KR20200082452A - Composition for photodynamic therapy comprising Europium and Radioactive metal - Google Patents

Composition for photodynamic therapy comprising Europium and Radioactive metal Download PDF

Info

Publication number
KR20200082452A
KR20200082452A KR1020180173056A KR20180173056A KR20200082452A KR 20200082452 A KR20200082452 A KR 20200082452A KR 1020180173056 A KR1020180173056 A KR 1020180173056A KR 20180173056 A KR20180173056 A KR 20180173056A KR 20200082452 A KR20200082452 A KR 20200082452A
Authority
KR
South Korea
Prior art keywords
composition
lipo
cancer
europium
glycero
Prior art date
Application number
KR1020180173056A
Other languages
Korean (ko)
Other versions
KR102203483B1 (en
Inventor
임형준
이우승
전미연
최진영
오치우
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020180173056A priority Critical patent/KR102203483B1/en
Priority to PCT/KR2019/017816 priority patent/WO2020138805A1/en
Publication of KR20200082452A publication Critical patent/KR20200082452A/en
Application granted granted Critical
Publication of KR102203483B1 publication Critical patent/KR102203483B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1217Dispersions, suspensions, colloids, emulsions, e.g. perfluorinated emulsion, sols
    • A61K51/1234Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo

Abstract

A composition of the present invention has high stability in vivo and excellent ability to generate active oxygen, and thus can exhibit excellent circulating ability and target ability when used in photodynamic therapy.

Description

방사성 금속 및 유로피움을 포함하는 광역동 요법용 조성물{Composition for photodynamic therapy comprising Europium and Radioactive metal}Composition for photodynamic therapy comprising Europium and Radioactive metal

본 발명은 생체 내 높은 안정도와, 우수한 활성산소 발생능력을 갖는 광역동 요법용 조성물에 관한 것이다.The present invention relates to a composition for photodynamic therapy having high stability in vivo and excellent ability to generate free radicals.

광역동 치료(Photodynamic therapy, PDT)는 광화학 치료 라고도 불리우며, 감광제(photosensitizer)라는 화학물질에 상응하는 특정 파장 대의 빛에너지를 조사하여 이를 매개로 감광제와 산소 분자 간의 결합을 통하여 세포 사멸을 유도하는 치료법이다. 빛에너지를 흡수한 감광제는 병변 조직이나 세포 주변의 물 분자 또는 산소 분자 구조 내에 있는 전자를 이동 또는 이탈시켜 활성 산소(Reactive oxygen species, ROS)를 생산하고, 이를 통해 세포 사멸을 유도한다. 광역동 치료는 이미 박테리아, 바이러스, 곰팡이와 같은 미생물을 제거하는 능력이 있다고 증명되었고, 특히 여드름을 치료하는데 많이 사용되고 있다. 하지만, 보통 광역동 치료에 사용되는 빛에너지의 경우, 비침습적이고 높은 투과율을 위해 600~900 nm 파장대의 근적외선을 조사해주지만, 그 투과율이 피부로부터 1 cm 정도 밖에 되지 않아 이보다 더 깊이 있는 심부의 병변 조직에 대해서는 치료가 어렵다는 것이 한계점이라고 할 수 있다. 이러한 문제점을 개선하기 위해 X선을 이용한 광역동 치료 연구가 진행되고 있으나, X선 자체로 감광제가 활성산소를 생산할 수 있도록 직접적인 영향을 주지 못하기 때문에, 그 중간 매개체 역할로 유로피움이라는 란탄족 금속 이온을 광역동 치료를 유도하는 용도로 사용하였다. 이 연구에서 유로피움이 X선으로부터 받은 에너지를 감광제가 활성산소를 만들어 낼 수 있는 에너지로 전환하여 전달할 수 있다는 것이 증명되었고, 이와 유사한 맥락으로 감마선에 의해서 유로피움이 빨간색 파장 영역의 방사성 발광을 한다는 특성을 이용하여 형광 분자 이미징이 가능하다는 연구가 보고되었다. 이 두 연구에서 사용된 나노입자의 경우 유로피움을 첨가하거나 산화물의 형태로 그 크기가 생체 내 이미징을 하기에 너무 크거나 생체 내 조건에서 분해된다는 문제와, 더불어 생체 내에서의 나노 입자 안정도 또는 병변 부위에 대한 표적능을 보여주지 않았다는 한계점을 가지고 있다. Photodynamic therapy (PDT) is also called photochemical therapy, and it is a treatment method that induces cell death through binding between photosensitive agent and oxygen molecules by irradiating light energy of a specific wavelength band corresponding to a chemical called photosensitizer to be. A photosensitive agent that absorbs light energy moves or releases electrons in a water molecule or an oxygen molecular structure around a lesion tissue or cell to produce reactive oxygen species (ROS), thereby inducing cell death. Photodynamic therapy has already been proven to be capable of removing microorganisms such as bacteria, viruses, and fungi, and is widely used to treat acne. However, in the case of light energy that is usually used for photodynamic therapy, near-infrared rays in the wavelength range of 600 to 900 nm are irradiated for non-invasive and high transmittance, but the transmittance is only 1 cm from the skin. It can be said that it is difficult to treat tissues. In order to improve these problems, research on photodynamic therapy using X-rays is underway, but since X-rays themselves do not directly affect the photosensitizer to produce free radicals, a lanthanide metal called europium is used as an intermediate medium. Ions were used to induce photodynamic therapy. In this study, it was proved that Europium can transfer the energy received from X-rays to energy that can produce free radicals, and similarly, Europium emits radioactive light in the red wavelength region by gamma rays. Studies have been reported that fluorescence molecular imaging is possible using properties. In the case of the nanoparticles used in these two studies, in addition to the problem that the size of the nanoparticles in the form of oxides or in addition to the addition of europium is too large for in vivo imaging or decomposition under in vivo conditions, nanoparticle stability or lesions in vivo It has the limitation of not showing the targeting ability for the site.

한국공개특허 2013-0013136호Korean Patent Publication No. 2013-0013136

본 발명은 생체 내 높은 안정도와, 우수한 활성산소 발생능력을 갖는 광역동 요법용 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a composition for photodynamic therapy having high stability in vivo and excellent ability to generate free radicals.

1. Eu-DTPA 복합체 및 Victoria-blue BO 를 담지한 방사성 표지 리포좀; 및 방사성 금속을 포함하는 광역동 요법용 조성물.1. Radiolabeled liposome carrying Eu-DTPA complex and Victoria-blue BO; And a photodynamic therapy composition comprising a radioactive metal.

2. 위 1에 있어서, 상기 리포좀은 NOTA, DOTA, DTPA, EDTA, Cyclen, Cyclam 및 NTA로 이루어진 군에서 선택된 적어도 하나로 방사성 표지된 것인 조성물.2. The composition of 1 above, wherein the liposome is radiolabeled with at least one selected from the group consisting of NOTA, DOTA, DTPA, EDTA, Cyclen, Cyclam and NTA.

3. 위 1에 있어서, 상기 리포좀은 1,2-디스테아로일-sn-글리세로-3-포스포콜린, 1,2-디스테아로일-sn―글리세로-3-포스포에탄올아민-N-[메틸(폴리에틸렌글리콜)-5000], 1,2-디스테아로일-sn―글리세로-3-포스포에탄올아민-N-[메틸(폴리에틸렌글리콜)-5000] 암모늄염, 콜레스테롤, 디올레오일 포스파티딜콜린, 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민, 디팔미토일포스파티딜콜린 및 콜레스테릴 헤미숙시네이트로 이루어진 군에서 선택된 적어도 하나의 인지질을 포함하는 것인 조성물.3. In the above 1, wherein the liposome is 1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine -N-[methyl (polyethylene glycol)-5000], 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methyl (polyethylene glycol)-5000] ammonium salt, cholesterol, diol Comprising at least one phospholipid selected from the group consisting of leoyl phosphatidylcholine, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, dipalmitoylphosphatidylcholine and cholesteryl hemisuccinate. Composition.

4. 위 1에 있어서, 상기 방사성 금속은 99mTc, 64Cu, 18F, 89Zr, 68Ga, 198Au, 199Au, 105Rh, 177Lu, 153Sm, 166Ho, 149Tb, 161Tb, 149Pm, 186Re, 188Re, 44Sc, 47Sc, 67Cu, 71As, 72As, 74As, 77As, 212Pb, 212Bi, 213Bi, 117mSn, 67Ga, 111In, 82Rb, 90Y, 86Y, 52gMn, 54Mn, 및 51Mn 로 이루어진 군에서 선택된 적어도 하나인 조성물.4. In the above 1, the radioactive metal is 99m Tc, 64 Cu, 18 F, 89 Zr, 68 Ga, 198 Au, 199 Au, 105 Rh, 177 Lu, 153 Sm, 166 Ho, 149 Tb, 161 Tb, 149 Pm, 186 Re, 188 Re, 44 Sc, 47 Sc, 67 Cu, 71 As, 72 As, 74 As, 77 As, 212 Pb, 212 Bi, 213 Bi, 117 m Sn, 67 Ga, 111 In, 82 Rb , 90 Y, 86 Y, 52 g Mn, 54 Mn, and 51 Mn.

5. 위 1에 있어서, 상기 담지는 리포좀의 표면, 내부 또는 인지질 이중층에 이루어진 것인 조성물.5. The composition of 1 above, wherein the loading is made on the surface of the liposome, the inner layer, or the phospholipid bilayer.

6. 위 1 내지 5 중 어느 한 항의 조성물을 포함하는 암의 진단 또는 치료용 약학적 조성물.6. A pharmaceutical composition for the diagnosis or treatment of cancer, comprising the composition of any one of 1 to 5 above.

본 발명의 광역동 요법용 조성물은 생체 내 높은 안정도와, 우수한 활성산소 발생능력을 갖는다.The composition for photodynamic therapy of the present invention has high stability in vivo and excellent ability to generate free radicals.

도 1은 Eu/PS lipo를 이용한 생체 외 및 생체 내 실험 진행 모식도이다.
도 2, 3은 4종류의 리포좀(Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo) 모두 3가지 조건의 환경 (PBS, human serum, cell media(RPMI))에서의 분산 안정도를 확인한 것이다.
도 4는 99mTc의 활성도와 유로피움의 양에 의존적으로 감마선에 의한 유로피움의 방사성 발광 세기가 증가함을 보여주는 결과이다.
도 5는 Eu/VBBO lipo가 유로피움만 내제된 리포좀 (Eu lipo) 보다 약 8배 정도의 더 많은 ROS가 발생함을 보여주는 결과이다.
도 6 내지 8은 본 발명 Eu lipo, Eu/VBBO lipo의 blood pool 에서의 순환능 및 표적능(passive targeting)과 tumor 부위로의 섭취를 보여주는 결과이다.
1 is a schematic diagram showing the in vitro and in vivo experiments using Eu/PS lipo.
Figures 2 and 3 are four types of liposomes (Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo), dispersion stability in three conditions (PBS, human serum, cell media (RPMI)) Will confirm.
4 is a result showing that the radioactive emission intensity of europium by gamma rays increases depending on the activity of 99m Tc and the amount of europium.
FIG. 5 is a result showing that Eu/VBBO lipo has about 8 times more ROS than liposomes containing only europium (Eu lipo).
6 to 8 are the results showing the circulating and targeting ability (passive targeting) in the blood pool of Eu lipo, Eu/VBBO lipo of the present invention and intake to the tumor site.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 Eu-DTPA 복합체 및 Victoria-blue BO 를 담지한 방사성 표지 리포좀; 및 방사성 금속을 포함하는 광역동 요법용 조성물을 제공한다.The present invention is a radio-labeled liposome carrying Eu-DTPA complex and Victoria-blue BO; And it provides a composition for photodynamic therapy comprising a radioactive metal.

상기 Eu-DTPA 복합체는 란탄족 금속인 유로피움(Europium)과 DTPA(Diethylenetriamine pentaacetic acid) 간 형성된 복합체로서, 유로피움을 안정화시키는 역할을 한다. 상기 안정화는 Eu가 DTPA의 질소원자 또는 산소원자와 결합을 이루어 안정화된 구조일 수 있으나, 반드시 이에 제한되지 않는다. The Eu-DTPA complex is a complex formed between lanthanide metals Europium and DTPA (Diethylenetriamine pentaacetic acid), and serves to stabilize Europium. The stabilization may be a structure in which Eu is stabilized by bonding with a nitrogen or oxygen atom of DTPA, but is not necessarily limited thereto.

상기 Victoria-blue BO는 VBBO로 약칭되는 감광제(Photosensitizer)의 한 종류로서, 특정 파장의 빛에 의해 자극되면, 특정 환경 내 산소 라디칼과 반응하여 활성산소를 만들어 낸다. 상기 특정 환경이 암세포인 경우, 생성된 활성산소는 암세포의 사멸을 이끌게 되어, VBBO 및 이를 포함하는 조성물은 암의 진단 또는 치료에 널리 사용될 수 있다.The Victoria-blue BO is a type of photosensitizer, abbreviated as VBBO, and when stimulated by light of a specific wavelength, reacts with oxygen radicals in a specific environment to produce free radicals. When the specific environment is cancer cells, the generated free radicals lead to the death of cancer cells, and VBBO and a composition containing the same can be widely used for diagnosis or treatment of cancer.

상기 리포좀은 인지질로 구성된 이중층 막 구조를 말하는 것으로, 바람직하게는 마이쉘(micelle) 구조를 의미하는 것일 수 있다. The liposome refers to a double-layer membrane structure composed of phospholipids, and may preferably mean a micelle structure.

상기 리포좀을 구성하는 인지질은 1,2-디스테아로일-sn-글리세로-3-포스포콜린, 1,2-디스테아로일-sn―글리세로-3-포스포에탄올아민-N-[메틸(폴리에틸렌글리콜)-5000], 1,2-디스테아로일-sn―글리세로-3-포스포에탄올아민-N-[메틸(폴리에틸렌글리콜)-5000] 암모늄염, 콜레스테롤, 디올레오일 포스파티딜콜린, 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민, 디팔미토일포스파티딜콜린 및 콜레스테릴 헤미숙시네이트로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 반드시 이에 제한되지 않는다.Phospholipids constituting the liposome are 1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [Methyl (polyethylene glycol)-5000], 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methyl (polyethylene glycol)-5000] ammonium salt, cholesterol, dioleyl phosphatidylcholine , 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, dipalmitoylphosphatidylcholine, and cholesteryl hemisuccinate may be at least one selected from the group consisting of, but is not limited thereto.

상기 리포좀을 구성하는 인지질의 함량비에 대한 특별한 제한은 없고, 제조하고자 하는 리포좀의 크기를 고려하여 자유로이 그 비율을 설정할 수 있다.There is no particular limitation on the content ratio of the phospholipids constituting the liposome, and the ratio can be set freely considering the size of the liposome to be prepared.

상기 리포좀은 NOTA(1,4,7-Triazacyclononane-1,4,7-triacetic acid), DOTA(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid), DTPA(Diethylenetriamine pentaacetic acid), EDTA(Ethylenediaminetetraacetic acid), Cyclen, Cyclam 및 NTA(Nitrilotriacetic acid)로 이루어진 군에서 선택된 적어도 하나로 방사성 표지된 것일 수 있는데, 이는 후술할 조성물 내 포함되는 방사성 금속의 안정성을 상승시키고, 광역동 요법에 있어서 생체 추적 효과 상승시키는 역할을 한다.The liposomes are NOTA (1,4,7-Triazacyclononane-1,4,7-triacetic acid), DOTA (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid), DTPA (Diethylenetriamine At least one selected from the group consisting of pentaacetic acid), EDTA (Ethylenediaminetetraacetic acid), Cyclen, Cyclam, and NTA (Nitrilotriacetic acid) may be radioactively labeled, which increases the stability of the radioactive metal contained in the composition to be described later, and has wide dynamics. It plays a role in increasing the effectiveness of bio-tracking in therapy.

상기 담지는 리포좀의 표면, 내부 또는 인지질 이중층에 이루어진 것일 수 있고, 상기 복합체와 감광제의 안정성 유지를 위해 바람직하게는 리포좀의 내부에 담지된 것일 수 있으나, 반드시 이에 제한되는 것은 아니다.The support may be made on the surface of the liposome, the inner layer or the phospholipid bilayer, and may be preferably supported on the inside of the liposome to maintain stability of the complex and the photosensitizer, but is not limited thereto.

상기 방사성 금속은 99mTc, 64Cu, 18F, 89Zr, 68Ga, 198Au, 199Au, 105Rh, 177Lu, 153Sm, 166Ho, 149Tb, 161Tb, 149Pm, 186Re, 188Re, 44Sc, 47Sc, 67Cu, 71As, 72As, 74As, 77As, 212Pb, 212Bi, 213Bi, 117mSn, 67Ga, 111In, 82Rb, 90Y, 86Y, 52gMn, 54Mn, 및 51Mn 로 이루어진 군에서 선택된 적어도 하나일 수 있는데, 이는 외부에서 광을 별도로 쬐어주지 않아도 유로피움을 자극할 수 있어 인체에 보다 안전하고 그 편의성이 뛰어나며, 비용적 절감효과도 뛰어나다. The radioactive metal is 99m Tc, 64 Cu, 18 F, 89 Zr, 68 Ga, 198 Au, 199 Au, 105 Rh, 177 Lu, 153 Sm, 166 Ho, 149 Tb, 161 Tb, 149 Pm, 186 Re, 188 Re, 44 Sc, 47 Sc, 67 Cu, 71 As, 72 As, 74 As, 77 As, 212 Pb, 212 Bi, 213 Bi, 117 m Sn, 67 Ga, 111 In, 82 Rb, 90 Y, 86 Y, It may be at least one selected from the group consisting of 52g Mn, 54 Mn, and 51 Mn, which can stimulate europium even without externally shining light, making it safer and more convenient for the human body, and reducing cost. Also excellent.

상기 조성물은 광역동 요법(Photodynamic Therapy)용으로서, 질병을 가진 세포에만 선택적으로 활성산소가 축적되어 치료적 효과를 나타내는 치료요법을 말한다. 광역동 요법은 암의 진단과 치료, 자가골수이식, 항생제, AIDS 치료, 피부이식 수술 또는 관절염에 적용될 수 있으며, 이에 제한되는 것은 아니다.The composition is for photodynamic therapy, and refers to a treatment regimen that selectively accumulates free radicals only in cells with disease and shows a therapeutic effect. Photodynamic therapy can be applied to “diagnosis and treatment of cancer, autologous bone marrow transplantation, antibiotics, AIDS” treatment, skin transplant surgery or arthritis, but is not limited thereto.

본 발명은 상기 광역법 요법용 조성물을 포함하는 암의 진단 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for the diagnosis or treatment of cancer, including the composition for photodynamic therapy.

상기 '진단'은 병리 상태의 존재 또는 특징을 확인하는 것을 말하며, 구체적으로 상기 약학적 조성물을 통해 암의 발병 여부를 확인하는 것일 수 있다.The'diagnosis' refers to confirming the existence or characteristics of a pathological condition, and specifically, it may be to confirm whether or not the onset of cancer occurs through the pharmaceutical composition.

상기 '진단'은 상기 약학적 조성물을 개체에 도입한 결과, 암세포가 존재하는 부위에서 강한 형광을 나타내고, 이를 이용하여 암세포를 이미징 함으로써 암을 진단할 수 있으며, 구체적인 진단예는 하기 실시예에 설명될 수 있다.As a result of introducing the pharmaceutical composition into an individual, the'diagnosis' indicates strong fluorescence in a region where cancer cells are present, and can be used to diagnose cancer by imaging cancer cells, and specific diagnostic examples are described in the following examples. Can be.

상기 '치료'는 본 발명의 약학적 조성물을 투여하여 증세가 호전되거나, 암세포가 괴사 및/또는 사멸되도록 하는 행위를 포함하며, 다른 항암제, 방사선 요법, 수술 등과 병행하여 사용될 수 있다.The'treatment' includes the action of administering the pharmaceutical composition of the present invention to improve symptoms, or to kill and/or kill cancer cells, and may be used in combination with other anticancer agents, radiation therapy, surgery, and the like.

상기 '암'은 형질전환된 세포의 억제되지 않는 분열 또는 증식, 무질서한 성장 결과로 빚어지는 복합적인 질환을 일컬으며, '종양세포'와 혼용되어 사용될 수 있다. 구체적으로, 본 발명에서는 광역동 요법을 적용하기 위한 고형암을 대상으로 할 수 있다. 상기 고형암으로는 뇌종양(Brain Tumor), 양성성상세포종(Low- grade astrocytoma), 악성성상세포종(High-grade astrocytoma), 뇌하수체 선종(Pituitary adenoma), 뇌수막종(Meningioma), 뇌림프종(CNS lymphoma), 핍지교종(Oligodendroglioma), 두개내인종 (Craniopharyngioma), 상의세포종(Ependymoma), 뇌간종양(Brain stem tumor), 두경부 종양(Head & Neck Tumor), 후두암(Larygeal cancer), 구인두암(Oropgaryngeal cancer), 비강/부비동암(Nasal cavity/PNS tumor), 비인두암(Nasopharyngeal tumor), 침샘암(Salivary gland tumor), 하인두암(Hypopharyngeal cancer), 갑상선암(thyroid cancer), 구강암(Oral cavity tumor), 흉부종양(Chest Tumor), 소세포성 폐암(Small cell lung cancer), 비소세포성 폐암(NSCLC), 흉선암(Thymoma), 종격동 종양(Mediastinal tumor), 식도암 (Esophageal cancer), 유방암(Breast cancer), 남성유방암(Male breast cancer), 복부종양(Abdomen-pelvis Tumor), 위암(Stomach cancer), 간암(Hepatoma), 담낭암 (Gall bladder cancer), 담도암(Billiary tract tumor), 췌장암(pancreatic cancer), 소장암 (Small intestinal tumor), 대장암(Large intestinal tumor), 항문암(Anal cancer), 방광암 (Bladder cancer), 신장암(Renal cell carcinoma), 전립선암(Prostatic cancer), 자궁경부암(Cervix cancer), 자궁내막암(Endometrial cancer), 난소암(Ovarian cancer), 자궁육종(Uterine sarcoma), 피부암(Skin Cancer) 등을 포함할 수 있으며, 이에 제한되는 것은 아니다.The'cancer' refers to a complex disease resulting from uncontrolled division or proliferation of disordered cells or disordered growth, and can be used interchangeably with'tumor cells'. Specifically, in the present invention, solid cancer for applying “photodynamic” therapy can be targeted. The solid cancers include brain tumor, low-grade astrocytoma, high-grade astrocytoma, pituitary adenoma, meningioma, CNS lymphoma, oligodendroma (Oligodendroglioma), Craniopharyngioma, Ependymoma, Brain stem tumor, Head & Neck Tumor, Larygeal cancer, Oropgaryngeal cancer, Nasal sinus Cancer (Nasal cavity/PNS tumor), Nasopharyngeal tumor, Salary gland tumor, Hypopharyngeal cancer, Thyroid cancer, Oral cavity tumor, Chest Tumor, Small cell lung cancer, Non-small cell lung cancer (NSCLC), Thymoma, Mediastinal tumor, Esophageal cancer, Breast cancer, Male breast cancer , Abdomen-pelvis Tumor, Stomach cancer, Hepatoma, Gall bladder cancer, Billiary tract tumor, Pancreatic cancer, Small intestinal tumor, Large intestinal tumor, anal cancer, bladder cancer, kidney cell carcinoma, prostatic cancer, cervix cancer, endometrial cancer etrial cancer), ovarian cancer, uterine sarcoma, skin cancer, and the like, but is not limited thereto.

상기 약학적 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로오스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.The pharmaceutical composition may further include a pharmaceutically acceptable carrier, and may be formulated together with the carrier. The term "pharmaceutically acceptable carrier" in the present invention refers to a carrier or diluent that does not stimulate the organism and does not inhibit the biological activity and properties of the administered compound. As a pharmaceutical carrier which is acceptable in a composition formulated as a liquid solution, as a sterile and biocompatible material, saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components can be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents can be added as necessary. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate into injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets.

본 발명의 약학적 조성물은 본 발명의 광역동 요법용 조성물을 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.The pharmaceutical composition of the present invention can be applied to any formulation containing the composition for photodynamic therapy of the present invention as an active ingredient, and can be prepared as an oral or parenteral formulation. The pharmaceutical formulation of the present invention is oral, rectal, nasal, topical (including cheek and sublingual), subcutaneous, vaginal or parenteral; intramuscular and subcutaneous. And intravenous) or forms suitable for administration by inhalation or insufflation.

본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. The effective dose level depends on the type of patient's disease, severity, drug activity, sensitivity to the drug, duration of administration, rate of administration and release, duration of treatment, factors including concurrently used drugs, and other factors well known in the medical field. Can be determined. The composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with a conventional therapeutic agent, and may be administered single or multiple. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect in a minimal amount without side effects, which can be easily determined by those skilled in the art.

본 발명의 약학적 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 매우 다양하며, 적정한 투여량은 예를 들면 환자의 체내에 축적된 약물의 양 및/또는 사용되는 본 발명의 광역동 요법용 조성물의 구체적 효능정도에 따라 달라질 수 있다. 일반적으로 인비보 동물모델 및 인비트로에서 효과적인 것으로 측정된 EC50을 기초로 계산될 수 있으며, 예를 들면 체중 1kg당 0.01 μg 내지 1 g 일 수 있으며, 일별, 주별, 월별 또는 연별의 단위 기간으로, 단위 기간 당 일회 내지 수회 나누어 투여될 수 있으며, 또는 인퓨전 펌프를 이용하여 장기간 연속적으로 투여될 수 있다. 반복투여 횟수는 약물이 체내 머무는 시간, 체내 약물 농도 등을 고려하여 결정된다. 질환 치료 경과에 따라 치료가 된 후라도, 재발을 위해 조성물이 투여될 수 있다.The dosage of the pharmaceutical composition of the present invention is very diverse in its range depending on the patient's weight, age, sex, health status, diet, administration time, administration method, excretion rate, and disease severity, and an appropriate dosage is, for example, It may vary depending on the amount of drug accumulated in the patient's body and/or the specific efficacy of the composition for photodynamic therapy of the present invention used. In general, it can be calculated based on the EC50 measured as effective in the in vivo animal model and in vitro, for example, may be 0.01 μg to 1 g per 1 kg of body weight, and in a unit period of daily, weekly, monthly or yearly, It may be administered once or several times per unit period, or may be continuously administered for a long period of time using an infusion pump. The number of repeated doses is determined taking into account the time the drug stays in the body and the concentration of the drug in the body. The composition may be administered for relapse even after being treated according to the course of disease treatment.

본 발명의 약학적 조성물은 암의 치료와 관련하여 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 또는 유효성분의 용해성 및/또는 흡수성을 유지/증가시키는 화합물을 추가로 함유할 수 있다. 또한 선택적으로, 화학치료제, 항염증제, 항바이러스제 및/또는 면역조절제 등을 추가로 포함할 수 있다.The pharmaceutical composition of the present invention may further contain a compound that maintains/increases the solubility and/or absorption of one or more active ingredients exhibiting the same or similar function in relation to the treatment of cancer. Also optionally, chemotherapeutic, anti-inflammatory, anti-viral and/or immunomodulatory agents may be further included.

또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다.In addition, the pharmaceutical compositions of the present invention can be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. Formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. Hereinafter, examples will be described in detail to specifically describe the present invention.

실시예 1. 실험방법Example 1. Experimental method

1. Eu-DTPA 복합체와 감광제를 담지한 리포좀(Eu/PS lipo)의 제조 및 방사성 표지1. Preparation and radiolabeling of liposomes (Eu/PS lipo) carrying Eu-DTPA complex and photosensitizer

EuCl3·6H2O의 투명한 백색 분말을 증류수에, DTPA(Diethylenetriamine pentaacetic acid)의 백색 분말을 0.1M NaOH 용액에 각각 용해시켰다. 동일한 몰 비율로 혼합하여 만든 Eu-DTPA 복합체 용액을 중성 pH로 조정하였다.A transparent white powder of EuCl 3 ·6H 2 O was dissolved in distilled water and a white powder of DTPA (Diethylenetriamine pentaacetic acid) was dissolved in a 0.1M NaOH solution. The Eu-DTPA complex solution prepared by mixing at the same molar ratio was adjusted to neutral pH.

이후, 1,4,7-Triazacyclononane-1,4,7-triacetic acid (NOTA)를 방사선 표지를 위한 킬레이터로 사용하여, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)-2000] (ammonium salt) (DSPE-PEG (2000)-amine)을 2-(p-Isothiocyanatobenzyl)-1,4,7-triazacyclononane-N,N',N,''-triacetic acid trihydrochloride ((p-SCN-Bn)-NOTA)와 섞고 12시간동안 상온 조건에서 반응시켰다. 투명한 지방층이 제조되기 전에 NOTA가 결합된 DSPE-PEG (2000)를 PC 유도체 혼합물(1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methyl(polyethyleneglycol)-5000] (ammonium salt) (DSPE-PEG (5000)-CH3), 콜레스테롤을 6.3: 3.9: 1의 몰 비율로 클로로포름에 용해시킨 용액)과 함께 첨가하였다. Then, 1,4,7-Triazacyclononane-1,4,7-triacetic acid (NOTA) was used as a chelator for radiolabeling, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethyleneglycol)-2000] (ammonium salt) (DSPE-PEG (2000)-amine) 2-(p-Isothiocyanatobenzyl)-1,4,7-triazacyclononane-N,N',N,''-triacetic acid trihydrochloride ((p-SCN-Bn)-NOTA) and reacted at room temperature for 12 hours. DSPA-PEG (2000) with NOTA-linked PC derivative mixture (1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3- It was added with phosphoethanolamine-N-[methyl(polyethyleneglycol)-5000] (ammonium salt) (DSPE-PEG (5000)-CH 3 ), a solution of cholesterol dissolved in chloroform in a molar ratio of 6.3: 3.9:1).

감광제(Rose bangal(RB), Chlorin e6(Ce6), Victoria-blue BO(VBBO))는 지질 구성 성분들과 함께 첨가하였다. 지질상의 용매로 쓰인 클로로포름은 투명한 지질 박막이 바이알 바닥에 코팅 될 때까지 질소 가스처리 또는 회전식 증발기를 이용하여 증발시켰다. 증발시킨 지질층을 12시간동안 진공 건조시켜 층 내부의 나머지 클로로포름까지 제거되도록 하였다. Photosensitizers (Rose bangal (RB), Chlorin e6 (Ce6), Victoria-blue BO (VBBO)) were added along with the lipid components. Chloroform used as a lipid phase solvent was evaporated using a nitrogen gas treatment or a rotary evaporator until a transparent lipid film was coated on the bottom of the vial. The evaporated lipid layer was vacuum dried for 12 hours to remove the remaining chloroform inside the layer.

이후, Eu-DTPA 복합체 용액을 지질층이 담긴 바이알에 첨가하고 초음파를 통해 다중 층 소포 (MAVs)를 형성시켰다. MAVs 용액은 20 % 출력으로 9 초 반응, 1 초 휴지 간격으로 10 분 동안 부가적인 초음파 처리를 실시하였다. 그 다음, 투명한 리포좀 용액을 0.2 μm 필터로 여과하고, PD-10 칼럼, 크기 배제 크로마토 그래피 칼럼으로 용출시켜 과량의 Eu-DTPA 복합체 및 PS 분자를 분리하였다.Thereafter, the Eu-DTPA complex solution was added to a vial containing a lipid layer, and multi-layer vesicles (MAVs) were formed through ultrasound. The MAVs solution was subjected to additional sonication for 10 minutes at a 20-second output with a 9-second reaction and a 1-second rest interval. Then, the transparent liposome solution was filtered through a 0.2 μm filter and eluted with a PD-10 column and a size exclusion chromatography column to separate excess Eu-DTPA complex and PS molecules.

이후, 0.1M HCl의 방사성 동위 원소 (RI) 용액에 0.5 M sodium acetate 완충 용액을 첨가하여 pH 5가 될 때까지 적정하였다. pH 5로 적정한 RI 용액과 NOTA이 결합된 Eu/PS lipo를 혼합하여 37℃에서 30분간 반응시켰다. 반응 후, RI 표지된 Eu/PS lipo를 PD-10 컬럼으로 용출시켜 킬레이션이 되지 않은 RI로부터 분리하였다.Thereafter, 0.5 M sodium acetate buffer solution was added to the radioactive isotope (RI) solution of 0.1 M HCl and titrated until pH 5 was reached. The appropriate RI solution at pH 5 was mixed with NOTA-bound Eu/PS lipo and reacted at 37°C for 30 minutes. After the reaction, RI-labeled Eu/PS lipo was eluted with a PD-10 column and separated from unchelated RI.

상기의 제조과정으로, ① Eu lipo (감광제를 넣지 않은 리포좀), ② Eu/RB lipo (감광제로 RB를 넣은 리포좀), ③ Eu/Ce6 lipo (감광제로 Ce6를 넣은 리포좀), ④ Eu/VBBO lipo (감광제로 VBBO를 넣은 리포좀) 4종류의 리포좀을 제조하였다.With the above manufacturing process, ① Eu lipo (liposomes without photosensitizer), ② Eu/RB lipo (liposomes with RB as photosensitizer), ③ Eu/Ce6 lipo (liposomes with Ce6 as photosensitizer), ④ Eu/VBBO lipo (Liposome containing VBBO as a photosensitizer) Four types of liposomes were prepared.

2. 유로피움 형광을 통한 리포좀의 분산 안정도 확인2. Confirmation of dispersion stability of liposomes through Europium fluorescence

실시예 1-1에 의해 합성한 4 종류의 리포좀(Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo)에 4W UV lamp를 통해 UV선(365 nm)을 조사하여 빨간 형광이 나오는지 확인하였다. 4 types of liposomes (Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo) synthesized in Example 1-1 were irradiated with UV light (365 nm) through a 4W UV lamp to give red fluorescence. I checked it out.

PBS 버퍼용액, Human serum 용액, 세포 배양액 (RPMI)에 4 종류의 리포좀을 각각 1:10 (리포좀: PBS, Human serum 또는 RPMI)의 부피 비로 섞어 0일, 1일, 7일에서의 DLS(Dynamic Light Scattering) 측정을 통한 리포좀의 크기를 비교하였다.4 types of liposomes are mixed in PBS buffer solution, human serum solution, and cell culture solution (RPMI) in a volume ratio of 1:10 (liposomes: PBS, human serum or RPMI), respectively, and DLS (Dynamic) at 0, 1, and 7 days Light Scattering) to compare the size of liposomes.

3. 3. 99m99m Tc에 의해 유도된 방사성 발광 확인Confirmation of radioactive emission induced by Tc

99mTc에서 방출되는 감마선에 의한 방사성 발광 정도를 보기 위해 Eu lipo (104 μg of Eu)에 99mTc을 활성도 별(1 mCi, 0.5 mCi, 0.1 mCi)로 혼합하여 실험을 진행하였고, PBS 버퍼 용액과 99mTc (1 mCi) 혼합물을 비교군을 설정하였다. 그리고 99mTc (1 mCi)과 Eu lipo (104 μg, 52 μg, 26 μg)을 각각 농도별로 혼합하여 IVIS 영상을 통해 방사성 발광을 측정하였다 (Excitation filter: none, emission filter: open). 영상 이미지의 발광 세기를 측정하여 각각의 실험군에 대한 수치 그래프를 작성하였다. In order to see the degree of radioactive emission by gamma rays emitted from 99m Tc, 99m Tc was mixed with activity stars (1 mCi, 0.5 mCi, 0.1 mCi) in Eu lipo (104 μg of Eu) to perform the experiment. A comparison group was established for the 99m Tc (1 mCi) mixture. Then, 99m Tc (1 mCi) and Eu lipo (104 μg, 52 μg, and 26 μg) were mixed for each concentration to measure radioactive emission through an IVIS image (Excitation filter: none, emission filter: open). By measuring the luminescence intensity of the image, a numerical graph was created for each experimental group.

4. 4. 99m99m Tc에 의해 유도된 활성산소 발생 확인Confirmation of occurrence of free radicals induced by Tc

99mTc에서 방출된 감마선에 의한 유로피움의 방사성 발광 에너지에 의해 감광제가 ROS를 생성하는지 확인하기 위해 Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo에 대해서 실험을 실시하였다. 96-well microplate에 각각의 리포좀 용액 100 μL 에 99mTc (0.5 mCi)을 함께 섞은 용액과 비교군으로 PBS 버퍼를 넣은 용액을 37℃에서 30분동안 반응 후 촉매 50 μL를 넣고 5분 동안 상온에서 반응시켜주었다. 그리고 DCFH 용액 100 μL을 넣고 상온에서 30분동안 반응시킨 용액의 형광 세기를 측정하였다 (excitation: 485 nm). 99mTc을 넣지 않은 비교군의 형광 세기와 99mTc을 넣어준 실험군의 형광 세기 간의 비율로 감마선의 영향으로 인한 ROS 발생이 어느정도 증가하였는지 비교하였다(하기 수학식 1). Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, and Eu/VBBO lipo were experimented to confirm that the photoresist produced ROS by radioactive emission energy of europium by gamma rays emitted from 99m Tc. The mixture of 99m Tc (0.5 mCi) in 100 μL of each liposome solution in a 96-well microplate and a solution containing PBS buffer as a control group were reacted at 37° C. for 30 minutes, then 50 μL of catalyst was added and the mixture was allowed to stand at room temperature for 5 minutes. To react. Then, 100 μL of DCFH solution was added and the fluorescence intensity of the solution reacted for 30 minutes at room temperature was measured (excitation: 485 nm). The ratio between the fluorescence intensity of the comparison group without 99m Tc and the fluorescence intensity of the experimental group with 99m Tc was compared to increase the ROS occurrence due to the effect of gamma rays (Equation 1 below).

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

5. 마우스 종양 모델에서의 In vivo 이미징5. In vivo imaging in a mouse tumor model

Eu lipo가 생체 내 이미징으로 적합한 프로브인지 확인하기 위해, Balb/c nude 마우스에 head and neck cancer 세포주의 한 종류인 FaDu 세포주를 이용하여 피하 종양 모델을 제작하였다. 64Cu를 표지한 Eu lipo와 Eu/VBBO lipo을 피하 종양 모델에 각각 80 μCi씩 정맥 주사로 주입하고 0, 1, 4, 24, 48시간대의 PET 영상 촬영을 실시하여 리포좀의 순환능 및 표적능을 확인하였다.To confirm that Eu lipo is a suitable probe for in vivo imaging, a subcutaneous tumor model was constructed using a FaDu cell line, a type of head and neck cancer cell line, in Balb/c nude mice. Circulating and targeting ability of liposomes by intravenous injection of 80 μCi of 64 Cu-labeled Eu lipo and Eu/VBBO lipo into subcutaneous tumor models and PET imaging at 0, 1, 4, 24, 48 hours Was confirmed.

실시예 2. 실험결과Example 2. Experimental results

1. 유로피움 형광을 통한 리포좀의 분산 안정도 확인1. Confirmation of dispersion stability of liposomes through Europium fluorescence

도 2 및 3을 참조하면, 4종류의 리포좀(Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo) 모두 3가지 조건의 환경 (PBS, human serum, cell media(RPMI))에서 7일 동안 침전물 없이 입자의 크기 변화가 거의 없는 것을 확인할 수 있는데, 이는 본 발명의 리포좀이 생체 내 환경에서 안정적으로 분산될 수 있음을 암시케 하는 결과로 판단된다.Referring to Figures 2 and 3, all four types of liposomes (Eu lipo, Eu/RB lipo, Eu/Ce6 lipo, Eu/VBBO lipo) in all three conditions (PBS, human serum, cell media (RPMI)) It can be confirmed that there is little change in particle size without precipitation for 7 days, which is judged as a result suggesting that the liposomes of the present invention can be stably dispersed in an in vivo environment.

2. 2. 99m99m Tc에 의해 유도된 방사성 발광 확인Confirmation of radioactive emission induced by Tc

도 4를 참조하면, 99mTc의 활성도와 유로피움의 양에 의존적으로 감마선에 의한 유로피움의 방사성 발광 세기가 증가한다는 것을 확인할 수 있는데, 이는 99mTc에서 방출되는 감마선이 유로피움에 성공적으로 전달될 수 있고, 99mTc의 활성도와 유로피움의 양을 조절하여 방사성 발광 정도를 조절할 수 있음을 암시케 하는 결과로 판단된다.Referring to FIG. 4, it can be seen that the radioactive emission intensity of europium by gamma rays increases depending on the activity of 99m Tc and the amount of europium, which can successfully transmit gamma rays emitted from 99m Tc to europium. It is judged as a result suggesting that the degree of radioactive emission can be controlled by controlling the activity of 99m Tc and the amount of europium.

3. 3. 99m99m Tc에 의해 유도된 활성산소 발생 확인Confirmation of occurrence of free radicals induced by Tc

도 5를 참조하면, 3가지 감광제 (RB, VBBO, Ce6) 각각의 최고 흡광도 파장 영역을 유로피움의 방출 스펙트럼 그래프의 빨간색 형광 영역인 590 내지 620 nm와 비교 했을 때, 두 파장 영역이 가장 많이 겹치는 VBBO를 내재시킨 Eu/VBBO lipo가 유로피움만 내제된 리포좀 (Eu lipo) 보다 약 8배 정도의 더 많은 ROS가 발생한다는 것을 확인할 수 있다. 이는 광역동 요법에 사용할 수 있는 타 입자 또는 조성물 대비 현저한 활성산소 생성능력 상승을 보이는 것으로서, 종래기술들로부터 도출할 수 없는 효과의 현저성이 존재하는 것으로 판단된다.Referring to FIG. 5, when the maximum absorbance wavelength region of each of the three photosensitizers (RB, VBBO, Ce6) is compared with the red fluorescence region of 590 to 620 nm in the emission spectrum graph of Europium, the two wavelength regions overlap most It can be seen that Eu/VBBO lipo having VBBO is embedded, and about 8 times more ROS is generated than Eulipo-containing liposome. This shows a remarkable increase in the ability to generate free radicals compared to other particles or compositions that can be used in photodynamic therapy, and it is considered that there is a remarkable effect that cannot be derived from the prior art.

4. 마우스 종양 모델에서의 In vivo 이미징4. In vivo imaging in a mouse tumor model

도 6 내지 8을 참조하면, Eu lipo의 경우, 최소 4시간 동안 blood pool에 Eu lipo가 존재하고 있는 것으로 보였으며, 24시간 이후부터는 mouse tumor model (Subcutaneous model, FaDu cell line)에서 tumor 부위에 약 11%ID/g의 Eu lipo 섭취가 된다는 것을 확인할 수 있다. Eu/VBBO lipo 역시 Eu lipo와 유사한 blood pool 에서의 순환능과 tumor 부위로의 섭취를 보임을 확인할 수 있고, Tumor 섭취의 경우, 약 15%ID/g의 Eu/VBBO lipo 섭취를 보여준다.6 to 8, in the case of Eu lipo, it was shown that Eu lipo exists in the blood pool for at least 4 hours, and from 24 hours onwards, the mouse tumor model (Subcutaneous model, FaDu cell line) has a drug at the tumor site. It can be seen that 11% ID/g of Eu lipo is ingested. Eu/VBBO lipo also shows circulating capacity in the blood pool similar to Eu lipo and intake to the tumor site. Tumor intake shows about 15% ID/g of Eu/VBBO lipo intake.

Claims (6)

Eu-DTPA 복합체 및 Victoria-blue BO 를 담지한 방사성 표지 리포좀; 및 방사성 금속을 포함하는 광역동 요법용 조성물.
Radiolabeled liposomes carrying Eu-DTPA complex and Victoria-blue BO; And a photodynamic therapy composition comprising a radioactive metal.
청구항 1에 있어서, 상기 리포좀은 NOTA, DOTA, DTPA, EDTA, Cyclen, Cyclam 및 NTA로 이루어진 군에서 선택된 적어도 하나로 방사성 표지된 것인 조성물.
The method according to claim 1, wherein the liposome is NOTA, DOTA, DTPA, EDTA, Cyclen, Cyclam and at least one selected from the group consisting of NTA radioactively labeled composition.
청구항 1에 있어서, 상기 리포좀은 1,2-디스테아로일-sn-글리세로-3-포스포콜린, 1,2-디스테아로일-sn―글리세로-3-포스포에탄올아민-N-[메틸(폴리에틸렌글리콜)-5000], 1,2-디스테아로일-sn―글리세로-3-포스포에탄올아민-N-[메틸(폴리에틸렌글리콜)-5000] 암모늄염, 콜레스테롤, 디올레오일 포스파티딜콜린, 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민, 디팔미토일포스파티딜콜린 및 콜레스테릴 헤미숙시네이트로 이루어진 군에서 선택된 적어도 하나의 인지질을 포함하는 것인 조성물.
The method according to claim 1, wherein the liposome is 1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N -[Methyl(polyethylene glycol)-5000], 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methyl(polyethylene glycol)-5000] ammonium salt, cholesterol, dioleyl oil A composition comprising at least one phospholipid selected from the group consisting of phosphatidylcholine, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, dipalmitoylphosphatidylcholine and cholesteryl hemisuccinate.
청구항 1에 있어서, 상기 방사성 금속은 99mTc, 64Cu, 18F, 89Zr, 68Ga, 198Au, 199Au, 105Rh, 177Lu, 153Sm, 166Ho, 149Tb, 161Tb, 149Pm, 186Re, 188Re, 44Sc, 47Sc, 67Cu, 71As, 72As, 74As, 77As, 212Pb, 212Bi, 213Bi, 117mSn, 67Ga, 111In, 82Rb, 90Y, 86Y, 52gMn, 54Mn, 및 51Mn 로 이루어진 군에서 선택된 적어도 하나인 조성물.
The method according to claim 1, The radioactive metal is 99m Tc, 64 Cu, 18 F, 89 Zr, 68 Ga, 198 Au, 199 Au, 105 Rh, 177 Lu, 153 Sm, 166 Ho, 149 Tb, 161 Tb, 149 Pm , 186 Re, 188 Re, 44 Sc, 47 Sc, 67 Cu, 71 As, 72 As, 74 As, 77 As, 212 Pb, 212 Bi, 213 Bi, 117m Sn, 67 Ga, 111 In, 82 Rb, 90 Y, 86 Y, at least one composition selected from the group consisting of 52 g Mn, 54 Mn, and 51 Mn.
청구항 1에 있어서, 상기 담지는 리포좀의 표면, 내부 또는 인지질 이중층에 이루어진 것인 조성물.
The method according to claim 1, wherein the supporting composition is made on the surface, inner or phospholipid bilayer of the liposome.
청구항 1 내지 5 중 어느 한 항의 조성물을 포함하는 암의 진단 또는 치료용 약학적 조성물.
A pharmaceutical composition for the diagnosis or treatment of cancer, comprising the composition of claim 1.
KR1020180173056A 2018-12-28 2018-12-28 Composition for photodynamic therapy comprising Europium and Radioactive metal KR102203483B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180173056A KR102203483B1 (en) 2018-12-28 2018-12-28 Composition for photodynamic therapy comprising Europium and Radioactive metal
PCT/KR2019/017816 WO2020138805A1 (en) 2018-12-28 2019-12-16 Composition comprising radioactive metal and europium for photodynamic therapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180173056A KR102203483B1 (en) 2018-12-28 2018-12-28 Composition for photodynamic therapy comprising Europium and Radioactive metal

Publications (2)

Publication Number Publication Date
KR20200082452A true KR20200082452A (en) 2020-07-08
KR102203483B1 KR102203483B1 (en) 2021-01-14

Family

ID=71128208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180173056A KR102203483B1 (en) 2018-12-28 2018-12-28 Composition for photodynamic therapy comprising Europium and Radioactive metal

Country Status (2)

Country Link
KR (1) KR102203483B1 (en)
WO (1) WO2020138805A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130013136A1 (en) 2011-07-06 2013-01-10 GM Global Technology Operations LLC System and method for increasing operating efficiency of a hybrid vehicle
KR20130013136A (en) * 2011-07-27 2013-02-06 호서대학교 산학협력단 Method of preparing red phosphor composition having europium ion and red phosphor composition using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048109A1 (en) * 2003-08-26 2005-03-03 Ceramoptec Industries, Inc. Non-polar photosensitizer formulations for photodynamic therapy
US9072789B2 (en) * 2007-07-20 2015-07-07 The Trustees Of Princeton University Nano-particle surface modification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130013136A1 (en) 2011-07-06 2013-01-10 GM Global Technology Operations LLC System and method for increasing operating efficiency of a hybrid vehicle
KR20130013136A (en) * 2011-07-27 2013-02-06 호서대학교 산학협력단 Method of preparing red phosphor composition having europium ion and red phosphor composition using the same

Also Published As

Publication number Publication date
KR102203483B1 (en) 2021-01-14
WO2020138805A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
Zhang et al. Advanced biotechnology-assisted precise sonodynamic therapy
US10780045B2 (en) Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof
US10806694B2 (en) Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof
Wang et al. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy
Fan et al. On the latest three‐stage development of nanomedicines based on upconversion nanoparticles
US20200254095A1 (en) Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof
JP4247110B2 (en) Novel metalloporphyrins and their use as radiosensitizers for radiotherapy
He et al. Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses
CN111135299A (en) Construction of photosensitizer-hypoxia activated prodrug integrated prodrug self-assembled nanoparticles
CN107812008A (en) A kind of preparation method of near-infrared fluorescence imaging small molecule anti-cancer Nano medication
Pan et al. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection
WO2022166993A1 (en) Novel boron carrier, preparation method and pharmaceutical formulation thereof
KR20150036574A (en) Cancer treatment
RU2415670C2 (en) Reinforsing agent for radiation therapy, which includes pyridine derivative as active ingredient
US20150315202A1 (en) Chlorin derivative useful in photodynamic therapy and diagnosis
KR102203483B1 (en) Composition for photodynamic therapy comprising Europium and Radioactive metal
US20080279776A1 (en) Photosensitizers and MRI Enhancers
Choi et al. Theranostics through utilizing cherenkov radiation of radioisotope Zr-89 with a nanocomposite combination of TiO2 and MnO2
US20230149546A1 (en) Photosensitizer conjugated gold nanoparticles for radiotherapy enhancement
CN113633784B (en) Hybrid nano-assembly for heat shock protein inhibition sensitization photothermal therapy and preparation and application thereof
JP5956533B2 (en) Radiation target drug preparation kit and preparation method and use of radiation target drug
CN110016048B (en) Derivative of mitochondrion targeting IR780 iodide, preparation method and application
CN115068615B (en) Open source throttling type anti-hypoxia anti-tumor pharmaceutical composition and application thereof
JP2020530471A (en) Inhibitors of the biological pathways of MEK / PI3K, JAK / MEK, JAK / PI3K / mTOR and MEK / PI3K / mTOR, and methods of improving lymphatic uptake, bioavailability, and solubility of therapeutic compounds.
JP2015091766A (en) Cancer therapy support system

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant