S.M. Nam, Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett. 7 (2012) 261 [45] J. Chinnam, D.K. Das, R.S. Vajjha, JR Satti, Measurements of the surface tension of nanofluids and development of a new correlation, Int. J. Therm. Sci. 98 (2015) 68-80 [45] J. Chinnam, D.K. Das, R.S. Vajjha, JR Satti, Measurements of the surface tension of nanofluids and development of a new correlation, Int. J. Therm. Sci. 98 (2015) 68-80 [46] T.S. Skoblo, V.M. Vlasovets, V.V Moroz, Structure and Distribution of components in the working laver upon reconditioning of parts by electro-arc metallization, Met. Sci. Heat. Treat. 43 (2001) 497-500 [46] T.S. Skoblo, V.M. Vlasovets, V.V Moroz, Structure and Distribution of components in the working laver upon reconditioning of parts by electro-arc metallization, Met. Sci. Heat. Treat. 43 (2001) 497-500 [47] H.J. Busscher, H.P. de Jong, J. Arends, Surface free energies of hydroxyapatite, fluorapatite and calcium fluoride, Mater. Chem. Phys. 17 (1987) 553-558[47] H.J. Busscher, H.P. de Jong, J. Arends, Surface free energies of hydroxyapatite, fluorapatite and calcium fluoride, Mater. Chem. Phys. 17 (1987) 553-558 [48] W.M.M. Heijnen, P. Hartman, Structural morphology of gypsum(CaSO4·2H20), brushite(CaHPO4·2H20) and pharmacolite(CaHAsO4·2H20), J. Cryst. Growth. 108 (1991) 290-300[48] W.M.M. Heijnen, P. Hartman, Structural morphology of gypsum (CaSO4·2H20), brushite (CaHPO4·2H20) and pharmacolite (CaHAsO4·2H20), J. Cryst. Growth. 108 (1991) 290-300 [49] M.A. Miller, M.R. Kendall, M.K. Jain, P.R. Larson, A.S. Madden, A.C. Tas, Testing of brushite (CaHPO4·2H2O) in synthetic biomineralization solutions and in situ crystallization of brushite micro-granules, J. Am. Ceram. Soc. 95 (2012) 2178-2188 [49] M.A. Miller, M.R. Kendall, M.K. Jain, P.R. Larson, A.S. Madden, A.C. Tas, Testing of brushite (CaHPO4·2H2O) in synthetic biomineralization solutions and in situ crystallization of brushite micro-granules, J. Am. Ceram. Soc. 95 (2012) 2178-2188 [50] S. Mandel, A.C. Tas, Brushite(CaHPO4·2H2O) to octacalcium phosphate(Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5℃, Mater. Sci. Eng. C. 30 (2010) 245-254 [50] S. Mandel, A.C. Tas, Brushite(CaHPO4·2H2O) to octacalcium phosphate(Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5℃, Mater. Sci. Eng. C. 30 (2010) 245-254 [51] M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, D. Uskokovic, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth Des. 8 (2008) 2217-2222 [51] M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, D. Uskokovic, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth Des. 8 (2008) 2217-2222 [52] G.A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, F. Caccavale, Chemical vapour deposition and characterization of gallium oxide thin films, Thin Solid Films. 279 (1996) 115-118 [52] G.A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, F. Caccavale, Chemical vapor deposition and characterization of gallium oxide thin films, Thin Solid Films. 279 (1996) 115-118 [53] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (2000) 1803-1810 [53] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (2000) 1803-1810 [54] H. Fischer, M. Schafer, R. Marx, Effect of surface roughness on flexural strength of veneer ceramics, J. Dent. Res. 82 (2003) 972-975 [54] H. Fischer, M. Schafer, R. Marx, Effect of surface roughness on flexural strength of veneer ceramics, J. Dent. Res. 82 (2003) 972-975 [55] M. Guazzato, M. Albakry, S.P. Ringer, M. V. Swain, Strength, fracture toughness and microstructure of a selection of all-ceramic materials Part I Pressable and alumina glass-infiltrated ceramics, Dent. Mater. 20 (2004) 441-448 [55] M. Guazzato, M. Albakry, S.P. Ringer, M. V. Swain, Strength, fracture toughness and microstructure of a selection of all-ceramic materials Part I Pressable and alumina glass-infiltrated ceramics, Dent. Mater. 20 (2004) 441-448 [56] K. Li, P. Yang, L. Niu, D. Xue, Hardness of Inorganic Functional Materials, Rev. Adv. Sci. 1 (2012) 265-279 [56] K. Li, P. Yang, L. Niu, D. Xue, Hardness of Inorganic Functional Materials, Rev. Adv. Sci. 1 (2012) 265-279 [57] S. Ruppi, A. Larsson, A. Flink, Nanoindentation hardness, texture and microstructure of α-Al2O3 and κ-Al2O3 coatings, Thin Solid Films. 516 (2008) 5959-5966 [57] S. Ruppi, A. Larsson, A. Flink, Nanoindentation hardness, texture and microstructure of α-Al2O3 and κ-Al2O3 coatings, Thin Solid Films. 516 (2008) 5959-5966 [58] S. Duan, P. Feng, C. Gao, T. Xiao, K. Yu, C. Shuai, S. Peng, Microstructure evolution and mechanical properties improvement in liquid-phase-sintered hydroxyapatite by laser sintering, Materials (Basel). 8 (2015) 1162-1175 [58] S. Duan, P. Feng, C. Gao, T. Xiao, K. Yu, C. Shuai, S. Peng, Microstructure evolution and mechanical properties improvement in liquid-phase-sintered hydroxyapatite by laser sintering, Materials ( Basel). 8 (2015) 1162-1175 [59] C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int. 38 (2012) 5621-5627 [59] C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int. 38 (2012) 5621-5627 [60] M.B. Blatz, A. Sadan, M. Kern, Resin-ceramic bonding: A review of the literature, J Prosthet. Dent. 89 (2003) 268-274 [60] M.B. Blatz, A. Sadan, M. Kern, Resin-ceramic bonding: A review of the literature, J Prosthet. Dent. 89 (2003) 268-274 [61] R.C. de Oyague, F. Monticeli, M. Toledano, E. Osorio, M. Ferrari, R Osorio, Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic, Dent. Mater. 25 (2009) 172-179 [61] R.C. de Oyague, F. Monticeli, M. Toledano, E. Osorio, M. Ferrari, R Osorio, Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic, Dent. Mater. 25 (2009) 172-179 [62] J.M. Powers, H.B. Kim, D.S. Turner, Orthodontic adhesives and bond strength testing, Semin. Orthod. 3 (1997) 147-156 [62] J.M. Powers, H.B. Kim, D.S. Turner, Orthodontic adhesives and bond strength testing, Semin. Orthod. 3 (1997) 147-156 [63] A.A. Ribeiro, A.V. de Morais, D.P. Brunetto, ACDO Ruellas, MTS de Araujo, Comparison of Shear Bond Strength of Orthodontics Brackets on Composite Resin Restorations with Different Surface Treatments, Dental Press J. Orthod. 18 (2013) 98-103 [63] A.A. Ribeiro, A.V. de Morais, D.P. Brunetto, ACDO Ruellas, MTS de Araujo, Comparison of Shear Bond Strength of Orthodontics Brackets on Composite Resin Restorations with Different Surface Treatments, Dental Press J. Orthod. 18 (2013) 98-103 [64] V. Rajeev, R. Arunachalam, S. Nayar, P.R. Arunima, S. Ganapathy, V. Vedam, "Ormocer an innovative technology": A replacement for conventional cements and veneer? A comparative in vitro analysis, Eur. J. Dent 11 (2017) 58-63 [64] V. Rajeev, R. Arunachalam, S. Nayar, P.R. Arunima, S. Ganapathy, V. Vedam, "Ormocer an innovative technology": A replacement for conventional cements and veneer? A comparative in vitro analysis, Eur. J. Dent 11 (2017) 58-63 [65] A. Bacchi, V. Feitosa, AQ da Silva Fonseca, LA Cavalcante, N Silikas, LJ Schneider, Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites, J. Conserv. Dent. 18 (2015) 384-388 [65] A. Bacchi, V. Feitosa, AQ da Silva Fonseca, LA Cavalcante, N Silikas, LJ Schneider, Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites, J. Conserv. Dent. 18 (2015) 384-388

상기한 문제점을 해결하기 위한 본 발명의 목적은 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법을 제공한다. An object of the present invention for solving the above problems is to provide a method for evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets.

본 고의 목적은 4 종류의 바이오세라믹 코팅층들을 AD 공정(AD process)을 통해 조성하고 특성화 하였다. 사파이어 브라켓이 기판을 선택하였으며, 이는 색상 안정성, 생체적합성, 부식 저항성, 및 비-독성이라는 이점들을 갖기 때문이다. 각 필름의 증착률이 평가되었으며 출발 입자들로부터 증착된-채로의 바이오세라믹 필름들의 결정 크기에 있어서의 변화들이 분석되었다. 이후, 치아교정용 브라켓을 위한 기계적 특성, 즉 바이오세라믹 필름들의 접착 강도(adhesive strength)와 전단 결합 강도(shear bond strength)를 측정하여 치아교정용 브라켓의 기계적 특성들을 위한 바이오세라믹 필름들의 실현가능성을 확인하였다. 마지막으로, 에어로졸-증착 바이오세라믹 필름들의 특성들 및 형성 과정을 고려하여, 각 바이오 세라믹 필름에 따른 필름 형성 메커니즘들을 제안하였다.The purpose of this paper was to create and characterize four types of bioceramic coating layers through the AD process. The sapphire bracket chose the substrate because it has the advantages of color stability, biocompatibility, corrosion resistance, and non-toxicity. The deposition rate of each film was evaluated and changes in crystal size of the bioceramic films deposited-stained from the starting particles were analyzed. Subsequently, the mechanical properties for the orthodontic bracket, i.e., the adhesive strength and shear bond strength of the bioceramic films are measured to realize the feasibility of the bioceramic films for the mechanical properties of the orthodontic bracket. Confirmed. Finally, considering the properties and formation process of aerosol-deposited bioceramic films, film formation mechanisms for each bioceramic film were proposed.

본 발명의 목적을 달성하기 위해, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법은, 실온에서, AD 장치를 사용하여 에어로졸 증착 공정(AD process)에 의해 사파이어 브라켓과 사파이어 기판 상에 바이오세라믹 입자들을 증착하여 나노구조 바이오세라믹 코팅층을 형성하는 단계; 및 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 기계적인 특성, 즉 표면 거칠기와 증착률과 접착 강도를 측정하는 단계를 포함한다. In order to achieve the object of the present invention, a method for evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets, at room temperature, using an AD device, a sapphire bracket and a sapphire substrate by an aerosol deposition process (AD process) Depositing bioceramic particles on to form a nanostructured bioceramic coating layer; And measuring the mechanical properties of the aerosol-deposited bio-ceramic film for orthodontic brackets, namely surface roughness, deposition rate and adhesive strength.

상기 바이오세락믹 코팅층은, Al2O3, SiO2, HA(hydroxyapatite), 또는 brushite 중 어느 하나의 바이오세라믹 입자들이 증착된 바이오세라믹 필름 인 것을 특징으로 한다. The bioceramic coating layer is characterized by being a bioceramic film in which any one of bioceramic particles of Al 2 O 3 , SiO 2 , HA (hydroxyapatite), or brushite is deposited.

상기 4종류의 바이오세라믹 필름들의 결정 크기는 XRD 데이터로부터 100 nm이하 이다. The crystal size of the four types of bioceramic films is 100 nm or less from XRD data.

상기 AD 장치는 로터리 펌프와 기계적 부스터 펌프를 구비하는 진공 시스템, 에어로졸 챔버, 이동 X-Y 스테이지, 증착 챔버, 캐리어 가스, 및 유량 제어기를 구비한다. The AD device includes a vacuum system having a rotary pump and a mechanical booster pump, an aerosol chamber, a moving X-Y stage, a deposition chamber, a carrier gas, and a flow controller.

상기 단계 (a)의 상기 에어로졸 증착 공정(AD process)은, 상기 AD 장치를 사용하여 바이오세라믹 분말들(bioceramic powders)이 80℃에서 8 시간 동안 건조 오븐에서 건조되고, 고운체(fine sieve) 망을 통해 스며들어 습기를 제거하거나 모으고, 상기 바이오세라믹 분말들(powders)이 에어로졸 챔버에 놓여지고, 캐리어 가스를 주입하여 powder로 공급함으로써 증착 챔버를 구동하며, 상기 바이오세라믹 분말들을 튜브를 통해 노즐로 전달되는 단계; 및 필름 증착은 직접 주입 방법보다 AD 프로세스에서 높은 증착률(deposition rate) 및 경도(film hardness)를 갖는 밀한 필름이 형성되도록 노즐 오리피스를 사용하여 상기 바이오세라믹 코팅층을 형성하는 단계를 포함한다. In the aerosol deposition process of step (a), bioceramic powders are dried in a drying oven at 80° C. for 8 hours using the AD device, and a fine sieve network is used. Moisture is removed or collected through, and the bioceramic powders are placed in an aerosol chamber, and a carrier gas is injected to supply the powder to drive the deposition chamber, and the bioceramic powders are supplied through a tube to a nozzle. Delivered; And film deposition includes forming the bioceramic coating layer using a nozzle orifice such that a dense film having a higher deposition rate and film hardness is formed in an AD process than a direct injection method.

상기 캐리어 가스의 주입에 앞서, 증착 챔버는 두 종류의 진공 펌프들에 의해 ~3.2 Torr에서 사전-진공화(pre-evacuate) 되어 노즐로부터 가속된 파우더의 속도를 유지하며, 헬륨(순도 99.99%)이 캐리어 가스가 사용된다. Prior to the injection of the carrier gas, the deposition chamber is pre-evacuated at ~3.2 Torr by two types of vacuum pumps to maintain the accelerated powder velocity from the nozzle and helium (purity 99.99%). This carrier gas is used.

상기 노즐 오리피스는 10 × 0.4 mm2의 노즐 오리피스보다 7배 높은 증착률을 갖는 1.5 × 1.5 mm2의 노즐 오리피스를 사용한다. The nozzle orifice uses a 1.5×1.5 mm 2 nozzle orifice having a deposition rate 7 times higher than that of a 10×0.4 mm 2 nozzle orifice.

HA(hydroxyapatite)와 brushite(

Figure pat00001
)가 각각 2㎛ 및 50㎛의 입자 크기를 갖는다. HA(hydroxyapatite) and brushite(
Figure pat00001
) Has particle sizes of 2 μm and 50 μm, respectively.

AD 공정 시에 바이오세라믹 코팅은 바이오세라믹 사파이어 브라켓 상에 체크-패턴(check-pattern on a sapphire bracket)을 사용한 쉐도우 마스크 패터닝(shadow mask patterning)을 사용하며, 체크-패턴 브루사이트 필름(check-patterned brushite film)은 기계적 특성과 증착률이 우수한 특성을 가지며, 메시-패턴 필름(mesh-patterned film)보다 두 배를 초과하는 전단 결합 강도(shear bond strength)를 갖는다.In the AD process, the bioceramic coating uses shadow mask patterning using a check-pattern on a sapphire bracket, and a check-patterned film is used. The brushite film has excellent mechanical properties and deposition rates, and has a shear bond strength that is more than twice that of the mesh-patterned film.

상기 에어로졸 증착 된 바이오세라믹 필름들의 표면 특성은 원자 현미경에 의해 측정되며, SiO2 필름의 RMS 거칠기는 최저치를 나타낸 반면, 상대적으로 brushite와 HA 필름들의 RMS 거칠기는 최고치를 보였으며, 강한 세라믹-대-레진 결합은 통상적으로 미세-기계적 인터로킹(micro-mechanical interlocking)과 화학적 결합(chemical bonding)에 의존하는데, 적절히 거친 표면이 세라믹 코팅(ceramic coating)과 부드러운 레진(resin) 사이의 효과적인 결합 강도(effective bonding strength)를 제공하며, The surface properties of the aerosol-deposited bioceramic films were measured by atomic force microscopy, while the RMS roughness of the SiO 2 film showed the lowest value, while the RMS roughness of the brushite and HA films showed the highest value, and strong ceramic-to- Resin bonding typically relies on micro-mechanical interlocking and chemical bonding, where an appropriately rough surface is effective for effective bonding strength between a ceramic coating and a soft resin. bonding strength),

상기 4종류의 에어로졸-증착 바이오세라믹 필름들(aerosol-deposited bioceramic films)의 평균 표면 거칠기(average surface roughness)는 치의학적 응용에 바람직한 표면 거칠기를 갖는다. The average surface roughness of the four types of aerosol-deposited bioceramic films has a desirable surface roughness for dental applications.

상기 HA(hydroxyapatite) 및 brushite 필름은 SiO2 및 Al2O3 필름 보다 큰 증착률을 갖는다.The HA (hydroxyapatite) and brushite films are SiO 2 and Al 2 O 3 It has a larger deposition rate than the film.

상기 HA(hydroxyapatite) 및 brushite 필름은, SiO2 및 Al2O3 필름들이 6MPa와 8MPa 사이의 전단 결합 강도 값을 가졌으며, 상기 HA와 brushite 필름은 10 MPa보다 큰 전단 결합 강도 값을 가지며, In the HA (hydroxyapatite) and brushite film, SiO 2 and Al 2 O 3 films had a shear bond strength value between 6 MPa and 8 MPa, and the HA and brushite film had a shear bond strength value greater than 10 MPa,

상기 SiO2 및 Al2O3 필름들과 비교하여 최적의 접착 강도 값들이 관찰되었으며, 상기 HA와 brushite 필름은 SiO2 및 Al2O3 필름들보다 1.5배 높은 전단 결합 강도를 갖는다. Optimal adhesion strength values were observed compared to the SiO 2 and Al 2 O 3 films, and the HA and brushite films had a shear bond strength 1.5 times higher than that of the SiO 2 and Al 2 O 3 films.

상기 바이오 세라믹 필름은 상기 HA(hydroxyapatite)와 brushite 필름들이 치아교정용 브라켓에 사용된다. In the bio ceramic film, the HA (hydroxyapatite) and brushite films are used in the orthodontic bracket.

본 발명을 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법을 제시하였다. 4종류의 바이오세라믹 필름들(Al2O3, SiO2, HA(hydroxyapatite), 및 brushite)이 23℃의 실온에서 단순한 에어로졸 증착(aerosol deposition, AD) 공정이 사용되었으며, 치아교정용 브라켓(orthodontic brackets)으로의 사용을 위한 잠재력을 검증하기 위해 그 구조와 기계적 특성들이 비교되었다. 그 결과, HA(hydroxyapatite, 수산화인회석)와 brushite 필름들이 다른 코팅 기술들과 비교하여 상당히 높은 증착율을 보였다. 더욱이, 모든 샘플들의 결정크기가 100 nm 이하로 크게 감소되었는데, 이는 생물학적 효능과 바이오세라믹 필름의 기계적 특성들을 증진시킬 수 있다. 또한, HA와 brushite 필름들은 치아교정용 브라켓을 위한 바이오세라믹 필름의 최적의 기계적 특성, 즉 접착력(adhesive strength)과 전단 결합 강도(shear bond strength)를 갖는다. 이러한 두 가지의 중요한 기계적 특성들은 높은 증착률(deposition rate)에 의한 더 두꺼운 범프(bump)들 뿐만아니라 세라믹-대-레진 인터페이스에서의 강력한 기계적 인터로킹에 의해 달성되었다. 본 연구는 AD-제공 HA와 brushite 필름들이 교정용 브라켓에 적용함에 있어서 높은 잠재력을 갖는 점을 확인하였다.The present invention proposed a method for evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets. Four types of bioceramic films (Al 2 O 3 , SiO 2 , HA (hydroxyapatite), and brushite) were used for a simple aerosol deposition (AD) process at room temperature of 23° C., orthodontic bracket The structure and mechanical properties were compared to verify the potential for use as brackets. As a result, HA (hydroxyapatite, hydroxyapatite) and brushite films showed significantly higher deposition rates compared to other coating techniques. Moreover, the crystal size of all samples was greatly reduced to less than 100 nm, which can improve the biological efficacy and mechanical properties of the bioceramic film. In addition, HA and brushite films have the optimal mechanical properties of bioceramic films for orthodontic brackets, namely adhesive strength and shear bond strength. These two important mechanical properties have been achieved by strong mechanical interlocking at the ceramic-to-resin interface, as well as thicker bumps with high deposition rates. This study confirmed that AD-provided HA and brushite films have high potential for application to orthodontic brackets.

결과적으로, 4 종류의 바이오세라믹 필름들[Al2O3, SiO2, HA(hydroxyapatite, 수산화인회석), 및 brushite]은, HA(hydroxyapatite, 수산화인회석) 및 brushite 필름이 SiO2 및 Al2O3 필름 보다 현저히 큰 증착률을 갖는 것으로 나타냈다. SiO2 및 Al2O3 필름들과 기계적 특성들을 비교하여 HA와 brushite 필름은 최적의 접착 강도 값들이 관찰되었다. SiO2 및 Al2O3 필름들이 6MPa와 8MPa 사이의 전단 결합 강도 값을 가졌으며, 상기 HA와 brushite 필름은 10 MPa보다 큰 전단 결합 강도 값이 관찰했다. 게다가, HA와 brushite 필름은 SiO2 및 Al2O3 두 필름들보다 1.5배 높은 전단 결합 강도를 보였는데, 이는 더 높은 범프 두께(higher bump thickness)와 충분한 RMS 거칠기(RMS roughness)의 결과인 것으로 추론되었으며, 치아교정용 브라켓에 사용될 수 있다. As a result, four types of bioceramic films [Al 2 O 3 , SiO 2 , HA (hydroxyapatite, hydroxyapatite), and brushite], HA (hydroxyapatite, hydroxyapatite) and brushite films are SiO 2 and Al 2 O 3 It was shown to have a significantly higher deposition rate than the film. By comparing mechanical properties with SiO 2 and Al 2 O 3 films, optimal adhesion strength values were observed for HA and brushite films. SiO 2 and Al 2 O 3 films had a shear bond strength value between 6 MPa and 8 MPa, and the HA and brushite films observed shear bond strength values greater than 10 MPa. In addition, HA and brushite films showed 1.5 times higher shear bond strength than both SiO 2 and Al 2 O 3 films, which is a result of higher bump thickness and sufficient RMS roughness. Inferred, can be used for orthodontic brackets.

도 1은 에어로졸 증착 장치(aerosol deposition apparatus)의 개략도.
도 2는 AD 공정(AD precess) 전 준비 된 바이오 세라믹 분말(bioceramic powders)의 SEM 현미경 사진: (a)

Figure pat00002
, (b)
Figure pat00003
, (c) HA, (d) 브러시 라이트.
도 3은 본 연구에서 사용 된 다른 바이오 세라믹 분말(bioceramic powders)의 침착 속도(μm / min)를 보여주는 그래프.
도 4는 AD 공정에 의해 사파이어 기판 위에 증착 된 각 분말 및 바이오 세라믹 박막의 XRD 패턴.
도 5는 (a)와 (ai)
Figure pat00004
막, (b)와 (b)
Figure pat00005
막, (c)와 (ci) HA 막, 그리고 (c) 희토류 금속 산화물 박막의 표면 마이크로 구조물의 광학 현미경 사진. (d) 및 (d) 브러시 타트 필름을 포함한다.
도 6은 AFM에 의한 실험 그룹에서 각 바이오 세라믹 필름의 표면 형태(Surface morphologies)와 표면 거칠기(surface roughness) 측정 결과.
도 7은 사파이어 기판에서 바이오 세라믹 코팅층(bioceramic coating layers)의 탈착에 대한 내성을 확인하기 위한 4 가지 타입의 바이오 세라믹 필름의 접착 강도(Adhesive strength) 측정.
도 8은 4-META/MMA-TBB 에폭시 수지(META/MMA-TBB epoxy resin)를 사용하여 사파이어 브라켓(sapphire bracket)과 에나멜(enamel) 사이의 전단 결합 강도(shear bond strength) 그래프.
도 9는 위의 측정 데이터를 고려한 각 바이오 세라믹 박막의 막 형성 메커니즘(Film formation mechanisms of each bioceramic film). 그림과 관련된 그래프는 각 바이오 세라믹 필름(bioceramic film)의 평균 두께 (Ta)와 RMS 거칠기(RMS roughness)를 보여준다.1 is a schematic diagram of an aerosol deposition apparatus.
Figure 2 is a SEM micrograph of bioceramic powders prepared before the AD process (AD precess): (a)
Figure pat00002
, (b)
Figure pat00003
, (c) HA, (d) brush light.
3 is a graph showing the deposition rate (μm / min) of other bioceramic powders (bioceramic powders) used in this study.
4 is an XRD pattern of each powder and bioceramic thin film deposited on a sapphire substrate by an AD process.
5(a) and (ai)
Figure pat00004
Membranes, (b) and (b)
Figure pat00005
Optical micrographs of the surface microstructures of the membranes, (c) and (ci) HA membranes, and (c) rare earth metal oxide thin films. (d) and (d) brush tart films.
6 is a surface group (surface morphologies) and surface roughness (surface roughness) measurement results of each bio-ceramic film in the experimental group by AFM.
7 is a measure of the adhesive strength (Adhesive strength) of four types of bio-ceramic films to confirm the resistance to desorption of bio-ceramic coating layers on a sapphire substrate.
FIG. 8 is a graph of shear bond strength between a sapphire bracket and an enamel using 4-META/MMA-TBB epoxy resin.
9 is a film formation mechanism of each bioceramic thin film considering the above measurement data (Film formation mechanisms of each bioceramic film). The graph associated with the figure shows the average thickness (Ta) and RMS roughness of each bioceramic film.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 발명의 구성 및 동작을 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail the configuration and operation of the invention.

본 발명은 치아교정 브라켓(orthodontic brackets) 용 에어로졸 증착 된 바이오 세라믹 필름(aerosol-deposited bioceramic films)의 구조 및 기계적 특성 평가 방법을 제공한다. 4 종류의 바이오세라믹 필름들(Al2O3, SiO2, HA(hydroxyapatite, 수산화인회석), 및 brushite)이 23℃의 실온에서 단순한 에어로졸 증착(aerosol deposition, AD) 공정이 사용되었으며, 치아교정용 브라켓(orthodontic brackets)으로의 사용을 위한 잠재성을 검증하기 위해 그 구조와 기계적 특성들이 비교되었다. 그 결과, HA(hydroxyapatite, 수산화인회석)와 brushite 필름들이 Al2O3, SiO2를 사용한 필름 보다 다른 코팅 기술들과 비교하여 상당히 높은 증착율을 보였다. 더욱이, 모든 샘플들의 결정크기가 100 nm 이하로 크게 감소되었는데, 이는 생물학적 효능과 바이오세라믹 필름의 기계적 특성들을 증진시킬 수 있다. 또한, HA와 brushite 필름들은 바이오세라믹 필름의 최적의 기계적 특성, 즉, 접착력(adhesive strength)과 전단 결합 강도(shear bond strength)를 갖는다. 이러한 두 가지의 중요한 기계적 특성들은 높은 증착률(deposition rate)에 의한 더 두꺼운 범프(bump)들 뿐만아니라 세라믹-대-레진 인터페이스에서의 강력한 기계적 인터로킹에 의해 달성되었다. 본 연구는 AD-제공 HA와 brushite 필름들이 치아교정용 브라켓에 적용함에 있어서 높은 잠재력을 갖는 점을 확인하였다.The present invention provides a method for evaluating the structure and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets. Four types of bioceramic films (Al 2 O 3 , SiO 2 , HA (hydroxyapatite, hydroxyapatite), and brushite) were used for a simple aerosol deposition (AD) process at room temperature of 23° C. The structure and mechanical properties were compared to verify the potential for use as orthodontic brackets. As a result, HA (hydroxyapatite, hydroxyapatite) and brushite films showed significantly higher deposition rates compared to other coating techniques than films using Al 2 O 3 and SiO 2 . Moreover, the crystal size of all samples was greatly reduced to less than 100 nm, which can improve the biological efficacy and mechanical properties of the bioceramic film. In addition, HA and brushite films have the optimum mechanical properties of bioceramic films, namely adhesive strength and shear bond strength. These two important mechanical properties have been achieved by strong mechanical interlocking at the ceramic-to-resin interface, as well as thicker bumps with high deposition rates. This study confirmed that AD-provided HA and brushite films have high potential for application to orthodontic brackets.

2. 물질 및 방법2. Materials and methods

(1) 바이오세라믹 분말(bioceramic powders)의 선택(1) Selection of bioceramic powders

네 종류의 생체적합성 바이오세라믹 분말이 본 연구에서 사용되었다, (a) SiO2 (SUNSIL-130NP, SUNJIN Chemical Ltd., Ansan, Korea), (b) Al2O3 (Showa Denko Co., Ltd., Tokyo, Japan), (c) Hydroxyapatite(HA, 수산화인회석) (Dio, Co. Ltd., Busan, Korea), 및 (d) Brushite (Dio, Co. Ltd., Busan, Korea). SiO2는 의학에서 뿐만아니라 자연계에 널리 풍부함 때문에 생명공학에서 유망한 물질이다[34]. 또한, 산화 알루미늄 Al2O3는 30년 이상 임플란트와 뼈 충진(bone filling)에서 사용되어 온 세라믹 생체 적합 물질로서 널리 알려져 있다. HA(Hydroxyapatite)는 사람의 치아 및 뼈와의 유사성 때문에 다양한 선행 연구들에서 치과용 임플란트를 위한 탁월한 효과를 보였다[7,35]. 또한, Brushite 필름은 임상 분야에서 많은 치과 및 뼈 애플리케이션에 있어서 연구되어 왔다[36]. 그러므로, 네 종류의 이러한 선택된 파우더(powder)를 이용하여, AD 공정(AD process)이 수행되었다.Four biocompatible bioceramic powders were used in this study, (a) SiO 2 (SUNSIL-130NP, SUNJIN Chemical Ltd., Ansan, Korea), (b) Al 2 O 3 (Showa Denko Co., Ltd. , Tokyo, Japan), (c) Hydroxyapatite (HA, hydroxyapatite) (Dio, Co. Ltd., Busan, Korea), and (d) Brushite (Dio, Co. Ltd., Busan, Korea). SiO 2 is a promising material in biotechnology because it is widely abundant in nature as well as in medicine [34]. In addition, aluminum oxide Al 2 O 3 is widely known as a ceramic biocompatible material that has been used in implants and bone filling for over 30 years. HA (Hydroxyapatite) showed excellent effects for dental implants in various previous studies because of its similarity to human teeth and bones [7,35]. In addition, Brushite films have been studied in many dental and bone applications in the clinical field [36]. Therefore, an AD process was performed using four types of these selected powders.

(2) 바이오세라믹 코팅 프로세스(Bioceramic coating process)(2) Bioceramic coating process

바이오세라믹 코팅 필름들(Bioceramic coating films)이 AD 공정(AD process)에 의해 평평한 사파이어 기판들(flat sapphire substrates)과 사파이어 브라켓들(sapphire brackets) 상에 준비되었다. 사파이어 브라켓의 표면 거칠기(surface roughness)는 대략 19 nm였다. Bioceramic coating films were prepared on flat sapphire substrates and sapphire brackets by the AD process. The surface roughness of the sapphire bracket was approximately 19 nm.

도 1은 AD 장치의 개략도를 나타낸다. AD 장치는 주로 진공 시스템(vacuum system, 로터리 펌프 및 기계적 부스터 펌프), 에어로졸 챔버(aerosol chamber), 이동 X-Y 스테이지, 증착 챔버(deposition chamber), 캐리어 가스(carrier gas), 및 유량 제어기(mass flow controller)를 구비한다. 바이오세라믹 분말들(bioceramic powders)이 약 80℃에서 8 시간 동안 건조 오븐에서 건조되고, 고운체(fine sieve) 망을 통해 스며들어 습기를 제거하거나 모았다. 이러한 분말들(powders)이 에어로졸 챔버에 놓여지고, 캐리어 가스(carrier gas)를 powder로 공급함으로써 증착 챔버를 구동한다. 그후 분말들은 튜브(tube)를 통해 수렴 노즐(converging nozzle)로 전달된다. 캐리어 가스의 주입에 앞서, 증착 챔버는 두 종류의 진공 펌프들에 의해 ~3.2 Torr에서 사전-진공화(pre-evacuate) 되어 노즐로부터 가속된 파우더의 속도를 유지하였다. 헬륨(순도 99.99%)이 캐리어 가스가 사용되었는데, 가벼운 불활성 가스가 충분히 높은 속도를 가져 입자 임팩트 속도를 증가시켜, 필름과 기판 간의 강한 접착을 생성할 수 있기 때문이다. 기판은 노즐로부터 5mm 떨어져 위치하였다. 캐리어 가스의 유량(mass flow)은 10 L/min으로 설정되었고, 주위 흐름(surrounding flow)의 특성 시간(τ g )은 다음의 등식에 의해 결정되었다; τ g =D/ μ g , exit , 여기서 D은 노즐 출구 직경(nozzle exit diameter)이며μ g , exit 는 가스 속도(gas speed)이다[37]. 노즐을 통해 증착 챔버로 전달된 바이오세라믹 분말들은, 기판과 강하게 충돌하며 충돌시 충분한 운동 에너지가 열 에너지로 전환되는 원리에 의해 밀한 세라믹 필름들(dense ceramic films)을 형성하였다[38]. 상세한 실험 조건들은 표 1에 요약된다.1 shows a schematic diagram of an AD device. AD devices are mainly vacuum systems (rotary pumps and mechanical booster pumps), aerosol chambers, mobile XY stages, deposition chambers, carrier gases, and mass flow controllers. ). The bioceramic powders were dried in a drying oven at about 80° C. for 8 hours, and permeated through a fine sieve net to remove or collect moisture. These powders are placed in an aerosol chamber, and the deposition chamber is driven by supplying a carrier gas as powder. The powders are then delivered through a tube to a converging nozzle. Prior to the injection of carrier gas, the deposition chamber was pre-evacuated at ~3.2 Torr by two types of vacuum pumps to maintain the accelerated powder velocity from the nozzle. Helium (99.99% purity) was used as a carrier gas, because a light inert gas had a sufficiently high rate to increase the particle impact rate, resulting in strong adhesion between the film and the substrate. The substrate was positioned 5 mm from the nozzle. The mass flow of the carrier gas was set to 10 L/min, and the characteristic time ( τ g ) of the surrounding flow was determined by the following equation; τ g = D/ μ g , exit , where D is the nozzle exit diameter and μ g , exit is the gas speed [37]. The bioceramic powders delivered through the nozzle to the deposition chamber formed dense ceramic films by violently colliding with the substrate and converting sufficient kinetic energy into thermal energy upon impact [38]. The detailed experimental conditions are summarized in Table 1.

Figure pat00006
Figure pat00006

실험 셋업의 주요 이점들은 두 가지 요인들로 나누어 볼 수 있다: The main advantages of the experimental setup can be divided into two factors:

필름 증착은 직접 주입 방법보다는 체크-패턴(check-pattern) 마스크를 이용한 것과, 1.5 × 1.5 mm2의 최적화된 노즐 오리피스(nozzle orifice)의 활용한다[39]. Film deposition utilizes a check-pattern mask rather than a direct injection method and utilizes an optimized nozzle orifice of 1.5 × 1.5 mm 2 [39].

먼저, 선행 연구에서, AD 프로세스에서의 증착율(deposition rate)과 필름 경도(film hardness)에 대한 노즐 크기의 효과가 조사되었다. 본 연구는 높은 증착률 및 높은 경도를 갖는 밀한 필름이 1.5 × 1.5 mm2의 노즐 오리피스를 사용할 때 동시에 달성되었음을 제안하였다. 또한, 1.5 × 1.5 mm2의 노즐 오리피스는 10 × 0.4 mm2의 노즐 오리피스보다 대략 7배 높은 증착률을 갖는 것으로 보고 되었다. First, in a previous study, the effect of nozzle size on deposition rate and film hardness in the AD process was investigated. This study suggested that dense films with high deposition rates and high hardness were achieved simultaneously when using a nozzle orifice of 1.5 x 1.5 mm 2 . In addition, it has been reported that a nozzle orifice of 1.5 x 1.5 mm 2 has a deposition rate approximately 7 times higher than a nozzle orifice of 10 x 0.4 mm 2 .

둘째로, 2개의 코팅 방법들이 AD 공정을 위해 제안되었다: 하나는 노즐 이동을 통해 직접 라이팅(writing)을 수행하는, 메시-패턴 필름(mesh-patterned film)을 형성하는 것이고, 다른 하나는 사파이어 브라켓 상에 체크-패턴(check-pattern on a sapphire bracket)을 사용한 쉐도우 마스크 패터닝(shadow mask patterning)이다. 그 결과, 체크-패턴 브루사이트 필름(check-patterned brushite film)은 기계적 특성과 더불어 에어로졸 증착률에 있어서 우수한 특성을 보인 반면, 메시-패턴 브루사이트 필름(mesh-patterned brushite film)은 낮은 증착률(low deposition rate)과 약한 전단 결합 강도(weak shear bond strength)를 가졌다[36]. 그 연구에서, 체크-패턴 바이오세라믹 필름(check-patterned brushite film)은 메시-패턴 필름(mesh-patterned film)보다 두 배를 초과하는 전단 결합 강도(shear bond strength)를 나타냈다. 그러므로, 본 연구에서, 두 가지 요소들이 중요한 실험 파라미터로서 반영되어 에어로졸-증착 바이오세라믹 필름을 위한 증착 두께와 기계적 성능을 최적화하고 고도로 향상시켰다. 금속 쉐도우 마스크(metal shadow mask)는 사파이어 브라켓 상에 고정되어 더 안정적으로 바이오세라믹 입자들을 증착시켰다(stably deposit bioceramic particles).Secondly, two coating methods have been proposed for the AD process: one is to form a mesh-patterned film, which directly writes through nozzle movement, and the other is a sapphire bracket. Shadow mask patterning using check-pattern on a sapphire bracket. As a result, the check-patterned brushite film showed excellent properties in terms of mechanical properties and aerosol deposition rate, while the mesh-patterned brushite film showed low deposition rate ( low deposition rate and weak shear bond strength [36]. In the study, the check-patterned brushite film showed a shear bond strength more than twice that of the mesh-patterned film. Therefore, in this study, two factors were reflected as important experimental parameters to optimize and highly improve the deposition thickness and mechanical performance for aerosol-deposited bioceramic films. A metal shadow mask was fixed on the sapphire bracket to more stably deposit bioceramic particles.

(3) 특성(3) Characteristics

바이오세라믹 분말(bioceramic powders)의 형태 및 크기와 코팅층의 표면 미세구조는 10 kV에서 전계-방출 스캐닝 전자 현미경(field-emission scanning electron microscopy: FE-SEM, S-470, HITACHI LTD., Japan)에 의해 관찰되었다. X-선 회절(XRD, X'Pert PRO dirrfactometer, PANalytical, USA)을 활용하여 0.02° (2θ)의 증분으로써 10-60°의 2θ범위에 대해 ~1.5406Å의 Cu Kα 방사를 사용함으로써 바이오세라믹 분말들과 코팅층의 결정도를 평가하였다. The shape and size of the bioceramic powders and the surface microstructure of the coating layer were applied to a field-emission scanning electron microscopy (FE-SEM, S-470, HITACHI LTD., Japan) at 10 kV. Was observed by. Bio by using X-ray diffraction (XRD, X'Pert PRO dirrfactometer, PANalytical, USA) using ~1.5406 Cu Cu Kα radiation for the 2 θ range of 10-60° in increments of 0.02° (2 θ ) The crystallinity of the ceramic powders and the coating layer was evaluated.

바이오세라믹 코팅층의 두께가 표면 조면계(XP-1, Ambios Tech, USA)를 이용하여 측정되었고, 원자 현미경(atomic force microscopy : AFM, N8 NEOS, Brucker, Germany)을 활용하여 40ⅹ40 ㎛2의 영역 범위에 걸쳐 RMS(root mean square) 표면 거칠기(surface roughness) 및 형태(morphologies)를 조사하였다. The thickness of the bioceramic coating layer was measured using a surface roughness meter (XP-1, Ambios Tech, USA), and an area of 40 ⅹ 40 µm 2 using an atomic force microscope (atomic force microscopy: AFM, N8 NEOS, Brucker, Germany) The root mean square (RMS) surface roughness and morphologies were investigated.

사파이어 기판(sapphire substrate)과 에어로졸-증착 바이오세라믹 코팅층(aerosol-deposited bioceramic coating layer) 사이의 접착 강도(adhesive strength)는 범용 시험기(UTM, DUT-300CM, Daekyung engineering Corp., Korea)를 사용하여 측정되었다. 에폭시 레진(4-META/MMA-TBB) 및 원통 로드(rod)가 바이오세라믹 필름들에 단계적으로 부착되었으며, 최대 로드(maximum load)는 바이오세라믹 필름들이 완전히 기판에서 디본딩(debond)될 때까지 5 mm/min의 로딩 속도로 위로 당겨졌다. 그후, 접착력이 추정되었다. The adhesive strength between the sapphire substrate and the aerosol-deposited bioceramic coating layer was measured using a universal tester (UTM, DUT-300CM, Daekyung engineering Corp., Korea). Became. Epoxy resin (4-META/MMA-TBB) and cylindrical rods were attached in stages to the bioceramic films, and the maximum load was until the bioceramic films were fully debonded from the substrate. Pulled up at a loading speed of 5 mm/min. Thereafter, the adhesion was estimated.

전단 결합 강도(shear bond strength)를 평가하기 위해, 1 mm/min의 크로스헤드(crosshead) 속도가 칼날-엣지 블레이드(knife-edge blade)를 사용하여 바이오세라믹 코칭층(bioceramic coating layer)을 갖는 세라믹 브라켓(ceramic bracket)과 에나멜(enamel, human premolar) 사이의 인터페이스에 적용되었다. To evaluate the shear bond strength, a ceramic with a bioceramic coating layer using a knife-edge blade with a crosshead speed of 1 mm/min. It was applied to the interface between the bracket (ceramic bracket) and enamel (enamel, human premolar).

디본딩(debonding)을 위한 최대 부하(maximum load)는 뉴턴(ratio of Newtons)으로 측정되며, 브라켓 베이스(bracket base)의 표면적에 대한 Newton의 비율(ratio of Newtons)로서 megapascals(MPa)로 변환되었다.The maximum load for debonding was measured in ratios of Newtons and converted to megapascals (MPa) as the ratio of Newtons to the surface area of the bracket base. .

3. 결과3. Results

3.1 AD 공정(AD process)에 의한 밀한 나노구조 바이오세라믹 필름(dense nanostructured bioceramic films)의 형성3.1 Formation of dense nanostructured bioceramic films by the AD process

도 2는 각각의 바이오세라믹 분말의 SEM 현미경사진을 나타낸다. 2 shows an SEM micrograph of each bioceramic powder.

도 2(a)와 (b)에 도시된 바와 같이, SiO2및 Al2O3에 대하여 ~0.5㎛의 평균 입자 직경이 사용되었다. 이전 연구에서, AD 프로세스를 통한 증착 특성들에 대한 Al2O3의 효과를 조사하여 Al2O3 분말의 형태와 크기가 표면 거칠기(surface roughness) 및 증착율(deposition rate) 모두에 있어서 더 나은 특성을 가짐을 확인하였다[40]. 그 결과, 0.5㎛의 평균 입자 크기를 갖는 Al2O3를 사용할 때 적절한 표면 거칠기 및 최고의 증착률(highest deposition rate)이 동시에 달성되는 반면, 0.5㎛보다 큰 Al2O3 입자들(Al2O3 particles)은 과도하게 악화된 표면들을 형성할 뿐 아니라 현저히 감소된 증착율을 나타냈다. 표면 거칠기(Surface roughness)는 치아교정용 브라켓(orthodontic brackets)에 있어서 중요한 요소인데 이는 본딩 강도(bonding strength)와의 중요한 관계를 갖기 때문에, 과도하게 높은 표면 거칠기는 디본딩(debonding) 동안 에나벨(enamel)을 손상시킬 수 있는 반면 적절한 거칠기는 바람직한 전단 결합 강도를 달성하는 점을 나타낸다[41, 42]. 더욱이, 치과용 브레이스 브라켓용 세라믹 필름의 두께는 우수한 전단 결합 강도를 얻기 위해 수십 마이크로미터로 구성돼야 하기 때문에, 증착율(deposition rate)도 브라켓에 중요한 파라미터이다. 실제로, 에어로졸 증착 브루사이트 필름(aerosol-deposited brushite films)에 관한 선행 연구는 전단 결합 강도가 두께의 증가와 함께 점진적으로 증가하였음을 나타냈다. 그러므로, ~0.5㎛의 입자 크기를 갖는 SiO2와 Al2O3가 체내에서의 높은 기계적 퍼포먼스를 위해 선택되었다. 추가로, 특정 방향으로 평행하게 지향되는 것으로 보이는, HA(hydroxyapatite, 수산화인회석)와 brushite(

Figure pat00007
)가, 도 2(c) 및 (d)에 도시된 바와 같이, 각각 2㎛ 및 50㎛의 입자 크기가 선택되었다. 2(a) and (b), an average particle diameter of ˜0.5 μm was used for SiO 2 and Al 2 O 3 . In a previous study, we investigated the effect of Al 2 O 3 on the deposition properties through the AD process, so that Al 2 O 3 It was confirmed that the shape and size of the powder had better properties in both surface roughness and deposition rate [40]. As a result, when using Al 2 O 3 having an average particle size of 0.5 μm, while adequate surface roughness and highest deposition rate are simultaneously achieved, Al 2 O 3 larger than 0.5 μm. The particles (Al 2 O 3 particles) not only formed excessively deteriorated surfaces but also showed a significantly reduced deposition rate. Surface roughness is an important factor in orthodontic brackets, as it has an important relationship with bonding strength, so excessively high surface roughness enamels during debonding. ) While adequate roughness indicates that the desired shear bond strength is achieved [41, 42]. Moreover, since the thickness of the ceramic film for dental brace brackets must be composed of tens of micrometers to obtain excellent shear bond strength, the deposition rate is also an important parameter for the bracket. Indeed, previous studies on aerosol-deposited brushite films showed that the shear bond strength increased gradually with increasing thickness. Therefore, SiO 2 and Al 2 O 3 having a particle size of ˜0.5 μm were chosen for high mechanical performance in the body. Additionally, HA (hydroxyapatite, hydroxyapatite) and brushite (which appear to be oriented parallel to a particular direction)
Figure pat00007
), as shown in Figures 2 (c) and (d), particle sizes of 2 μm and 50 μm, respectively, were selected.

특히 앞의 3종류의 파우더보다 더 큰 입자 크기를 갖는 brushite powder가 본 연구에서 사용되었는데, 왜냐하면, 이전의 연구에서, 50㎛보다 큰 입자 크기(particle size)를 갖는 에어로졸-증착 브루사이트 필름(aerosol-deposited brushite film)이 양호한 기계적 특성과 증착률을 보였기 때문이다[36].In particular, brushite powder with a particle size larger than the previous three types of powder was used in this study because, in the previous study, aerosol-deposited brushite film with a particle size larger than 50 μm (aerosol) This is because -deposited brushite film) showed good mechanical properties and deposition rate [36].

상기 에어로졸-증착 바이오세라믹 필름들로부터, 먼저 도3에 도시된 바와 같이 4종류의 파우더의 증착률을 조사하였다. 증착률(deposition rate)은 표면 프로파일러(surface profiler)를 통해 측정되고,스캐닝 시간 당 증착 두께로서 계산되었다. 증착률은 코팅층이 스캐닝 시간에 걸쳐 얼마나 두껍게 형성되었는가로서 정의되었다: (a) SiO2: 0.38 ㎛/min, (b) Al2O3: 0.75㎛/min, (b) HA: 22 ㎛/min, 및 (d) Brushite: 27 ㎛/min. HA(hydroxyapatite, 수산화인회석)와 brushite 필름들에 있어서, 현재의 표면 코팅 방법들과 비교하여 눈에 띄게 높은 증착률(deposition rate)이 달성되었다. AD 공정(AD process)에서는, 증착률의 차이가 순수 파우더(raw powder)의 표면 에너지(surface energy), 밀도(density), 형태(shape), 크기(size) 등에 의한 것으로 알려져 있다[43,44]. From the aerosol-deposited bioceramic films, the deposition rates of four types of powders were first investigated as shown in FIG. 3. Deposition rate was measured through a surface profiler and calculated as the deposition thickness per scanning time. The deposition rate was defined as how thick the coating layer was formed over the scanning time: (a) SiO 2 : 0.38 μm/min, (b) Al 2 O 3 : 0.75 μm/min, (b) HA: 22 μm/min , And (d) Brushite: 27 μm/min. For HA (hydroxyapatite, hydroxyapatite) and brushite films, a significantly higher deposition rate was achieved compared to current surface coating methods. In the AD process, the difference in deposition rate is known to be due to the surface energy, density, shape, size, etc. of raw powder [43,44]. ].

본 연구는, 순수 파우더의 표면 에너지, 형태, 및 기본 구조에 초점을 두어 집중함으로써, 왜 각 물질의 증착률이 다른 지를 고려하였다. 각 물질의 표면 에너지는 다음의 수치값을 갖는다고 알려져 있다: SiO2; 5.02 J/m2 [45], Al2O3; 1.01 J/m2 [46], HA; 0.025~0.076 J/m2[47], 및 brushite; 0.386 J/m2 [48]. 먼저, 증착률(deposition rate)과 표면 에너지(surface energy)는 역비례 관계가 성립한다. 본 유효한 현상은 에어로졸 챔버 내에서 세라믹 분말(ceramic powder)의 응집 행동에 긴밀하게 관련된다. 일반적으로, 파우더(powder)의 표면 에너지가 낮은 값을 갖는다면, 입자들은 에어로졸 챔버 내에서 서로 밀어내며 잘 흩어지는 경향을 더욱 보이는데[44], 이는 높은 증착률에서 더 많은 에어로졸들이 증착 챔버로 전달되고 효과적인 바이오세라믹 필름이 형성된다. 그러나, 높은 표면 에너지(high surface energy)를 갖는 입자들(particles)은 에어로졸 챔버(aerosol chamber) 내에서 스스로 뭉쳐 이 에너지를 사라지게 하는 경향이 있고, 그리고, 이러한 이유로, 사파이어 기판에 도달하는 에어로졸화-파우더 능력(aerosolized-powders ability)이 분산된-입자들(dispersed-particles)에 대하여 감소된다. 주요 입자들의 표면 에너지 특성에서의 차이에 효과 때문에, 그 증착률은 도 3에 도시된 바와 같이 정의될 수 있다.This study considered why the deposition rate of each material is different by focusing on the surface energy, shape, and basic structure of the pure powder. It is known that the surface energy of each material has the following numerical values: SiO 2 ; 5.02 J/m 2 [45], Al 2 O 3 ; 1.01 J/m 2 [46], HA; 0.025 to 0.076 J/m 2 [47], and brushite; 0.386 J/m 2 [48]. First, the inversely proportional relationship between deposition rate and surface energy is established. This effective phenomenon is closely related to the agglomeration behavior of the ceramic powder in the aerosol chamber. In general, if the surface energy of the powder has a low value, the particles tend to push away from each other in the aerosol chamber and tend to disperse more [44], which means that at higher deposition rates more aerosols are delivered to the deposition chamber. And an effective bioceramic film is formed. However, particles with high surface energy tend to aggregate themselves in the aerosol chamber to dissipate this energy, and for this reason, aerosolization to reach the sapphire substrate- The aerosolized-powders ability is reduced for dispersed-particles. Because of the effect on the difference in surface energy properties of the main particles, the deposition rate can be defined as shown in FIG. 3.

둘째로, SiO2및 Al2O3와 달리 HA와 brushite powders는 도 2에 도시된 바와 같이, 평평한 구조 뿐 아니라 훨씬 큰 입자 크기들을 갖는 점에서 상당히 다른 특성들을 갖는다. brushite powders의 구조가 일반적으로 010 면(face)을 따라 평평해지는 경향을 나타내며 주로 꽤 얇고 부서지기 쉬운 플레이트로 구성되기 때문에[49,50], 흔히 기판에 수많은 임팩트를 생성하기 쉬우며, 이는 각 입자와의 활성 본딩으로 귀결된다. 유사하게, HA는 출발 파우더의 결정학적 방향 (001)과 평행하여 HA도 작은 조각들로 쉽게 부숴진다[51]. 이러한 두 가지 이유들 때문에, HA와 브루사이트 분말들(brushite powders)을 사용할 때 최고의 증착률이 달성된 것으로 추론될 수 있다.Second, unlike SiO 2 and Al 2 O 3 , HA and brushite powders have significantly different properties, as shown in FIG. 2, in that they have a flat structure as well as much larger particle sizes. Because the structure of brushite powders generally tends to flatten along the 010 face and mainly consists of a fairly thin and brittle plate [49,50], it is often easy to produce a large number of impacts on the substrate, each particle This results in active bonding with Wah. Similarly, HA is parallel to the crystallographic direction (001) of the starting powder, so that HA is easily broken into small pieces [51]. For these two reasons, it can be inferred that the best deposition rate was achieved when using HA and brushite powders.

도 4는 순수 파우더들(raw powders)과 증착된 바이오세라믹 필름들(as-deposited bioceramic films)의 XRD 패턴들을 나타낸다. 다른 표면 코팅 프로세스들과 비교하여, AD 공정은 23℃의 실온 에어로졸 증착 프로세싱 때문에 큰 잠재력을 제공한다. 예를 들면, 본 연구에서, 에어로졸 증착된 바이오세라믹 필름들의 XRD 패턴들은 도 4에 도시된 바와 같이 위상 전이(phase transition)를 보이지 않았다. 4종류의 바이오세라믹 필름들의 피크(peak)들은 4종류의 출발 파우더들(starting powder)과 비교하여 약하고 넓었다. 4종류의 증착된 필름의 결정 크기들은 Debye-Scherrer 식, D = Κλ / β cosθ에 의해 결정되었으며, 여기서 D는 평균 결정립 크기이고, λ는 X-선의 파장이며 (Cu Kα 방사: 1.5406 ÅA), β는 FWHM (반치전폭, full width at half maximum)이고, 그리고 θ는 회절각(diffraction angle)이다[52]. Debye-Scherrer 식으로부터 유도된 계산결과들로부터, SiO2, Al2O3, HA(hydroxyapatite, 수산화인회석) 및 brushite 필름들의 결정 크기는, (100), (104), (110) 및 (020) 표면들에 대응하여, 각각 대략 1748 nm, 24.93 nm, 43.77 nm 및 77.98 nm인 것으로 예측되었는데, 이는 각각의 출발 입자 크기(starting particle size)와 비교하여 실질적으로 감소된 것이다. 이 현상은 충격-부하 응결(shock-loading solidification)과 직접적으로 연관될 수 있는데, 이는 AD에서 기본 메커니즘인 것으로 알려져 있다. 세라믹 입자들(ceramic particles)이 AD 공정 동안 강하게 사파이어 기판과 충돌할 때, 출발 입자들(starting particles)의 낱알 분쇄(grain pulverization)가 딱딱한 사파이어 기판(hard sapphire substrate) 상에서의 그들의 충돌 시에 유도되어, 고운 나노결정 구조(fine nanocrystalline structure)가 된다.4 shows XRD patterns of raw powders and as-deposited bioceramic films. Compared to other surface coating processes, the AD process offers great potential due to room temperature aerosol deposition processing at 23°C. For example, in this study, XRD patterns of aerosol deposited bioceramic films did not show a phase transition as shown in FIG. 4. The peaks of the four types of bioceramic films were weak and wide compared to the four types of starting powders. The crystal sizes of the 4 types of deposited films were determined by the Debye-Scherrer equation, D = Κλ / β cosθ , where D is the average grain size, λ is the wavelength of the X-ray (Cu Kα emission: 1.5406 ÅA), β is FWHM (full width at half maximum), and θ is the diffraction angle [52]. From the calculation results derived from the Debye-Scherrer equation, the crystal sizes of SiO 2 , Al 2 O 3 , HA (hydroxyapatite, hydroxyapatite) and brushite films are (100), (104), (110) and (020). Corresponding to the surfaces, it was predicted to be approximately 1748 nm, 24.93 nm, 43.77 nm and 77.98 nm, respectively, which is substantially reduced compared to the respective starting particle size. This phenomenon can be directly related to shock-loading solidification, which is known to be the basic mechanism in AD. When the ceramic particles strongly collide with the sapphire substrate during the AD process, grain pulverization of the starting particles is induced upon their impact on the hard sapphire substrate. , It becomes a fine nanocrystalline structure.

100 nm보다 작은 나노결정(Nanocrystallites)은 생명공학(biotechnology)에 있어서 치과용 브라켓(dental bracket), 임플란트(implants), 생물 작용(bioactivity)에 유리할 수 있다. 선행 연구들에서, 100 nm보다 큰 그레인 크기를 갖는 Al2O3 및 HA와 같은 종래의 세라믹들은 본딩 강도(bonding strength)의 결함 때문에 임상 실패와 비-이상적 치과적 효과를 가져왔다[53]. 대조적으로, 나노상 세라믹들(nanophase ceramics)은 임플란트 골아세포(implant osteoblast), 세포군 운동성(cell population motility), 세포 증식(cell proliferation) 등을 위해 향상된 장기적인 기능들을 제공한다. Nanocrystallites smaller than 100 nm may be beneficial in biotechnology for dental brackets, implants, and bioactivity. In previous studies, conventional ceramics, such as Al 2 O 3 and HA with grain sizes greater than 100 nm, resulted in clinical failure and non-ideal dental effects due to defects in bonding strength [53]. In contrast, nanophase ceramics provide improved long-term functions for implant osteoblasts, cell population motility, cell proliferation, and the like.

전술한 점을 고려하면, 나노결정 바이오세라믹 필름들(nanocrystalline bioceramic films)은 특정하게는 치아교정용 브라켓(orthodontic bracket)과 치아(tooth) 사이의 개선된 본딩 강도(bonding strength)와 관련하여 큰 잠재력을 유지할 것으로, 이는 높은 치의학적인 브라켓 효율(high dental bracket efficiency)을 가져올 수 있을 것이다.In view of the foregoing, nanocrystalline bioceramic films have great potential, particularly with respect to improved bonding strength between the orthodontic bracket and the tooth. Will maintain, which will result in high dental bracket efficiency.

3.2 에어로졸-증착 바이오세라믹 필름들의 표면 특성3.2 Surface properties of aerosol-deposited bioceramic films

AD 공정 후의 결정 크기 변동의 중요한 효과에 추가적으로, 표면 구조(surface structure)는 치아교정 브라켓 응용(orthodontic bracket applications)에 대하여 주의 깊게 고려되어야 하며, 이는 적절한 치아 이동과 생물학적 퍼포먼스를 위해 본질적인, 마찰 계수(friction coefficient)에 밀접하게 관련되기 때문이다. 추가적으로, 필름들의 본딩 강도는 표면 결함 또는 흠결의 형태, 날카로움, 및 깊이(shape, sharpness, and depth of surface flaws or defets)에 의해 영향을 받는다[54,55]. 도 5에 도시된 바와 같이 SEM 현미경 사진 결과물들로부터, SiO2 필름과 Al2O3 필름 모두 다른 바이오세라믹 필름들보다 꽤 부드러운 표면을 나타내는 반면, HA(hydroxyapatite) 필름과 brushite 필름은 기판 상에서 입자의 충돌 후에 심각하게 손상된 표면들을 보였다. SiO2, Al2O3, 및 HA 분말(HA powder)의 초기 입자 크기들이 유사한 값을 가짐에도, SiO2 필름은 이들 중에서 가장 가시적으로 평평하고 균일한 표면을 가졌다. 이러한 표면 구조에 있어서의 불일치의 원인은 각 원료 물질의 비커스 경도(vickers hardness)와 표면 에너지(surface energy)의 차이에 기인하는 것일 수 있다. 먼저, SiO2, Al2O3, 및 HA(hydroxyapatite)에 대한 비커스 경도의 평균 값은 각각 8.20 GPa [56], 15.71 GPa [57], 및 4.03 GPa [58]로서 알려져 있다. AD 공정(AD process) 동안, 세라믹 중에서 가장 경도 높은 물질 중 하나로 알려진, Al2O3는 기판에 큰 충격을 전달할 수 있다. 이 환경이 명백히 Al2O3 입자들 간에 그리고 Al2O3 입자들과 기판 간에 유기적으로 단단한 결합을 가져올 수 있을지라도, 표면의 내부 미세구조는 기판에 대한 강한 임팩트 스트레스(strong impact stress)에 기인하는 지속적인 마이너 에칭 효과(continuous minor etching effect) 때문에 약간 거칠었다[59]. 둘째로, 3.1절에 제시된 바와 같이, HA와 brushite가 큰 입자 크기와 고유한 형태를 갖는 점을 고려하면, 이러한 입자들이 에어로졸 증착 공정(AD process) 동안 증착된 필름 상에 더 큰 임팩트를 주게 되어, 반복적인 임팩트에 따른 표면 열화를 초래할 것이 명백하다. 그러므로, HA(hydroxyapatite) 및 brushite 필름들에 대하여 모폴로지(morphologies)는 동일한 결정학적 방향(crystallographic direction)과 그들의 각 형상(angular shape)과 함께 일직선으로 된 그 기본 구조에 의해 지배적으로 제어되도록 고려될 수 있다.In addition to the significant effect of crystal size fluctuations after the AD process, the surface structure must be carefully considered for orthodontic bracket applications, which is essential for proper tooth movement and biological performance, coefficient of friction ( friction coefficient). Additionally, the bonding strength of films is affected by the shape, sharpness, and depth of surface flaws or defets of the surface defects or defects [54,55]. From the SEM micrograph results as shown in Figure 5, SiO 2 Film and Al 2 O 3 While all films exhibited a fairly smooth surface than other bioceramic films, HA (hydroxyapatite) films and brushite films showed severely damaged surfaces after the impact of particles on the substrate. Although the initial particle sizes of SiO 2 , Al 2 O 3 , and HA powder have similar values, SiO 2 The film had the most visible flat and uniform surface among them. The cause of the inconsistency in the surface structure may be due to the difference between the Vickers hardness and the surface energy of each raw material. First, the average values of Vickers hardness for SiO 2 , Al 2 O 3 , and HA (hydroxyapatite) are known as 8.20 GPa [56], 15.71 GPa [57], and 4.03 GPa [58], respectively. During the AD process, Al 2 O 3 , which is known as one of the highest hardness materials among ceramics, can transmit a large impact to the substrate. This environment is obviously Al 2 O 3 Between particles and Al 2 O 3 Although it can result in an organically tight bond between the particles and the substrate, the internal microstructure of the surface was slightly rough due to the continuous minor etching effect due to the strong impact stress on the substrate [ 59]. Secondly, as presented in Section 3.1, considering that HA and brushite have a large particle size and unique shape, these particles give a greater impact on the film deposited during the aerosol deposition process (AD process). , It is clear that it will cause surface deterioration due to repetitive impact. Therefore, for HA (hydroxyapatite) and brushite films, morphologies can be considered to be dominantly controlled by their basic structure in a straight line with the same crystallographic direction and their angular shape. have.

각 바이오세라믹 필름의 표면 거칠기(surface roughness)를 더 상세하게 조사하기 위해, 원자 현미경(atomic force microscopy) 검사가 수행되어 표면 모폴리지(surface morphologies)와 RMS 거칠기(RMS roughness)를 확인하였다. RMS 거칠기 값의 측정은 치아교정용 시스템에서 주요 요인으로서 간주되며, 이는 세라믹-대-레진 결합 강도에 밀접하게 관련되기 때문이다. 따라서, 강하고 견고한 세라믹-대-레진 결합은 변연적합성(marginal adaptation)을 향상시키고 미세누설 회피를 제한할 수 있다. 강한 세라믹-대-레진 결합은 통상적으로 미세-기계적 인터로킹(micro-mechanical interlocking)과 화학적 결합(chemical bonding)에 의존하는데, 이는 레진(resin)의 부드러운 특성들 때문에 세라믹 표면(ceramic surface)을 적절히 거칠게 만들 것을 요구한다[60]. 즉, 적절히 거친 표면이 세라믹 코팅(ceramic coating)과 레진(resin) 사이의 효과적인 결합 강도(effective bonding strength)를 달성하기 위한 전제 조건이다.In order to investigate the surface roughness of each bioceramic film in more detail, atomic force microscopy was performed to confirm surface morphologies and RMS roughness. The measurement of the RMS roughness value is considered a major factor in orthodontic systems because it is closely related to the ceramic-to-resin bond strength. Thus, a strong and robust ceramic-to-resin bond can improve marginal adaptation and limit microleakage avoidance. Strong ceramic-to-resin bonding typically relies on micro-mechanical interlocking and chemical bonding, which is due to the soft properties of the resin, which makes it suitable for the ceramic surface. It requires roughening [60]. That is, a properly rough surface is a prerequisite for achieving effective bonding strength between the ceramic coating and the resin.

도 6에 도시된 바와 같이, SiO2 필름의 RMS 거칠기는 최저치를 나타낸 반면, brushite와 HA 필름들의 RMS 거칠기는 최고치를 보였다. 수 마이크로미터에 걸친 표면의 과도한 러프닝(roughening)은 브라켓의 디본딩(debonding of the bracket) 동안 세라믹 손상(ceramic damage)을 유발하여 특별한 표면 처리(specific surface treatments)가 몇몇 선행 연구들에서 수행되었다. 그럼에도, 4 종류의 바이오세라믹 필름들은 특별한 표면 처리(surface treatments) 없이 적절한 RMS 거칠기를 갖는 것으로 보였다. 6, the RMS roughness of the SiO 2 film showed the lowest value, while the RMS roughness of the brushite and HA films showed the highest value. Excessive roughening of surfaces over a few micrometers caused ceramic damage during debonding of the bracket, so specific surface treatments were performed in some previous studies. . Nevertheless, the four types of bioceramic films appeared to have adequate RMS roughness without special surface treatments.

그러므로, brushite 필름 또는 HA 필름이 표면 상에 일부 크레이터(crater)들을 보일지라도, 본 연구에서 사용되는 모든 4종류의 에어로졸-증착 바이오세라믹 필름들(aerosol-deposited bioceramic films)의 평균 표면 거칠기(average surface roughness)는 치의학적 응용에 충분히 바람직한 값을 나타냈다.Therefore, although the brushite film or HA film shows some craters on the surface, the average surface roughness of all four types of aerosol-deposited bioceramic films used in this study roughness) showed a desirable value for dental applications.

3.3 증착 메커니즘으로서 세라믹 코팅(ceramic coating)과 사파이어 브라켓(sapphire bracket) 사이의 인장(tensile) 및 전단(shear) 기계 특성3.3 Tensile and shear mechanical properties between ceramic coating and sapphire bracket as deposition mechanism

치아교정용 브라켓(orthodontic bracket)을 위한 세라믹 코팅(ceramic coating)과 사파이어 브라켓(sapphire bracket) 사이의 접착 강도(adhesive strength) 및 전단 결합 강도(shear bond strength)는 치아교정 시술 동안 외력(external force)을 지지할 정도로 충분해야 한다. 그러므로, 먼저 체외 접착 강도를 측정하였으며, 그 결과, 사파이어 기판으로부터 각각의 바이오세라믹 코팅층을 디본딩하는데 필요한 인가되는 힘의 수치값들을 나타낸다. The adhesive strength and shear bond strength between the ceramic coating for the orthodontic bracket and the sapphire bracket are the external forces during the orthodontic procedure. It should be enough to support. Therefore, the adhesion strength in vitro was first measured, and as a result, numerical values of the applied force required to debond each bioceramic coating layer from the sapphire substrate are shown.

도 7에 도시된 바와 같이, SiO2 필름, Al2O3 필름, HA 필름, 및 brushite 필름은 각각 5MPa, 14.5 MPa, 9.5 MPa, 및 9.2 MPa를 견뎠다. 다른 연구에 따르면, 접착 실패를 피하고 기계적 특성을 개선하기 위해 결합 강도가 대략 6-8 MPa 보다 커야 한다[62, 63]. 그러므로, 에어로졸-증착 SiO2 필름은 시술 과정 중 낮은 접착 강도(low adhesive strength) 때문에 치과용 브라켓들에는 약간 불충분하였다. 그러나, AD 공정(AD process) 동안, 높은 강도(high strength)와 높은 경도(high hardness)를 갖는 Al2O3 입자들(Al2O3 particles)은 기판상에서 충돌한 후 기본적으로 강한 결합을 형성하였기에, Al2O3 필름은 최고의 접착 강도 값을 기록했다. 그러나, 접착 강도(bond strength)가 Al2O3 필름과 같이 너무 높으면, 디본딩(debonding) 동안 에나멜(enamel)에 손상을 줄 수 있으며 치아 구조의 변형을 초래할 수 있다[64, 65]. As shown in FIG. 7, the SiO 2 film, Al 2 O 3 film, HA film, and brushite film withstand 5 MPa, 14.5 MPa, 9.5 MPa, and 9.2 MPa, respectively. According to other studies, the bond strength should be greater than approximately 6-8 MPa to avoid adhesion failure and improve mechanical properties [62, 63]. Therefore, the aerosol-deposited SiO 2 film was slightly insufficient for dental brackets due to the low adhesive strength during the procedure. However, AD process (AD process) for the high strength (high strength) and the Al 2 O 3 particles (Al 2 O 3 particles) having a high hardness (high hardness) is formed basically strong binding after impact on the substrate Therefore, the Al 2 O 3 film recorded the highest adhesive strength value. However, if the bond strength is too high, such as an Al 2 O 3 film, it can damage enamel during debonding and lead to deformation of the tooth structure [64, 65].

HA와 brushite 필름들에 대해 적절한 결합 강도 값들(bond strength values)이 측정되었다. 그러므로, 최적의 접합 강도(adhesive strength)를 갖는 바이오세라믹 필름들은 SiO2 및 Al2O3 분말들 보다는 HA 및 brushite 분말이 사용될 때 AD 공정(AD process)에 의해 형성될 수 있다.Suitable bond strength values were measured for HA and brushite films. Therefore, bioceramic films with optimum adhesive strength can be formed by the AD process when HA and brushite powders are used rather than SiO 2 and Al 2 O 3 powders.

다음으로, 우리는 치아교정용 브라켓(orthodontic brackets)의 전단 결합 강도(shear bond strength)를 측정하였는데, 이는 본딩된 인터페이스와 치아 구조들로의 힘의 전달을 다루는데 있어서 중요한 요소이다. 브라켓(Brackets)과 에나멜(enamels)은 4-META/MMA-TBB epoxy resin으로 본딩되었다. Next, we measured the shear bond strength of the orthodontic brackets, which is an important factor in dealing with the transfer of forces to the bonded interface and tooth structures. Brackets and enamels were bonded with 4-META/MMA-TBB epoxy resin.

적색, 청색, 및 흑색 선들로 도 8에 도시된 바와 같이, 각 샘플에 대해 3번씩 전단 결합 강도를 시험함으로써, 에어로졸-증착 바이오세라믹 필름들이 신뢰성과 내구성을 가짐이 확인되었다. 측정 결과들로부터, SiO2 및 Al2O3 필름들은 모두 6MPa와 8MPa 사이의 전단 결합 강도 값을 가졌다. HA와 brushite 필름은 10 MPa보다 큰 전단 결합 강도 값을 보였는데, 이는 SiO2 및 Al2O3 필름보다 훨씬 큰 것이다. 전단 결합 강도의 경향은 도 6에 분석된 RMS 거칠기 값에 비례하였다. HA 및 brushite 필름들에 의해 표시된 바와 같이, 성긴(coarse) 표면 특성이 레진(resin)과의 미소-기계적 인터로킹을 달성하는데 바람직하며 높은 전단력으로도 쉽게 디본딩되지 않는다. 더욱이, 4 종류의 바이오세라믹 필름들 간의 체외 전단 결합 강도의 차이는 각 물질의 물리적 특성들보다는 증착-된 필름 두께에 밀접하게 관련되는 것으로 생각된다[38]. 이는 더 두꺼운 범프들(bump)이 강한 매크로-기계적 인터로킹을 제공하기 때문에 큰 두께를 갖는 밀(dense)한 세라믹 나노구조 필름들이 전단력을 지지하도록 작용함을 의미한다. 두 정류의 기계적 시험으로부터, HA와 브루사이트 필름들은 통계적으로 더 높은 접착 강도와 전단 결합 강도를 보였으며, 이는 치의학적 응용에 실질적으로 적합한 것인 반면, SiO2와 Al2O3 필름들은 불충분한 결합 강도를 가진 것이다.As shown in FIG. 8 with red, blue, and black lines, it was confirmed that aerosol-deposited bioceramic films had reliability and durability by testing shear bond strength three times for each sample. From the measurement results, both the SiO 2 and Al 2 O 3 films had a shear bond strength value between 6 MPa and 8 MPa. HA and brushite films showed shear bond strength values greater than 10 MPa, much larger than SiO 2 and Al 2 O 3 films. The tendency of the shear bond strength was proportional to the RMS roughness value analyzed in FIG. 6. As indicated by the HA and brushite films, coarse surface properties are desirable to achieve micro-mechanical interlocking with the resin and are not easily debonded even with high shear forces. Moreover, it is believed that the difference in the in vitro shear bond strength between the four types of bioceramic films is more closely related to the deposited-film thickness than the physical properties of each material [38]. This means that dense ceramic nanostructured films with large thickness act to support the shear force because thicker bumps provide strong macro-mechanical interlocking. From the two rectification mechanical tests, HA and brucite films showed statistically higher adhesion strength and shear bond strength, which is practically suitable for dental applications, while SiO 2 and Al 2 O 3 films are insufficient. It has a bonding strength.

측정 데이터에 기초하여, 도 9에 도시된 바와 같이, 본 연구에서 이용된 바이오세라믹 필름들의 AD 메커니즘을 네 가지 상이한 현상들로 카테고리화 하였다. 4종류의 바이오세라믹 필름들은, AD 증착 공정 후 100 nm보다 작은 결정 크기를 갖는 공통된 특징을 보였다. SiO2와 Al2O3를 제외한 두 개의 샘플들이 확대된 SEM 이미지들에서 사파이어 기판 상에 일부 가시적인 크레이터들(craters)을 보이기는 하였으나, 그 RMS 거칠기 값들은 레진(resin)과 세라믹 코팅(ceramic coating) 사이의 미소-기계적 인터로킹을 형성하는데 충분할 수 있었으며, 선행 연구들에서 제시된 바와 같이 치과용 브레이스 브라켓들에 대해 결합상의 이점으로서 작용하였을 것이다. Based on the measurement data, as shown in FIG. 9, the AD mechanism of the bioceramic films used in this study was categorized into four different phenomena. The four types of bioceramic films showed a common characteristic with a crystal size smaller than 100 nm after the AD deposition process. The two samples, except SiO 2 and Al 2 O 3 , showed some visible craters on the sapphire substrate in enlarged SEM images, but the RMS roughness values were based on resin and ceramic coating. It could have been sufficient to form micro-mechanical interlocking between coatings, and would have served as a bonding advantage for dental brace brackets as suggested in previous studies.

도 9(a)에 도시된 바와 같이 SiO2 필름의 경우에, 증착률(deposition rate)은 내재적인 특성인 높은 표면 에너지(high surface energy) 때문에 상대적으로 낮았으며, 두 종류의 기계적 특성들은 치아교정용 브라켓에 적합하지 않았다. Al2O3 필름이 극도로 높은 접착 강도를 보인 반면, 이는 치과용 브라켓을 디본딩할 때 치아에 상당한 손상을 가하여, 치아 구조의 변형을 초래할 수 있다. In the case of SiO 2 film as shown in FIG. 9(a), the deposition rate was relatively low due to the high surface energy, which is an inherent property, and the two types of mechanical properties were orthodontic. It was not suitable for the dragon bracket. While the Al 2 O 3 film showed extremely high adhesive strength, it could cause significant damage to the teeth when debonding the dental bracket, resulting in deformation of the tooth structure.

Al2O3와의 다른 주요 이슈는 도 9(b)에 도시된 바와 같이 HA 필름 및 brushite 필름보다 낮은, 1㎛/min 미만의 현저히 낮은 증착률(lower deposition rate)을 포함하였으며, 이는 얇은 범프들로부터의 매크로-기계적 인터로킹(macro-mechanical interlocking from thin bumps)의 부족 때문에 낮은 전단 결합 강도(low shear bond strength)를 초래하였다.Another major issue with Al 2 O 3 included a significantly lower deposition rate of less than 1 μm/min, lower than the HA film and brushite film, as shown in FIG. 9(b), which resulted in thin bumps. The lack of macro-mechanical interlocking from thin bumps resulted in low shear bond strength.

도 9(c) 및 (d)에 도시된 바와 같이, 본 연구에서 4종류의 바이오세라믹 필름들 중 최고의 결과를 가져온, HA 및 brushite 필름들은 가열 공정(heating process)이나 표면 처리(surface treatment) 없이 AD 장치를 통해 높은 증착률(high deposition rate)과 적절한 표면 거칠기(appropriate surface roughness)에 기인하는 상당히 효과적인 기계적 특성들의 측면에서 큰 잠재력을 보였는데, 이는 치아교정 시스템(orthodontic system)의 활용에 있어서 가장 중요한 이슈들인 것으로 고려되는 전단 결합 강도(shear bond strength) 및 접착 강도(adhesive strength) 모두를 만족하였다.9(c) and (d), HA and brushite films, which gave the best results among the four types of bioceramic films in this study, did not have a heating process or surface treatment. The AD device has shown great potential in terms of high deposition rate and fairly effective mechanical properties due to proper surface roughness, which is the most useful in the use of orthodontic systems. Both shear bond strength and adhesive strength, considered important issues, were satisfied.

본 발명의 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법은, 실온에서, AD 장치를 사용하여 에어로졸 증착 공정(AD process)에 의해 사파이어 브라켓과 사파이어 기판 상에 바이오세라믹 입자들을 증착하여 나노구조 바이오세라믹 코팅층을 형성하는 단계; 및 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 기계적인 특성, 즉 표면 거칠기와 증착률과 접착 강도를 측정하는 단계를 포함한다. The method of evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets of the present invention, at room temperature, bioceramic particles on a sapphire bracket and a sapphire substrate by an aerosol deposition process (AD process) using an AD device Depositing to form a nanostructured bioceramic coating layer; And measuring the mechanical properties of the aerosol-deposited bio-ceramic film for orthodontic brackets, namely surface roughness, deposition rate and adhesive strength.

상기 바이오세락믹 코팅층은, Al2O3, SiO2, HA(hydroxyapatite), 또는 brushite 중 어느 하나의 바이오세라믹 입자들이 증착된 바이오세라믹 필름 인 것을 특징으로 한다. The bioceramic coating layer is characterized by being a bioceramic film in which any one of bioceramic particles of Al 2 O 3 , SiO 2 , HA (hydroxyapatite), or brushite is deposited.

상기 4종류의 바이오세라믹 필름들의 결정 크기는 XRD 데이터로부터 100 nm이하 이다. The crystal size of the four types of bioceramic films is 100 nm or less from XRD data.

상기 AD 장치는 로터리 펌프와 기계적 부스터 펌프를 구비하는 진공 시스템, 에어로졸 챔버, 이동 X-Y 스테이지, 증착 챔버, 캐리어 가스, 및 유량 제어기를 구비한다. The AD device includes a vacuum system having a rotary pump and a mechanical booster pump, an aerosol chamber, a moving X-Y stage, a deposition chamber, a carrier gas, and a flow controller.

상기 단계 (a)의 상기 에어로졸 증착 공정(AD process)은, 상기 AD 장치를 사용하여 바이오세라믹 분말들(bioceramic powders)이 80℃에서 8 시간 동안 건조 오븐에서 건조되고, 고운체(fine sieve) 망을 통해 스며들어 습기를 제거하거나 모으고, 상기 바이오세라믹 분말들(powders)이 에어로졸 챔버에 놓여지고, 캐리어 가스를 주입하여 powder로 공급함으로써 증착 챔버를 구동하며, 상기 바이오세라믹 분말들을 튜브를 통해 노즐로 전달되는 단계; 및 필름 증착은 직접 주입 방법보다 AD 프로세스에서 높은 증착률(deposition rate) 및 경도(film hardness)를 갖는 밀한 필름이 형성되도록 노즐 오리피스를 사용하여 상기 바이오세라믹 코팅층을 형성하는 단계를 포함한다. In the aerosol deposition process of step (a), bioceramic powders are dried in a drying oven at 80° C. for 8 hours using the AD device, and a fine sieve network is used. Moisture is removed or collected through, and the bioceramic powders are placed in an aerosol chamber, and a carrier gas is injected to supply the powder to drive the deposition chamber, and the bioceramic powders are supplied through a tube to a nozzle. Delivered; And film deposition includes forming the bioceramic coating layer using a nozzle orifice such that a dense film having a higher deposition rate and film hardness is formed in an AD process than a direct injection method.

상기 캐리어 가스의 주입에 앞서, 증착 챔버는 두 종류의 진공 펌프들에 의해 ~3.2 Torr에서 사전-진공화(pre-evacuate) 되어 노즐로부터 가속된 파우더의 속도를 유지하며, 헬륨(순도 99.99%)이 캐리어 가스가 사용된다. Prior to the injection of the carrier gas, the deposition chamber is pre-evacuated at ~3.2 Torr by two types of vacuum pumps to maintain the accelerated powder velocity from the nozzle and helium (purity 99.99%). This carrier gas is used.

상기 노즐 오리피스는 10 × 0.4 mm2의 노즐 오리피스보다 7배 높은 증착률을 갖는 1.5 × 1.5 mm2의 노즐 오리피스를 사용한다. The nozzle orifice uses a 1.5×1.5 mm 2 nozzle orifice having a deposition rate 7 times higher than that of a 10×0.4 mm 2 nozzle orifice.

AD 공정 시에 바이오세라믹 코팅은 바이오세라믹 사파이어 브라켓 상에 체크-패턴(check-pattern on a sapphire bracket)을 사용한 쉐도우 마스크 패터닝(shadow mask patterning)을 사용하며, 체크-패턴 브루사이트 필름(check-patterned brushite film)은 기계적 특성과 증착률이 우수한 특성을 가지며, 메시-패턴 필름(mesh-patterned film)보다 두 배를 초과하는 전단 결합 강도(shear bond strength)를 갖는다.In the AD process, the bioceramic coating uses shadow mask patterning using a check-pattern on a sapphire bracket, and a check-patterned film is used. The brushite film has excellent mechanical properties and deposition rates, and has a shear bond strength that is more than twice that of the mesh-patterned film.

상기 에어로졸 증착 된 바이오세라믹 필름들의 표면 특성은 원자 현미경에 의해 측정되며, SiO2 필름의 RMS 거칠기는 최저치를 나타낸 반면, 상대적으로 brushite와 HA 필름들의 RMS 거칠기는 최고치를 보였으며, 강한 세라믹-대-레진 결합은 통상적으로 미세-기계적 인터로킹(micro-mechanical interlocking)과 화학적 결합(chemical bonding)에 의존하는데, 적절히 거친 표면이 세라믹 코팅(ceramic coating)과 부드러운 레진(resin) 사이의 효과적인 결합 강도(effective bonding strength)를 제공하며, The surface properties of the aerosol-deposited bioceramic films were measured by atomic force microscopy, while the RMS roughness of the SiO 2 film showed the lowest value, while the RMS roughness of the brushite and HA films showed the highest value, and strong ceramic-to- Resin bonding typically relies on micro-mechanical interlocking and chemical bonding, where an appropriately rough surface is effective for effective bonding strength between a ceramic coating and a soft resin. bonding strength),

상기 4종류의 에어로졸-증착 바이오세라믹 필름들(aerosol-deposited bioceramic films)의 평균 표면 거칠기(average surface roughness)는 치의학적 응용에 바람직한 표면 거칠기를 갖는다. The average surface roughness of the four types of aerosol-deposited bioceramic films has a desirable surface roughness for dental applications.

상기 HA(hydroxyapatite) 및 brushite 필름은 SiO2 및 Al2O3 필름 보다 큰 증착률을 갖는다.The HA (hydroxyapatite) and brushite films are SiO 2 and Al 2 O 3 It has a larger deposition rate than the film.

상기 HA(hydroxyapatite) 및 brushite 필름은, SiO2 및 Al2O3 필름들이 6MPa와 8MPa 사이의 전단 결합 강도 값을 가졌으며, 상기 HA와 brushite 필름은 10 MPa보다 큰 전단 결합 강도 값을 가지며, In the HA (hydroxyapatite) and brushite film, SiO 2 and Al 2 O 3 films had a shear bond strength value between 6 MPa and 8 MPa, and the HA and brushite film had a shear bond strength value greater than 10 MPa,

상기 SiO2 및 Al2O3 필름들과 비교하여 최적의 접착 강도 값들이 관찰되었으며, 상기 HA와 brushite 필름은 SiO2 및 Al2O3 필름들보다 1.5배 높은 전단 결합 강도를 갖는다. Optimal adhesion strength values were observed compared to the SiO 2 and Al 2 O 3 films, and the HA and brushite films had a shear bond strength 1.5 times higher than that of the SiO 2 and Al 2 O 3 films.

상기 바이오 세라믹 필름은 상기 HA(hydroxyapatite)와 brushite 필름들이 치아교정용 브라켓에 사용된다. In the bio ceramic film, the HA (hydroxyapatite) and brushite films are used in the orthodontic bracket.

4. 결론4. Conclusion

4 종류의 생체적합성 바이오세라믹 분말들(biocompatible bioceramic powders)을 사용함으로써, 나노구조 바이오세라믹 코팅층(nanostructured bioceramic coating layers)이 사파이어 브라켓(sapphire brackets)과 사파이어 기판(sapphire substrates) 상에 형성되었다. 모든 바이오세라믹 필름들의 결정 크기는 XRD 데이터로부터 100 nm이하 인 것으로 계산되었는데, 이 방법은 성공적인 진료 및 개선된 결합 강도와 같이 높은 효능의 치아교정용 브라켓에 사용될 수 있다. By using four types of biocompatible bioceramic powders, nanostructured bioceramic coating layers were formed on sapphire brackets and sapphire substrates. The crystal size of all bioceramic films was calculated to be less than 100 nm from XRD data, and this method can be used for high efficacy orthodontic brackets such as successful treatment and improved bond strength.

그러나, 두 가지 특성의 차이, 증착률(deposition rate)과 기계적 특성들이 4 종류의 바이오세라믹 필름들[Al2O3, SiO2, HA(hydroxyapatite, 수산화인회석), 및 brushite]이 비교하여 확인되었다. 네 가지 샘플들 간의 증착률의 불일치는 각 원재료의 표면 에너지와 기본 구조의 차이에 의한 것이며, 결과적으로 HA(hydroxyapatite, 수산화인회석) 및 brushite 필름이 SiO2 및 Al2O3 필름 보다 현저히 큰 증착률을 갖는 것으로 나타냈다. SiO2 및 Al2O3 필름들에서와 비교하여 HA와 brushite 필름은 최적의 접착 강도 값들이 관찰되었다. 4종류의 바이오세라믹 필름에서, SiO2 및 Al2O3 필름들이 6MPa와 8MPa 사이의 전단 결합 강도 값을 가졌으며, HA와 brushite 필름은 10 MPa보다 큰 전단 결합 강도 값이 관찰됐다. 게다가, HA와 brushite 필름은 SiO2 및 Al2O3 두 필름들보다 1.5배 높은 전단 결합 강도를 보였는데, 이는 더 높은 범프 두께(higher bump thickness)와 충분한 RMS 거칠기(RMS roughness)의 결과인 것으로 추론되었으며, 치아교정용 브라켓에 사용될 수 있다. 이 결과들은 높은 기계적 특성들을 갖는 큰-두께의 나노결정 구조들을 갖는 바이오세라믹 필름들을 용이하게 형성하고 경제적이고 단순한 AD 프로세스의 추가적인 활용을 장려한다.However, differences in two properties, deposition rate and mechanical properties, were confirmed by comparing four types of bioceramic films [Al 2 O 3 , SiO 2 , HA (hydroxyapatite, hydroxyapatite), and brushite]. . The mismatch of deposition rate between the four samples is due to the difference in the surface energy and the basic structure of each raw material. As a result, HA (hydroxyapatite, hydroxyapatite) and brushite films are SiO 2 and Al 2 O 3 It was shown to have a significantly higher deposition rate than the film. Optimum adhesion strength values were observed for HA and brushite films compared to SiO 2 and Al 2 O 3 films. In four types of bioceramic films, SiO 2 and Al 2 O 3 films had shear bond strength values between 6 MPa and 8 MPa, and HA and brushite films had shear bond strength values greater than 10 MPa. In addition, HA and brushite films showed 1.5 times higher shear bond strength than both SiO 2 and Al 2 O 3 films, which is a result of higher bump thickness and sufficient RMS roughness. Inferred, can be used for orthodontic brackets. These results facilitate the formation of bioceramic films with large-thickness nanocrystalline structures with high mechanical properties and encourage further utilization of an economical and simple AD process.

이상에서 설명한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진자가 하기의 특허청구범위에 기재된 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있음을 이해할 수 있을 것이다.As described above, the present invention has been described with reference to preferred embodiments of the present invention, but the present invention is within the scope not departing from the technical spirit and scope of the present invention described in the following claims by those skilled in the art. It will be understood that various modifications or variations can be carried out.

Claims (13)

(a) 실온에서, AD 장치를 사용하여 에어로졸 증착 공정(AD process)에 의해 사파이어 브라켓과 사파이어 기판 상에 바이오세라믹 입자들을 증착하여 나노구조 바이오세라믹 코팅층을 형성하는 단계; 및
(b) 치아교정 브라켓 용 에어로졸 증착 된 바이오세라믹 필름의 기계적인 특성, 즉 표면 거칠기와 증착률과 접착 강도를 측정하는 단계;
를 포함하는 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
(A) forming a nanostructured bioceramic coating layer by depositing bioceramic particles on a sapphire bracket and a sapphire substrate by an aerosol deposition process (AD process) using an AD device at room temperature; And
(b) measuring the mechanical properties of the aerosol-deposited bioceramic film for orthodontic bracket, namely surface roughness, deposition rate and adhesive strength;
Method for evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets comprising a.
제1항에 있어서,
상기 바이오세락믹 코팅층은
Al2O3, SiO2, HA(hydroxyapatite), 또는 brushite 중 어느 하나의 바이오세라믹 입자들이 증착된 바이오세라믹 필름 인 것을 특징으로 하는 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 1,
The bioceramic coating layer
Structural and mechanical properties evaluation method of aerosol-deposited bioceramic film for orthodontic brackets, characterized in that it is a bioceramic film in which any one of Al 2 O 3 , SiO 2 , HA (hydroxyapatite), or brushite is deposited. .
제2항에 있어서,
상기 4종류의 바이오세라믹 필름들의 결정 크기는 XRD 데이터로부터 100 nm이하 인 것을 특징으로 하는 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 2,
Method for evaluating the structure and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets, wherein the crystal size of the four types of bioceramic films is 100 nm or less from XRD data.
제1항에 있어서,
상기 AD 장치는 로터리 펌프와 기계적 부스터 펌프를 구비하는 진공 시스템, 에어로졸 챔버, 이동 X-Y 스테이지, 증착 챔버, 캐리어 가스, 및 유량 제어기를 구비하는 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 1,
The AD device is a vacuum system having a rotary pump and a mechanical booster pump, the structure and mechanical properties of the aerosol-deposited bioceramic film for orthodontic brackets having an aerosol chamber, a moving XY stage, a deposition chamber, a carrier gas, and a flow controller. Assessment Methods.
제4항에 있어서,
상기 단계 (a)의 상기 에어로졸 증착 공정(AD process)은
상기 AD 장치를 사용하여 바이오세라믹 분말들(bioceramic powders)이 80℃에서 8 시간 동안 건조 오븐에서 건조되고, 고운체(fine sieve) 망을 통해 스며들어 습기를 제거하거나 모으고, 상기 바이오세라믹 분말들(powders)이 에어로졸 챔버에 놓여지고, 캐리어 가스를 주입하여 powder로 공급함으로써 증착 챔버를 구동하며, 상기 바이오세라믹 분말들을 튜브를 통해 노즐로 전달되는 단계; 및
필름 증착은 직접 주입 방법보다 AD 프로세스에서 높은 증착률(deposition rate) 및 경도(film hardness)를 갖는 밀한 필름이 형성되도록 노즐 오리피스를 사용하여 상기 바이오세라믹 코팅층을 형성하는 단계;
를 포함하는 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 4,
The aerosol deposition process (AD process) of step (a) is
Using the AD device, bioceramic powders are dried in a drying oven at 80° C. for 8 hours, soaked through a fine sieve net to remove or collect moisture, and the bioceramic powders ( powders) are placed in an aerosol chamber, driving a deposition chamber by injecting carrier gas and supplying the powder, and transferring the bioceramic powders to a nozzle through a tube; And
Film deposition comprises forming a bioceramic coating layer using a nozzle orifice such that a dense film having a higher deposition rate and hardness is formed in an AD process than a direct injection method;
Method for evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets comprising a.
제5항에 있어서,
상기 캐리어 가스의 주입에 앞서, 증착 챔버는 두 종류의 진공 펌프들에 의해 ~3.2 Torr에서 사전-진공화(pre-evacuate) 되어 노즐로부터 가속된 파우더의 속도를 유지하며, 헬륨(순도 99.99%)이 캐리어 가스가 사용되는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
The method of claim 5,
Prior to the injection of the carrier gas, the deposition chamber is pre-evacuated at ~3.2 Torr by two types of vacuum pumps to maintain the accelerated powder velocity from the nozzle and helium (purity 99.99%). Method for evaluating the structure and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets, in which this carrier gas is used.
제5항에 있어서,
상기 노즐 오리피스는 10 × 0.4 mm2의 노즐 오리피스보다 7배 높은 증착률을 갖는 1.5 × 1.5 mm2의 노즐 오리피스를 사용하는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
The method of claim 5,
The nozzle orifice uses a 1.5 × 1.5 mm 2 nozzle orifice having a deposition rate 7 times higher than that of a 10 × 0.4 mm 2 nozzle orifice, a method for evaluating the structure and mechanical properties of an aerosol deposited bioceramic film for orthodontic brackets.
제2항에 있어서,
HA(hydroxyapatite)와 brushite(
Figure pat00008
)가 각각 2㎛ 및 50㎛의 입자 크기를 갖는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 2,
HA(hydroxyapatite) and brushite(
Figure pat00008
) Has a particle size of 2㎛ and 50㎛ respectively, a method for evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets.
제5항에 있어서,
AD 공정 시에 바이오세라믹 코팅은 바이오세라믹 사파이어 브라켓 상에 체크-패턴(check-pattern on a sapphire bracket)을 사용한 쉐도우 마스크 패터닝(shadow mask patterning)을 사용하며, 체크-패턴 브루사이트 필름(check-patterned brushite film)은 기계적 특성과 증착률이 우수한 특성을 가지며, 메시-패턴 필름(mesh-patterned film)보다 두 배를 초과하는 전단 결합 강도(shear bond strength)를 갖는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
The method of claim 5,
In the AD process, the bioceramic coating uses shadow mask patterning using a check-pattern on a sapphire bracket, and a check-patterned film is used. aerosol deposited bio for orthodontic brackets, which has excellent mechanical properties and excellent deposition rate, and has a shear bond strength that is more than twice that of mesh-patterned films. Method for evaluating the structure and mechanical properties of ceramic films.
제2항에 있어서,
상기 에어로졸 증착 된 바이오세라믹 필름들의 표면 특성은 원자 현미경에 의해 측정되며, SiO2 필름의 RMS 거칠기는 최저치를 나타낸 반면, 상대적으로 brushite와 HA 필름들의 RMS 거칠기는 최고치를 보였으며, 강한 세라믹-대-레진 결합은 통상적으로 미세-기계적 인터로킹과 화학적 결합에 의존하는데, 적절히 거친 표면이 세라믹 코팅(ceramic coating)과 부드러운 레진(resin) 사이의 효과적인 결합 강도(effective bonding strength)를 제공하며,
상기 4종류의 에어로졸-증착 바이오세라믹 필름들(aerosol-deposited bioceramic films)의 평균 표면 거칠기(average surface roughness)는 치의학적 응용에 바람직한 표면 거칠기를 갖는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 2,
The surface properties of the aerosol-deposited bioceramic films were measured by atomic force microscopy, while the RMS roughness of the SiO 2 film showed the lowest value, while the RMS roughness of the brushite and HA films showed the highest value, and strong ceramic-to- Resin bonding typically relies on micro-mechanical interlocking and chemical bonding, where an appropriately rough surface provides effective bonding strength between a ceramic coating and a soft resin,
The average surface roughness of the four types of aerosol-deposited bioceramic films has the desired surface roughness for dental applications, and the structure of the aerosol-deposited bioceramic film for orthodontic brackets And mechanical property evaluation methods.
제2항에 있어서,
상기 HA(hydroxyapatite) 및 brushite 필름은 SiO2 및 Al2O3 필름 보다 큰 증착률을 갖는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 2,
The HA (hydroxyapatite) and brushite films are SiO 2 and Al 2 O 3 Method of evaluating the structure and mechanical properties of an aerosol-deposited bioceramic film for orthodontic brackets with a deposition rate greater than the film.
제2항에 있어서,
상기 HA(hydroxyapatite) 및 brushite 필름은
SiO2 및 Al2O3 필름들이 6MPa와 8MPa 사이의 전단 결합 강도 값을 가졌으며, 상기 HA와 brushite 필름은 10 MPa보다 큰 전단 결합 강도 값을 가지며,
상기 SiO2 및 Al2O3 필름들과 비교하여 최적의 접착 강도 값들이 관찰되었으며, 상기 HA와 brushite 필름은 SiO2 및 Al2O3 필름들보다 1.5배 높은 전단 결합 강도를 갖는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 2,
The HA (hydroxyapatite) and brushite film
SiO 2 and Al 2 O 3 films had a shear bond strength value between 6 MPa and 8 MPa, the HA and brushite films had a shear bond strength value greater than 10 MPa,
Optimal adhesive strength values were observed compared to the SiO 2 and Al 2 O 3 films, and the HA and brushite films had a shear bond strength 1.5 times higher than that of the SiO 2 and Al 2 O 3 films, orthodontic bracket. Method for evaluating the structure and mechanical properties of aerosol-deposited bioceramic films.
제2항에 있어서,
상기 바이오 세라믹 필름은 상기 HA(hydroxyapatite)와 brushite 필름들이 치아교정용 브라켓에 사용되는, 치아교정 브라켓 용 에어로졸 증착 된 바이오 세라믹 필름의 구조 및 기계적 특성 평가 방법.
According to claim 2,
The bio-ceramic film is a method for evaluating the structure and mechanical properties of the aerosol-deposited bio-ceramic film for the orthodontic bracket, wherein the HA (hydroxyapatite) and brushite films are used for the orthodontic bracket.
KR1020190000032A 2019-01-01 2019-01-01 Evaluation method of structural and mechanical properties of aerosol deposited bioceramic films for orthodontic brackets KR102198363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190000032A KR102198363B1 (en) 2019-01-01 2019-01-01 Evaluation method of structural and mechanical properties of aerosol deposited bioceramic films for orthodontic brackets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190000032A KR102198363B1 (en) 2019-01-01 2019-01-01 Evaluation method of structural and mechanical properties of aerosol deposited bioceramic films for orthodontic brackets

Publications (2)

Publication Number Publication Date
KR20200083890A true KR20200083890A (en) 2020-07-09
KR102198363B1 KR102198363B1 (en) 2021-01-04

Family

ID=71602227

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190000032A KR102198363B1 (en) 2019-01-01 2019-01-01 Evaluation method of structural and mechanical properties of aerosol deposited bioceramic films for orthodontic brackets

Country Status (1)

Country Link
KR (1) KR102198363B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076406A (en) * 2008-12-26 2010-07-06 주식회사 포스코 Implant having advanced adhesive strength of coating layer and manufacturing method thereof
KR20110125456A (en) * 2010-05-13 2011-11-21 한국기계연구원 Preparation method of hydroxyapatite coating layer using aerosol deposition and hydrothermal treatment, and nanostructured hydroxyapatite coating layer prepared by the method
KR20120041844A (en) * 2010-10-22 2012-05-03 주식회사 엔피덱 Manufacturing method of ceramic bracket for the orthodontics
KR20190102939A (en) 2018-02-27 2019-09-04 광운대학교 산학협력단 Adhesive method of Al2O3 and Cu composite film via aerosol deposition process for application of film resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076406A (en) * 2008-12-26 2010-07-06 주식회사 포스코 Implant having advanced adhesive strength of coating layer and manufacturing method thereof
KR20110125456A (en) * 2010-05-13 2011-11-21 한국기계연구원 Preparation method of hydroxyapatite coating layer using aerosol deposition and hydrothermal treatment, and nanostructured hydroxyapatite coating layer prepared by the method
KR20120041844A (en) * 2010-10-22 2012-05-03 주식회사 엔피덱 Manufacturing method of ceramic bracket for the orthodontics
KR20190102939A (en) 2018-02-27 2019-09-04 광운대학교 산학협력단 Adhesive method of Al2O3 and Cu composite film via aerosol deposition process for application of film resistor

Non-Patent Citations (71)

* Cited by examiner, † Cited by third party
Title
) and pharmacolite(
) in synthetic biomineralization solutions and in situ crystallization of brushite micro-granules, J. Am. Ceram. Soc. 95 (2012) 2178-2188
) to octacalcium phosphate(
) transformation in DMEM solutions at 36.5℃, Mater. Sci. Eng. C. 30 (2010) 245-254
), brushite(
), J. Cryst. Growth. 108 (1991) 290-300
A. Bacchi, V. Feitosa, A.Q. da Silva Fonseca, LA Cavalcante, N Silikas, LJ Schneider, Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites, J. Conserv. Dent. 18 (2015) 384-388
A. Klocke, H.M. Korbmacher, L.G. Huck, B. Kahl-Nieke, Plasma arc curing lights for orthodontic bonding, Am. J. Orthod. Dentofac. Orthop. 122 (2002) 643-648
A.A. Campbell, Bioceramics for implant coatings, Mater. Today. 6 (2003) 26-30
A.A. Ribeiro, A.V. de Morais, D.P. Brunetto, ACDO Ruellas, MTS de Araujo, Comparison of Shear Bond Strength of Orthodontics Brackets on Composite Resin Restorations with Different Surface Treatments, Dental Press J. Orthod. 18 (2013) 98-103
B. Mehmeti, B. Azizi, J. Kelmendi, D. Iljazi-Shahiqi, Z. Alar, S. Anic-Milosevic, Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns, Acta Stomatol. Croat. 51 (2017) 99-105
B.D. Hahn, D.S. Park, J.J. Choi, J. Ryu, WH Yoon, J.H. Choi, H.E. Kim, S.G. Kim, Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy, Surf. Coatings Technol. 205 (2011) 3112-3118
B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films. 518 (2010) 2194-2199
B.D. Hahn, Y.L. Cho, D.S. Park, J.J. Choi, J. Ryu, J.W. Kim, C.W. Ahn, C. Park, H.E. Kim, S.G. Kim, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, J. Biomater Appl. 27 (2013) 587-594
B.D. Hahn, Y.L. Cho, D.S. Park, J.J. Choi, J. Ryu, J.W. Kim, C.W. Ahn, C. Park, H.E. Kim, SG Kim, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, J. Biomater. Appl. 27 (2013) 587-594
C. Johnston, D. Burden, D. Kennedy, N. Harradine, M. Stevenson, Class Ⅲ surgical-orthodontic treatment: A cephalometric study, Am. J. Orthod. Dentofac. Orthop. 130 (2006) 300-309
C. Wu, W. Fan, J. Chang, M. Zhang, Y. Xiao, Preparation, characterization, and in vitro bioactivity of nagelschmidtite bioceramics, J Am Ceram Soc 96 (2013) 928-934
C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited
D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol. 6 (2015) 147-181
D. Pitriani, S.W. Logamarta, D.N.A. Imam, The shear bond strength of reconditioned sapphire bracket after rebonding with sandblasting zirconia, Padjadjaran J. Dent. 30 (2018) 45-51
D.R. Jordan, S.R. Klapper, Enucleation and orbital implants, Elsevier Inc., n.d.
D.S. Park, I.S. Kim, H. Kim, A.H.K. Chou, B.D. Hahn, L.H. Li, S.J. Hwang, Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition, J. Biomed. Mater. Res - Part B Appl. Biomater. 94 (2010) 353-358
D.W. Lee, H.J. Kim, S.M. Nam, Al2O3 Films on Cu Substrates Using the Aerosol Deposition Method, J. Korean Phys. Soc. 57 (2010) 1115-1121
D.W. Lee, H.J. Kim, Y.N. Kim, M.S. Jeon, S.M. Nam, Substrate hardness dependency on properties of Al2O3 thick films grown by aerosol deposition, Surf. Coatings Technol. 209 (2012) 160-168
D.W. Lee, M.C. Shin, Y.N. Kim, J.M. Oh, Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition, Ceram. Int. 43 (2017) 1044-1051
F.R. Egan, S.A. Alexander, G.E. Cartwright, Bond strength of rebonded orthodontic brackets, Am. J. Orthod. Dentofacial. Orthop. 109 (1996) 64-70
G.A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, F. Caccavale, Chemical vapour deposition and characterization of gallium oxide thin films, Thin Solid Films. 279 (1996) 115-118
H. Ahmad, Biocompatible SiO2 in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential, J. Chem. 2015 (2015) 1-19
H. Enerback, M. Moller, C Nylen, C.O. Bresin, I.O. Ros, A Westerlund, Effects of orthodontic treatment and different fluoride regimens on numbers of cariogenic bacteria and caries risk : a randomized controlled trial, Eur. J. Orthod. (2018) 1-8
H. Fischer, M. Schafer, R. Marx, Effect of surface roughness on flexural strength of veneer ceramics, J. Dent. Res. 82 (2003) 972-975
H.J. Busscher, H.P. de Jong, J. Arends, Surface free energies of hydroxyapatite, fluorapatite and calcium fluoride, Mater. Chem. Phys. 17 (1987) 553-558
J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer, Mater. Sci Forum 449-452 (2004) 43-48
J. Akedo, Aerosol Deposition Method for Room-Temperature Ceramic Coating and Its Applications, in: Handb. Adv. Ceram. Mater. Appl. Process Prop. Second Ed., 2013: pp 847-860
J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm Spray Technol 17 (2008) 181-198
J. Chinnam, D.K. Das, R.S. Vajjha, JR Satti, Measurements of the surface tension of nanofluids and development of a new correlation, Int. J. Therm. Sci. 98 (2015) 68-80
J.A. Miguel, M.A. Almeida, O. Chevitarese, Clinical comparison between a glass ionomer cement and a composite for direct bonding of orthodontic brackets, Am. J. Orthod. Dentofacial Orthop. 107 (1995) 484-487
J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, S.S. Yoon, Thermally induced superhydrophilicity in TiO2 films prepared by supersonic aerosol deposition, ACS Appl. Mater. Interfaces. 5 (2013) 6155-6160
J.M. Powers, H.B. Kim, D.S. Turner, Orthodontic adhesives and bond strength testing, Semin. Orthod. 3 (1997) 147-156
K. Li, P. Yang, L. Niu, D. Xue, Hardness of Inorganic Functional Materials, Rev. Adv. Sci. 1 (2012) 265-279
L.F. Bailey, R.J. Bennett, DICOR Surface Treatments for Enhanced Bonding, J. Dent. Res. 67 (1988) 925-931
M. Guazzato, M. Albakry, S.P. Ringer, M. V. Swain, Strength, fracture toughness and microstructure of a selection of all-ceramic materials Part I Pressable and alumina glass-infiltrated ceramics, Dent. Mater. 20 (2004) 441-448
M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, D. Uskokovic, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth Des. 8 (2008) 2217-2222
M.A. Miller, M.R. Kendall, M.K. Jain, P.R. Larson, A.S. Madden, A.C. Tas, Testing of brushite (
M.A. Vargas, D.S. Cobb, S.R. Armstrong, Resin-dentin shear bond strength and interfacial ultrastructure with and without a hybrid layer, Oper. Dent. 22 (1997) 159-66
M.B. Blatz, A. Sadan, M. Kern, Resin-ceramic bonding: A review of the literature, J Prosthet. Dent. 89 (2003) 268-274
M.F. Orellana-Lezcano, P.W. Major, P.L. McNeil, J.L. Borke, Temporary loss of plasma membrane integrity in orthodontic tooth movement, Orthod. Craniofac. Res. 8 (2005) 106-113
M.L. Ganesh, K. Saravana Pandian, Acceleration of tooth movement during orthodontic treatment-A frontier in orthodontics, J. Pharm. Sci. Res. 9 (2017) 741-744
M.Y. Cho, S.J. Park, S.M. Kim, D.W. Lee, H.K. Kim, SM Koo, K.S. Moon, J.M. Oh, Hydrophobicity and transparency of Al2O3-based poly-tetra-fluoro-ethylene composite thin films using aerosol deposition, Ceram Int 44 (2018) 16548-16555
O. Sorel, R. El Alam, F. Chagneau, G. Cathelineau, Comparison of bond strength between simple foil mesh and laser-structured base retention brackets, Am. J. Orthod Dentofac. Orthop. 122 (2002) 260-266
O.Y. Kwon, H.J. Na, H.J. Kim, D.W. Lee, S.M. Nam, Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett. 7 (2012) 261
R.C. de Oyague, F. Monticeli, M. Toledano, E. Osorio, M. Ferrari, R Osorio, Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic, Dent. Mater. 25 (2009) 172-179
S. Arango, A. Pelaez-Vargas, C. Garcia, Coating and Surface Treatments on Orthodontic Metallic Materials, Coatings. 3 (2012) 1-15
S. Duan, P. Feng, C. Gao, T. Xiao, K. Yu, C. Shuai, S. Peng, Microstructure evolution and mechanical properties improvement in liquid-phase-sintered hydroxyapatite by laser sintering, Materials (Basel). 8 (2015) 1162-1175
S. Henneman, J.W. Von Den Hoff, J.C. Maltha, Mechanobiology of tooth movement, Eur. J. Orthod. 30 (2008) 299-306
S. Mandel, A.C. Tas, Brushite(
S. Ruppi, A. Larsson, A. Flink, Nanoindentation hardness, texture and microstructure of α-Al2O3 and κ-Al2O3 coatings, Thin Solid Films. 516 (2008) 5959-5966
S. Singh, M. Panwar, B. Jayan, V. Arora, Orthodontic management of dentition in patients with periodontally compromised dentition, J Indian Soc Periodontol 18 (2014) 200-204
S.B. Jobalia, RM Valente, W.G. de Rijk, E.A. BeGole, C.A. Evans, Bond strength of visible light-cured glass ionomer orthodontic cement, Am. J. Orthod Dentofacial. Orthop. 112 (1997) 205-208
S.E. Bishara, M.M.A. Soliman, C. Oonsombat, J.F. Laffoon, R. Ajlouni, The effect of variation in mesh-base design on the shear bond strength of orthodontic brackets., Angle. Orthod. 74 (2004) 400-404
S.H. Jonsdottir, E.B.W. Giesen, J.C. Maltha, The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement, Eur. J. Orthod. 34 (2012) 542-546
T. Ugur, S. Ciger, A. Aksoy, A. Telli, An epidemiological survey using the Treatment Priority Index (TPI), Eur. J. Orthod. 20 (1998) 189-193
T.J Webster, RW Siegel, R Bizios, Osteoblast adhesion on nanophase ceramics, Biomaterials. 20 (1999) 1221-1227
T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (2000) 1803-1810
T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials. 21 (2000) 1803-1810
T.J. Webster, R.W. Siegel, R. Bizios, Design and evaluation of nanophase alumina for orthopaedic/dental applications, Nanostructured Mater. 12 (1999) 983-986
T.S. Skoblo, V.M. Vlasovets, V.V Moroz, Structure and Distribution of components in the working laver upon reconditioning of parts by electro-arc metallization, Met. Sci. Heat. Treat. 43 (2001) 497-500
thick films, Ceram. Int. 38 (2012) 5621-5627
V. Rajeev, R. Arunachalam, S. Nayar, P.R. Arunima, S. Ganapathy, V. Vedam, "Ormocer an innovative technology": A replacement for conventional cements and veneer? A comparative in vitro analysis, Eur. J. Dent 11 (2017) 58-63
W.J. Loesche, S.A. Syed, E Schmidt, E.C. Morrison, Bacterial Profiles of Subgingival Plaques in Periodontitis, J. Periodontol. 56 (1985) 447-456
W.M.M. Heijnen, P. Hartman, Structural morphology of gypsum(
Y. Zhang, T.L. Chwee, S. Ramakrishna, Z.M. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, J. Mater. Sci. Mater. Med. 16 (2005) 933-946

Also Published As

Publication number Publication date
KR102198363B1 (en) 2021-01-04

Similar Documents

Publication Publication Date Title
Mohseni et al. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper
Koch et al. Pulsed laser deposition of hydroxyapatite thin films
Kweh et al. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock
Hijón et al. Dip coated silicon-substituted hydroxyapatite films
Behera et al. Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V
Long et al. Preparation of dense β-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid
Cho et al. Evaluation of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets
Ding et al. Immersion behavior of RF magnetron‐assisted sputtered hydroxyapatite/titanium coatings in simulated body fluid
Sun et al. A comparative study on titania layers formed on Ti, Ti-6Al-4V and NiTi shape memory alloy through a low temperature oxidation process
Onoki et al. New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique
Yang et al. Biomechanical comparison of biomimetically and electrochemically deposited hydroxyapatite–coated porous titanium implants
Carradò et al. Nanocrystalline spin coated sol–gel hydroxyapatite thin films on Ti substrate: Towards potential applications for implants
Ananth et al. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties
Ding et al. Structure and immersion behavior of plasma-sprayed apatite-matrix coatings
Lee et al. Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition
Ben-Nissan et al. Adhesion of hydroxyapatite on titanium medical implants
Barry et al. Evaluation and comparison of hydroxyapatite coatings deposited using both thermal and non-thermal techniques
JP4423423B2 (en) Calcium phosphate compound-coated composite and method for producing the same
Ozeki et al. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment
Chou et al. Plasma-sprayed zirconia bond coat as an intermediate layer for hydroxyapatite coating on titanium alloy substrate
Ning et al. Mechanical performances and microstructural characteristics of plasma-sprayed bio-functionally gradient HA–ZrO2–Ti coatings
Safi et al. Effects of long durations of RF–magnetron sputtering deposition of hydroxyapatite on titanium dental implants
KR102198363B1 (en) Evaluation method of structural and mechanical properties of aerosol deposited bioceramic films for orthodontic brackets
Oktar et al. Bond-coating in plasma-sprayed calcium-phosphate coatings
Babu et al. Bioactive coatings on 316L stainless steel implants

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant